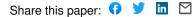


Open access • Posted Content • DOI:10.1101/2021.04.01.437961

Establishing a Role of the Semantic Control Network in Social Cognitive Processing: A Meta-analysis of Functional Neuroimaging Studies — Source link 🖸

Veronica Diveica, Kami Koldewyn, Richard J. Binney


Institutions: Bangor University

Published on: 02 Apr 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Functional neuroimaging, Social cognition, Cognition, Middle temporal gyrus and Inferior frontal gyrus

Related papers:

- The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS
- Neuroimaging studies of semantic memory: inferring "how" from "where".
- A meta-analysis of fMRI studies of semantic cognition in children
- Fine Subdivisions of the Semantic Network Supporting Social and Sensory-Motor Semantic Processing.
- A meta-analysis of functional magnetic resonance imaging studies of divergent thinking using activation likelihood estimation.

Establishing a Role of the Semantic Control Network in Social Cognitive Processing: A Meta-analysis of Functional Neuroimaging Studies

Veronica Diveica¹, Kami Koldewyn¹ & Richard J. Binney^{1*}

¹School of Psychology, Bangor University, Bangor, Gwynedd, Wales, LL57 2AS

Abstract

Most leading models of socio-cognitive processing devote little discussion to the nature and neuroanatomical correlates of cognitive control mechanisms. Recently, it has been proposed that the regulation of social behaviours could rely on brain regions specialised in the controlled retrieval of semantic information, namely the anterior inferior frontal gyrus (IFG) and posterior middle temporal gyrus. Accordingly, we set out to investigate whether the neural activation commonly found in social functional neuroimaging studies extends to these 'semantic control' regions. We conducted five coordinate-based meta-analyses to combine results of over 500 fMRI/PET experiments and identified the brain regions consistently involved in semantic control, as well as four social abilities: theory of mind, trait inference, empathy and moral reasoning. This allowed an unprecedented parallel review of the neural networks associated with each of these cognitive domains. The results confirmed that the anterior left IFG region involved in semantic control is reliably engaged in all four social domains. This suggests that social cognition could be partly regulated by the neurocognitive system underpinning semantic control.

Keywords: social cognition; semantic cognition; cognitive control; empathy; theory of mind; moral reasoning; trait inference; meta-analysis.

^{*}To whom correspondence may be addressed:

1 **1. Introduction**

2 The ability to comprehend and respond appropriately to the behaviour of others is 3 essential for humans to survive and thrive. A major challenge for the cognitive sciences, 4 therefore, is to characterise *how* we understand others and coordinate our behaviour to 5 achieve mutually beneficial outcomes, and what can cause this ability to break down (Frith, 6 2007). There is an indubitable requirement for systems that control, or regulate, the cognitive 7 processes underpinning social interactions. This is because social interactions are intricate 8 and fraught with the potential for misunderstandings and faux pas; first, the everyday social 9 signals to which we are exposed are typically complex, often ambiguous and sometimes 10 conflicting. This is compounded by the fact that the meaning of a given gesture, expression or 11 utterance can vary across contexts (Barrett et al., 2011; Rodd, 2020). Moreover, once we 12 have settled upon an interpretation of these signals, we are then faced with the additional 13 challenge of selecting an appropriate response, and inhibiting others which might, for 14 example, be utilitarian but socially insensitive or even damaging. In order to undergo social 15 interactions that are coherent, effective and context-appropriate, we must carefully regulate 16 both our comprehension of, and response to, the intentions and actions of others (Binney and 17 Ramsey, 2020; Fujita et al., 2014; Gilbert and Burgess, 2008; Ramsey and Ward, 2020). 18 Despite there being a wealth of literature describing executive functions involved in 19 general cognition (Assem et al., 2020; Diamond, 2013; Duncan, 2013, 2010; Fedorenko et 20 al., 2013; Petersen and Posner, 2012), prominent models of socio-cognitive processing are 21 under-specified in terms of the contribution and neural basis of cognitive control mechanisms 22 (e.g., Adolphs, 2009, 2010; Frith & Frith, 2012; Lieberman, 2007). For example, Adolphs 23 (2009; 2010) only very briefly refers to cognitive processes involved in 'social regulation' 24 and largely within the limited context of emotional regulation. Likewise, Frith and Frith 25 (2012) refer to a "supervisory system" which has the characteristic features of executive

26	control, but its functional and anatomical descriptions lack detail important for generating
27	testable hypotheses. However, research into specific social phenomena, such as prejudice
28	(Amodio, 2014; Amodio and Cikara, 2021) and automatic imitation (Cross et al., 2013;
29	Darda and Ramsey, 2019) has recently begun to give the matter of cognitive control greater
30	attention. Of particular interest has been the contribution of the domain-general multiple-
31	demand network (MDN), a set of brain areas engaged by cognitively-challenging tasks
32	irrespective of the cognitive domain (Assem et al., 2020; Duncan, 2010; Fedorenko et al.,
33	2013; Hugdahl et al., 2015). MDN activity increases with many kinds of general task
34	demand, including working memory load and task switching, and it has been suggested that
35	this reflects the implementation of top-down attentional control and the optimal allocation of
36	cognitive resources to meet immediate goals (Duncan, 2013, 2010). The MDN is comprised
37	of parts of the precentral gyrus, the middle frontal gyrus (MFG), the intraparietal sulcus
38	(IPS), insular cortex, the pre-supplementary motor area (pre-SMA) and the adjacent cingulate
39	cortex (Assem et al., 2020; Fedorenko et al., 2013), some of which have been implicated in
40	controlled social processing such as, for example, working memory for social content (Meyer
41	et al., 2012), social conflict resolution (Zaki et al., 2010), inhibition of automatic imitation
42	(Darda and Ramsey, 2019) and mental state inference or theory of mind (ToM) (e.g.
43	Rothmayr et al., 2011; Samson et al., 2005; Van der Meer et al., 2011). However, there are at
44	least three key unresolved questions regarding the role of cognitive control in social
45	cognition. First, it remains to be seen whether there could be multiple, distinguishable
46	mechanisms of, and neural systems for, control. Second, it is unclear whether there exists a
47	subset of control systems that are specialised towards processing social information and,
48	third, we have little understanding as to whether certain types of control are necessary for all
49	or only select social behavioural phenomena. Shedding light on these issues has the potential

4

to generate important new hypotheses regarding social behaviour both in the context of healthand injury/disease.

52	It has recently been proposed that a relatively specialised form of cognitive control,
53	termed semantic control, could be particularly important for social cognitive processing
54	(Binney and Ramsey, 2020). This follows a broader claim that social cognition and its neural
55	correlates can be understood as a nuanced form of semantic cognition which itself is defined
56	as a set of processes involved in extracting meaning from the environment and using it to
57	guide purposeful and context-appropriate behaviour (Binney and Ramsey, 2020; Lambon
58	Ralph et al., 2017). This framework contrasts with approaches that look upon social
59	processing as a distinct or even special case of cognition (i.e., domain-specific models;
60	Barrett, 2012; Saxe, 2006; but also see Amodio, 2019; Amodio and Cikara, 2021; Schaafsma
61	et al., 2015; Spunt and Adolphs, 2017) and, instead, posits that it is underpinned by two,
62	more domain-general neurocognitive systems. The first system is representational in nature
63	and supports the acquisition and long-term storage of conceptual-level knowledge about
64	objects, people, abstract concepts, and events. The anterior temporal cortices act as a central,
65	supramodal semantic store through interaction with modality-specific and lower-order
66	heteromodal association cortices (Binney et al., 2010; Kuhnke et al., 2021; Lambon Ralph et
67	al., 2017; Patterson et al., 2007; Pobric et al., 2010). The second system, the semantic control
68	system, modulates activation of semantic knowledge to bring to the fore aspects of
69	conceptual information that are relevant to the situational context or the task at hand while
70	inhibiting irrelevant aspects (Chiou et al., 2018; Jefferies, 2013; Lambon Ralph et al., 2017).
71	The reasons why semantic control should be critical for social cognition and
72	interaction are uncomplicated; we retain a vast amount of socially-relevant knowledge
73	including knowledge about familiar people (Greven et al., 2016; Hassabis et al., 2014), about
74	the structure of and relationship between social categories and their associated stereotypes

75	(Freeman and Johnson, 2016; Quinn and Rosenthal, 2012), and an understanding of abstract
76	social concepts, norms and scripts (Frith and Frith, 2003; Van Overwalle, 2009). But only a
77	limited portion of this information is relevant in a given social instance and it would be
78	computationally inefficient to automatically retrieve it all. For example, there is no need to
79	retrieve information about someone's personality traits, or personal interests and hobbies, if
80	the only task is to pick them out from within a crowd. Moreover, the types and the scope of
81	information we need to retrieve to understand and respond appropriately to certain social
82	signals change according to the context, and irrelevant information could potentially
83	interfere. Therefore, semantic control is essential for limiting semantic retrieval according to
84	the circumstances and avoiding potential social errors.
85	There is a growing body of convergent computational modelling, patient,
86	neuroimaging and neuromodulation evidence that the semantic control system is supported
87	by a neural network that is distinct from that underpinning semantic representation (e.g.,
88	Corbett et al., 2009; Davey et al., 2016, 2015; Jackson, 2021; Jefferies et al., 2008; Jefferies
89	and Lambon Ralph, 2006; Teige et al., 2018). Specifically, semantic control engages regions
90	of the MDN, as well as the semantic control network (SCN) which comprises the anterior
91	IFG and the posterior middle temporal gyrus (pMTG) (Badre et al., 2005; Davey et al., 2016;
92	Jackson, 2021; Noonan et al., 2013). Moreover, while the domain-general MDN is engaged
93	by semantic tasks, and particularly those with high control demands (Jackson, 2021;
94	Thompson et al., 2018), there is evidence that both the anatomy of the SCN and MDN and
95	their functional contributions to controlled semantic processing are at least partially distinct
96	(Gao et al., 2020). In particular, fMRI studies reveal that the mid- to posterior IFG (pars
97	triangularis and pars opercularis), nodes of the MDN, have been shown to increase activity in
98	response to increased 'semantic selection' demands, a process that is engaged when
99	automatic retrieval of semantic knowledge results in competition between multiple

100	representations which must be resolved (for example, hearing the word bank might elicit
101	retrieval of the concept of a riverside and a financial institution)(Badre and Wagner, 2007;
102	Nagel et al., 2008; Thompson-Schill et al., 1997). However, this mid- to posterior IFG region
103	is also engaged by other non-semantic forms of response competition (Badre et al., 2005;
104	Barredo et al., 2015) and tests of inhibitory function such as the Stroop task (Huang et al.,
105	2020; January et al., 2009; Nee et al., 2007). In contrast, activation of the anterior IFG (pars
106	orbitalis) appears to be more selective to semantic control demands and driven specifically by
107	an increased need for 'controlled semantic retrieval', a mechanism that is engaged when
108	automatic semantic retrieval fails to activate semantic information necessary for the task at
109	hand, and a further goal-directed semantic search needs to be initiated (Badre and Wagner,
110	2007; Krieger-Redwood et al., 2015).
111	To date, there have been but a few neuroimaging investigations that have directly
112	questioned the involvement of the SCN in social cognitive processing. Two recent fMRI
113	studies compared activation during semantic judgements made on social and non-social
114	stimuli and found that the IFG and pMTG were engaged by both stimulus types (Binney et
115	al., 2016; Rice et al., 2018). Further, Satpute et al., (2014) found that controlled retrieval, but
116	not selection of social conceptual information engages the anterior IFG. However, we are not
117	aware of any prior studies that attempt to examine the engagement of the SCN specifically
118	during tasks that are commonly viewed as social in nature (e.g., ToM tasks). As a starting
119	point, rather than conducting a novel individual experiment, the present study adopted a
120	meta-analytic approach to extract reliable trends from large numbers of studies. Meta-
121	analyses of functional neuroimaging data overcome the limitations of individual studies
122	(Cumming, 2014; Eickhoff et al., 2012), which are frequently statistically underpowered
123	(Button et al., 2013) and vulnerable to effects of idiosyncratic design and analytic choices
124	(Botvinik-Nezer et al., 2020; Carp, 2012) so that it becomes difficult to distinguish between

125	replicable and spurious findings and to generalize the results. Our principal aim was to
126	determine whether the distributed neural activation commonly associated with functional
127	neuroimaging studies of social cognition extends to the neural networks underpinning
128	semantic control (i.e., SCN and MDN). In order to localise the brain network sensitive to
129	semantic control demands (i.e., semantic retrieval and/or selection), and then compare and
130	contrast it to networks implicated in social cognition, we performed an update of Noonan et
131	al.'s (2013) meta-analysis of semantic control (also see Jackson, 2021a).
132	We took the approach of investigating multiple sub-domains of social cognition in
133	parallel because this should allow an assessment of the extent to which inferences are
134	generalisable, rather than specific to certain types of social tasks and/or abilities. We chose to
135	focus on four particular areas of research that target abilities frequently identified as key
136	facets of the human social repertoire - ToM, empathy, trait inference, and moral reasoning
137	(Lieberman, 2007; Van Overwalle, 2009) – and, for each, we conducted separate meta-
138	analyses of the available functional imaging data to determine the brain regions consistently
139	implicated. In the case of trait inference, this was the first neuroimaging meta-analysis to
140	include studies that used stimuli other than faces (see Section 2, and also Bzdok et al., 2011,
141	and Mende-Siedecki et al., 2013, for contrasting approaches). In the other three cases, we
142	performed updates of prior meta-analyses (Eres et al., 2018; Molenberghs et al., 2016;
143	Timmers et al., 2018).
144	Further, we conducted an exploratory conjunction analysis aimed at identifying brain
145	areas reliably implicated in all four social sub-domains and, thus, a core network for social
146	cognitive processing (Bzdok et al., 2012; Schurz et al., 2020; Van Overwalle, 2009). We
147	hypothesised that this core network would include parts of the MDN and the SCN. It is of
148	note that, across all four social sub-domains, we took a different approach to study inclusion
149	and exclusion criteria than that taken by some prior meta-analyses of general social cognition

150	(e.g., Van Overwalle, 2009). In particular, we excluded studies investigating processes
151	associated primarily with the self because social cognition is, although perhaps only in the
152	strictest sense, about understanding other people. We also excluded studies in which tasks
153	could be completed based on relatively simple perceptual processing and without a need for
154	deeper cognitive and inferential processes (e.g., emotion discrimination tasks, automatic
155	imitation). This was done in an attempt to constrain our inferences to be about the
156	neurobiology underpinning cognitive rather than primarily perceptual social processes (for
157	further detail on this distinction, see Adolphs, 2010, and Binney & Ramsey, 2020).
158	Finally, as a secondary aim, the present study used the meta-analytic approach to
159	assess whether there are differences in the neural networks engaged by implicit and explicit
160	social processing (also see Dricu & Frühholz, 2016; Eres et al., 2018; Fan et al., 2011;
161	Molenberghs et al., 2016; Timmers et al., 2018). This was aimed at addressing a pervasive
162	distinction in the social neuroscientific literature between automatic and controlled processes
163	(Adolphs, 2010; Happé et al., 2017; Lieberman, 2007), and followed an assumption that
164	implicit paradigms engage only automatic processes, whereas controlled processes are
165	recruited during explicit paradigms (Sherman et al., 2014); automatic processes are described
166	as unintentional, effortless, and fast, whereas controlled processes are deliberate, effortful,
167	and thus slower (Lieberman, 2007; Shiffrin and Schneider, 1977). Some authors have argued
168	that automatic and controlled social processes are mutually exclusive of one another and
169	draw upon distinct cortical networks, with the former engaging lateral temporal cortex, the
170	amygdala, ventromedial frontal cortex and the anterior cingulate, and the latter engaging
171	lateral and medial prefrontal and parietal cortex (Forbes and Grafman, 2013; Lieberman,
172	2007). However, these dual-process models have been criticised for over-simplifying both the
173	distinction and the relationship between automatic and controlled processes (Amodio, 2019;
174	Cunningham and Zelazo, 2007; Ferguson et al., 2014; Fidler and Hütter, 2014; Fujita et al.,

9

175	2014; Melnikoff and Bargh, 2018). An alternative proposal, that we describe above, makes a
176	different distinction - one between representation and control. This neurocognitive model
177	proposes that social processing relies on a single-route architecture wherein the degree to
178	which cognitive processing has certain attributes (e.g., speed or effort) does not reflect one
179	system versus another. Instead, it is proposed that it reflects the degree to which the control
180	system needs to exert influence, upon otherwise automatic activation within the
181	representational system, in order to meet the demands of a task in an appropriate and efficient
182	manner (Binney and Ramsey, 2020; Jefferies, 2013). If the dual route model is correct,
183	explicit but not implicit social paradigms should differentially engage brain regions
184	associated with cognitive control demands, including the SCN and MDN. If the single-route
185	model is correct, then there should be no qualitative difference in terms of the network of
186	regions activated by implicit paradigms (ergo automatic processing) and explicit paradigms
187	(ergo controlled processing), although there may be differences in the magnitude of regional
188	activation.
189	To summarise, the aims of the present study were as follows: 1) explore the
190	involvement of domain-general control systems in social cognition; more specifically,
191	determine whether social cognitive processing reliably engages brain areas implicated in the
192	controlled retrieval and selection of conceptual knowledge; and 2) examine the evidence for
193	dual-route and single-route models of controlled social cognition.
194	

195 **2. Methods**

Preregistration and Open Science statement. Following open science initiatives
(Munafò et al., 2017), the current study was pre-registered via the Open Science Framework
(OSF; osf.io/fktb8/). We adhered to our pre-registered protocols with a few minor exceptions
(see Section S1 of Supplementary Information (SI) 1 for details). All the raw datasets are

200	openly-available on the OSF project page and are accompanied by a range of study
201	characteristics including details that are not the focus of the present study but may be of
202	interest in future research (please see Section S1 of SI 1 for a detailed description). Moreover,
203	the input data and output files of all analyses can be accessed via the OSF page.
204	
205	In accordance with our pre-registered aims, we performed a comprehensive review of
206	published functional neuroimaging studies investigating four social abilities - Theory of
207	mind (ToM), trait inference, empathy and moral reasoning - and independent coordinate-
208	based meta-analyses aimed at characterising the brain-wide neural networks underpinning
209	each. In the case of three of these domains (ToM, empathy and moral reasoning), we updated
210	earlier meta-analyses (Eres et al., 2018; Molenberghs et al., 2016; Timmers et al., 2018),
211	capitalizing on additional data, and also implementing recommendations for best practice that
212	became available in a year subsequent to these prior studies (Müller et al., 2018). In the case
213	of trait inference, as far as we are aware, this was the first neuroimaging meta-analysis to
214	include studies that explored potential sources of information beyond face stimuli (see Bzdok
215	et al., 2011; Mende-siedlecki et al., 2013, for contrasting approaches). To localise the brain
216	areas underpinning semantic retrieval and selection, we also updated a meta-analysis of
217	functional imaging studies of semantic control by Noonan et al. (2013). This involved the
218	inclusion of additional data, and improvements in meta-analytic tools which corrected
219	previous implementation errors that led to the use of liberal statistical thresholds (Eickhoff et
220	al., 2017).
221	To directly address our first aim, we assessed the degree of overlap between the neural
222	networks supporting semantic control and those involved in social information processing via
223	a set of formal conjunctions and contrasts analyses. To address our second aim, where
224	possible, we contrasted brain-wide activation associated with explicit versus implicit social

225	cognitive paradigms. Tasks that drew the participant's attention to the behaviour/cognitive
226	process of interest were categorised as explicit, while tasks that used non-specific instructions
227	(e.g., they involved passive observation of stimuli) or employed orthogonal tasks (e.g., age
228	judgement) were categorised as implicit. Finally, where sufficient relevant information was
229	available, we explored the influence of task difficulty on patterns of brain activation.
230	All of the meta-analyses reported below were conducted following best-practice
231	guidelines recommended by Müller et al. (2018). This, as well as several refinements to
232	inclusion/exclusion criteria, contributed to methodological differences between the present
233	meta-analyses and those prior meta-analyses upon which the 'updates' were based. A
234	summary of similarities and differences is provided in Table S1 (SI1) and further details are
235	given in the sections below.
236	
237	2. 1. Literature Selection and Inclusion Criteria
237 238	2. 1. Literature Selection and Inclusion Criteria2. 1. 1. General Approach and Criteria
238	2. 1. 1. General Approach and Criteria
238 239	2. 1. 1. General Approach and CriteriaWhere possible, relevant functional neuroimaging studies were initially identified
238 239 240	2. 1. 1. General Approach and CriteriaWhere possible, relevant functional neuroimaging studies were initially identifiedbased on their inclusion in a recent prior neuroimaging meta-analysis. These lists were
238 239 240 241	 2. 1. 1. General Approach and Criteria Where possible, relevant functional neuroimaging studies were initially identified based on their inclusion in a recent prior neuroimaging meta-analysis. These lists were supplemented via a search on the Web of Science (WoS) online database
238 239 240 241 242	 2. 1. 1. General Approach and Criteria Where possible, relevant functional neuroimaging studies were initially identified based on their inclusion in a recent prior neuroimaging meta-analysis. These lists were supplemented via a search on the Web of Science (WoS) online database (www.webofknowledge.com) for original reports published in the years subsequent, and by
238 239 240 241 242 243	 2. 1. 1. General Approach and Criteria Where possible, relevant functional neuroimaging studies were initially identified based on their inclusion in a recent prior neuroimaging meta-analysis. These lists were supplemented via a search on the Web of Science (WoS) online database (www.webofknowledge.com) for original reports published in the years subsequent, and by searching through reference lists of said articles. Each WoS search used the terms ['fMRI' or
238 239 240 241 242 243 243 244	 2. 1. 1. General Approach and Criteria Where possible, relevant functional neuroimaging studies were initially identified based on their inclusion in a recent prior neuroimaging meta-analysis. These lists were supplemented via a search on the Web of Science (WoS) online database (www.webofknowledge.com) for original reports published in the years subsequent, and by searching through reference lists of said articles. Each WoS search used the terms ['fMRI' or
238 239 240 241 242 243 243 244 245	 2. 1. 1. General Approach and Criteria Where possible, relevant functional neuroimaging studies were initially identified based on their inclusion in a recent prior neuroimaging meta-analysis. These lists were supplemented via a search on the Web of Science (WoS) online database (www.webofknowledge.com) for original reports published in the years subsequent, and by searching through reference lists of said articles. Each WoS search used the terms ['fMRI' or

Cognitive domain	Search terms
Semantic control	'semantic', 'comprehension', 'conceptual knowledge', 'selection',
	'retrieval', 'inhibition', 'control', 'elaboration', 'fluency',
	'ambiguity', 'metaphor', 'idiom'
ТоМ	'theory of mind', 'ToM', 'mentalising', 'mentalizing'
Trait inference	'social judgement', 'social evaluation', 'social attribution', 'trait
	inference', 'impression formation'
Empathy	'empathy', plus 'empath*' - corresponding variations (e.g.
	'empathic')
Moral cognition	'morality', 'moral', 'moral decision making', 'moral emotion',
	'harm', 'guilt'

250 Table 2. Terms used to search the Web of Science database for relevant articles.

N.b., For all five cognitive domains, the search followed the following format: [fMRI OR
PET] AND [term1 OR term2 OR ... OR termX].

253

A general set of inclusion criteria applied to all our analyses were as follows:

Only studies that employed task-based fMRI or PET to obtain original data were
 included. Studies employing other techniques (e.g., EEG/MEG), meta-analyses and
 review articles were excluded.

- 258 2) Studies were only included if they reported whole-brain activation coordinates that
- 259 were localised in one of two standardised spaces Talairach (TAL) or Montreal
- 260 Neurological Institute (MNI) or these coordinates were made available on request
- 261 (see Section 1 of SI1). Coordinates reported in TAL space were converted into MNI
- space using the Lancaster transform (tal2icbm transform (Lancaster et al., 2007)
- 263 embedded within the GingerALE software (version 3.0.2; http://brainmap.org/ale).

13

264		Studies exclusively reporting results from region-of-interest or small volume
265		correction analyses were excluded because these types of analysis violate a key
266		assumption of coordinate-based meta-analyses (Eickhoff et al., 2012; Müller et al.,
267		2018).
268	3)	Studies were only included if they reported activation coordinates that resulted from
269		univariate contrasts clearly aimed at identifying the process of interest (e.g., ToM).
270		We included contrasts between an experimental task and either a comparable active
271		control task or a low-level baseline such as rest or passive fixation. Contrasts against
272		low-level baselines were included in the primary analyses because they can reveal
273		activity associated with domain-general cognitive processes that is subtracted out by
274		contrasts between active conditions. This could include semantic processes that are
275		common to both social and non-social tasks. However, contrasts against low-level
276		baselines also yield activity associated with differences in perceptual stimulation and
277		attentional demand. To address this caveat, we repeated the analyses whilst excluding
278		this subset of contrasts. The results can be found on the project's OSF page
279		(osf.io/fktb8/). We excluded contrasts that make comparisons between components of
280		the process of interest (e.g., affective vs. cognitive ToM; utilitarian vs. deontological
281		moral judgements) because we were interested in the common, core processes that
282		would be subtracted out by these contrasts (but see the following paragraph).
283	4)	Multiple contrasts from a single group of participants (e.g., separate contrasts against
284		one of two different baseline conditions) were included in a single meta-analysis as
285		long as they independently met all other inclusion criteria for the primary analyses.

This allowed maximum use of all available data and enabled us to evaluate the effect of using different types of baseline, for example (see above). However, it is important to adjust for this (Müller et al., 2018), and accordingly, we adopted an approach to

289	controlling for within-group effects (Turkeltaub et al., 2012); specifically, sets of
290	activation coordinates from different contrasts, but the same participant group, were
291	pooled. This means that when we refer to the numbers of experiments, we have
292	counted multiple contrasts from a single participant sample as one single experiment.
293	This partially explains why the number of experiments in our analyses is lower than
294	in those of some prior meta-analyses. However, in formal contrast analyses that
295	compare different conditions (e.g., instructional cue, task difficulty), contrasts like
296	these would be separated, and care was also taken to minimize the difference in the
297	number of experiments on either side of the contrast. For example, if a study reported
298	two contrasts – one implicit and one explicit - based on the same participant group,
299	only the peaks from the implicit task would be included in the contrast/conjunction
300	analyses if there were a greater number of explicit than implicit tasks overall (see
301	Figure S8).
302	5) Only studies that tested healthy participants were included. Contrasts including
303	clinical populations or pharmacological interventions were excluded.
304	6) Only research articles published in English were included.
305	
306	2.1.2. Theory of Mind
307	This meta-analysis was built upon that of Molenberghs et al. (2016) and only included
308	studies that were specifically designed to identify the neural network underpinning ToM
309	processes (i.e., they employed tasks involving inferences about the mental states of others,
310	including their beliefs, intentions, and desires). Therefore, studies that looked at passive
311	observation of actions, social understanding, mimicry or imitation were not included, unless
312	tasks included a ToM component. Unlike Molenberghs et al., (2016), we excluded studies
313	investigating irony comprehension (e.g., Wang et al., 2006) because ToM might not always

15

314	be necessary to detect non-literal meaning in language (Ackerman, 1983; Bosco et al., 2018;
315	Pexman, 2008) and studies that employed interactive games (e.g., Rilling et al., 2008). These
316	latter studies are commonly designed to investigate the degree to which ToM is engaged
317	under different task conditions rather than distinguish activation associated with ToM from
318	that related to other processes. Moreover, unlike Molenberghs et al. (2016), we excluded
319	studies that employed trait inference tasks as these were considered separately (see Section
320	2.1.3).
321	Molenberghs et al.'s (2016) search was inclusive of fMRI studies published prior to
322	July 2014 and yielded 144 independent experiments (1789 peaks) contributing to their
323	analysis. We performed a WoS search for further original fMRI and PET studies conducted
324	between August 2014 and March 2020, and a search of PET studies published prior to July
325	2014. We then applied our inclusion criteria to both newly identified studies and those
326	analysed by Molenberghs and colleagues (see Table S1 for further differences in criteria). In
327	the end, we found 136 experiments with a total number of 2158 peaks and 3452 participants
328	that met our criteria for inclusion (see Figure S1of SI1 for more details regarding the
329	literature selection process; and Table S1 of SI2 for a full list of the included experiments).
330	
331	2.1.3. Trait inference
332	Studies were included in the meta-analysis if they employed tasks that required the
333	participants to infer the personality traits of others based on prior person knowledge or
334	another's appearance and/or behaviour. Whereas the types of mental states typically inferred
335	in ToM tasks are transitory in nature (e.g., relating to immediate goals or the intentions
336	behind a specific instance of behaviour), traits are coherent and enduring dispositional
337	characteristics of others (i.e., personality traits; Van Overwalle, 2009). Previous meta-

analyses (Molenberghs et al., 2016; Schurz et al., 2014) of ToM have included tasks

339	requiring trait inferences. However, it has been suggested that personality trait inferences
340	differ from mental state inferences in terms of likelihood and speed of processing, and hold a
341	higher position in the hierarchical organisation of social inferential processes (Korman and
342	Malle, 2016; Malle and Holbrook, 2012). In line with this proposal, we maintained a
343	distinction and performed separate analyses. Moreover, previous imaging meta-analyses of
344	trait inference were limited to studies that used face stimuli (Bzdok et al., 2011; Mende-
345	siedlecki et al., 2013). However, trait inferences can be made on the basis of many different
346	sources of information, including physical appearance, behaviour and prior knowledge about
347	others (Uleman et al., 2007). To our knowledge, the present attempt is the first to include
348	studies that required participants to make trait inferences based on facial photographs,
349	behavioural descriptions or prior person knowledge. We excluded any studies that asked
350	participants to make inferences about transitory mental states, including basic emotions. We
351	also excluded studies that did not use a subtraction approach, but rather investigated brain
352	activity that varied parametrically with the levels of a pre-defined trait dimension (e.g. Engell
353	et al., 2007). Finally, we excluded studies that included emotional face stimuli to avoid
354	conflating brain activity related to trait inference with that associated with emotion
355	recognition and processing.
356	We performed a WoS search of studies published before March 2020 and reference-
357	tracing to identify relevant studies for inclusion in the meta-analysis. A total of 40
358	experiments with 523 peaks and 732 participants were found to meet the criteria for inclusion
359	(Figure S2 - SI1; Table S2 - SI2).
360	
361	
362	
363	

17

364 2.1.4. Empathy

365	This meta-analysis was built upon that of Timmers et al. (2018) and only included
366	studies that were specifically designed to identify the neural network underpinning empathy
367	by employing tasks asking participants to observe, imagine, share and/or evaluate the
368	emotional or sensory state of others. The task definition was kept identical to previous meta-
369	analyses on empathy (Fan et al., 2011; Timmers et al., 2018). We also made a distinction
370	between tasks eliciting empathic responses to other people's pain and those investigating
371	empathic responses to others' affective states.
372	Timmers et al. (2018) included studies published before December 2017, totalling 128
373	studies with 179 contrasts (1963 peaks). We identified additional original studies conducted
374	between January 2018 and March 2020 via a WoS search and subsequently applied our
375	inclusion criteria to all, including those analysed by Timmers et al. (2018) (see Table 1 for
376	further differences in criteria). This resulted in a yield of 164 experiments with a total number
377	of 2704 peaks and 4423 participants (Figure S3 - SI1; Table S3 – SI2). Empathy for pain was
378	independently investigated in 93 of these experiments, empathy for affective states was
379	independently explored in 70 experiments, and 9 experiments concurrently explored both
380	empathy for pain and emotions in the same contrasts.
381	

382 2.1.5. Moral reasoning

This analysis updated a previous meta-analysis conducted by Eres et al., (2018) and included studies that employed tasks designed to investigate judgements and decision-making based on moral values. In line with Eres et al., (2018), studies that did not specifically have a morality component were not included. For example, studies investigating judgements regarding adherence to social expectations but not moral values (e.g., Bas-Hoogendam et al., 2017) were excluded.

389	Eres et al., (2018)'s search was restricted to fMRI studies and covered the period
390	before February 2016 yielding 123 contrasts (989 peaks). We expanded this list via a WoS
391	search for original fMRI and PET studies published between March 2016 and March 2020,
392	and a search for PET studies published before March 2016, and then applied our inclusion
393	criteria (see Table 1 for differences in criteria). This resulted in a yield of 69 experiments
394	with a total number of 909 foci and 1609 participants (Figure S4 - SI1; Table S4 - SI2).
395	
396	2.1.6. Semantic Control
397	In this meta-analysis, we sought to extend an earlier meta-analysis conducted by
398	Noonan et al. (2013). In line with theirs, this analysis only included studies that were
399	specifically investigating semantic processing, and that reported contrasts that reflected high
400	> low semantic control, or comparisons between a task requiring semantic control and an
401	equally demanding executive decision in a non-semantic domain. We excluded studies with a
402	focus upon priming without an explicit semantic judgment (e.g., primed lexical decision),
403	bilingualism, episodic memory, or sleep consolidation.
404	Noonan et al., (2013)'s search covered the period between January 1994 and August
405	2009 and yielded 53 studies (395 peaks) that met their criteria for inclusion in their analysis.
406	We performed a WoS search for original studies published between September 2009 and
407	March 2020, and reference-tracing, and then applied our inclusion criteria to both newly
408	identified studies and those analysed by Noonan et al. (2013). This produced a yield of 96
409	experiments with a total number of 981 peaks and 2052 participants that met the criteria for
410	inclusion in our analysis (Figure S5 - SI1; Table S5 - SI2).
411	

19

412 2.2. Data Analysis

413	We performed coordinate-based meta-analyses using the revised activation likelihood
414	estimation (ALE) algorithm (Eickhoff et al., 2012, 2009; Turkeltaub et al., 2012)
415	implemented in the GingerALE 3.0.2 software (http://brainmap.org/ale). We used the
416	GingerALE software to conduct two types of analysis. The first were independent dataset
417	analyses, which were used to identify areas of consistent activation across particular sets of
418	experiments. These analyses were performed only on the experiment samples with a
419	recommended minimum of 17 experiments in order to have sufficient power to detect
420	consistent effects and circumvent the possibility of results being driven by single experiments
421	(Eickhoff et al., 2016). The ALE meta-analytic method treats reported activation coordinates
422	as the centre points of three-dimensional Gaussian probability distributions which take into
423	account the sample size (Eickhoff et al., 2009). First, the spatial probability distributions of
424	all coordinates reported were aggregated, creating a voxel-wise modelled activation (MA)
425	map for each experiment. Then, the voxel-wise union across the MA maps of all included
426	experiments was computed, resulting in an ALE map that quantifies the convergence of
427	results across experiments (Turkeltaub et al., 2012). The version of GingerALE used in the
428	present study tests for above-chance convergence between experiments (Eickhoff et al.,
429	2012) thus permitting random-effects inferences.
430	Following the recommendations of Eickhoff et al. (2016), for the main statistical
431	inferences, the individual ALE maps were thresholded using cluster-level family-wise error
432	(FWE) correction of p < 0.05 with a prior cluster-forming threshold of p < 0.001. Cluster-
433	level FWE correction has been shown to offer the best compromise between sensitivity to
434	detect true convergence and spatial specificity (Eickhoff et al., 2016). This was
435	complemented by a highly conservative voxel-level FWE correction of $p < 0.05$ which,
436	despite the decreased sensitivity to true effects, allows the attribution of significance to each

20

voxel above the threshold, offering increased spatial specificity (Eickhoff et al., 2016). The
FWE-corrected cluster-level and voxel-height thresholds were estimated using a permutation
approach with 5000 repetitions (Eickhoff et al., 2012). None of the meta-analyses that we
updated had used the recommended cluster-level FWE or the FWE height-based correction
methods.
The second set of analyses, conjunction and contrast analyses, were also performed in

443 GingerALE and were aimed at identifying similarities and differences in neural activation

between the different sets of studies. The conjunction images were generated using the

445 voxel wise minimum value (Nichols et al., 2005) of the included ALE maps to highlight

shared activation. Contrast images were created by directly subtracting one ALE map from

the other to highlight unique neural activation associated with each dataset (Eickhoff et al.,

448 2011). Then, the differences in ALE scores were compared to a null-distribution estimated

via a permutation approach with 5000 repetitions. The contrast maps were thresholded using

450 an uncorrected cluster-forming threshold of p < 0.001 and a minimum cluster size of 200 451 mm³.

452 In addition, we performed post-hoc analyses to investigate if the clusters of 453 convergence revealed by the ALE analyses were driven by experiments featuring specific 454 characteristics of interest (i.e., type of instructional cue, task difficulty). To this end, we 455 examined the list of experiments that contributed at least one peak to each ALE cluster and 456 compared the number of contributing experiments featuring the characteristic of interest (e.g., 457 explicit vs implicit processing) by conducting Fisher's exact tests of independence and post-458 hoc pairwise comparisons (using False Discovery Rate correction for multiple comparisons) 459 in RStudio Version 1.2.5001 (RStudio Team, 2020).

460 A full list of the confirmatory and exploratory analyses we conducted can be found in461 Section 3 of SI1.

21

462	4	6	2
-----	---	---	---

463	3. Results
464	3.1. The "Social Brain"
465	3.1.1. Theory of Mind
466	Convergent activation across all 136 ToM experiments was found in 13 clusters (see
467	Figure 1a and Table S1.1.1 – SI3) located within the bilateral middle temporal gyrus (MTG)
468	(extending anteriorly towards the temporal poles and also in a posterior and superior direction
469	towards the superior temporal gyrus (STG) and angular gyrus (AG) in both hemispheres),
470	bilateral IFG, bilateral dorsal precentral gyrus, ventromedial prefrontal cortex (vmPFC),
471	dorsomedial prefrontal cortex (dmPFC), pre-SMA, precuneus, left fusiform gyrus and left
472	and right cerebellum. All these clusters survived both the height-based and extent-based
473	thresholding. A cluster in the posterior cingulate cortex (PCC) survived height-based
474	thresholding but did not survive extent-based thresholding. These results are largely
475	consistent with those of Molenberghs et al. (2016), with the difference being that they did not
476	find activation in SMA, left fusiform gyrus or cerebellum. In order to address concerns
477	regarding the validity of some other popular ToM tasks (Heyes, 2014; Quesque and Rossetti,
478	2020), we conducted a separate supplementary meta-analysis that was limited to the subset of
479	ToM experiments that employed false belief tasks (see Section 3.1 of SI1, Table S1.1.2). This
480	analysis revealed convergent activation in similar temporo-parietal and medial frontal regions
481	to the inclusive ToM analysis but did not implicate the lateral frontal cortex.
482	
483	3.1.2. Trait inference
484	The ALE meta-analysis revealed convergent activation across 40 experiments in 8

485 clusters (Figure 1b, Table S1.2) implicating the bilateral IFG, dmPFC, vmPFC, PCC, right

486 pMTG (extending to AG), left AG and left anterior MTG. Voxels from all clusters, except for

22

487 those in the right pMTG and vmPFC, survived the more conservative height-based

488 thresholding.

489

490 3.1.3. Empathy

491 The ALE meta-analysis of all 164 empathy experiments revealed 16 clusters of 492

convergent activation (Figure S6a; Table S1.3.1), including in the bilateral IFG (extending

493 towards the insula), SMA, dmPFC, bilateral posterior inferior temporal gyrus (ITG), right

494 pMTG, bilateral supramarginal gyrus (SMG), left inferior parietal lobule (IPL), bilateral

495 occipital cortex, left amygdala, left thalamus, left caudate and brainstem. These clusters

496 survived both the height-based and extent-based thresholding, except for the anterior dmPFC,

497 right pMTG and brainstem clusters, which survived extent-based thresholding only. Two

498 clusters, one in the right cerebellum and one in the right hippocampus survived height-based

499 thresholding but did not survive cluster extent-based thresholding. These areas were also

500 implicated by Timmers et al. (2018). In contrast, however, we did not find convergent

501 activation in the left posterior fusiform gyrus, left SMG (although we found a cluster slightly

502 more posterior and inferior), left anterior ITG, right TP, precuneus, middle cingulate gyrus,

503 right superior parietal lobule, and right amygdala.

504 The separate ALE maps for empathy for pain and empathy for affective states are 505 displayed in Figure 1c and d. A conjunction analysis found activation common to empathy 506 for pain (Table \$1.3.2) and empathy for affective states (Table \$1.3.3) in the bilateral insula 507 (extending to the IFG), SMA, right precentral gyrus, right ITG, bilateral occipital cortex and 508 the brainstem (Figure S6b; Table S1.3.4). Formal contrasts revealed that empathy for pain 509 and empathy for emotions also engage highly distinct brain areas (Figure S6b; Table S1.3.4). 510 Clusters with increased convergence for empathy for pain were found in left IFG (pars

511 triangularis), right MFG, bilateral insula, middle cingulate gyrus, bilateral SMG, right IPL

512	and bilateral pITG. In contrast, increased convergence in empathy for affective states was
513	revealed in left IFG (pars orbitalis), PCC, left pMTG, right temporal pole and left anterior
514	MTG. Given these significant differences in their underlying neural networks, empathy for
515	pain and empathy for emotions were considered separately for all subsequent analyses.
516	
517	3.1.4. Moral reasoning
518	Convergent activation across all 69 experiments studying moral reasoning was found in
519	11 clusters (Figure 1e, Table S1.4) located in the left IFG, left insula (extending towards the
520	superior temporal pole), mPFC, medial orbitofrontal cortex (OFC), precuneus, bilateral
521	pMTG, and the bilateral anterior MTG. Only four clusters - left insula, mPFC, precuneus and
522	left pMTG - survived height-based thresholding. These results are mostly consistent with
523	those obtained by Eres (2018), with the difference that we did not find convergent activation
524	in the left amygdala and right AG, and found additional clusters of convergent activation in
525	left MFG, bilateral anterior MTG, and right pMTG.

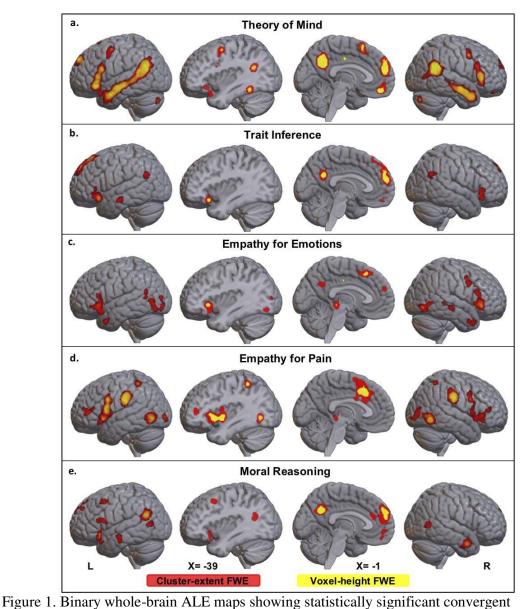
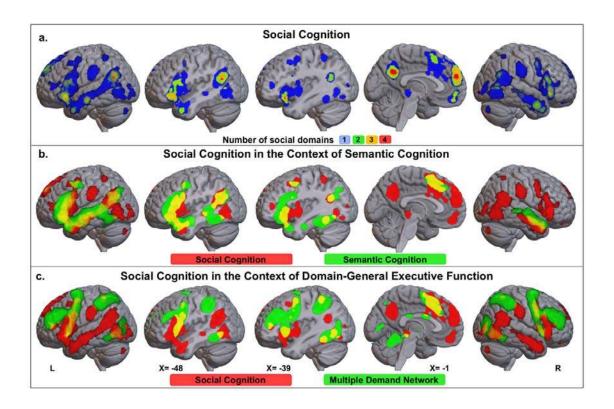


Figure 1. Binary whole-brain ALE maps showing statistically significant convergent
activation resulting from independent meta-analyses of ToM studies (N=136), trait
inference (N= 40), empathy for pain (N=80) and emotions (N=75) and moral
reasoning (N=69). The ALE maps were thresholded using an FWE corrected cluster-


- extent at $p \le .05$ with a cluster-forming threshold of $p \le .001$ (red) and an FWE
- 531 corrected voxel-height threshold of p < .05 (yellow). The lateral views, which show
- 532 projections on the cortical surface, are accompanied by brain slices at the sagittal

25

533 midline and also coplanar with the peak of the left IFG cluster observed across all 534 social domains (X = -39; Table S1.5).

535

536 3.1.5. A common network for multiple sub-domains of social cognition 537 To identify brain areas consistently activated across multiple sub-domains of social 538 cognition, we performed an overlay conjunction analysis of the cluster-extent FWE-corrected 539 ALE maps associated with ToM, trait inference, empathy (for pain and/or emotions) and 540 moral reasoning (see Figure 2a, Table S1.5). Convergent activation across all four socio-541 cognitive sub-domains was found in the left IFG (pars orbitalis), mPFC, precuneus and left 542 pSTG. Overlapping areas of activation across three of four social sub-domains included right 543 IFG, left IFG (pars triangularis and pars opercularis), SMA, medial OFC, left MTG, right 544 anterior MTG and right pMTG. Overlap between two of four maps was found in right 545 posterior IFG, bilateral precentral gyrus, right AG, right pMTG, left TP and left pMTG. 546 Because the conservative thresholding used in this analysis could have excluded smaller 547 clusters that nonetheless overlap across the sub-domains, we repeated the conjunction using 548 ALE maps treated with a more liberal statistical threshold of p<.001 uncorrected. This 549 revealed additional overlapping activation for all four social domains in the right IFG (pars 550 orbitalis) and bilateral ATL (Figure S7). These brain areas have been implicated in a variety 551 of social-cognitive abilities by multiple previous meta-analyses (Alcalá-López et al., 2018). 552 The extent to which brain regions engaged in social cognition overlap with those engaged 553 in general semantic cognition (including both representation and control processes) is 554 illustrated in Figure 2b. Figure 2c shows that the brain regions engaged in social cognition 555 are largely non-overlapping with the network engaged by domain-general executive 556 processes (i.e., the MDN).

557

558 Figure 2. The neural network engaged in social cognitive processing: (a) An overlay 559 conjunction of the ALE maps resulting from independent meta-analyses of ToM studies, 560 trait inference, empathy for pain/emotions, and moral reasoning. The map displays the 561 number of social domains showing convergent activation in each voxel. The ALE maps 562 were thresholded using an FWE corrected cluster-extent threshold at p < .05 with a 563 cluster-forming threshold of $p \le .001$. (b) The binarized social cognition map (red) 564 generated by the overlay conjunction is displayed overlaid with a binarized ALE map of 565 convergent activation across N = 415 semantic > non-semantic contrasts generated in 566 Jackson, 2021 (green); overlap is shown in yellow. (c) The binarized social cognition map 567 (red) generated by the overlay conjunction is displayed overlaid with a mask of the 568 multiple-demand network (MDN) generated in Federenko et al., 2013 (green) by 569 contrasting hard > easy versions of seven diverse cognitive tasks; overlap is shown in 570 yellow. The lateral views, which show projections on the cortical surface, are

27

571	accompanied by brain slices at the sagittal midline and also coplanar with the peak of the
572	left STG (X = -48) and left IFG (X = -39) clusters that overlapped across all four social
573	domains (Table S1.5).

- 574
- 575

3.2. The semantic control network

576 The ALE meta-analysis of all 96 semantic control experiments revealed convergent

577 activation in a distributed network consisting of frontal, temporal and parietal areas (Figure

578 3a, Table S2). The largest cluster was located in the left frontal lobe and extended from the

579 IFG (pars orbitalis) to MFG. In the right frontal lobe, convergent activation was limited to

580 two clusters with peaks in pars orbitalis and pars triangularis of the IFG. Consistent activation

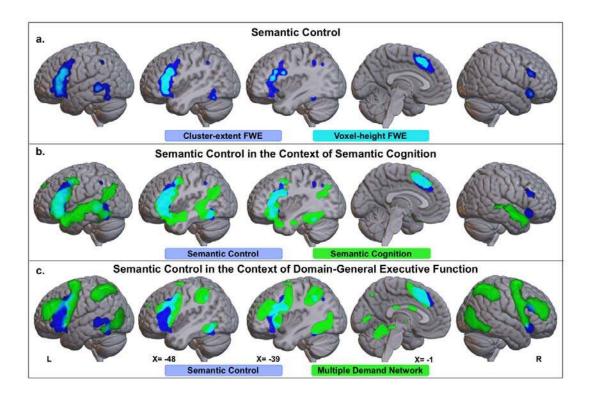
581 was also found in the medial frontal cortex with the peak in SMA. The left temporal cluster

582 extended from the posterior portion of the MTG, which showed the highest level of

583 convergence, to the fusiform gyrus. All these clusters survived both the height-based and

584 extent-based thresholding. In addition, two left IPL clusters survived only the cluster-extent

585 FWE correction. In contrast to Noonan et al., (2013), we did not find convergent activation in


586 ACC, bilateral SFG, left AG, right IPL/SPL, and left anterior MTG.

587 Figure 3b illustrates the extent to which brain regions engaged in semantic control

588 overlap with those engaged in general semantic cognition (including both representation and

589 control processes), while Figure 3c illustrates their overlap with the network engaged by

590 domain-general executive processes (i.e., the MDN).

591

592 Figure 3. The neural network engaged in semantic control: (a) Binarized ALE maps showing 593 statistically significant convergent activation across 96 experiments contrasting high > 594 low semantic control thresholded using cluster-extent FWE correction of p < .05 with a 595 cluster-forming threshold of $p \le .001$ (blue) and voxel-height FWE correction of $p \le .05$ 596 (cyan). (b) The binarized semantic control map (blue) overlaid with a binarized ALE map 597 of convergent activation across N = 415 semantic > non-semantic contrasts generated in 598 Jackson, 2021 (green); overlap is shown in cyan. (c) The binarized semantic control map 599 (blue) overlaid with a mask of the multiple-demand network (MDN) generated in 600 Federenko et al., 2013 (green) by contrasting hard > easy versions of seven diverse 601 cognitive tasks; overlap is shown in cyan. The lateral views, which show projections on 602 the cortical surface, are accompanied by brain slices at the sagittal midline and also 603 coplanar with the peak of the left STG (X = -48) and left IFG (X = -39) clusters that 604 overlapped across all four social domains (Table S1.5).

Overlap between the neural network underpinning semantic control (i.e., SCN & regions

29

605 3.3. Neural substrates shared by semantic control and social cognition

606 3.3.1. ToM

607

608	of the MDN) and the ToM network was found in 8 clusters located in the left IFG (including
609	pars orbitalis and triangularis and extending to the precentral gyrus) and, to a smaller extent,
610	the right IFG, the left dorsal precentral gyrus, SMA, left pMTG, left superior temporal pole
611	and the left fusiform gyrus (Figure 4a, Table S3.1.1). The results of the conjunction between

- semantic control and false belief reasoning can be found in Section 3.1 of SI1 and Table
- 613 S3.1.2. This analysis revealed overlapping activation in the pMTG, but not in the SMA or
- 614 lateral frontal cortex.

615

616 3.3.2. Trait Inference

Brain areas involved in both semantic control and trait inference included bilateral IFG

618 (pars orbitalis), SMA and dmPFC (Figure 4b, Table S3.2).

619

620 3.3.3. Empathy for emotions

The neural network underpinning semantic control overlapped with the areas engaged in

622 empathy for emotions in bilateral IFG (pars orbitalis and pars triangularis), SMA, left pMTG

623 and right insula (Figure 4c, Table S3.3).

624

625 3.3.4. Empathy for pain

626 Overlapping activation between empathy for pain and semantic control was revealed in

627 left IFG (pars orbitalis and pars triangularis), right IFG (pars orbitalis), left precentral gyrus,

bilateral insula, SMA and left posterior ITG (extending towards pMTG) (Figure 4d, Table

629 S3.4).

30

630	
-----	--

631 3.3.5. Moral reasoning

	Overlapping activation in response to semantic control and moral reasoning included
--	---

- 633 insula (extending to pars orbitalis of the IFG), pars opercularis of the left IFG and the left
- 634 precentral gyrus (Figure 4e, Table S3.5).
- 635
- 636 Overall, the neural network engaged in semantic control overlapped with the neural
- 637 networks underpinning all four social domains in the left IFG and, in particular, pars orbitalis.
- 638 Except for moral reasoning, overlapping activation was also found in the right IFG (pars
- orbitalis) and SMA. In the left pMTG, we found a large area of overlap between semantic
- 640 control and ToM and some evidence of overlap between semantic control and empathic
- 641 processing.

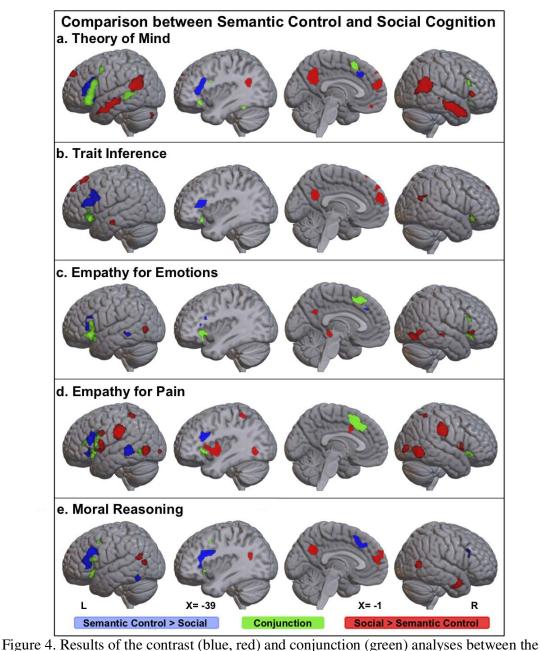


Figure 4. Results of the contrast (blue, red) and conjunction (green) analyses between theALE maps associated with semantic control and each social domain: a) Theory of Mind

- b) Trait Inference c) Empathy for Emotions d) Empathy for Pain and e) Moral Reasoning.
- 645 The contrast maps were thresholded with a cluster-forming threshold of $p \le .001$ and a
- 646 minimum cluster size of 200 mm^3 . The lateral views, which show projections on the
- 647 cortical surface, are accompanied by brain slices at the sagittal midline and also coplanar

32

648	with the peak of the left IFG cluster ($X = -39$) that overlapped across all four social
649	domains (Table S1.5).

650

651

3.4. Explicit versus implicit social cognition

652 Further to the meta-analyses above, we compared activation associated with implicit and 653 explicit paradigms for studying empathy for emotions, empathy for pain and moral reasoning.

654 The results of independent analyses are displayed in Figure 5 a-c and Tables S4.1.1 - S4.1.6).

655 Conjunctions and formal contrasts are displayed in Figure 5 d-f and Tables S4.2.1 – S4.2.3).

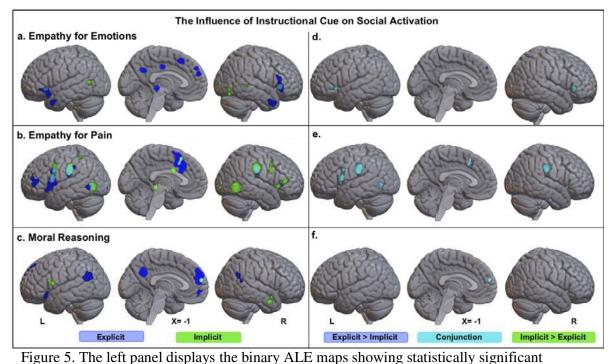
656 The only difference between activation associated with explicit and implicit paradigms, as

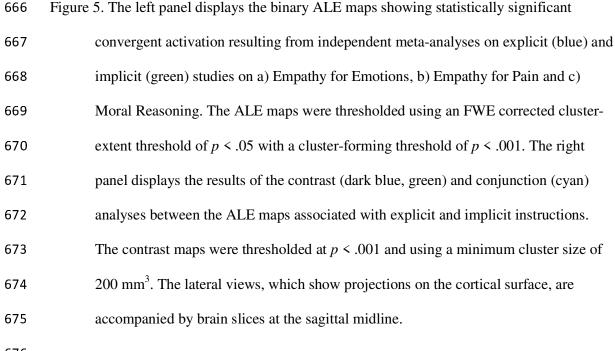
657 identified by these formal comparisons, was in the case of empathy, with a small cluster in

658 the dmPFC showing increased convergence for explicit as compared to implicit empathy (see

659 Section 3.3.1. of Supplementary Information). In addition, we conducted exploratory cluster

660 analyses to investigate whether the explicit and implicit experiments contributed similarly to


661 each of the significant ALE clusters found for each social domain. In summary, these


662 analyses (Figure S8) revealed that in the case of all social domains, implicit and explicit

663 experiments contributed equally to most clusters (see Section 3.3.2. of Supplementary

664 Information for a more detailed description).

676

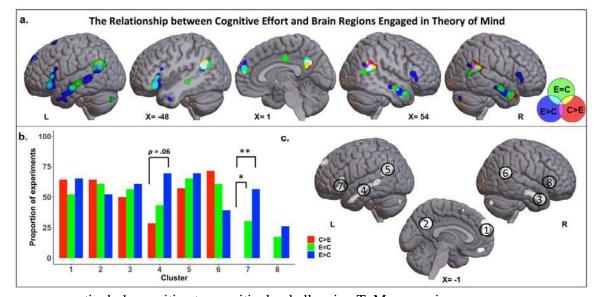
677 3.5. The relationship between cognitive effort and brain regions engaged during social
678 cognitive tasks

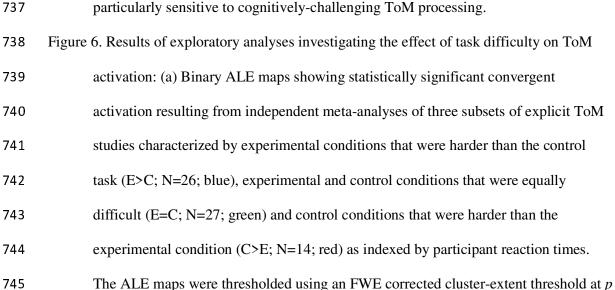
679 The above-reported conjunction analyses suggest that social cognition engages680 regions associated with semantic control. In these analyses, we took a pooled approach which

34

681 involved collapsing over many different comparisons between social and non-social tasks and 682 ignoring subtler differences between experimental and baseline conditions. The key 683 advantage of this approach is that it identifies activation that is generalisable across highly 684 variable experimental conditions. However, ignoring experimental differences precludes a 685 determination of more specific factors driving a given region's involvement. In particular, it 686 is not possible to directly infer from the above results that semantic control regions are 687 specifically being engaged by the cognitive control demands of social tasks. Therefore, to 688 address this issue, we performed a set of exploratory analyses to determine whether the IFG 689 and pMTG regions are sensitive to the degree of cognitive effort required to complete social 690 tasks. While these analyses cannot disentangle semantic control from other forms of control, 691 they represent a further initial step towards confirming a role of semantic control regions in 692 social regulatory processes. To this end, we took experiments that used explicit paradigms 693 and, on the basis of reported inferential statistics regarding participants' reaction/decision 694 times, categorised them according to whether the experimental condition was more difficult 695 than the control condition (E>C), experimental and control conditions (E=C) were equally 696 difficult, or the experimental condition was easier than the control condition (C>E). In the 697 subsequent set of analyses we worked with the premise that in the case of E=C experiments 698 and C>E experiments, activation associated with cognitive effort that is common to both the 699 experimental and control conditions is subtracted away (along with activation specific to the 700 control condition). In contrast, E>C experiments preserve activation associated with 701 cognitive effort that is specific to the experimental condition. Therefore, a contrast analysis 702 pitting E>C experiments against either C>E or E=C experiments will reveal activation 703 associated with cognitive effort specific to the social domain. A conjunction will reveal 704 activation associated with social processing irrespective of task difficulty.

705	There was only enough information regarding behavioural data to allow for
706	sufficiently powered analyses in the case of ToM (Figure S9) where there were 26 E>C ToM
707	experiments and 25 E=C ToM experiments. The results of the independent ALE analyses are
708	reported in Tables S5.1 – S5.3. A conjunction analysis of E>C and E=C experiments yielded
709	common activation in the left IFG (pars orbitalis and pars triangularis), dmPFC, precuneus,
710	bilateral anterior MTG, right pMTG and left SMG (cyan in Figure 6a; Table S5.3) which we
711	interpret as regions engaged in ToM irrespective of task difficulty. Interestingly, a contrast of
712	E>C with E=C ToM experiments revealed differential activation in the left pMTG, an area
713	implicated in semantic control. The full reports of these analyses, including prerequisite
714	independent ALE analyses on the E>C ToM and E=C ToM experiments, can be found in
715	Tables S5.1 – S5.4. For completeness, we also analysed C>E ToM experiments, but the
716	sample size (N=14) was smaller than required to be sufficiently powered (Eickhoff et al.,
717	2016) and therefore the result should be interpreted with caution (Figure 6a, Table S5.4).
718	Secondly, we conducted exploratory analyses to assess whether E>C, E=C or C>E ToM
719	experiments were equally likely to contribute to each activation cluster (Figure 6b).
720	The clusters were identified in an independent ALE analysis of ToM experiments
721	limited to those for which the behavioural information was known (Figure 6c; Table
722	S5.5). We expected clusters within brain areas that have a cognitive control function
723	to have a disproportionate contribution from experiments in which the experimental
724	task was more difficult than the control condition. To assess this, we conducted
725	Fisher's exact tests and then interrogated significant main effects through post-hoc
726	pairwise comparisons and using false-discovery-rate adjustments for multiple
727	comparisons. This cluster analysis revealed that E>C, E=C and C>E experiments
728	contributed equally to mPFC ($p = 0.67$), precuneus ($p = 0.8$), right anterior MTG ($p = 0.67$)
729	0.85), left pMTG ($p = 0.74$), right pMTG ($p = 0.15$) and right IFG ($p = 0.15$).


36


730 Contributions to the left IFG cluster	depended on the difficulty category ($p < .001$)
---	--

and pairwise comparisons indicated that the C>E experiments contributed

significantly less peaks compared to E>C (p = .001) and E>C (p = .046) experiments.

- 733 Contributions to the left anterior MTG cluster also depended on the difficulty
- category (p = .043) and pairwise comparisons indicated that the C>E experiments
- 735 contributed fewer peaks compared to E>C, but this effect did not survive correction
- for multiple comparisons (p = .06). These results suggest that the left IFG is

37

746	< .05 with a cluster-forming threshold of p < .001. The lateral views, which show
747	projections on the cortical surface, are accompanied by brain slices at the sagittal
748	midline and also coplanar with the peak of the left IFG cluster ($X = -39$) that
749	overlapped across all four social domains (Table S1.5) and the right pSTG cluster
750	from the ToM meta-analysis (Table S1.1.1). (b) The results of the cluster analyses
751	where bars represent the proportion of experiments in each difficulty category
752	contributing to clusters of interest resulting from an ALE analysis of $N = 60$ ToM
753	meta-analysis which included E>C, E=C and C>E experiments. (c) Binary ALE map
754	showing statistically significant convergent activation across ToM experiments
755	limited to those for which the behavioural information was known – this map
756	represented the basis of the cluster analysis. The ALE map was thresholded using an
757	FWE corrected cluster-extent threshold at $p \le .05$ with a cluster-forming threshold of
758	$p \le .001; \ **p \le .001 \ *p \le .05.$

759

760 **4. Discussion**

761 Although many contemporary theories of social cognition acknowledge the 762 importance of control, or regulatory processes (Adolphs, 2010; Amodio and Cikara, 2021; 763 Frith and Frith, 2012), many key questions remain about their exact nature and neural 764 underpinnings. These include a) whether multiple forms of cognitive control contribute to 765 social cognition, b) whether these mechanisms are best understood in terms of domain-766 general processes or systems specialised for social information processing and, c) whether 767 they are ubiquitously involved or selectively engaged according to certain task demands 768 (Binney and Ramsey, 2020). In the present study, we set out to specifically investigate 769 whether brain regions implicated in the controlled retrieval and selection of conceptual 770 knowledge - namely the IFG and pMTG comprising the SCN (Jefferies, 2013; Lambon Ralph

38

771	et al., 2017) - contribute to social processing. We simultaneously applied this question to
772	multiple sub-domains of social cognition so that we could assess the extent to which
773	involvement is general, or specific to certain types of social tasks and/or abilities. And we
774	adopted a formal meta-analytic approach to extracting reliable trends from across a large
775	number of functional neuroimaging studies and overcome the limitations of individual
776	experiments (Cumming, 2014; Eickhoff et al., 2012). We found that theory of mind, trait
777	inference, empathy, and moral reasoning commonly engage a core social network that
778	includes the left IFG, left pMTG/AG, mPFC and precuneus. Moreover, the left IFG
779	(particularly the pars orbitalis) region greatly overlapped with that implicated in an
780	independent meta-analysis of neuroimaging studies of semantic control. Further, exploratory
781	analyses suggest that both the left anterior IFG and the left posterior MTG (at a position just
782	anterior to the 'temporoparietal junction') are sensitive to executive demands of social tasks.
783	We interpret our overall findings as supportive of the hypothesis that the SCN supports social
784	cognition via a process of controlled retrieval of conceptual knowledge. This aligns with a
785	broader proposal in which social cognition is described as a flavour of domain-general
786	semantic cognition and relies on the same basic cognitive and brain systems (Binney &
787	Ramsey, 2020).

788

789 4.1. Cognitive control in social cognition

790 4.1.1. The contribution of semantic control

A form of cognitive control known as semantic control could be crucial for effective goal-directed social behaviour (Binney and Ramsey, 2020; Satpute et al., 2014). In a broad sense, semantic control refers to a set of executive processes involved in the attribution of meaning to stimuli and experiences, and in the production of meaning-imbued behaviour (Corbett et al., 2015; Lambon Ralph et al., 2017). However, a key distinction has been drawn

796	between a) top-down goal-directed retrieval and b) post-retrieval selection of goal-relevant
797	semantic knowledge (Badre et al., 2005; Jefferies, 2013; Thompson-Schill et al., 1997), and it
798	has been suggested that both of these two semantic control mechanisms contribute
799	significantly to interpersonal interactions (Binney and Ramsey, 2020; Satpute and
800	Lieberman, 2006). Studies of semantic cognition suggest that 'selection' is engaged when
801	bottom-up, automatic activation of conceptual knowledge results in multiple competing
802	semantic representations and/or responses. Social interactions frequently involve subtle or
803	ambiguous cues, such as neutral facial expressions and bodily gestures, and/or conflicting
804	cues (e.g., sarcasm). This causes semantic competition that can only be resolved by taking
805	into account the wider situational and linguistic context and/or prior knowledge about the
806	speaker (Aviezer et al., 2008; Pexman, 2008). Controlled retrieval processes, on the other
807	hand, are engaged when automatic semantic retrieval fails to activate the semantic
808	information necessary for the task at hand. This may occur frequently in social interactions,
809	and particularly with less familiar persons, because of a preponderance of surface features
810	(e.g., physical characteristics) over less salient features (e.g., personality traits, preferences,
811	and mental states). To avoid exchanges that are deemed superficial at best, controlled
812	retrieval must be used to bring to the fore person-specific but also context-relevant semantic
813	information.
814	There is now over a decade's worth of multi-method evidence that semantic control is
815	underpinned by the left IFG and the left pMTG (Jefferies, 2013; Lambon Ralph et al., 2017).
816	Research is now aimed at understanding the neural mechanisms by which these regions
817	modulate semantic processing. One recent proposal is that it involves coordination of
818	spreading activation across the semantic representational system (Chiou et al., 2018).
819	According to the hub-and-spoke theory of semantic representation (Lambon Ralph et al.,
820	2017), coherent concepts are represented conjointly by a central supramodal semantic 'hub'

821	located in the ATLs, as well as multiple distributed areas of association cortex (i.e. 'spokes')
822	that represent modality-specific information (e.g. visual features, auditory features, verbal
823	labels, etc). Chiou et al., (2018) showed that the left IFG could be imposing cognitive control
824	by flexibly changing its effective connectivity with the hub and spoke regions according to
825	task characteristics; the IFG displayed enhanced functional connectivity with the 'spoke'
826	region that processes the most task-relevant information modality. A similar proposal has
827	been made for the contribution of domain-general cognitive control systems to social
828	information processing. Zaki et al. (2010) found that, in the presence of conflicting social
829	cues, IFG activity becomes functionally coupled with the brain areas associated with
830	processing the particular cue type the participant chose to rely on to make inferences about
831	emotional states. On this basis, they proposed that cognitive control areas upregulate
832	activation within systems that represent social cues that are currently most relevant to the
833	task. Consistent with this, a further study found evidence to suggest that the left IFG
834	downregulates neural activation associated with task-irrelevant self-referential information
835	when the task required reference to others (and vice versa) (Soch et al., 2017).
836	An important feature of semantic processing is the ability to accommodate new
837	information that emerges over extended periods of time and update our internal
838	representation of the current "state of affairs" in the external world according to contextual
839	changes. This is particularly important for navigating social dynamics which are liable to
840	abrupt and sometimes extreme changes in tone. For instance, imagine being in a bar and
841	having your attention drawn to someone standing suddenly and picking up a glass. One might
842	reasonably infer that this person is thirsty. That is until they proceed to walk towards a group
843	of noisy sports fans rather than the bartender. In this case, you will likely adapt your
844	interpretation and engage in a pre-emptive defensive stance. Recent research suggests that
845	this ability to update depends, at least in part, on the IFG, as well as the mPFC and ventral

846	IPL (also see Section 4.2.2) (Branzi et al., 2020). Likewise, Lavoie et al., (2016) showed that,
847	during a ToM task, activation of the left IFG and pMTG is associated with contextual
848	adjustments of mental state inferences (and also more general physical inferences) although
849	not the representation of mental states specifically. Left IFG activation has also been
850	observed when newly-presented information requires one to update the initial impression
851	formed of another person (e.g., Mende-Siedlecki et al., 2013b, 2013a; Mende-Siedlecki and
852	Todorov, 2016).
853	
854	4.1.2. The wider contribution of executive processes
855	According to Lambon Ralph, Jefferies, and colleagues, the executive component of
856	semantic cognition comprises both semantic control and other domain-general processes
857	(Lambon Ralph et al., 2017; Binney & Ramsey, 2020). The latter includes top-down
858	attentional control and working memory systems that support goal-driven behaviour
859	irrespective of the task domain (i.e., perceptual, motor or semantic). These processes recruit
860	nodes of the MDN (Duncan, 2010), which include the precentral gyrus, MFG, IPS, insular
861	cortex, pre-SMA and adjacent cingulate cortex (Assem et al., 2020; Fedorenko et al., 2013).
862	In terms of organisation, the SCN appears to be nested among domain-general executive
863	systems (Wang et al., 2020) and could play a role in mediating interactions between the
864	MDN and the semantic representational system (Davey et al., 2016; Lambon Ralph et al.,
865	2017). In line with this general perspective, we expected MDN regions to be reliably engaged
866	by all four social sub-domains explored in the present meta-analyses. While there was
867	evidence of engagement of the MFG, the pre-SMA, ACC, insula and IPS in some of the
868	social sub-domains, MDN regions were not part of the core social processing network
869	identified by the overlay conjunction analysis. This could reflect the fact that the majority of
870	contrasts included in our meta-analyses employed high-level control conditions that were

42

871	well-matched to the experimental conditions in terms of general task requirements, and thus,
872	most activation associated with general cognitive demands had been subtracted away.
873	Consistent with this notion is the fact that studies contrasting social tasks with lower-level
874	control conditions (e.g., passive fixation) find more extensive MDN activation in ToM
875	(Mason et al., 2008; Mier et al., 2010), trait inference (Chen et al., 2010; Hall et al., 2012),
876	empathy (De Greck et al., 2012; Tamm et al., 2017) and moral reasoning (Reniers et al.,
877	2012). The role of the MDN in social cognition is otherwise becoming well-established, and
878	it has been found to be sensitive to difficulty manipulations in social tasks, showing increased
879	activation in response to conflicting social cues (Cassidy and Gutchess, 2015; Mitchell,
880	2013), social stimuli that violate expectations (Cloutier et al., 2011; Hehman et al., 2014; Ma
881	et al., 2012; Weissman et al., 2008) and increasing social working memory load (Meyer et al.,
882	2012).
883	Finally, it is important to note that, although both MDN and the SCN co-activate in
884	social and semantic tasks, the nature of their specific contributions and their anatomy are at
885	least partially dissociable. The MDN is associated with the implementation of top-down
886	constraints to facilitate goal-driven aspects of processing that is not limited to the semantic
887	domain (Duncan, 2013; Fedorenko et al., 2013; Gao et al., 2020; Whitney et al., 2012). In
888	contrast, the engagement of the anterior ventrolateral IFG (pars orbitalis) and the left pMTG
889	appear specific to the semantic domain and, in particular, controlled semantic retrieval (Badre
890	and Wagner, 2007; Gao et al., 2020; Hodgson et al., 2021; Whitney et al., 2012). Unlike the
891	MDN, they do not appear to respond to challenging non-semantic tasks (Gao et al., 2020;
892	Noonan et al., 2013; Whitney et al., 2012). Further, tasks associated with low conceptual
893	retrieval demands but a requirement for response inhibition engage the MDN but do not
894	engage the SCN, even if conceptual knowledge is used to guide responses (Alam et al.,
895	2018).

895 2018).

8	96
---	----

897	4.1.3. Double-route vs single-route cognitive architecture of social cognition
898	A secondary aim of the present study was to address a pervasive distinction in the
899	social neuroscientific literature between automatic and controlled processes (Adolphs, 2010;
900	Happé et al., 2017; Lieberman, 2007). Some authors have argued that automatic and
901	controlled social processes are mutually exclusive of one another and draw upon distinct
902	cortical networks (Forbes & Grafman, 2013; Lieberman, 2007; Satpute & Lieberman, 2006).
903	The alternative is a single-route architecture where the degree to which behaviours have
904	particular attributes (e.g. speed, effort, intentionality) does not reflect the involvement of one
905	system and not another, but quantitative differences in the extent to which the control system
906	interacts with the representational system in order to produce context-/task- appropriate
907	responses (Binney and Ramsey, 2020). Our results are consistent with the latter perspective.
908	The brain regions reliably activated in response to explicit instructions and those associated
909	with implicit instructions revealed more overlap than discrepancy across empathy and moral
910	reasoning tasks. Notably, this overlap included brain areas associated with executive
911	functions: the bilateral IFG in the case of empathy for emotions and bilateral IFG and dmPFC
912	in the case of empathy for pain. Moreover, cluster analyses of the ALE maps associated with
913	the four social domains suggest that studies using explicit and implicit paradigms (which are
914	assumed to engage controlled and automatic processing respectively) contributed equally to
915	most activation clusters, including those in brain regions associated with control processes.
916	Contrary to the predictions of dual-process models, these findings suggest that common
917	neural networks contribute to both explicit and implicit social processing (also see Van
918	Overwalle & Vandekerckhove, 2013). Furthermore, exploratory analyses suggest that both
919	the left anterior IFG and the pMTG are sensitive to executive demands of social tasks.
920	Overall, we argue that these results support the existence of a single-route cognitive

921	architecture wherein the contribution made by control mechanisms to implicit and explicit
922	social processing reflects cognitive effort demanded by the task at hand. This follows similar
923	proposals put forth specifically in the domain of ToM (Carruthers, 2017, 2016).
924	
925	4.2. Beyond cognitive control
926	Our findings converged upon four further regions that have been strongly linked with
927	key roles in social cognition: the mPFC (including the anterior cingulate), the precuneus, the
928	'temporoparietal junction' (TPJ), and the ATL. We briefly discuss the putative role of each of
929	these regions below.
930	
931	4.2.1. The 'Temporo-parietal Junction'
932	A region often referred to as the 'temporo-parietal junction' (TPJ) has been subject to
933	an elevated status within the social neurosciences. In particular, the right TPJ has been
934	attributed with a key role in representing the mental states of others (Saxe and Wexler, 2005).
935	In line with previous meta-analyses (Bzdok et al., 2012; Molenberghs et al., 2016; Schurz et
936	al., 2020, 2014, 2013), our results reveal a bilateral TPJ region that is reliably involved in
937	ToM tasks. In the left hemisphere, an overlapping area is also implicated in trait inference,
938	empathy for emotions and moral reasoning which is suggestive of a broader role of the left
939	TPJ in social cognition. In contrast, the right TPJ showed more limited overlap, being reliably
940	engaged only by ToM and trait inference tasks, which is suggestive of a more selective role
941	of the right TPJ in social cognition.
942	The TPJ encompasses a large area of cortex that is poorly defined anatomically and
943	seems to include parts of the AG, SMG, STG and MTG (Schurz et al., 2017). Moreover, this
944	area is functionally heterogeneous and has been associated with a variety of cognitive
945	domains including but not limited to attention, language, numerosity, episodic memory,

45

946	semantic cognition and social perception (Binder et al., 2009; Decety and Lamm, 2007; Deen
947	et al., 2015; Humphreys and Lambon Ralph, 2015a; Igelström and Graziano, 2017; Özdem et
948	al., 2017; Quadflieg and Koldewyn, 2017). While there is some indication that the function of
949	the TPJ may be dependent on the hemisphere (e.g., Numssen et al., 2021), many cognitive
950	domains, including ToM, are associated with bilateral TPJ activation. Our results at least
951	seem to suggest dissociable roles of pMTG and a more posterior TPJ region; while the left
952	pMTG is activated within both semantic control and ToM studies, a separate and more
953	posterior STG (TPJ) area located closer to SMG/AG was reliably engaged by all of the social
954	tasks, but not studies of semantic control. Furthermore, the results suggest that the left pMTG
955	is sensitive to the difficulty of ToM tasks while the bilateral pSTG (TPJ) region is not.
956	This finding is generally in line with previous research suggesting a functional
957	dissociation between the left pMTG and the left ventral IPL/AG regions. From one
958	perspective, the activation of both regions appears to be positively associated with semantic
959	tasks (Binder et al., 2009). However, the left pMTG shows increased activation to difficult
960	relative to easier semantic tasks (Jackson, 2021; Noonan et al., 2013), unlike the ventral
961	IPL/AG which has been shown to deactivate to semantic tasks when they are contrasted
962	against passive/resting conditions where there may be greater opportunity for spontaneous
963	semantic processing or 'mind-wandering' (Humphreys et al., 2015; Humphreys and Lambon
964	Ralph, 2015b). Moreover, Davey et al., (2015) found that TMS applied to pMTG disrupted
965	processing of weak semantic associations more than for strong associations, whereas TMS
966	applied to AG had the opposite effect. Based on these and similar observations it has been
967	suggested that the ventral IPL/AG has a role in the automatic retrieval of semantic
968	information.
060	

969

970 4.2.2. The Default Mode Network

46

971	The pSTG/AG and the mPFC and precuneus regions we identified as part of the core
972	social cognition network are also considered part of the default-mode network (DMN)
973	(Buckner et al., 2008; Spreng and Andrews-Hanna, 2015). The DMN is a resting-state
974	network, meaning that it is a group of regions consistently co-activated without the
975	requirement of an explicit task. It is proposed that it is ideally suited for supporting self-
976	generated internally-oriented, as opposed to externally-oriented, cognition (i.e., it is
977	decoupled from sensory processing; Margulies et al., 2016; Smallwood et al., 2013). Some of
978	these regions (e.g., the AG and mPFC) have been also implicated in processes that allow the
979	integration of information over time (Huey et al., 2006; Humphreys et al., 2020; Ramanan et
980	al., 2018; Ramanan and Bellana, 2019). These purported functions are all presumably
981	important for social and more general semantic processing (see Section 4.1.1.) and likely
982	involve domain-general mechanisms (also see Van Overwalle, 2009). However, the degree to
983	which regions implicated in the DMN and those implicated in social and/or semantic
984	cognition do or do not overlap is contentious and much is left to be gleaned regarding the
985	relationship between these systems (Jackson et al., 2021, 2019; Mars et al., 2012).
986	
987	4.2.3. The anterior temporal lobe
988	Our findings implicate the lateral anterior temporal lobe (ATL), and particularly the
989	dorsolateral STG/temporal pole (BA 38) and middle anterior MTG/STS, in all the socio-
990	cognitive domains investigated, except for empathy for pain. Exploratory cluster analyses
991	revealed that ATL engagement is not dependent on instructional cue or task difficulty, and
992	thus it appears to serve a role other than control.
993	A key contribution of the ATL to social-affective behaviour has been recognised by

994 comparative and behavioural neurologists for well over a century, owed at first to the

acclaimed work of Brown and Schafer (1888) and, later, Klüver and Bucy, (1939) who

47

996	provide detailed reports of profound social and affective disturbances in non-human primates
997	following a bilateral, full depth ATL resection. These observations are mirrored in
998	descriptions of neurogenerative patients that associate progressive ATL damage with a wide
999	range of socio-affective deficits (Binney et al., 2016; Chan et al., 2009; Ding et al., 2020;
1000	Perry et al., 2001), including impaired emotion recognition (Lindquist et al., 2014; Rosen et
1001	al., 2004) and empathy (Rankin et al., 2005), impaired capacity for ToM (Duval et al., 2012;
1002	Irish et al., 2014), and a loss of person-specific knowledge (Gefen et al., 2013; Snowden et
1003	al., 2012, 2004). Over the past 10 years, there been a growing acceptance of the central role
1004	played by the ATL within the social neurosciences (Olson et al., 2013) and it now features
1005	prominently in some neurobiological models of face processing (Collins & Olson, 2014),
1006	ToM (Frith & Frith, 2006), moral cognition (Moll et al., 2005), and emotion processing
1007	(Lindquist et al., 2012). It has also been pinpointed as a key source of top-down influence on
1008	social perception (Freeman & Johnson, 2016). One influential account of social ATL
1009	function proposes a domain-specific role in the representation of social knowledge, including
1010	person knowledge, and other more abstract social concepts (Olson et al., 2013; Thompson et
1011	al., 2003; Zahn et al., 2007a).
1012	A parallel line of research focused upon general semantic cognition has given rise to
1013	an alternative, more domain-general account of ATL function; there is a large body of
1014	convergent multi-method evidence from patient and neurotypical populations in support of a
1015	role of the ATL in the formation and storage of all manner of conceptual-level knowledge
1016	(Lambon Ralph et al., 2017). Research efforts have therefore recently begun to ask whether
1017	the purported roles of the ATL in both social and semantic processes can be reconciled under
1018	a single unifying framework (Binney et al., 2016; Rice et al., 2018). Some clues already exist
1019	in the aforementioned work of Klüver and Bucy (1939), who observed a broader symptom

1020 complex comprising multimodal semantic impairments, including visual and auditory

1021	associative agnosias, that might explain rather than just co-present with social-affective
1022	disturbances. More recent work that leverages the higher spatial resolution of functional
1023	neuroimaging in humans has revealed a ventrolateral ATL region that responds equally to all
1024	types of concepts, including social, object and abstract concepts, be they referenced by verbal
1025	and/or non-verbal stimuli (Binney et al., 2016; Rice et al., 2018). Activation of the dorsal-
1026	polar ATL, on the other hand, appears to be more sensitive to socially-relevant semantic
1027	stimuli (Binney et al., 2016; Rice et al., 2018; Zahn et al., 2007b). These observations support
1028	a proposal in which the broadly-defined ATL region can be characterised as a domain-
1029	general supramodal semantic hub with graded differences in relative specialisation towards
1030	certain types of conceptual information (Binney et al., 2012; Binney et al., 2016; Lambon
1031	Ralph et al., 2017; Plaut, 2002; Rice et al., 2015). Our results reveal that the temporal poles
1032	are reliably activated across four social domains - moral reasoning, empathy for emotions,
1033	ToM and trait inference. They do not, however, provide support for the involvement of the
1034	ventrolateral ATL. We argue this is likely due to technical and methodological limitations of
1035	the fMRI studies included in the meta-analyses (see Visser et al., 2010). Most notably this
1036	includes vulnerability to susceptibility artefacts that cause BOLD signal drop-out and
1037	geometric distortions around certain brain areas, including the ventral ATLs (Jezzard and
1038	Clare, 1999; Ojemann et al., 1997). Studies that have used PET, which is not vulnerable to
1039	such artefacts, or techniques devised to overcome limitations of conventional fMRI (Devlin
1040	et al., 2000; Embleton et al., 2010), reveal activation in both the temporal poles and the
1041	ventral ATL in response to social stimuli (Balgova et al., in prep; Binney et al., 2016; Castelli
1042	et al., 2002).

4.3. Limitations

49

1045	Because semantic control demands were not explicitly manipulated in the social
1046	contrasts we included, our results cannot directly confirm our hypothesis regarding the
1047	specific contribution made by the SCN in social cognition. Our conclusions rely on an
1048	assumption that overlap reflects a generalised neurocomputation upon which both semantic
1049	control and social processing rely. The alternative explanation is that overlapping activation
1050	reflects tightly yet separately packed cognitive functions which may only dissociate when
1051	investigated at an increased spatial resolution (Henson, 2006; Humphreys et al., 2020).
1052	Moreover, we chose to pool across heterogeneous samples of studies to investigate the
1053	cognitive domains of interest. The advantage of this approach is that it identifies activation
1054	that is generalisable across highly variable experimental conditions and washes out spurious
1055	findings associated with idiosyncratic properties of stimuli and/or paradigms. However, the
1056	preponderance of specific experimental procedures in each literature addressed still
1057	unintentionally led to systematic differences in the characteristics of the studies used to
1058	define the different cognitive domains. For example, the semantic control dataset included
1059	studies that employed verbal stimuli almost exclusively, while the majority of empathy
1060	studies employed non-verbal stimuli. Some of the differences between the associated
1061	networks (e.g, in lateralization) might therefore be attributable to verbal processing demands.
1062	As is the case with all meta-analyses, therefore, some aspects of our results should be treated
1063	with caution.
1064	Another limitation of this study is that most of the experiments included used control

conditions that were highly matched to their experimental conditions in terms of the demand
for domain-general processes such as cognitive control and semantic processing, and
therefore they may have subtracted away much of the activation we were aiming to explore.
Despite this, we did find consistent activation of the SCN, particularly the left IFG, across all
four social domains. This may be because, although a considerable subset of included

experiments had high-matching control conditions, not all may have properly controlled for

1071	semantic control demands specifically. An alternative explanation is that processing socially-
1072	relevant conceptual knowledge may impose greater demands on the SCN. Consistent with
1073	this, it has been shown that processing social concepts relative to non-social concepts led to
1074	increased activation of the SCN even when controlling for potentially confounding
1075	psycholinguistic factors (Binney et al., 2016).
1076	
1077	
1078	4.4. Concluding remarks and future directions
1079	Regions of the SCN are engaged by several types of complex social tasks, including
1080	ToM, empathy, trait inference and moral reasoning. This finding sheds light on the nature and
1081	neural correlates of the cognitive control mechanisms which contribute to the regulation of
1082	social cognition and specifically implicates processes involved in the goal-directed retrieval
1083	of conceptual knowledge. Importantly, our current findings and our broader set of hypotheses
1084	can be generalised to multiple social phenomena, thereby contributing a unified account of
1085	social cognition. Future research will need to establish a causal relationship between the SCN
1086	and successful regulation of social processing. This could be done by directly probing
1087	whether SCN regions are sensitive to manipulations of semantic control demands within a
1088	social task. Similarly, the capacity for neurostimulation of SCN regions to disrupt social task
1089	performance needs to be investigated.
1090	Elucidating the neural bases of social control and representation may help us
1091	understand the precise nature of social impairments resulting from damage to different neural
1092	systems. For example, our framework (Binney & Ramsey, 2020) predicts that damage to
1093	representational areas such as the ATL will impair social information processing irrespective
1094	of task difficulty or the need to integrate context. In contrast, we expect that damage to

51

1095	control areas would lead to impaired social processing specifically when it requires selecting
1096	from amongst alternative interpretations of social cues, and/or retrieving social information
1097	that is only weakly associated with a person or a situation. Damage to perisylvian frontal
1098	and/or temporo-parietal areas (comprising the SCN) leads to semantic aphasia, a disorder
1099	characterized by impaired access and use of conceptual knowledge (Corbett et al., 2009;
1100	Jefferies et al., 2008, 2007; Jefferies and Lambon Ralph, 2006; Noonan et al., 2010). This
1101	contrasts with ATL damage which leads to semantic dementia, a condition associated with a
1102	loss or degradation of semantic knowledge (including social knowledge; Hodges and
1103	Patterson, 2007; Lambon Ralph et al., 2010; Lambon Ralph and Patterson, 2008; Patterson et
1104	al., 2007; Rogers et al., 2004). As far as we are aware, the extent to which brain damage that
1105	leads to semantic aphasia also affects social abilities has not yet been formally investigated.
1106	Some insight can be found in neurodegenerative patients with prominent frontal lobe damage,
1107	where social impairments can be linked to deficits in executive function (Healey and
1108	Grossman, 2018; Kamminga et al., 2015). More generally, it will be interesting to discover
1109	whether a distinction between knowledge representation and cognitive control can inform our
1110	understanding of the precise nature of atypical or disordered social cognition in, for example,
1111	the context of dementia, acquired brain injury, autism spectrum conditions and schizophrenia.
1112	

1113 Acknowledgements

1114 This research was performed as part of an all-Wales ESRC Doctoral Training Programme +3

1115 PhD studentship awarded to VD [ES/P00069X/1]. The authors would like to thank Irina

1116 Giurgea for her assistance in preparing the data for publication, and Ionela Bara and Eva

1117 Balgova for their comments on a previous version of this manuscript.

1118

1120			
1121			
1122			

53

References

- Ackerman, B.P., 1983. Form and function in children's understanding of ironic utterances. J. Exp. Child Psychol. 35, 487–508. https://doi.org/10.1016/0022-0965(83)90023-1
- Adolphs, R., 2010. Conceptual Challenges and Directions for Social Neuroscience. Neuron 65, 752–767. https://doi.org/10.1016/j.neuron.2010.03.006
- Adolphs, R., 2009. The Social Brain: Neural Basis of Social Knowledge. Annu. Rev. Psychol. 60, 693–716. https://doi.org/10.1146/annurev.psych.60.110707.163514

Alam, G.T., Murphy, C., Smallwood, J., Jefferies, E., 2018. Meaningful inhibition: Exploring the role of meaning and modality in response inhibition. Neuroimage 181, 108–119. https://doi.org/10.1016/j.neuroimage.2018.06.074

- Alcalá-López, D., Smallwood, J., Jefferies, E., Van Overwalle, F., Vogeley, K., Mars, R.B., Turetsky, B.I., Laird, A.R., Fox, P.T., Eickhoff, S.B., Bzdok, D., 2018. Computing the social brain connectome across systems and states. Cereb. Cortex 28, 2207–2232. https://doi.org/10.1093/cercor/bhx121
- Amodio, D.M., 2019. Social Cognition 2.0: An Interactive Memory Systems Account. Trends Cogn. Sci. 23, 21–33. https://doi.org/10.1016/j.tics.2018.10.002
- Amodio, D.M., 2014. The neuroscience of prejudice and stereotyping. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3800
- Amodio, D.M., Cikara, M., 2021. The Social Neuroscience of Prejudice. Annu. Rev. Psychol. 72, 439–469. https://doi.org/10.1146/annurev-psych-010419-050928
- Assem, M., Glasser, M.F., Van Essen, D.C., Duncan, J., 2020. A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex. Cereb. Cortex 30, 4361–4380. https://doi.org/10.1093/cercor/bhaa023
- Aviezer, H., Hassin, R.R., Ryan, J., Grady, C., Susskind, J., Anderson, A., Moscovitch, M., Bentin, S., 2008. Angry, disgusted, or afraid? Studies on the malleability of emotion perception: Research article. Psychol. Sci. 19, 724–732. https://doi.org/10.1111/j.1467-9280.2008.02148.x
- Badre, D., Poldrack, R.A., Paré-Blagoev, E.J., Insler, R.Z., Wagner, A.D., 2005. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47, 907–918. https://doi.org/10.1016/j.neuron.2005.07.023
- Badre, D., Wagner, A.D., 2007. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2007.06.015

54

- Barredo, J., Öztekin, I., Badre, D., 2015. Ventral Fronto-Temporal Pathway Supporting Cognitive Control of Episodic Memory Retrieval. Cereb. Cortex 25, 1004–1019. https://doi.org/10.1093/cercor/bht291
- Barrett, C.H., 2012. A hierarchical model of the evolution of human brain specializations. Proc. Natl. Acad. Sci.U. S. A. 109, 10733–10740. https://doi.org/10.1073/pnas.1201898109
- Barrett, L.F., Mesquita, B., Gendron, M., 2011. Context in Emotion Perception. Curr. Dir. Psychol. Sci. 20, 286–290. https://doi.org/10.1177/0963721411422522
- Bas-Hoogendam, J.M., van Steenbergen, H., Kreuk, T., van der Wee, N.J.A., Westenberg, P.M., 2017. How embarrassing! The behavioral and neural correlates of processing social norm violations. PLoS One 12, e0176326. https://doi.org/10.1371/journal.pone.0176326
- Binder, J.R., Desai, R.H., Graves, W.W., Conant, L.L., 2009. Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies. Cereb. Cortex 19, 2767–2796. https://doi.org/10.1093/cercor/bhp055
- Binney, R.J., Embleton, K. V, Jefferies, E., Parker, G.J.M., Ralph, M.A.L., 2010. The Ventral and Inferolateral Aspects of the Anterior Temporal Lobe Are Crucial in Semantic Memory: Evidence from a Novel Direct Comparison of Distortion-Corrected fMRI, rTMS, and Semantic Dementia. Cereb. Cortex 20, 2728–2738. https://doi.org/10.1093/cercor/bhq019
- Binney, Richard J., Henry, M.L., Babiak, M., Pressman, P.S., Santos-Santos, M.A., Narvid, J., Mandelli, M.L., Strain, P.J., Miller, B.L., Rankin, K.P., Rosen, H.J., Gorno-Tempini, M.L., 2016. Reading words and other people: A comparison of exception word, familiar face and affect processing in the left and right temporal variants of primary progressive aphasia. Cortex 82, 147–163. https://doi.org/10.1016/j.cortex.2016.05.014
- Binney, Richard J, Hoffman, P., Ralph, M.A.L., 2016. Mapping the Multiple Graded Contributions of the Anterior Temporal Lobe Representational Hub to Abstract and Social Concepts: Evidence from Distortion-corrected fMRI. Cereb. Cortex 26, 4227–4241. https://doi.org/10.1093/cercor/bhw260
- Binney, R.J., Parker, G.J.M., Lambon Ralph, M.A., 2012. Convergent connectivity and graded specialization in the Rostral human temporal Lobe as revealed by diffusion-weighted imaging probabilistic tractography. J. Cogn. Neurosci. 24, 1998–2014. https://doi.org/10.1162/jocn_a_00263
- Binney, R.J., Ramsey, R., 2020. Social Semantics: The role of conceptual knowledge and cognitive control in a neurobiological model of the social brain. Neurosci. Biobehav. Rev. 112, 28–38. https://doi.org/10.1016/j.neubiorev.2020.01.030

Bosco, F.M., Tirassa, M., Gabbatore, I., 2018. Why pragmatics and Theory of Mind do not (Completely)

55

overlap. Front. Psychol. 9, 1453. https://doi.org/10.3389/fpsyg.2018.01453

Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., Dreber, A., Huber, J., Johannesson, M., Kirchler, M.,

Iwanir, R., Mumford, J.A., Adcock, R.A., Avesani, P., Baczkowski, B.M., Bajracharya, A., Bakst, L.,

Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., Benoit, R.G., Berkers, R.M.W.J., Bhanji, J.P.,

Biswal, B.B., Bobadilla-Suarez, S., Bortolini, T., Bottenhorn, K.L., Bowring, A., Braem, S., Brooks, H.R.,

Brudner, E.G., Calderon, C.B., Camilleri, J.A., Castrellon, J.J., Cecchetti, L., Cieslik, E.C., Cole, Z.J.,

Collignon, O., Cox, R.W., Cunningham, W.A., Czoschke, S., Dadi, K., Davis, C.P., Luca, A. De,

Delgado, M.R., Demetriou, L., Dennison, J.B., Di, X., Dickie, E.W., Dobryakova, E., Donnat, C.L.,

Dukart, J., Duncan, N.W., Durnez, J., Eed, A., Eickhoff, S.B., Erhart, A., Fontanesi, L., Fricke, G.M., Fu,

S., Galván, A., Gau, R., Genon, S., Glatard, T., Glerean, E., Goeman, J.J., Golowin, S.A.E., González-

García, C., Gorgolewski, K.J., Grady, C.L., Green, M.A., Guassi Moreira, J.F., Guest, O., Hakimi, S.,

Hamilton, J.P., Hancock, R., Handjaras, G., Harry, B.B., Hawco, C., Herholz, P., Herman, G., Heunis, S.,

Hoffstaedter, F., Hogeveen, J., Holmes, S., Hu, C.P., Huettel, S.A., Hughes, M.E., Iacovella, V., Iordan,

A.D., Isager, P.M., Isik, A.I., Jahn, A., Johnson, M.R., Johnstone, T., Joseph, M.J.E., Juliano, A.C., Kable,

J.W., Kassinopoulos, M., Koba, C., Kong, X.Z., Koscik, T.R., Kucukboyaci, N.E., Kuhl, B.A., Kupek, S.,

Laird, A.R., Lamm, C., Langner, R., Lauharatanahirun, N., Lee, H., Lee, S., Leemans, A., Leo, A.,

Lesage, E., Li, F., Li, M.Y.C., Lim, P.C., Lintz, E.N., Liphardt, S.W., Losecaat Vermeer, A.B., Love,

B.C., Mack, M.L., Malpica, N., Marins, T., Maumet, C., McDonald, K., McGuire, J.T., Melero, H.,

Méndez Leal, A.S., Meyer, B., Meyer, K.N., Mihai, G., Mitsis, G.D., Moll, J., Nielson, D.M., Nilsonne,

G., Notter, M.P., Olivetti, E., Onicas, A.I., Papale, P., Patil, K.R., Peelle, J.E., Pérez, A., Pischedda, D.,

Poline, J.B., Prystauka, Y., Ray, S., Reuter-Lorenz, P.A., Reynolds, R.C., Ricciardi, E., Rieck, J.R.,

Rodriguez-Thompson, A.M., Romyn, A., Salo, T., Samanez-Larkin, G.R., Sanz-Morales, E., Schlichting,

M.L., Schultz, D.H., Shen, Q., Sheridan, M.A., Silvers, J.A., Skagerlund, K., Smith, A., Smith, D. V.,

Sokol-Hessner, P., Steinkamp, S.R., Tashjian, S.M., Thirion, B., Thorp, J.N., Tinghög, G., Tisdall, L.,

Tompson, S.H., Toro-Serey, C., Torre Tresols, J.J., Tozzi, L., Truong, V., Turella, L., van 't Veer, A.E.,

Verguts, T., Vettel, J.M., Vijayarajah, S., Vo, K., Wall, M.B., Weeda, W.D., Weis, S., White, D.J.,

Wisniewski, D., Xifra-Porxas, A., Yearling, E.A., Yoon, S., Yuan, R., Yuen, K.S.L., Zhang, L., Zhang,

X., Zosky, J.E., Nichols, T.E., Poldrack, R.A., Schonberg, T., 2020. Variability in the analysis of a single

neuroimaging dataset by many teams. Nature 582, 84-88. https://doi.org/10.1038/s41586-020-2314-9

Branzi, F.M., Humphreys, G.F., Hoffman, P., Lambon Ralph, M.A., 2020. Revealing the neural networks that

56

extract conceptual gestalts from continuously evolving or changing semantic contexts. Neuroimage 220. https://doi.org/10.1016/j.neuroimage.2020.116802

- Brown, S., Schafer, E.A., 1888. An investigation into the functions of the occipital and temporal lobes of the monkey's brain. Philos. Trans. R. Soc. London. 179, 303–327. https://doi.org/10.1098/rstb.1888.0011
- Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38. https://doi.org/10.1196/annals.1440.011
- Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., Munafò, M.R., 2013.
 Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376. https://doi.org/10.1038/nrn3475
- Bzdok, D., Langner, R., Caspers, S., Kurth, F., Habel, U., Zilles, K., Laird, A., Eickhoff, S.B., 2011. ALE metaanalysis on facial judgments of trustworthiness and attractiveness. Brain Struct. Funct. 215, 209–223. https://doi.org/10.1007/s00429-010-0287-4
- Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A.R., Langner, R., Eickhoff, S.B., 2012. Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct. Funct. 217, 783–796. https://doi.org/10.1007/s00429-012-0380-y
- Carp, J., 2012. On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments. Front. Neurosci. 6, 149. https://doi.org/10.3389/fnins.2012.00149
- Carruthers, P., 2017. Mindreading in adults: evaluating two-systems views. Synthese 194, 673–688. https://doi.org/10.1007/s11229-015-0792-3
- Carruthers, P., 2016. Two Systems for Mindreading? Rev. Philos. Psychol. 7, 141–162. https://doi.org/10.1007/s13164-015-0259-y
- Cassidy, B.S., Gutchess, A.H., 2015. Neural responses to appearance-behavior congruity. Soc. Cogn. 33, 211–226. https://doi.org/10.1521/soco.2015.33.3.1

Castelli, F., Frith, C., Happe, F., Frith, U., 2002. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125, 1839–1849. https://doi.org/10.1093/brain/awf189

- Chan, D., Anderson, V., Pijnenburg, Y., Whitwell, J., Barnes, J., Scahill, R., Stevens, J.M., Barkhof, F., Scheltens, P., Rossor, M.N., Fox, N.C., 2009. The clinical profile of right temporal lobe atrophy. Brain 132, 1287–1298. https://doi.org/10.1093/brain/awp037
- Chen, A.C., Welsh, R.C., Liberzon, I., Taylor, S.F., 2010. "Do I like this person?" A network analysis of

midline cortex during a social preference task. Neuroimage 51, 930–939. https://doi.org/10.1016/i.neuroimage.2010.02.044

Chiou, R., Humphreys, G.F., Jung, J.Y., Lambon Ralph, M.A., 2018. Controlled semantic cognition relies upon dynamic and flexible interactions between the executive 'semantic control' and hub-and-spoke 'semantic representation' systems. Cortex 103, 100–116. https://doi.org/10.1016/j.cortex.2018.02.018

Cloutier, J., Gabrieli, J.D.E., O'Young, D., Ambady, N., 2011. An fMRI study of violations of social expectations: When people are not who we expect them to be. Neuroimage 57, 583–588. https://doi.org/10.1016/j.neuroimage.2011.04.051

- Corbett, F., Jefferies, E., Burns, A., Lambon Ralph, M.A., 2015. Deregulated semantic cognition contributes to object□use deficits in <scp>A</scp> lzheimer's disease: A comparison with semantic aphasia and semantic dementia. J. Neuropsychol. 9, 219–241. https://doi.org/10.1111/jnp.12047
- Corbett, F., Jefferies, E., Ehsan, S., Ralph, M.A.L., 2009. Different impairments of semantic cognition in semantic dementia and semantic aphasia: evidence from the non-verbal domain. Brain 132, 2593–2608. https://doi.org/10.1093/brain/awp146
- Cross, K.A., Torrisi, S., Reynolds Losin, E.A., Iacoboni, M., 2013. Controlling automatic imitative tendencies: Interactions between mirror neuron and cognitive control systems. Neuroimage 83, 493–504. https://doi.org/10.1016/j.neuroimage.2013.06.060
- Cumming, G., 2014. The New Statistics: Why and How. Psychol. Sci. 25, 7–29. https://doi.org/10.1177/0956797613504966
- Cunningham, W.A., Zelazo, P.D., 2007. Attitudes and evaluations: a social cognitive neuroscience perspective. Trends Cogn. Sci. 11, 97–104. https://doi.org/10.1016/j.tics.2006.12.005
- Darda, K.M., Ramsey, R., 2019. The inhibition of automatic imitation: A meta-analysis and synthesis of fMRI studies. Neuroimage 197, 320–329. https://doi.org/10.1016/j.neuroimage.2019.04.059
- Davey, J., Cornelissen, P.L., Thompson, H.E., Sonkusare, S., Hallam, G., Smallwood, J., Jefferies, E., 2015. Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J. Neurosci. 35, 15230–15239. https://doi.org/10.1523/JNEUROSCI.4705-14.2015
- Davey, J., Thompson, H.E., Hallam, G., Karapanagiotidis, T., Murphy, C., De Caso, I., Krieger-Redwood, K., Bernhardt, B.C., Smallwood, J., Jefferies, E., 2016. Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. Neuroimage

137, 165-177. https://doi.org/10.1016/j.neuroimage.2016.05.051

- De Greck, M., Scheidt, L., Bölter, A.F., Frommer, J., Ulrich, C., Stockum, E., Enzi, B., Tempelmann, C., Hoffmann, T., Han, S., Northoff, G., 2012. Altered brain activity during emotional empathy in somatoform disorder. Hum. Brain Mapp. 33, 2666–2685. https://doi.org/10.1002/hbm.21392
- Decety, J., Lamm, C., 2007. The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to meta-cognition. Neuroscientist 13, 580–593. https://doi.org/10.1177/1073858407304654

Deen, B., Koldewyn, K., Kanwisher, N., Saxe, R., 2015. Functional Organization of Social Perception and Cognition in the Superior Temporal Sulcus. Cereb. Cortex 25, 4596–4609. https://doi.org/10.1093/cercor/bhv111

- Devlin, J.T., Russell, R.P., Davis, M.H., Price, C.J., Wilson, J., Moss, H.E., Matthews, P.M., Tyler, L.K., 2000. Susceptibility-induced loss of signal: Comparing PET and fMRI on a semantic task. Neuroimage 11, 589– 600. https://doi.org/10.1006/nimg.2000.0595
- Diamond, A., 2013. Executive functions. Annu. Rev. Psychol. https://doi.org/10.1146/annurev-psych-113011-143750
- Ding, J., Chen, K., Liu, H., Huang, L., Chen, Y., Lv, Y., Yang, Q., Guo, Q., Han, Z., Lambon Ralph, M.A., 2020. A unified neurocognitive model of semantics language social behaviour and face recognition in semantic dementia. Nat. Commun. 11, 2595. https://doi.org/10.1038/s41467-020-16089-9
- Dricu, M., Frühholz, S., 2016. Perceiving emotional expressions in others: Activation likelihood estimation meta-analyses of explicit evaluation, passive perception and incidental perception of emotions. Neurosci. Biobehav. Rev. 71, 810–828. https://doi.org/10.1016/j.neubiorev.2016.10.020
- Duncan, J., 2013. The Structure of Cognition: Attentional Episodes in Mind and Brain. Neuron. https://doi.org/10.1016/j.neuron.2013.09.015
- Duncan, J., 2010. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179. https://doi.org/10.1016/j.tics.2010.01.004
- Duval, C.L., Bejanin, A., Piolino, P., Laisney, M., De, V., Sayette, L., Belliard, S., Eustache, F., Atrice Desgranges, B., 2012. Theory of mind impairments in patients with semantic dementia. Brain 135, 228– 241. https://doi.org/10.1093/brain/awr309
- Eickhoff, S.B., Bzdok, D., Laird, A.R., Kurth, F., Fox, P.T., 2012. Activation likelihood estimation metaanalysis revisited. Neuroimage 59, 2349–2361. https://doi.org/10.1016/j.neuroimage.2011.09.017

- Eickhoff, S.B., Bzdok, D., Laird, A.R., Roski, C., Caspers, S., Zilles, K., Fox, P.T., 2011. Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57, 938–949. https://doi.org/10.1016/j.neuroimage.2011.05.021
- Eickhoff, S.B., Laird, A.R., Fox, P.M., Lancaster, J.L., Fox, P.T., 2017. Implementation errors in the GingerALE Software: Description and recommendations. Hum. Brain Mapp. 38, 7–11. https://doi.org/10.1002/hbm.23342
- Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926. https://doi.org/10.1002/hbm.20718
- Eickhoff, S.B., Nichols, T.E., Laird, A.R., Hoffstaedter, F., Amunts, K., Fox, P.T., Bzdok, D., Eickhoff, C.R., 2016. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 137, 70–85. https://doi.org/10.1016/j.neuroimage.2016.04.072
- Embleton, K. V., Haroon, H.A., Morris, D.M., Ralph, M.A.L., Parker, G.J.M., 2010. Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Hum. Brain Mapp. 31, 1570–1587. https://doi.org/10.1002/hbm.20959
- Engell, A.D., Haxby, J. V., Todorov, A., 2007. Implicit trustworthiness decisions: Automatic coding of face properties in the human amygdala. J. Cogn. Neurosci. 19, 1508–1519. https://doi.org/10.1162/jocn.2007.19.9.1508
- Eres, R., Louis, W.R., Molenberghs, P., 2018. Common and distinct neural networks involved in fMRI studies investigating morality: an ALE meta-analysis. Soc. Neurosci. 13, 384–398. https://doi.org/10.1080/17470919.2017.1357657
- Fan, Y., Duncan, N.W., de Greck, M., Northoff, G., 2011. Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neurosci. Biobehav. Rev. 35, 903–911. https://doi.org/10.1016/j.neubiorev.2010.10.009
- Fedorenko, E., Duncan, J., Kanwisher, N., 2013. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl. Acad. Sci. U. S. A. 110, 16616–16621. https://doi.org/10.1073/pnas.1315235110
- Ferguson, M.J., Mann, T.C., Wojnowicz, M.T., 2014. Rethinking duality: Criticisms and ways forward, in: Sherman, J.W., Gawronski, B., Trope, Y. (Eds.), Dual-Process Theories of the Social Mind. The Guilford Press, New York, pp. 578–594.

Fidler, K., Hütter, M., 2014. The limits of automaticity, in: Sherman, J.W., Gawronski, B., Trope, Y. (Eds.),

Dual-Process Theories of the Social Mind. The Guilford Press, New York, pp. 497–513.

- Forbes, C.E., Grafman, J., 2013. Social neuroscience: the second phase. Front. Hum. Neurosci. 7, 20. https://doi.org/10.3389/fnhum.2013.00020
- Freeman, J.B., Johnson, K.L., 2016. More Than Meets the Eye: Split-Second Social Perception. Trends Cogn. Sci. 20, 362–374. https://doi.org/10.1016/j.tics.2016.03.003
- Frith, C.D., Frith, U., 2012. Mechanisms of Social Cognition. Annu. Rev. Psychol 63, 287–313. https://doi.org/10.1146/annurev-psych-120710-100449
- Frith, U., Frith, C.D., 2003. Development and neurophysiology of mentalizing. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 358, 459–473. https://doi.org/10.1098/rstb.2002.1218
- Fujita, K., Trope, Y., Cunningham, W.A., Liberman, N., 2014. What is control? A conceptual analysis, in: Sherman, J., Gawronski, B., Trope, Y. (Eds.), Dual-Process Theories of the Social Mind. Guilford Press, New York, pp. 50–68.
- Gao, Z., Zheng, L., Chiou, R., Gouws, A., Krieger-Redwood, K., Wang, X., Varga, D., Ralph, M.A.L., Smallwood, J., Jefferies, E., 2020. Distinct and Common Neural Coding of Semantic and Non-semantic Control Demands. bioRxiv. https://doi.org/10.1101/2020.11.16.384883
- Gefen, T., Wieneke, C., Martersteck, A., Whitney, K., Weintraub, S., Mesulam, M.M., Rogalski, E., 2013. Naming vs knowing faces in primary progressive aphasia: A tale of 2 hemispheres. Neurology 81, 658– 664. https://doi.org/10.1212/WNL.0b013e3182a08f83
- Gilbert, S.J., Burgess, P.W., 2008. Executive function. Curr. Biol. 18, R110–R114. https://doi.org/10.1016/j.cub.2007.12.014
- Greven, I.M., Downing, P.E., Ramsey, R., 2016. Linking person perception and person knowledge in the human brain. Soc. Cogn. Affect. Neurosci. 11, 641–651. https://doi.org/10.1093/scan/nsv148
- Hall, J., Philip, R.C.M., Marwick, K., Whalley, H.C., Romaniuk, L., McIntosh, A.M., Santos, I.,
 Sprengelmeyer, R., Johnstone, E.C., Stanfield, A.C., Young, A.W., Lawrie, S.M., 2012. Social Cognition,
 the Male Brain and the Autism Spectrum. PLoS One 7, e49033.
 https://doi.org/10.1371/journal.pone.0049033
- Happé, F., Cook, J.L., Bird, G., 2017. The Structure of Social Cognition: In(ter)dependence of Sociocognitive Processes. Annu. Rev. Psychol. https://doi.org/10.1146/annurev-psych-010416-044046
- Hassabis, D., Spreng, R.N., Rusu, A.A., Robbins, C.A., Mar, R.A., Schacter, D.L., 2014. Imagine All the People: How the Brain Creates and Uses Personality Models to Predict Behavior. Cereb. Cortex 24, 1979–

1987. https://doi.org/10.1093/cercor/bht042

- Healey, M.L., Grossman, M., 2018. Cognitive and Affective Perspective-Taking: Evidence for Shared and Dissociable Anatomical Substrates. Front. Neurol. 9, 491. https://doi.org/10.3389/fneur.2018.00491
- Hehman, E., Ingbretsen, Z.A., Freeman, J.B., 2014. The neural basis of stereotypic impact on multiple social categorization. Neuroimage 101, 704–711. https://doi.org/10.1016/j.neuroimage.2014.07.056
- Henson, R., 2006. Forward inference using functional neuroimaging: Dissociations versus associations. Trends Cogn. Sci. 10, 64–69. https://doi.org/10.1016/j.tics.2005.12.005
- Heyes, C., 2014. Submentalizing. Perspect. Psychol. Sci. 9, 131–143. https://doi.org/10.1177/1745691613518076
- Hodges, J.R., Patterson, K., 2007. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 6, 1004–1014. https://doi.org/10.1016/S1474-4422(07)70266-1
- Hodgson, V.J., Lambon Ralph, M.A., Jackson, R.L., 2021. Multiple dimensions underlying the functional organisation of the language network. bioRxiv 2021.02.05.429902. https://doi.org/10.1101/2021.02.05.429902
- Huang, Y., Su, L., Ma, Q., 2020. The Stroop effect: An activation likelihood estimation meta-analysis in healthy young adults. Neurosci. Lett. 716, 134683. https://doi.org/10.1016/j.neulet.2019.134683
- Huey, E.D., Krueger, F., Grafman, J., 2006. Representations in the Human Prefrontal Cortex. Curr. Dir. Psychol. Sci. 15, 167–171. https://doi.org/10.1111/j.1467-8721.2006.00429.x
- Hugdahl, K., Raichle, M.E., Mitra, A., Specht, K., 2015. On the existence of a generalized non-specific taskdependent network. Front. Hum. Neurosci. 9, 1–15. https://doi.org/10.3389/fnhum.2015.00430
- Humphreys, G., Ralph, M.L., Simons, J., 2020. A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition. PsyArXiv. https://doi.org/10.31234/OSF.IO/R2DEU
- Humphreys, G.F., Hoffman, P., Visser, M., Binney, R.J., Lambon Ralph, M.A., 2015. Establishing task- and modality-dependent dissociations between the semantic and default mode networks. Proc. Natl. Acad. Sci. U. S. A. 112, 7857–7862. https://doi.org/10.1073/pnas.1422760112
- Humphreys, G.F., Lambon Ralph, M.A., 2015a. Fusion and fission of cognitive functions in the human parietal cortex. Cereb. Cortex 25, 3547–3560. https://doi.org/10.1093/cercor/bhu198
- Humphreys, G.F., Lambon Ralph, M.A., 2015b. Fusion and fission of cognitive functions in the human parietal cortex. Cereb. Cortex 25, 3547–3560. https://doi.org/10.1093/cercor/bhu198
- Igelström, K.M., Graziano, M.S.A., 2017. The inferior parietal lobule and temporoparietal junction: A network

perspective. Neuropsychologia 105, 70-83. https://doi.org/10.1016/j.neuropsychologia.2017.01.001

- Irish, M., Hodges, J.R., Piguet, O., 2014. Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia. Brain 137, 1241–1253. https://doi.org/10.1093/brain/awu003
- Jackson, R.L., 2021. The neural correlates of semantic control revisited. Neuroimage 224, 117444. https://doi.org/10.1016/j.neuroimage.2020.117444

Jackson, R.L., Cloutman, L.L., Lambon Ralph, M.A., 2019. Exploring distinct default mode and semantic networks using a systematic ICA approach. Cortex 113, 279–297. https://doi.org/10.1016/j.cortex.2018.12.019

- Jackson, R.L., Humphreys, G.F., Rice, G.E., Binney, R.J., Lambon Ralph, M.A., Jackson or Matthew Lambon Ralph, R.A., 2021. The Coherent Default Mode Network is not involved in Episodic Recall or Social Cognition. bioRxiv 2021.01.08.425921. https://doi.org/10.1101/2021.01.08.425921
- January, D., Trueswell, J.C., Thompson-Schill, S.L., 2009. Co-localization of stroop and syntactic ambiguity resolution in Broca's area: Implications for the neural basis of sentence processing. J. Cogn. Neurosci. 21, 2434–2444. https://doi.org/10.1162/jocn.2008.21179
- Jefferies, E., 2013. The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex 49, 611–625. https://doi.org/10.1016/j.cortex.2012.10.008
- Jefferies, E., Baker, S.S., Doran, M., Ralph, M.A.L., 2007. Refractory effects in stroke aphasia: A consequence of poor semantic control. Neuropsychologia 45, 1065–1079. https://doi.org/10.1016/j.neuropsychologia.2006.09.009
- Jefferies, E., Lambon Ralph, M.A., 2006. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147. https://doi.org/10.1093/brain/awl153
- Jefferies, E., Patterson, K., Ralph, M.A.L., 2008. Deficits of knowledge versus executive control in semantic cognition: Insights from cued naming. Neuropsychologia 46, 649–658. https://doi.org/10.1016/j.neuropsychologia.2007.09.007
- Jezzard, P., Clare, S., 1999. Sources of distortion in functional MRI data, in: Human Brain Mapping. John Wiley & Sons, Ltd, pp. 80–85. https://doi.org/10.1002/(SICI)1097-0193(1999)8:2/3<80::AID-HBM2>3.0.CO;2-C
- Kamminga, J., Kumfor, F., Burrell, J.R., Piguet, O., Hodges, J.R., Irish, M., 2015. Differentiating between rightlateralised semantic dementia and behavioural-variant frontotemporal dementia: an examination of clinical characteristics and emotion processing. J. Neurol. Neurosurg. & amp; Psychiatry 86, 1082 LP

- 1088. https://doi.org/10.1136/jnnp-2014-309120

- Klüver, Heinrich, Bucy, P.C., 1939. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42, 979–1000. https://doi.org/10.1001/archneurpsyc.1939.02270240017001
- Klüver, H, Bucy, P.C., 1939. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42, 979–1000. https://doi.org/10.1001/archneurpsyc.1939.02270240017001
- Korman, J., Malle, B.F., 2016. Grasping for Traits or Reasons? How People Grapple With Puzzling Social Behaviors. Personal. Soc. Psychol. Bull. 42, 1451–1465. https://doi.org/10.1177/0146167216663704
- Krieger-Redwood, K., Teige, C., Davey, J., Hymers, M., Jefferies, E., 2015. Conceptual control across modalities: Graded specialisation for pictures and words in inferior frontal and posterior temporal cortex. Neuropsychologia 76, 92–107. https://doi.org/10.1016/j.neuropsychologia.2015.02.030
- Kuhnke, P., Kiefer, M., Hartwigsen, G., 2021. Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cereb. Cortex 1–19. https://doi.org/10.1093/cercor/bhab026
- Lambon Ralph, M.A., Jefferies, E., Patterson, K., Rogers, T.T., 2017. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55. https://doi.org/10.1038/nrn.2016.150
- Lambon Ralph, M.A., Patterson, K., 2008. Generalization and Differentiation in Semantic Memory Insights from Semantic Dementia. Ann. N. Y. Acad. Sci. 1124, 61–76. https://doi.org/10.1196/annals.1440.006
- Lambon Ralph, M.A., Sage, K., Jones, R.W., Mayberry, E.J., 2010. Coherent concepts are computed in the anterior temporal lobes. Proc. Natl. Acad. Sci. U. S. A. 107, 2717–2722. https://doi.org/10.1073/pnas.0907307107
- Lancaster, J.L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., Mazziotta, J.C., Fox,
 P.T., 2007. Bias between MNI and talairach coordinates analyzed using the ICBM-152 brain template.
 Hum. Brain Mapp. 28, 1194–1205. https://doi.org/10.1002/hbm.20345
- Lavoie, M.A., Vistoli, D., Sutliff, S., Jackson, P.L., Achim, A.M., 2016. Social representations and contextual adjustments as two distinct components of the Theory of Mind brain network: Evidence from the REMICS task. Cortex 81, 176–191. https://doi.org/10.1016/j.cortex.2016.04.017
- Lieberman, M.D., 2007. Social Cognitive Neuroscience: A Review of Core Processes. Annu. Rev. Psychol. 58, 259–289. https://doi.org/10.1146/annurev.psych.58.110405.085654
- Lindquist, K.A., Gendron, M., Barrett, L.F., Dickerson, B.C., 2014. Emotion perception, but not affect perception, is impaired with semantic memory loss. Emotion 14, 375–387. https://doi.org/10.1037/a0035293

64

- Ma, N., Vandekerckhove, M., Baetens, K., Overwalle, F. Van, Seurinck, R., Fias, W., 2012. Inconsistencies in spontaneous and intentional trait inferences. Soc. Cogn. Affect. Neurosci. 7, 937–950. https://doi.org/10.1093/scan/nsr064
- Malle, B., Holbrook, J., 2012. Is There a Hierarchy of Social Inferences? The likelihood and speed of inferring intentionality, mind, and personality. Artic. J. Personal. Soc. Psychol. 102, 661–684. https://doi.org/10.1037/a0026790
- Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin, G., Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Smallwood, J., 2016. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. U. S. A. 113, 12574–12579. https://doi.org/10.1073/pnas.1608282113
- Mars, R.B., Neubert, F.-X., Noonan, M.P., Sallet, J., Toni, I., Rushworth, M.F.S., 2012. On the relationship between the "default mode network" and the "social brain." Front. Hum. Neurosci. 6, 1–9. https://doi.org/10.3389/fnhum.2012.00189
- Mason, R.A., Williams, D.L., Kana, R.K., Minshew, N., Just, M.A., 2008. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia 46, 269–280. https://doi.org/10.1016/j.neuropsychologia.2007.07.018
- Melnikoff, D.E., Bargh, J.A., 2018. The Mythical Number Two. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2018.02.001
- Mende-Siedlecki, P., Baron, S.G., Todorov, A., 2013a. Diagnostic value underlies asymmetric updating of impressions in the morality and ability domains. J. Neurosci. 33, 19406–19415. https://doi.org/10.1523/JNEUROSCI.2334-13.2013
- Mende-Siedlecki, P., Cai, Y., Todorov, A., 2013b. The neural dynamics of updating person impressions. Soc. Cogn. Affect. Neurosci. 8, 623–631. https://doi.org/10.1093/scan/nss040

Mende-siedlecki, P., Said, C.P., Todorov, A., 2013. The social evaluation of faces: A meta-analysis of functional neuroimaging studies. Soc. Cogn. Affect. Neurosci. 8, 285–299. https://doi.org/10.1093/scan/nsr090

- Mende-Siedlecki, P., Todorov, A., 2016. Neural dissociations between meaningful and mere inconsistency in impression updating. Soc. Cogn. Affect. Neurosci. 11, 1489–1500. https://doi.org/10.1093/scan/nsw058
- Meyer, M.L., Spunt, R.P., Berkman, E.T., Taylor, S.E., Lieberman, M.D., 2012. Evidence for social working memory from a parametric functional MRI study. PNAS 109, 1883–1888.

https://doi.org/10.1073/pnas.1121077109

- Mier, D., Sauer, C., Lis, S., Esslinger, C., Wilhelm, J., Gallhofer, B., Kirsch, P., 2010. Neuronal correlates of affective theory of mind in schizophrenia out-patients: evidence for a baseline deficit. Psychol. Med. 40, 1607–1617. https://doi.org/10.1017/S0033291709992133
- Mitchell, R.L.C., 2013. Further characterisation of the functional neuroanatomy associated with prosodic emotion decoding. Cortex 49, 1722–1732. https://doi.org/10.1016/j.cortex.2012.07.010

Molenberghs, P., Johnson, H., Henry, J.D., Mattingley, J.B., 2016. Understanding the minds of others: A neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 65, 276–291. https://doi.org/10.1016/j.neubiorev.2016.03.020

- Müller, V.I., Cieslik, E.C., Laird, A.R., Fox, P.T., Radua, J., Mataix-Cols, D., Tench, C.R., Yarkoni, T., Nichols, T.E., Turkeltaub, P.E., Wager, T.D., Eickhoff, S.B., 2018. Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 84, 151–161. https://doi.org/10.1016/j.neubiorev.2017.11.012
- Munafò, M.R., Nosek, B.A., Bishop, D.V.M., Button, K.S., Chambers, C.D., Percie Du Sert, N., Simonsohn, U., Wagenmakers, E.J., Ware, J.J., Ioannidis, J.P.A., 2017. A manifesto for reproducible science. Nat. Hum. Behav. https://doi.org/10.1038/s41562-016-0021
- Nagel, I.E., Schumacher, E.H., Goebel, R., D'Esposito, M., 2008. Functional MRI investigation of verbal selection mechanisms in lateral prefrontal cortex. Neuroimage 43, 801–807. https://doi.org/10.1016/j.neuroimage.2008.07.017
- Nee, D.E., Wager, T.D., Jonides, J., 2007. Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 7, 1–17. https://doi.org/10.3758/CABN.7.1.1
- Nichols, T., Brett, M., Andersson, J., Wager, T., Poline, J.B., 2005. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660. https://doi.org/10.1016/j.neuroimage.2004.12.005
- Noonan, K.A., Jefferies, E., Corbett, F., Lambon Ralph, M.A., 2010. Elucidating the nature of deregulated semantic cognition in semantic aphasia: Evidence for the roles of prefrontal and temporo-parietal cortices. J. Cogn. Neurosci. 22, 1597–1613. https://doi.org/10.1162/jocn.2009.21289
- Noonan, K.A., Jefferies, E., Visser, M., Lambon Ralph, M.A., 2013. Going beyond inferior prefrontal involvement in semantic control: evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. J. Cogn. Neurosci. 25, 1824–1850. https://doi.org/10.1162/jocn_a_00442

Numssen, O., Bzdok, D., Hartwigsen, G., 2021. Functional specialization within the inferior parietal lobes

across cognitive domains. Elife 10. https://doi.org/10.7554/eLife.63591

- Ojemann, J.G., Akbudak, E., Snyder, A.Z., McKinstry, R.C., Raichle, M.E., Conturo, T.E., 1997. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6, 156–167. https://doi.org/10.1006/nimg.1997.0289
- Olson, I.R., Mccoy, D., Klobusicky, E., Ross, L.A., 2013. Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc. Cogn. Affect. Neurosci. 8, 123–133. https://doi.org/10.1093/scan/nss119
- Özdem, C., Brass, M., Van der Cruyssen, L., Van Overwalle, F., 2017. The overlap between false belief and spatial reorientation in the temporo-parietal junction: The role of input modality and task. Soc. Neurosci. 12, 207–217. https://doi.org/10.1080/17470919.2016.1143027
- Patterson, K., Nestor, P.J., Rogers, T.T., 2007. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn2277
- Perry, R.J., Rosen, H.R., Kramer, J.H., Beer, J.S., Levenson, R.L., Miller, B.L., 2001. Hemispheric Dominance for Emotions, Empathy and Social Behaviour: Evidence from Right and Left Handers with Frontotemporal Dementia. Neurocase 7, 145–160. https://doi.org/10.1093/NEUCAS/7.2.145
- Petersen, S.E., Posner, M.I., 2012. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89. https://doi.org/10.1146/annurev-neuro-062111-150525
- Pexman, P.M., 2008a. It's Fascinating Research: The Cognition of Verbal Irony. Curr. Dir. Psychol. Sci. 17, 286–290. https://doi.org/10.1111/j.1467-8721.2008.00591.x
- Pexman, P.M., 2008b. It's Fascinating Research. Curr. Dir. Psychol. Sci. 17, 286–290. https://doi.org/10.1111/j.1467-8721.2008.00591.x
- Plaut, D.C., 2002. Graded modality-specific specialisation in semantics: A computational account of optic aphasia. Cogn. Neuropsychol. 19, 603–639. https://doi.org/10.1080/02643290244000112
- Pobric, G., Jefferies, E., Ralph, M.A.L., 2010. Induction of semantic impairments using rTMS: Evidence for the hub-and-spoke semantic theory. Behav. Neurol. 23, 217–219. https://doi.org/10.3233/BEN-2010-0299
- Quadflieg, S., Koldewyn, K., 2017. The neuroscience of people watching: how the human brain makes sense of other people's encounters. Ann. N. Y. Acad. Sci. 1396, 166–182. https://doi.org/10.1111/nyas.13331
- Quesque, F., Rossetti, Y., 2020. What Do Theory-of-Mind Tasks Actually Measure? Theory and Practice. Perspect. Psychol. Sci. 15, 384–396. https://doi.org/10.1177/1745691619896607
- Quinn, K.A., Rosenthal, H.E.S., 2012. Categorizing others and the self: How social memory structures guide

social perception and behavior. Learn. Motiv. 43, 247-258. https://doi.org/10.1016/j.lmot.2012.05.008

Ramanan, S., Bellana, B., 2019. A domain-general role for the angular gyrus in retrieving internal representations of the external world. J. Neurosci. 39, 2978–2980. https://doi.org/10.1523/JNEUROSCI.3231-18.2019

Ramanan, S., Piguet, O., Irish, M., 2018. Rethinking the Role of the Angular Gyrus in Remembering the Past and Imagining the Future: The Contextual Integration Model. Neuroscientist. https://doi.org/10.1177/1073858417735514

Ramsey, R., Ward, R., 2020. Putting the Nonsocial Into Social Neuroscience: A Role for Domain-General Priority Maps During Social Interactions. Perspect. Psychol. Sci. https://doi.org/10.1177/1745691620904972

Rankin, K.P., Kramer, J.H., Miller, B.L., 2005. Patterns of Cognitive and Emotional Empathy in Frontotemporal Lobar Degeneration. Cogn. Behav. Neurol. 18, 28–36. https://doi.org/10.1097/01.wnn.0000152225.05377.ab

Reniers, R.L.E.P., Corcoran, R., Völlm, B.A., Mashru, A., Howard, R., Liddle, P.F., 2012. Moral decisionmaking, ToM, empathy and the default mode network. Biol. Psychol. 90, 202–210. https://doi.org/10.1016/j.biopsycho.2012.03.009

- Rice, G.E., Hoffman, P., Binney, R.J., Lambon Ralph, M.A., 2018. Concrete versus abstract forms of social concept: An fMRI comparison of knowledge about people versus social terms. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170136. https://doi.org/10.1098/rstb.2017.0136
- Rice, G.E., Hoffman, P., Lambon Ralph, M.A., 2015. Graded specialization within and between the anterior temporal lobes. Ann. N. Y. Acad. Sci. 1359, 84–97. https://doi.org/10.1111/nyas.12951
- Rilling, J.K., Dagenais, J.E., Goldsmith, D.R., Glenn, A.L., Pagnoni, G., 2008. Social cognitive neural networks during in-group and out-group interactions. Neuroimage 41, 1447–1461. https://doi.org/10.1016/j.neuroimage.2008.03.044
- Rodd, J.M., 2020. Settling Into Semantic Space: An Ambiguity-Focused Account of Word-Meaning Access. Perspect. Psychol. Sci. 15, 411–427. https://doi.org/10.1177/1745691619885860
- Rogers, T.T., Lambon Ralph, M.A., Garrard, P., Bozeat, S., McClelland, J.L., Hodges, J.R., Patterson, K., 2004. Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation. Psychol. Rev. 111, 205–235. https://doi.org/10.1037/0033-295X.111.1.205

Rosen, H.J., Pace-Savitsky, K., Perry, R.J., Kramer, J.H., Miller, B.L., Levenson, R.W., 2004. Recognition of

68

Emotion in the Frontal and Temporal Variants of Frontotemporal Dementia. Dement. Geriatr. Cogn. Disord. 17, 277–281. https://doi.org/10.1159/000077154

Rothmayr, C., Sodian, B., Hajak, G., Döhnel, K., Meinhardt, J., Sommer, M., 2011. Common and distinct neural networks for false-belief reasoning and inhibitory control. Neuroimage 56, 1705–1713. https://doi.org/10.1016/j.neuroimage.2010.12.052

RStudio Team, 2020. RStudio: Integrated Development for R [WWW Document]. URL https://www.rstudio.com/ (accessed 3.17.21).

Samson, D., Apperly, I.A., Kathirgamanathan, U., Humphreys, G.W., 2005. Seeing it my way: A case of a selective deficit in inhibiting self-perspective. Brain 128, 1102–1111. https://doi.org/10.1093/brain/awh464

Satpute, A.B., Badre, D., Ochsner, K.N., 2014. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information. Cereb. Cortex 24, 1269–1277. https://doi.org/10.1093/cercor/bhs408

- Satpute, A.B., Lieberman, M.D., 2006. Integrating automatic and controlled processes into neurocognitive models of social cognition. https://doi.org/10.1016/j.brainres.2006.01.005
- Saxe, R., 2006. Uniquely human social cognition. Curr. Opin. Neurobiol. https://doi.org/10.1016/j.conb.2006.03.001
- Saxe, R., Wexler, A., 2005. Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia 43, 1391–1399. https://doi.org/10.1016/j.neuropsychologia.2005.02.013
- Schaafsma, S.M., Pfaff, D.W., Spunt, R.P., Adolphs, R., 2015. Deconstructing and reconstructing theory of mind. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2014.11.007
- Schurz, M., Aichhorn, M., Martin, A., Perner, J., 2013. Common brain areas engaged in false belief reasoning and visual perspective taking: A meta-analysis of functional brain imaging studies. Front. Hum. Neurosci. 7, 712. https://doi.org/10.3389/fnhum.2013.00712
- Schurz, M., Radua, J., Aichhorn, M., Richlan, F., Perner, J., 2014. Fractionating theory of mind: A metaanalysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34. https://doi.org/10.1016/j.neubiorev.2014.01.009
- Schurz, M., Radua, J., Tholen, M.G., Maliske, L., Margulies, D.S., Mars, R.B., Sallet, J., Kanske, P., 2020. Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychol. Bull. undefined, undefined. https://doi.org/10.1037/bul0000303

- Schurz, M., Tholen, M.G., Perner, J., Mars, R.B., Sallet, J., 2017. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities. Hum. Brain Mapp. https://doi.org/10.1002/hbm.23675
- Sherman, J.W., Krieglmeyer, R., Calanchini, J., 2014. Process Models Require Process Measures, in: Sherman, J., Gawronski, B., Trope, Y. (Eds.), Dual-Process Theories of the Social Mind. Guilford Press, New York, pp. 121–138.
- Shiffrin, R.M., Schneider, W., 1977. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–190. https://doi.org/10.1037/0033-295X.84.2.127
- Smallwood, J., Tipper, C., Brown, K., Baird, B., Engen, H., Michaels, J.R., Grafton, S., Schooler, J.W., 2013. Escaping the here and now: Evidence for a role of the default mode network in perceptually decoupled thought. Neuroimage 69, 120–125. https://doi.org/10.1016/j.neuroimage.2012.12.012
- Snowden, J.S., Thompson, J.C., Neary, D., 2012. Famous people knowledge and the right and left temporal lobes, in: Behavioural Neurology. Hindawi Limited, pp. 35–44. https://doi.org/10.3233/BEN-2012-0347
- Snowden, J S, Thompson, J.C., Neary, D., Snowden, Julie S, 2004. Knowledge of famous faces and names in semantic dementia. Brain 127, 860–872. https://doi.org/10.1093/brain/awh099
- Soch, J., Deserno, L., Assmann, A., Barman, A., Walter, H., Richardson-Klavehn, A., Schott, B.H., 2017. Inhibition of information flow to the default mode network during self-reference versus reference to others. Cereb. Cortex 27, 3930–3942. https://doi.org/10.1093/cercor/bhw206
- Spreng, R.N., Andrews-Hanna, J.R., 2015. The Default Network and Social Cognition, in: Toga, A.W. (Ed.), Brain Mapping: An Encyclopedic Reference. Academic press, Oxford, UK, pp. 165–169. https://doi.org/10.1016/B978-0-12-397025-1.00173-1
- Spunt, R.P., Adolphs, R., 2017. A new look at domain specificity: Insights from social neuroscience. Nat. Rev. Neurosci. 18, 559–567. https://doi.org/10.1038/nrn.2017.76
- Tamm, S., Nilsonne, G., Schwarz, J., Lamm, C., Kecklund, G., Petrovic, P., Fischer, H., Åkerstedt, T., Lekander, M., 2017. The effect of sleep restriction on empathy for pain: An fMRI study in younger and older adults. Sci. Rep. 7, 1–14. https://doi.org/10.1038/s41598-017-12098-9
- Teige, C., Mollo, G., Millman, R., Savill, N., Smallwood, J., Cornelissen, P.L., Jefferies, E., 2018. Dynamic semantic cognition: Characterising coherent and controlled conceptual retrieval through time using magnetoencephalography and chronometric transcranial magnetic stimulation. Cortex 103, 329–349.

https://doi.org/10.1016/j.cortex.2018.03.024

- Thompson-Schill, S.L., D'Esposito, M., Aguirre, G.K., Farah, M.J., 1997. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proc. Natl. Acad. Sci. U. S. A. 94, 14792–14797. https://doi.org/10.1073/pnas.94.26.14792
- Thompson, H.E., Almaghyuli, A., Noonan, K.A., Barak, O., Lambon Ralph, M.A., Jefferies, E., 2018. The contribution of executive control to semantic cognition: Convergent evidence from semantic aphasia and executive dysfunction. J. Neuropsychol. 12, 312–340. https://doi.org/10.1111/jnp.12142
- Thompson, S.A., Patterson, K., Hodges, J.R., 2003. Left/right asymmetry of atrophy in semantic dementia. Neurology 61, 1196 LP – 1203. https://doi.org/10.1212/01.WNL.0000091868.28557.B8
- Timmers, I., Park, A.L., Fischer, M.D., Kronman, C.A., Heathcote, L.C., Hernandez, J.M., Simons, L.E., 2018. Is Empathy for Pain Unique in Its Neural Correlates? A Meta-Analysis of Neuroimaging Studies of Empathy. Front. Behav. Neurosci. 12, 289. https://doi.org/10.3389/fnbeh.2018.00289
- Turkeltaub, P.E., Eickhoff, S.B., Laird, A.R., Fox, M., Wiener, M., Fox, P., 2012. Minimizing withinexperiment and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 33, 1–13. https://doi.org/10.1002/hbm.21186
- Uleman, J.S., Saribay, S.A., Gonzalez, C.M., 2007. Spontaneous Inferences, Implicit Impressions, and Implicit Theories. Annu. Rev. Psychol. 59, 329–360. https://doi.org/10.1146/annurev.psych.59.103006.093707
- Van der Meer, L., Groenewold, N.A., Nolen, W.A., Pijnenborg, M., Aleman, A., 2011. Inhibit yourself and understand the other: Neural basis of distinct processes underlying Theory of Mind. Neuroimage 56, 2364–2374. https://doi.org/10.1016/j.neuroimage.2011.03.053
- Van Overwalle, F., 2009. Social cognition and the brain: A meta-analysis. Hum. Brain Mapp. https://doi.org/10.1002/hbm.20547
- Van Overwalle, F., Vandekerckhove, M., 2013. Implicit and explicit social mentalizing: Dual processes driven by a shared neural network. Front. Hum. Neurosci. 7. https://doi.org/10.3389/fnhum.2013.00560
- Visser, M., Jefferies, E., Lambon Ralph, M.A., 2010. Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 22, 1083–1094. https://doi.org/10.1162/jocn.2009.21309
- Wang, A.T., Lee, S.S., Sigman, M., Dapretto, M., 2006. Developmental changes in the neural basis of interpreting communicative intent. Soc. Cogn. Affect. Neurosci. 1, 107–121. https://doi.org/10.1093/scan/nsl018

71

Wang, X., Margulies, D.S., Smallwood, J., Jefferies, E., 2020. A gradient from long-term memory to novel cognition: transitions through default mode and 1 executive cortex. Neuroimage 220. https://doi.org/10.1101/2020.01.16.908327

Weissman, D.H., Perkins, A.S., Woldorff, M.G., 2008. Cognitive control in social situations: A role for the dorsolateral prefrontal cortex. Neuroimage 40, 955–962.

https://doi.org/10.1016/j.neuroimage.2007.12.021

Whitney, C., Kirk, M., O'Sullivan, J., Ralph, M.A.L., Jefferies, E., 2012. Executive semantic processing is underpinned by a large-scale neural network: Revealing the contribution of left prefrontal, posterior temporal, and parietal cortex to controlled retrieval and selection using TMS. J. Cogn. Neurosci. 24, 133– 147. https://doi.org/10.1162/jocn_a_00123

- Zahn, R., Moll, J., Krueger, F., Huey, E.D., Garrido, G., Grafman, J., 2007a. Social concepts are represented in the superior anterior temporal cortex. Proc. Natl. Acad. Sci. U. S. A. 104, 6430–6435. https://doi.org/10.1073/pnas.0607061104
- Zahn, R., Moll, J., Krueger, F., Huey, E.D., Garrido, G., Grafman, J., 2007b. Social concepts are represented in the superior anterior temporal cortex. Proc. Natl. Acad. Sci. U. S. A. 104, 6430–6435. https://doi.org/10.1073/pnas.0607061104
- Zaki, J., Hennigan, K., Weber, J., Ochsner, K.N., 2010. Social cognitive conflict resolution: Contributions of domain-general and domain-specific neural systems. J. Neurosci. 30, 8481–8488. https://doi.org/10.1523/JNEUROSCI.0382-10.2010