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Abstract 

Background:  Renal carcinoma is a common malignant tumor of the urinary system. 
Advanced renal carcinoma has a low 5-year survival rate and a poor prognosis. More 
and more studies have confirmed that chromatin regulators (CRs) can regulate the 
occurrence and development of cancer. This article investigates the functional and 
prognostic value of CRs in renal carcinoma patients.

Methods:  mRNA expression and clinical information were obtained from The Can-
cer Genome Atlas database. Univariate Cox regression analysis and LASSO regression 
analysis were used to select prognostic chromatin-regulated genes and use them 
to construct a risk model for predicting the prognosis of renal cancer. Differences in 
prognosis between high-risk and low-risk groups were compared using Kaplan–Meier 
analysis. In addition, we analyzed the relationship between chromatin regulators and 
tumor immune infiltration, and explored differences in drug sensitivity between risk 
groups.

Results:  We constructed a model consisting of 11 CRs to predict the prognosis of 
renal cancer patients. We not only successfully validated its feasibility, but also found 
that the 11 CR-based model was an independent prognostic factor. Functional analysis 
showed that CRs were mainly enriched in cancer development-related signalling 
pathways. We also found through the TIMER database that CR-based models were also 
associated with immune cell infiltration and immune checkpoints. At the same time, 
the genomics of drug sensitivity in cancer database was used to analyze the com-
monly used drugs of renal clear cell carcinoma patients. It was found that patients in 
the low-risk group were sensitive to medicines such as axitinib, pazopanib, sorafenib, 
and gemcitabine. In contrast, those in the high-risk group may be sensitive to sunitinib.

Conclusion:  The chromatin regulator-related prognostic model we constructed can 
be used to assess the prognostic risk of patients with clear cell renal cell carcinoma. The 
results of this study can bring new ideas for targeted therapy of clear cell renal carci-
noma, helping doctors to take corresponding measures in advance for patients with 
different risks.
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Introduction
The annual incidence of renal tumors accounts for 2–3% of all tumors, ranking third 
in urinary system tumors [1]. In 2020, through a large-scale cancer data survey of 185 
countries, 431,288 patients were newly found to have kidney tumors, and 179,368 kid-
ney cancer patients died due to the disease [2]. Renal clear cell carcinoma (KIRC) is the 
primary pathological type of renal tumors, accounting for about 70–80% [3]. Most renal 
cancer patients lack apparent symptoms and are detected incidentally through imaging 
examinations. If no distant metastasis occurs, the 5-year survival rate is high; however, 
about 30% of patients have distant metastasis at the initial assessment, and the survival 
rate is significantly reduced [4]. Previous studies have found that polygenic signatures 
provide risk stratification and prognosis prediction for cancer patients [5–8]. Therefore, 
this study aimed to establish a chromatin regulator signature to predict overall survival 
in KIRC patients. It is also used to screen for the best possible treatment drugs.

Chromatin regulators (CRs) are a class of enzymes with specialized functional domains 
capable of recognizing, forming and maintaining epigenetic states in a cellular context-
dependent manner [9, 10]. CRs are essential upstream regulators of epigenetics. Accord-
ing to their regulatory roles, CRs are generally classified into three categories: histone 
modifications, chromatin remodelers, and DNA methylation [11, 12]. Aberrant expres-
sion of CRs is associated with various biological processes such as apoptosis, autophagy, 
and proliferation, suggesting that dysregulation of CRs may contribute to the develop-
ment of multiple diseases, including cancer [13–15]. Therefore, CRs are expected to 
become new targets for treating multiple diseases. DPF3 is a component of the SWI/
SNF chromatin remodelling complex. Studies have shown that DPF3a (the short isoform 
of DPF3) promotes renal cancer cell migration in vitro and in vivo, and the mechanism is 
mainly due to the specific interaction between DPF3a and SNIP1. It affects the metasta-
sis of clear cell renal cell carcinoma (ccRCC) through the TGF-β signalling pathway [16]. 
The PBAF complex consists of multiple subunits, including the tumor suppressor pro-
tein PBRM1 (BAF180), which are unique to this SWI/SNF chromatin remodeling com-
plex. PBRM1 is mutated in various cancers, with high mutation frequency in ccRCC. 
Deletion of PBRM1 alters promoter histone modifications and activates ALDH1A1 to 
drive renal cell carcinoma [17]. Some scholars obtained the expression data of KAT2A 
and MCT1 in RCC from The Cancer Genome Atlas (TCGA-KIRC) and the International 
Cancer Genome Consortium (ICGC) database. Experiments show that KAT2A is an 
oncogenic chromatin modifier that induces MCT1 expression to promote RCC progres-
sion, and an MCT1 inhibitor (AZD3965) can inhibit RCC [18]. Studies have also shown 
that BRM is a crucial subunit of the SWI/SNF chromatin remodeling complex, and the 
knockdown of BRM promotes the proliferation, migration and invasion of RCC cells. 
RGFP966 inhibits tumor progression in clear cell RCC by restoring BRM expression 
in  vivo and in  vitro [19]. HMGA1 is a chromatin remodeling factor, and studies have 
found that HMGA1-mediated miR-671-5p targeting APC promotes the metastasis of 
clear cell renal cell carcinoma through the Wnt signaling pathway [20]. The above litera-
ture show that CRs has a significant impact on the prognosis of KIRC patients, and it is 
worth our further consideration. However, the relationship between CRs and KIRC has 
rarely been systematically explored. Therefore, we used bioinformatics analysis to study 
the expression profile and prognostic value of CRs in KIRC. We successfully constructed 
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a prognostic signature consisting of 11 CRs, which proved effective in predicting the 
prognosis of KIRC patients. In addition, we found a close relationship between this 
prognostic feature and immune checkpoints, which could help with immunotherapy. 
Based on this, we screened out 5 drugs that may be beneficial to treating KIRC patients.

Methods
Sources of KIRC patients and screening for differentially expressed CRs

The data analyzed in this study all come from public databases. The mRNA expression 
and relevant clinical information datasets were downloaded from the TCGA (https://​
tcga-​data.​nci.​nih.​gov/​tcga) [21]. Including 541 cases of tumor tissue and 72 cases of 
normal tissue, and obtained the corresponding clinical data of these patients, such as 
age, sex, tumor differentiation degree, tumor stage, etc. Previous studies have identified 
870 chromatin regulators [9] (Additional files 1, 2). Based on these CRs, we normalized 
the mRNA expression profiles in the KIRC data by R package (limma R package version 
3.50.3). Using the limma package in R language, the criteria of |logFC|> 1 and false dis-
covery rate (FDR) < 0.05 were used to identify CRs with differential expression.

Establishment and validation of a CRs prognostic model

Univariate Cox regression analysis (survival R package version 3.4.0) was performed on 
differentially expressed CRs to identify genes with prognostic value. Then, a prognostic 
risk model was constructed by Lasso Cox regression analysis using the glmnet R package 
(version 4.1.4). The risk score for each sample was obtained using the following equation:

β coefficient value; Exp gene expression level. Two subgroups (high or low risk group) 
were constituted based on the median risk score in these KIRC patients. Differences in 
overall survival (OS) time between subgroups were compared by Kaplan–Meier curves 
(survival R package version 3.4.0 and survminer R package version 0.4.9). In addition, 
the ability of the above model to predict prognosis was analyzed using the SurvivalROC 
R package (version 1.0.3). Randomly select 70% of KIRC TCGA cohort patients (n = 370) 
through the caret R package (version 6.0.93) plus patients in GSE29609 (n = 39) (https://​
www.​ncbi.​nlm.​nih.​gov/​geo) as validation dataset to further determine whether the prog-
nostic ability of the model was reliable.

Nomogram establishment based on risk score and clinical variables

Univariate and multivariate Cox proportional (survival R package version 3.4.0) hazards 
were used to analyze risk scores and other clinical factors to determine whether their 
impact on prognosis was statistically significant. Based on the final model, a nomogram 
was constructed by the rms R package (version 6.3.0) and regplot R package (version 
1.1) to predict 1, 3 and 5 years overall survival in KIRC patients. Perform a concordance 
index (C-index) and calibration curve to assess the predictive utility of the nomogram.

Risk score = β1 ∗ Exp1+ β2 ∗ Exp2+ β3 ∗ Exp3+ · · · + βn ∗ Expn

https://tcga-data.nci.nih.gov/tcga
https://tcga-data.nci.nih.gov/tcga
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo


Page 4 of 18Liu et al. BMC Bioinformatics          (2023) 24:104 

Bioinformatics analysis

GO enrichment and KEGG (http://​www.​kegg.​jp/​kegg/​kegg1.​html) pathway analysis 
were used to analyze these differently expressed CRs. The GO analysis terms include 
cellular component (CC), biological process (BP), and molecular function (MF). 
KEGG is a comprehensive database that integrates genomic information, chemical 
information and biochemical system function information. All analyses were carried 
out by R language with org.Hs.eg.db R package version 3.14.0; clusterProfiler R pack-
age version 4.2.2; enrichplot R package version 1.14.2 and ggplot2 R package version 
3.4.0. Differences were considered statistically significant when FDR < 0.05. Gene set 
enrichment analysis (GSEA) was used in different risk groups to explore the underly-
ing molecular mechanisms. P value < 0.05 were considered statistically significant.

Tumor cell immune infiltration analysis

We assessed the level of immune cell infiltration between different risk groups based 
on B cell-specific lncRNA signatures using the TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms (pheatmap R 
package version 1.0.12). Immunotherapy has been proven to be an effective method 
for the treatment of malignant tumors. To predict which immune checkpoint inhibi-
tors might be effective in high- and low-risk populations, we visualized differentially 
expressed immune checkpoints using the ggpubr R packages (version 0.4.0) [22]. 
In addition, this study explored the relationship between 11 CRs and immune cells 
through the TIMER database (https://​cistr​ome.​shiny​apps.​io/​timer/) [23], which will 
help to understand the role of these CRs in the immune system of KIRC patients.

Cancer drug sensitivity genomics analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database (https://​www.​cance​
rrxge​ne.​org/) [24] is the largest public resource for information on drug sensitivity 
in cancer cells and molecular markers of drug response. To understand differences 
in drug sensitivity between the two risk groups, we used this database to analyze the 
half-maximal inhibitory concentration (IC50) of drugs. We predicted drug sensitivity 
by using the pRRophetic R package (version 0.5) [25].

Statistical analysis

R software (version 4.1.3) was used for all statistical analyses in this study. Differences 
between the two groups were determined using the Wilcoxon test. P value < 0.05 were 
considered statistically significant.

Results
Prognosis‑related CRs risk score model

In this study, we systematically analyzed the function and prognostic value of CRs in 
KIRC by several effective statistical methods. The KIRC data were exported from the 
TCGA, including 541 tumor samples and 72 normal samples. The limma R pack-
age was utilized to pick out the differentially expressed CRs. A total of 853 CRs were 
identified. With the standard thresholds |logFC|> 1 and FDR < 0.05, we identified 127 

http://www.kegg.jp/kegg/kegg1.html
https://cistrome.shinyapps.io/timer/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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differentially expressed CRs in the renal clear cell carcinoma tissues compared with the 
normal tissues. The layout of the top 25 CRs sorted by FDR value is shown in Fig. 1. By 
performing univariate Cox regression analysis, 20 prognosis‐associated CRs remained 
(Fig.  2). Then, the final 11 candidate CRs associated with prognosis were analyzed by 
LASSO Cox regression. (Table  1). Use these eleven CRs to build the final prognostic 
risk model. Calculate the risk score of each patient according to the formula we intro-
duced as follows: Risk score = (0.0384 * Exp HJURP) + (0.0217 * Exp TTK) + (0.0068 * Exp 
TOP2A) + (0.0114 * Exp PBK) + (0.0254 * Exp KMT5C) + (0.0059 * Exp 
ORC1) + (− 0.0040 * Exp GLYATL1) + (− 0.0039 * Exp NEK6) + (0.1874 * Exp 
TAF10) + (− 0.0022 * Exp RIT1) + (− 0.0585 * Exp RAD51). Subsequently, we classified 
all patients into a high or low risk groups based on the median risk score. The results 
showed that the overall survival (OS) of the low-risk group was significantly better 
(P < 0.05) (Fig. 3A). To further assess the prognostic utility, we performed an ROC curve 
analysis to evaluate the diagnostic value of the risk model. The results showed that the 
model’s accuracy in predicting the prognosis at 1, 3, and 5  years was 0.718, 0.71, and 
0.761, respectively (Fig. 3B). The expression heat map of the high and low risk group, the 
survival status of the patient, and the risk score of the signature consisting of eleven CRs 
are shown in Fig. 3C and D. To study the model’s generalizability, we randomly selected 
70% of patients from this dataset plus GSE29609 patients as a validation dataset. OS 
in the low-risk group increased significantly in the validation dataset (Fig. 3E–H). Our 
results indicate that the risk model has better specificity and sensitivity.

Fig. 1  Heatmap showed TOP25 differentially expressed CRs. N normal, T tumor
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A CRs risk model for predicting survival

We conducted a univariate and multivariate Cox proportional hazards analysis to 
clarify the impact of the risk score on prognosis. In these analyses, high risk score, 
as well as patient age, tumor grade and stage, indicated poor prognosis (P < 0.05) 

Fig. 2  Univariate COX analysis identifies CRs associated with prognosis

Table 1  11CRs and coefficient

Chromatin regulators Coefficient

HJURP 0.038401

TTK 0.021732

TOP2A 0.00688

PBK 0.011418

KMT5C 0.025406

ORC1 0.005983

GLYATL1 − 0.0041

NEK6 − 0.00395

TAF10 0.187492

RIT1 − 0.00226

RAD51 − 0.05851
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(Fig.  4A). These results demonstrated that CR-based signature was an independent 
prognostic indicator for KIRC patients.

Association between CRs‑based prognostic models and clinical features

The Chi-square test or Fisher’s test was used to test whether the model was involved 
in the progression of KIRC. The results showed significant differences in patient gen-
der, tumor grade, and tumor stage between different risk groups, but no significant dif-
ferences in age (Fig. 4B). Subgroup analysis was further performed on all patients. The 
results (Fig.  4C) showed that patients in the low-risk group had more prolonged sur-
vival in all subgroups, such as whether they were older than 60 years old, male or female, 
tumor differentiation, and tumor stage.

Construction of a nomogram for KIRC patients

In order to develop a simple way for clinical prediction of patient OS, we integrated all 
clinical characteristics to build a nomogram for predictive model (Fig. 4D). The nomo-
gram is an effective way to show the Cox regression results. We draw a vertical line to 
determine the expression of the gender, and select the factor score from the normal-
ized 0–100. Use the same method to get the score of the remaining characteristics, and 
add all the scores. The sum of these scores is on the total score axis, and a downward 
line is drawn to the survival axis to determine the probability of survival for 1, 3, and 
5 years. The C-index of the nomogram is 0.765, which shows that the nomogram can 
help relevant practitioners make clinical decisions for patients with KIRC. The results of 
the calibration curve show that the predicted value of the patient is consistent with the 
actual survival time (Fig. 4D).

Fig. 3  Construction of the prognostic CR-based model in TCGA dataset and validation dataset. A Kaplan–
Meier survival analysis of TCGA patients between high-risk groups and low-risk groups; B Time-independent 
receiver operating characteristic (ROC) analysis of risk scores predicting the overall survival; C Distribution of 
survival status based on the median risk score; D Heatmap showed the differences of 11 chromatin regulators 
between high and low-risk patients. E Kaplan–Meier survival analysis of KIRC patients between high-risk 
groups and low-risk groups in validation set; F Time-independent receiver operating characteristic (ROC) 
analysis of risk scores predicting the overall survival; G Distribution of survival status based on the median risk 
score; H Heatmap showed the differences of 11 chromatin regulators between high and low-risk patients
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Biological function analysis of differentially expressed CRs and GSEA

All differentially expressed CRs were analyzed to explore their functions and mecha-
nisms further. The most highly enriched BP associated GO term were histone modi-
fication and chromatin remodeling (Fig. 5A). In the CC analysis, the CRs significantly 
enriched in cytoplasmic ribonucleoprotein granule and chromosomal region (Fig. 5A). 
For MF terms, histone binding and hydrolase activity, acting on carbon–nitrogen (but 
not peptide) bonds were enriched by most CRs (Fig. 5A). Besides, the results of KEGG 
pathway analysis showed that Lysine degradation and Homologous recombination were 
significantly enriched (Fig. 5A). GSEA analysis helps us further understand the molecu-
lar mechanisms involved in all genes in the high and low risk groups distinguished by 
the CRs prognostic model. The results showed that Aldosterone synthesis and secretion, 
IL-17 signaling pathway, Pathogenic Escherichia coli infection and PI3K-Akt signaling 
pathway were mainly enriched in the high-risk group. In contrast, those in the low-risk 
group were primarily enriched in Non-homologous end-joining (Fig. 5B).

Fig. 4  The CRs-based risk model was an independent prognostic factor for KIRC patients. A The correlations 
between the risk score for OS and clinicopathological factors by univariate Cox regression and multivariate 
Cox regression analysis; B Correlation between CRs-based risk model and clinical characteristics. F female, 
M male; C Kaplan–Meier curves of OS differences stratified by age, gender, grade, TNM stage between the 
high-risk groups and low-risk groups. F female, M male; D Nomogram for first KIRC patient predicting 1, 3 or 
5 year OS, the calibration plots for predicting 1, 3 or 5 year OS



Page 9 of 18Liu et al. BMC Bioinformatics          (2023) 24:104 	

Fig. 5  Bioinformatics analysis. A GO analysis and KEGG analysis; B GSEA analysis
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Analysis of immune infiltration level based on CRs model

The heat map (Fig. 6) shows the analysis results of the high and low risk groups by the 
TIMER, CIBERSORT, CIBERSORT-ABS, XCELL, QUANTISEQ, EPIC and MCP-
counter algorithms. These calculation results allow us to intuitively understand that 
the gene expression of high and low risk groups in different types of immune cells is 
significantly different, which may be one of the reasons for the significant difference in 
prognosis. Immune checkpoints are a class of immunosuppressive molecules. During 
the occurrence and development of tumors, immune checkpoints have become one of 
the main reasons for immune tolerance. To this end, we also investigated the expression 
between different risk groups and immune checkpoints. The results showed significant 
differences in the expressions of CD40, HAVCR2, LAG3, PDCD1LG2, TNFRSF18 and 
TNFRSF25 between the two groups of patients. In the high-risk group, the expression 
of tumor necrosis factor superfamily receptor/superfamily (TNFSF/TNFRSF) was high 
(Fig.  7). Finally, we used the TIMER database to clarify the relationship between the 
11 CRs that comprise the prognostic model and immune cells. HJURP, NEK6, RAD51, 
RIT1, TOP2A, and TTK were positively correlated with immune cells such as B cells, 
CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. PBK was 
positively correlated with B cells, CD8+ T cells, macrophages, neutrophils, and dendritic 

Fig. 6  Immune cells infiltration in two risk groups



Page 11 of 18Liu et al. BMC Bioinformatics          (2023) 24:104 	

cells. ORC1 (SLC25A15) is positively associated with immune cells such as B cells, mac-
rophages, neutrophils, and dendritic cells. GLYATL1 is positively correlated with B cells 
and CD8+ T cells. TAF10 negatively correlated with CD8+ T cells, CD4+ T cells, mac-
rophages and neutrophils. KMT5C (SUV420H2) was positively correlated with CD4+ T 
cells, and negatively correlated with B cells and CD8+ T cells (Additional file 3: Fig. S1, 
Additional file 4: Fig. S2 and Additional file 5: Fig. S3).

Drug sensitivity analysis of KIRC Patients

By analyzing the commonly used drugs in KIRC patients through the GDSC database, 
we found that drugs such as Axitinib, Pazopanib, Sorafenib and Gemcitabine have 
higher IC50 values in patients in the high-risk group than those in the low-risk group, 
indicating that the patients in the low-risk group are more sensitive to these drugs. 
However, the IC50 value of Sunitinib was lower than that of patients in the low-risk 

Fig. 7  The relationship between prognostic model and immune checkpoints
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group, suggesting that patients in the high-risk group may be more sensitive to Sunitinib 
(Fig. 8).

Discussion
With the in-depth study of chromatin regulators by researchers from various countries, 
we found they are essential participants in malignant tumors. Abnormal CRs functions 
and dysregulated expression may promote the occurrence and progression of tumors, 
but the process of most CRs in tumors is still unclear [26–30]. Therefore, understand-
ing the interaction between CRs and tumors may provide new clinical treatment strate-
gies for patients. In this study, 127 differentially expressed CRs at the mRNA expression 
level were identified using KIRC data from the TCGA database. Furthermore, univari-
ate Cox regression and Lasso Cox regression analysis identified eleven key CRs, which 
were used to establish the prognostic model. We also performed survival analysis, ROC 
analysis, univariate COX and multivariate COX analysis on the high and low risk groups 
distinguished by the prognostic model. We determined that it can effectively indicate the 

Fig. 8  Drug sensitivity analysis
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survival risk of KIRC patients and is an independent predictor of prognosis. The above 
results have been validated by 70% randomization of this dataset.

GO enrichment analysis showed that these CRs were mainly associated with epige-
netic processes, such as histone modification, chromatin remodeling, cytoplasmic 
ribonucleoprotein granule and histone binding. Previous studies have shown that Meth-
yltransferase-like 14 (METTL14) is involved in the tumorigenesis of various malignant 
tumors. The down-regulated METTL14 in renal clear cell carcinoma can accumulate 
bromodomain PHD finger transcription factor (BPTF) and cause distant lung metasta-
sis through chromatin remodeling [31]. It has also been found that tumor driver genes 
IDH1/2, JARID1C/KDM5C and UTX/KDM6A can regulate histone demethylation and 
thus affect cancer metabolism and tumor progression [32].

When conducting KEGG pathway analysis, we found that 127CRs were significantly 
enriched in lysine degradation and homologous recombination. GSEA analysis showed 
that the molecular mechanisms involved in CRs were mainly Aldosterone synthesis and 
secretion, IL-17 signaling pathway, Pathogenic Escherichia coli infection and PI3K-Akt 
signaling pathway. Many previous studies have demonstrated that these molecular path-
ways and mechanisms are closely related to the occurrence of cancer and tumor cell 
metabolism [33–35]. These findings may be helpful to develop biomarkers for diagnostic 
or prognostic of KIRC patients.

Holliday junction recognition protein (HJURP), with histone binding activity and 
the same protein binding activity. Some researchers found that HJURP is a poten-
tial independent prognostic marker of ccRCC and can play an important role in the 
tumor microenvironment by regulating immune cell infiltration [36]. In glioblas-
toma (GBM), HJURP is often overexpressed, and the knockdown of HJURP dis-
rupts the colony-forming ability of GBM cells and increases their radio sensitivity 
[37]. TTK protein kinase (TTK), encodes a dual-specificity protein kinase with the 
ability to phosphorylate tyrosine, serine, and threonine and is associated with cell 
proliferation. Previous studies have found that the expression level of TTK is sig-
nificantly correlated with clinical characteristics such as the T stage and N stage in 
ccRCC patients. Knockdown of TTK inhibited cell proliferation and invasion in 2 
ccRCC cells, HTB-47 and CRL-1932 cells. Furthermore, TTK contributes to tumor 
growth and metastasis in mouse ccRCC [38]. DNA topoisomerase II alpha (TOP2A) 
is a DNA topoisomerase involved in processes such as chromosome condensation, 
chromatid separation, and DNA transcription and replication, and is the target of 
several anticancer drugs [39, 40]. PDZ-binding kinase (PDK) is a dual-specificity 
mitogen-activated protein kinase kinase (MAPKK) family-related serine/threonine 
protein kinase. TOPK/PBK (T-LAK cell-derived protein kinase) is a serine/threo-
nine kinase that is highly expressed in a variety of human tumors and is associated 
with poor prognosis in various human malignancies. In KIRC, Ser32 was found to 
be a novel phosphorylation site on TOPK that can be activated by ERK2. Combin-
ing a TOPK inhibitor with sorafenib promotes apoptosis in sorafenib-resistant RCC 
[41]. Lysine methyltransferase 5C (KMT5C) can initiate histone binding activity 
and histone methyltransferase activity. Deletion of KMT5C in non-small cell lung 
cancer promotes resistance to EGFR inhibitors through the LINC01510/MET axis, 
which could lead to improved mechanistic insights into NSCLC therapy [42]. The 
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origin recognition complex subunit 1 (ORC1) is a highly conserved six-subunit pro-
tein complex essential for initiating DNA replication in eukaryotic cells. It has been 
reported that ORC1 may become a new prognostic marker for glioma by activating 
the ERK/JNK signaling pathway [43]. Glycine-N-acyltransferase like 1 (GLYATL1) 
is mainly involved in glutamine metabolism and can enable glutamine N-acyltrans-
ferase activity. Pseudogene PLGLA can inhibit the proliferation and division of liver 
cancer cells by regulating the miR-324-3p/GLYATL1 axis [44]. The NIMA-related 
kinase 6 (NEK6) encoded by this gene is a kinase required for metaphase progres-
sion.FAM13A-AS1, a less-studied lncRNA, is upregulated in RCC patients and 
promotes tumorigenesis by competitively binding to miR-141-3p and upregulating 
NEK6 expression [45]. TATA-box binding protein associated factor 10 (TAF10) may 
be involved in basal transcription, act as a coactivator, play a role in promoter recog-
nition or modify general transcription factors (GTFs) to facilitate complex assembly 
and transcription initiation [46]. Ras like without CAAX 1 (RIT1) encodes a mem-
ber of the Ras-associated GTPases subfamily involved in regulating the p38 MAPK 
signaling pathway associated with cellular stress. Excessive activation of RAS/MAPK 
signaling is commonly observed in hepatocellular carcinoma (HCC), and it has 
been found that RIT1 induces angiogenesis through the MEK/ERK/EIF4E/HIF1-α/
VEGFA axis. Furthermore, RIT1 increases the phosphorylation of p38 MAPK and 
AKT to promote cell survival under reactive oxygen species stress [47]. The protein 
encoded by RAD51 recombinase (RAD51) is a member of the RAD51 protein family. 
This protein interacts with BRCA1 and BRCA2, which may be necessary in the cel-
lular response to DNA damage. Loss of these controls following BRCA2 inactivation 
may be a key event leading to genomic instability and tumorigenesis [48].

We also explored the relationship between different risk groups and immune 
checkpoints. In the high-risk group, the expression of tumor necrosis factor super-
family receptor/superfamily (TNFSF/TNFRSF) [49, 50] was higher than that in the 
low-risk group. At the same time, the expression of CD40, HAVCR2, LAG3, and 
PDCD1LG2 is more in the low-risk group. This shows that there may be immuno-
suppression in both high- and low-risk groups, and more targeted immune check-
point inhibitors should be developed or used in response to the difference in the 
expression of the immune checkpoints between the two groups to prolong survival 
and reduce the economic pressure of patients. Through the analysis of the TIMER 
database, we found that 11CRs are closely related to tumor immune cell infiltration, 
which indicates that 11 CRs may also be involved in the process of immune response, 
which is worthy of our further study. The final drug sensitivity results show that the 
high-risk group may be better with Sunitinib, while the low-risk group may be better 
with Axitinib, Pazopanib, Sorafenib and Gemcitabine.

Our research still has some limitations. First, our original data comes from an 
online database. However, the implementation of mutual verification illustrates the 
feasibility of this risk model. But then, we may still need to add more data samples 
for further proof. Second, establishing a prognostic model involves a lot of statistics 
and the application of R language, so it is necessary to master the relevant knowl-
edge. Overall, our prognostic risk model is more conducive to popularising clinical 
applications than the high cost of next-generation sequencing.
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Conclusions
In summary, the prognostic risk of patients with renal clear cell carcinoma can be 
assessed using this chromatin regulators associated prognostic model. At the same time, 
these CRs in the model are most likely related to the progression of KIRC. Therefore, our 
results can bring new ideas for targeted therapy of renal clear cell carcinoma, and help 
doctors take corresponding measures for patients with different risks in advance.
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