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 With success on controlled tasks, deep generative models are being 
increasingly applied to humanitarian applications. In this paper, we focus on 
the evaluation of a conditional generative model that illustrates the 
consequences of climate change-induced flooding to encourage public interest 
and awareness on the issue. Because metrics for comparing the realism of 
different modes in a conditional generative model do not exist, we propose 
several automated and human-based methods for evaluation. To do this, we 
adapt several existing metrics and assess the automated metrics against gold 
standard human evaluation. We find that using Fréchet Inception Distance 
with embeddings from an intermediary Inception-v3 layer that precedes the 
auxiliary classifier produces results most correlated with human realism. 
While insufficient alone to establish a human-correlated automatic evaluation 
metric, we believe this work begins to bridge the gap between human and 
automated generative evaluation procedures, and to generate more realistic 
images of the future consequences of climate change. 
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1. INTRODUCTION  

Historically, climate change has been an issue around which it is hard to mobilize collective action, 
notably because public awareness and concern around it do not match the magnitude of its threat to our species 
and our environment [1, 2]. One reason for this mismatch is that it is difficult for people to mentally simulate 
the complex and probabilistic effects of climate change, which are often perceived to be distant in terms of 
time and space [3]. Climate communication literature has asserted that effective communication arises from 
messages that are both emotionally charged and personally relevant over traditional forms of expert 
communication such as scientific reports [4], and that images in particular are key to increasing the awareness 
and concern regarding the issue of climate change [5]. With this in mind, our project leverages the MUNIT 
architecture [6] to perform cross-domain multimodal mapping between a street-level image without any 
flooding to multiple versions of this image under diverse flood transformations, to visually represent the impact 
of climate change-induced flooding on a personal level (for results of our model, see figure 1). 
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Figure 1. Generated images of flooded scenes from our model on the right (input on the left), spanning a 
range of scenes including an urban street, a city view, and a suburban scene. These images also span a range 

of performance on human perceptual realism, from highly realistic on top to highly non-realistic on the 
bottom. Exact HYPE-Style scores are indicated in parentheses. 

 
Generally speaking, generative models suffer from a lack of strong evaluation methods for comparing 

across both different models and different modes of the same model. Undeniably, much of the utility of 
generative models arises from their ability to produce diverse, realistic outputs, in addition to controlling 
generation—such as over specific modes, class labels [7], or visual attributes [8]—using conditional 
constraints. Conditional GANs have two inputs: the conditioning input (in our case, the image of a non-flooded 
house) and the random noise Z which selects a style, defined as a mode of the conditional distribution learned 
in an unsupervised manner. Existing methods for evaluating the quality and diversity of the generated outputs 
have strong limitations and are particularly scarce for conditional models. Widely used metrics include using 
heuristic approximations [9–11] that do not necessarily correlate with human judgment [12], rendering 
quantitative measurement of progress difficult. We encountered this issue during the course of the development 
of our model and in this paper we propose generally applicable methods for quantifying the realism of modes 
learned by a generative model. We start with a human evaluation of the images and styles produced by a 
multimodal generative model, followed by a comparison of human and automated approaches for evaluating 
the output of multimodal generative models, illustrated in the context of our image generation task. 

 
2. RELATED WORK  

To date, there have been two main approaches proposed for generative model evaluation: automated 
metrics such as Kernel Inception Distance (KID) [13], Inception Score (IS) [10] and Fréchet Inception Distance 
(FID) [11], which all aim to evaluate both the visual quality and sample diversity of generated samples at the 
distribution level, and, more recently, human-centered metrics such as HYPE (Human eYe Perceptual 
Evaluation) [12], which use human evaluators to assess image realism. Both approaches have their advantages 
and drawbacks: while automated metrics are cheap and easy to compute, they need large sets of both generated 
and real samples in order to produce reliable scores, which even then are not comparable between different 
tasks. Human metrics, on the other hand, may be more representative of human perception, but are more costly 
to compute and can vary depending on task design [14, 15]. 
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Recent work has proposed ways of extending existing automated metrics, for instance by using a 
modified version of FID for conditional models [16] and sampling heuristics such as the truncation trick [17]. 
However, these modifications do not evaluate the visual fidelity between different modes, only within them in 
the case of Fréchet Joint Distance [16], which limits their application in multimodal settings such as ours. 
Methods for detecting artifacts [18] and artificial fingerprints [19] in generated samples also touch on 
perceptual fidelity, but either, in the case of artifacts, are a subset of image realism or, in the case of artificial 
fingerprints, encompass non-perceptual qualities that are imperceptible to a human viewer. Therefore, within 
the scope of our research, we found no satisfactory automated metric that would allow us to evaluate the realism 
of the images that we generated, and we endeavoured to find new ways of doing so, which we describe 
below.research chronological, including research design, research procedure (in the form of algorithms, 
Pseudocode or other), how to test and data acquisition [6-9]. The description of the course of research should 
be supported references, so the explanation can be accepted scientifically [4, 10]. 

 
3. EVALUATING IMAGE REALISM 

To The research questions that we aim to answer are as follows: (1) What is the most effective way 
to evaluate the realism of different styles generated by our model? and (2) Can we propose an automated 
method that is correlated with human perceptual realism for automatically selecting the best mode on the flood 
generation task? We frame this task at the style level: for each given style vector, which represents a mode of 
the conditional distribution, we aggregate across multiple samples conditioned on the same mode. This style-
level aggregation avoids evaluating on individual samples, which would produce noisier comparisons. We 
accomplish this by adapting the HYPE metric for style-level assessment using crowdsourced human 
evaluation, and call our new metric HYPE-Style (see section 3.1). We compare HYPE-Style against various 
automated metrics, which adapt FID and KID to the style comparison task. For each metric, we also experiment 
with different Inception layers. 

We analyze Pearson's correlation coefficient r between each proposed automated style ranking method 
and HYPE-Style to identify the method that is most correlated with human perceptual realism. The measure r 
has support [−1, 1], where values of 1 and −1 indicate strong positive and negative correlation, respectively, 
while values around zero indicate low correlation. An r of 1 is the maximum performance achievable on this 
metric. We also compute the 95% bootstrapped confidence intervals (CIs) on r using 25 replicates in order to 
determine the separability of the scores. For each replicate i, we compute HYPE-Style and an automated score 
using images sampled with replacement, from which we calculate ri . We report the median r values, with 95% 
bootstrap Cis. 

3.1. HYPE-style: human evaluation 
In order to establish a human gold standard, we evaluated 500 image-style combinations drawn from 

our model, based on 25 input images of diverse locations and building types (houses, farms, streets, cities), 
each with 20 styles generated by our model. To establish the human baseline, we presented 50 images to each 
of our human evaluators: 25 real flooded images and 25 generated images. Following prior work, evaluators 
were calibrated and filtered by this tutorial of half real and half generated images, and were given unlimited 
time to label an image real or fake [12]. For each image, we compute the average error rate, which corresponds 
to the proportion of human evaluators who judged the image as real. Higher values indicate more realistic 
images. 
We make several modifications to prior work in order to enable intra-style comparisons in conditional 
generation. Instead of randomly sampling across all generated images, we constrain the procedure in two 
ways: (1) we require that each style and image combination is evaluated multiple times, so we have 
comparisons between styles yet still within a given image, and (2) we ensure that evaluators do not see multiple 
styles generated from a given input image, as this visual redundancy would reveal that they were generated. 
These two adaptations increase the number of evaluators needed for this task, as evaluators are restrained to a 
limited set of images sans input redundancy, while still needed to evaluate across different styles for given 
input images. 
We also diverge from the original HYPE metric when calculating scores, aggregating images by style into 
groups and computing the micro-average of all human evaluator labels within each group. Specifically, for 
each style s and image x, we have multiple human labels  marked either 'real' (1) and 'generated' (0) based on 
human judgments of its realism and we compute HYPE-Style =  for each style s, summing across images 
of that particular style. Thus, higher scores on generated images indicate higher fool rates and seem more 
realistic to humans on average. We use these style-level scores as the human baseline, where higher scores 
indicate more realistic styles, which we call HYPE-Style. This human evaluation, while more precise and 
reliable, is expensive and time-consuming to perform per style: we thus set out to find automated methods that 



                ISSN: 2582-841X 

 Informatica : Journal of Applied Machines Electrical Electronics Computer Science and Communication 
Systems, Vol. 1, No. 1, December 2020, pp. 31~37. 

34

are most correlated with human judgment to assess a much larger set of styles than is cost-efficient for HYPE-
Style. 

3.2. Automated style ranking methods 
 We adapted FID and KID to compute distances between real and generated distributions within a 
single style and use these as the style scores. We also experimented with different layers of the Inception-v3 
architecture trained on ImageNet [10] that span low-level (pool1) to high-level (pool3) features. For our 
evaluation, we included features from all three pooling layers, as well as the feature map before the auxiliary 
classifier (pre-aux). In total, we evaluate eight automated methods {FID, KID} × {pool 1, pool 2, pre-aux, 
pool 3}. 
As shown in table 1, both FID and KID using pre-aux embeddings exceed the other metrics in correlating with 
human HYPE-Style scores, with a moderate correlation (r = 0.433 and r = 0.432, respectively). Following 
these metrics, the observed order is: FID using pool 3 embeddings (r = 0.407), or the original FID score, then 
KID using pool 3 embeddings (r = 0.367). Finally, FID and KID using pool 2 and pool 1 layers exhibit 
extremely weak correlation with r < 0.2. When comparing performance between layers, KID and FID track 
each other, with pre-aux embeddings coming first, followed by pool 3, pool 2, and lastly pool 1. 
  

Table 1. Pearson's r correlation coefficient. Results of Pearson's r and bootstrap 95% confidence intervals 
between human HYPE-Style scores and all automated methods across different layers of an ImageNet-
pretrained Inception-v3 model, including the three pooling layers (pool 1, pool 2, pool 3) and the layer 

preceding the auxiliary classifier (pre-aux). Higher values indicate greater correlation. 
 

 
 

While the original FID paper proposed to use features from the third and last 2048-dimensional 
pooling layer (pool 3) of an ImageNet-pretrained Inception-v3 network [11], we find empirically that the 768-
dimensional Inception-v3 layer just preceding the auxiliary classifier head (pre-aux) outperforms the pool 3 
layer and other earlier pooling layers {pool 1, pool 2}. Intuitively, this is explained by the fact that the pre-aux 
layer is the most feature-rich layer that is still regularized by the gradients from the auxiliary classifier. This 
regularization would encourage the layer to encode more general features that are less overfit to ImageNet, 
which is more useful on this task, whose domain differs significantly from ImageNet. ImageNet itself has, in 
fact, also been criticized for generalizing poorly to test sets within its own domain [20]. We found that the 
choice of the pre-aux layer over pool 3 and others is consistent across FID and KID, with scores of 0.433 and 
0.432 on the pre-aux layer against 0.407 and 0.367 on pool 3 for FID and KID, respectively. As a note, the 
difference between the FID layers' r values are not fully separable based on their 95% bootstrapped CIs. We 
show the rank order correlation between HYPE-Style with FID on the pre-aux layer embeddings in figure 2, 
with exact numbers in figure 3. 

 
4. DISCUSSION AND FUTURE WORK 

In this paper, we contribute a human evaluation metric for evaluating different styles on a generative 
model. We also evaluate eight different automated methods, finding that using Inception embeddings preceding 
the auxiliary classifier correlates more with human perception on this task than widely used methods using the 
last pooling layer. Our work is motivated largely by the dearth of available, reliable evaluation metrics for 
quantifying the progress of this task. 

While none of the automated approaches evaluated comes sufficiently close to HYPE-Style for 
standalone use, our work still constitutes an initial foray into evaluating style-level attributes of multimodal 
cross-domain mapping, an area where it remains difficult to use mainstream automated evaluation metrics out 
of the box. Specifically, FID is a biased estimator and does not perform well on data with few samples. While 
KID remedies some of this problem, it is still possible that the order of magnitude of data was still insufficient 
for KID to be consistent and reliable without large number of runs. Nevertheless, both metrics have been shown 
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to correlate imperfectly with human judgment. Their deficiencies lie in their relative insensitivity to visual 
features over semantic distortions and certain artifacts; these are a result of relying on embeddings from a 
pretrained ImageNet Inception-v3 model. Specifically, we find that automated metrics fail to detect artifacts in 
regions outside of the water flooding zones, e.g. the sky, that humans could immediately discern, as well as 
noise that appears to look like vertical motion blur in only parts of the image. An additional limitation of FID 
and KID is that they are distribution-level metrics and thus cannot compare individual images. 

 

 
Figure 2. Rank order correlation between HYPE-Style and the best performing automated metric 

using FID on pre-auxiliary layer embeddings. Pearson's r correlation coefficient exhibits moderate correlation 
(0.433). 

 
 

 
Figure 3. Box plot of FID performance using pre-auxiliary layer embeddings on different styles. 
The different styles are ordered by HYPE-Style scores to observe moderate correlation. 

 
 
As future work, we plan to both improve the realism of our generative model and explore improved 

methods for evaluation, which persists as an open research problem in generative models. For instance, the 
performance of the pre-auxiliary classifier embeddings suggest that we are operating outside the domain of 
ImageNet, and from this insight, we are inclined to leverage other embedding spaces, e.g. the Mapillary or 
Cityscapes datasets [21, 22], which could provide more suitable street-level scenery features that is similar to 
ours. Using a method that is pretrained on ImageNet, then fine-tuned on a relevant dataset could provide 
improvements to automated evaluation. We could also explore different methods of measuring precision on 
generated images [23]. The variance of flooding severity is another area that would require conditional 
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evaluation; that is, provided a certain flood condition, e.g. 2 m sea level rise, what would this look like on a 
given image? As flooding models grow more precise, we plan to juxtapose generated images of varying 
severity levels, using automated depth and height estimation techniques to project levels of flooding on streets 
and buildings. 

The ultimate vision of this work is to create an interactive, ML-based website which, given an image 
from Google StreetView [24] based on a user-chosen location, is able to generate the most realistic image of 
climate change-induced extreme weather phenomena given the contextual characteristics of that given image 
and the future climate projections at that given location [25]. While representing flooding realistically is the 
first step to achieving this goal, particularly given the high population density of coastal regions worldwide, 
we later aim to represent other catastrophic events that are being aggravated by climate change (e.g. tropical 
cyclones or wildfires) using a similar approach, in the hopes that these will help raise awareness of the far-
reaching future impacts of climate change. 
 
Data availability statement 
The data that support the findings of this study are available from the corresponding author, AL, upon 
reasonable request. 
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