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Adequate recommendations for the amount and types of sequencing data necessary to

optimize the recovery of single chromosomes from bacterial sequencing projects do not

exist. Broad estimates for coverage depths needed to recover complete bacterial genomes

are present in the literature, but required sequencing depths across bacterial and archaeal

phylogenies needed for high-quality assembly are not known. Additionally, correlations

between genomic complexity and expected quality of assembly have not been properly

defined. Furthermore, the capabilities of multiplexing (sequencing more than one sam-

ple simultaneously on one flow cell) with long-read sequencing platforms in order to

recover complete bacterial chromosomes are poorly documented. We first preface our

research by discussing the benefits and challenges surrounding assembly of single chro-

mosome bacterial genomes. Then, in order to address the role of genomic variability

on genome assembly quality, we selected a clade of closely related Escherichia coli strains

and assessed how strain-level genomic variation leads to differences in genome assembly

quality. While variation in assembly quality among highly similar strains does occur, we

show that the depth at which increased coverage does not improve assembly contiguity

can be ascertained for strains of highly similar bacteria. We also show that there are

significant correlations between genomic traits – such as genome size, repeat content,

and number of coding sequences – and the resulting genome assembly quality. Fur-

thermore, we simulated long-read data based on standard multiplexed read profiles of



a phylogenetically diverse array of bacteria and archaea and found that although limi-

tations due to genome size and repeat complexity exist, long-read x8 multiplexed data

are able to complete many bacterial genomes without the need for additional short-read

sequencing. This research provides a series of criteria for why short-read sequencing

and assembly often does not result in the generation of complete genome assemblies,

and how multiplexed, long-read data can greatly reduce time and financial resources for

many bacterial and archaeal sequencing projects.

Keywords: Genome Assembly, Sequencing, Multiplexing, Comparative Genomics
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Chapter 1

Complete Genomes of Bacteria and Archaea Advance our Knowledge

1.1 Background

Improvements in sequencing technologies have transformed microbial whole-genome

sequencing from the lengthy, labor-intensive effort of ”primer-walking” via Sanger se-

quencing [1], into a much cheaper, quicker, and streamlined research process. The knowl-

edge gained through sequencing projects has revolutionized our view of the microbial

world, most predominantly in the sub-fields of microbial diversity and taxonomy [2],

evolution and phylogenetics [3], and pathogenicity [4].

Currently, high-throughput nucleotide sequencing technologies can generally be cate-

gorized by read length outputs. Short-read technologies generate relatively short (25-300

bp) low error rate reads (generally less than 0.01, although this depends on position of

the read [5]) and comes with the advantage of having the lowest available cost per giga-

base (Gb) on the market ($30 to $150, depending of the level of output, for Illumina’s

HiSeq 2500 platform [6])). Short-read technologies generally come with the disadvantage

of coverage bias in regions of high or low GC content [7], and they are not well suited

to resolve repeated genomic regions due to the limits of read length [8, 9]. Characteris-

tics of long reads – the two current market leaders in long-read sequencing technologies

being PacBio and Oxford Nanopore – depend on sequencing platform and chemistry.
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PacBio’s newest platform, the Sequel system, can generate reads with a maximum read

length of ≈100,000, a mean read length of ≈20,000, and a mean error rate of 11 to 14%

[10]. Adequate estimations of cost per Gb do not yet exist for the Sequel system due

to its recent release, but PacBio’s second to most recent platform, the RS II, comes with

a cost of approximately $1,000 per Gb, and the Sequel system’s output ranges between

x3 to x10 times greater than the RS II [6]. Estimating read characteristics generated by

Oxford Nanopore’s MinION portable sequencer is difficult, as output per flow cell using

the R9.0 chemistry ranges widely from 0.2-1.2 Gb [11], but has been found to be 2.3 Gb

per flow cell using the newest R9.4 chemistry [12] – cost per flow cell is $500 if bought

in bulk of 48 or $900 if bought individually [13, 14]. Furthermore, depending on the

sequencing protocol, maximum lengths of reads that are mappable to the corresponding

reference genome range from ≈150,000 to ≈900,000 with mean read lengths of ≈7,000

and ≈16,000, respectively [11, 12]. Error rates range from 8% to 15% [11]. High error

rates in long-read data can be greatly reduced by aligning long reads and generating

consensus sequences, reaching accuracy of >99.999% with PacBio reads [15] and >99.5%

with Nanopore reads [16].

1.2 Limitations of Draft Genomes

The number of draft genomes still exceed the number of completed genomes currently

housed on and being deposited into published databases [17]. Of the vast number of mi-

crobial genomes sequenced over the last decade most are still in draft status (Figure 1.1).

Completed microbial genomes can be characterized as assemblies that possess continu-

ous chromosomal representation, low assembly error rates, and lack known misassembly

issues such as assembly chimeras and false rearrangements [18].

While some specific questions can be answered without the completion of genome
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Figure 1.1: The number of complete vs. draft genomes deposited annually since 2000 on
NCBI’s Genome Assembly database [19] according to NCBI’s assembly status classifica-
tion.

sequencing and assembly, the generation of draft and fragmented genomes limit and

hamper the research of others. On the most basic level, draft genomes may be missing

functional genes, which can mislead others because it is not known whether a specific

isolate lacks genes of interest or that the genes were not sequenced or assembled by

the researchers. This can be detrimental to research of genes of interest, which includes

their evolution and phylogenetic diversity, and their presence/absence across microbial

lineages, which includes potential horizontal gene transfer events. However, even draft

genomes that contain gaps in only non-coding regions [20] would most likely still be

missing information on regions with important functions, as a significant amount of the

DNA previously categorized as ”junk” has been shown to play important roles in bio-

chemical processes and may serve as regulatory regions [21]. Gaps in genome assembly,

even when they are in regions of unknown function, reduce the likelihood that future
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discoveries can be made. This is perhaps most notable in regards to repeat regions, such

as CRISPR regions in microbes, which can be left unassembled in draft genome sequenc-

ing projects [22]. Given the limitations of fragmented genomes, the scientific community

would benefit from a structured research effort or funding requirements to bring genome

sequencing projects to completion.

1.3 Benefits of Completed Genomes

For fragmented genomes, the absence of a gene does not prove that a gene of interest

is not present in the genome. If the presence of genes is unknown in two or more

organisms, it is not possible to capture an accurate, complete picture of species variation

through comparative genomic methods. As a result, the ability to carry out accurate

comparative genomic analyses on both a small and large scale is greatly improved by

complete genomes. The comparison of a suite of strategically chosen species can provide

information about critical phenotypes, such as virulence [23]. Continued publication of

complete genomes will increase the accuracy and feasibility of comparative genomics on

a larger scale.

1.3.1 Illuminated Microbial Pathogenicity

Draft genomes limit our understanding of microbial pathogenicity. Incomplete genomes

are often found to be fragmented at regions of mobile elements and genomic island sites,

as assembly algorithms typically fail to resolve repeated elements often associated with

these genomic regions [24]. As a result, this limits our understanding of key driving

factors in microbial evolution as these sites are free to change because they are not

selective. Having a clearer picture of genomic plasticity areas can give the ability to

better track microbial pathogenicity [4], as virulence factors are often encoded in such
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regions [25]. Attempting to track outbreaks of closely related pathogenic strains may

be much more difficult or impossible without comparison of complete genomes, such

as the case for a group of certain Salmonella enterica serovars from a recent outbreak in

Denmark [23] and an extensive analysis of carbapenem resistant bacteria isolated from

hospital plumbing systems [4].

1.3.2 Increased Understanding of Genome Organization

Recent studies have found structural variants (SVs) to be common in microbial genomes

[26]. A wide variety of genomic rearrangements ranging from insertions to duplications

can result in SVs. These rearrangements are initiated by a variety of processes which are

easier to trace with more complete genome information [27]. Regions that characterize

SVs can be difficult for assembly algorithms to resolve and are generally not properly

represented in fragmented assemblies [28]. Genomic rearrangements can cause a wide

variety of phenotypic shifts, including virulence [29], and can act as a driving factor

of microbial evolution [30]. Missing knowledge of SVs may translate into a lack of

information about the basis of critically important microbial phenotypes and pathovars.

1.3.3 Improved Understanding of Orphan Genes

Complete genomes further our understanding of abundance and function of orphan

genes, which some researchers have termed ”Taxonomically Restricted Genes” [31]. Or-

phan genes lack homologs in other taxonomic groups and can represent up to 30% of the

genes in bacterial genomes [32]. In agreement with the concept that a limited amount of

protein families and potential protein folds exist [33], there has been the expectation that

genome sequencing would cause the discovery of new proteins to plateau over time [34].

This plateau has not been observed as non-redundant proteins are still being discovered

at high rates [35].
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The identification and annotation of orphan genes is often difficult, since the very

definition of orphan genes involves the lack of a homolog. However, using a mixture

of laboratory techniques and computational analysis, the functions of numerous orphan

genes have been elucidated [3, 36]. Orphan genes have been found to have essential

roles [36, 37] and to be associated with species evolution [31]. Presenting the complete

pool of orphan genes with an unfragmented complete assembly is a vital step in fully

identifying, annotating, and understanding these genes.

1.3.4 More Insights into Evolutionary Rates

Complete genomes may also provide more insights into evolution rates. Rates of molec-

ular evolution are not universal over the Tree of Life [38], and calibrating the ”molecular

clock” for a species is a difficult task when basing estimates on specific clusters of genes,

as the selective pressures that drive mutation rates differ in various regions [39]. Com-

parison of whole genomes of various taxa over long periods of times will give better

species specific evolution rates than broad estimates based on selected genes from a

limited amount of taxa [40].

1.3.5 Enables Others to Work with a Wider Variety of Organisms

Ultimately, bringing whole-genome sequencing projects to completion enables others to

work with a wider range of microbes. Designing primers or gRNAs for CRISPR-Cas

systems can be greatly facilitated by a complete genome. The difficult task of designing

primers for oligonucleotides where only the partial sequence composition is known [41]

can be avoided by simply knowing the target sequence in the first place. Complete

genomes can also reduce unwanted off-target binding, as some primer design tools scan

genome-wide in order to predict primers that are most likely to have the lowest levels of

off-target binding [42].
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1.4 Why are we Still not Completing Reference Genomes?

Given all the benefits of a non-fragmented assembly, why are bacterial and archaeal

genomes still not being completed? With regard to microbial genomes, we are not lim-

ited by the scope of nucleotide sequencing technologies, the want of computational tools,

or the lack of computer processing power and memory.

Utilizing the potential of long reads has shown to generate complete genomes through

a variety of assembly methods [43]. All companies in recent years have made signif-

icant improvements on affordability and throughput of sequencing platforms – with

current examples being Illumina’s HiSeq Platform, PacBio’s Sequel System, and Oxford

Nanopore’s portable MinION sequencer. However, relying only on short reads for mi-

crobial whole-genome assembly without supplementing them with long reads generally

results in a fragmented assembly [8, 20].

As the ability to generate increasingly longer reads over the last ten years has oc-

curred, many inventive algorithms have been developed specifically for assembling these

types of data [44]. Despite many computational strategies able to produce complete

genomes using long reads, mean contig length in genome assemblies still remains low

due to heavy reliance on short-read sequencing (Figure 1.2).

One factor limiting complete genome assembly is its increased cost compared to pro-

ducing a draft genome. While the cost per Gb of long-read sequencing has dropped sig-

nificantly since first entering the market, long reads that are needed to resolve microbial

repeat regions [9] come at a higher cost than short reads [43]. However, it is important to

put the cost of long reads into the perspective of microbial genome sequencing. Higher

cost per Gb may discourage researchers from using long-read sequencing, but in light

of the typical size of a bacterial or archaeal genome, the cost is not very prohibitive. For

example, multiplexing 8 E. coli K12 strains (approx. 4.5 Mb in size) on a single PacBio
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Figure 1.2: Mean contig length of all bacterial and archaeal genomes deposited on
NCBI’s Genome Assembly database [19] on a per-year basis as of May 2018. The advent
of higher-throughput short-read sequencing in the mid 2000s caused a significant drop
in mean contig length, and long-read sequencing has not caused much of an increase in
average contig length since. The drop in contig length is not due to differences in aver-
age genome assembly size over time, as the mean genome size per year has remained
relatively consistent since 2006 at 3.8 Mb.

Sequel SMRT Cell generated complete or nearly complete genomes for each sample [45].

Depending on the genome size, one sequencing cell can result in a maximum of 16 non-

fragmented or close to complete bacterial assemblies [46, 47]. Additionally, 12 Klebsiella

pneumoniae (5.3 Mb) high-quality, gapless genomes were assembled with a mixture of

multiplexed MinION sequence data and short-read sequencing, despite the drastic cov-

erage depth variation amongst the multiplexed MinION samples [48]. The researchers

estimated generation of an individual K. pneumoniae genome to cost $150. However, ig-

noring the options of multiplexing may cause researchers to shy away from higher cost

per Gb of long-read sequencing and rely on relatively cheaper short-read sequencing
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instead.

Another factor that may discourage researchers from generating complete genomes is

an overabundance of outdated assembly strategies in the literature. As technologies im-

prove, researchers respond with developing software that are optimized for new types of

sequencing data, which in turn leads to a plethora of assembly methods, some of which

quickly become outdated. For example, the strategy outlined for optimized microbial

genome assembly by Nagarajan & Pop [49] may lead a researcher to prepare three DNA

libraries – one Illumina mate-paired, one Illumina paired-end, and one PacBio single-

read – at x50 coverage each. However, this estimate is based on the average read length

distribution from an older version of the PacBio chemistry and sequencing platform, and

newer versions of the chemistry and platform updates have shown that high-quality mi-

crobial genomes can be assembled with either one long-read and one short-read library

or simply one long-read library [43]. The challenge of keeping up to date with assembly

strategies can contribute to the preponderance of fragmented assemblies.

1.5 How can we Complete more Microbial Genomes?

Overall, the power of long reads to resolve complex, repeated regions must be uti-

lized more often. Long-read sequencing can be optimal in the production of complete

genomes for the majority of bacterial and archaeal microorganisms [8], and the ability

to generate even longer, usable reads using various protocols and technologies will en-

able the completion of more microbial genomes [12]. In our estimation, there are three

specific hypotheses that could be explored to enable the completion of more microbial

genomes.

First, the question of ”to what depth of coverage should I sequence?” in a lineage-

specific manner must be answered better. Answering this question does not come with-
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out challenges, as necessary depth of coverage depends on factors such as genome size

and repeat complexity [50] and the choice of algorithm used for genome assembly [51].

Uneven sequencing depths at different regions in a genome adds additional complexity

to this question [52]. However, a benchmarking study – which quantifies the correla-

tions between genome size and genomic complexity across a phylogenetically diverse

breadth of microbial taxa and the estimated optimal sequencing depths – would be very

useful [9]. A researcher could then estimate optimal sequencing depths by looking at

the genomic complexity of a closely related strain. If the taxonomy of the microbe being

sequenced is not known, then Sanger-based sequencing of key marker genes, such as

the V3-V4 region of the 16S ribosomal subunit, would be a logical choice for identifying

closely related taxa. Even if a researcher chooses to skip marker based identification of

unknown strains, the genome size and some aspects of repeat profile can be estimated by

counting k-mers in short-read sequencing data [53, 54] and then optimal depth of long-

read coverage may be calculated. Answering these questions can prevent researchers

from not generating enough sequencing reads to effectively close the genome or the al-

ternative of generating data past the point where increased coverage of short-read data

does not improve assembly quality [9], which in turn increases financial expenditures.

Second, more robust evaluations of genome assembly are necessary to understand

the nuances of factors contributing to the completion of bacterial and archaeal genomes.

While many bacterial genome assemblies have been benchmarked, most of these bench-

marks only report quality statistics that provide limited information, such as number

of contigs and N50 values [55, 56]. The problem with such statistics is that a complete

picture of actual assembly quality is not given, but only the number and size distribution

of fragments, as the percentage of similarity between the de novo assembly and the tar-

get sequence is unknown. Comparing assemblies to closely related reference genomes

can give an estimate of the percentage of correctly assembled sequence, but significant
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differences between assemblies can be due to naturally occurring SVs [26]. We suggest

that future assembly algorithm benchmarks incorporate simulated sequencing data sets

which could be used to compare against a known target assembly, as this allows for

detection of mismapped regions that could be flagged as potential misassemblies. This

would give a clearer picture of the strengths and weaknesses of various genome assem-

blers, allowing researchers to better select which algorithm software to utilize to generate

the assembly of complete, high-quality genomes.

Lastly, providing estimates of both the capability and limitations of multiplexing

samples with the goal of generating a complete genome is important. Multiplexing

on both PacBio and Oxford Nanopore platforms has been successful, which significantly

reduces sequencing cost per sample. This has resulted in high-quality assemblies of both

microbial genomes [46, 48] and multidrug-resistance plasmids [57]. However, to the best

of our knowledge, the question of how many microbial genomes, of a given genome size,

can be effectively completed by sequence data from multiplexing on a single flow cell of

long-read platforms has not been appropriately answered. Answering these questions

will aid in the rapid completion of more microbial genomes and will positively impact

the field of microbial genomics [58].

1.6 Conclusion

Despite the ability to rapidly and cost-effectively generate complete genome assemblies,

the ratio of published draft to complete prokaryotic genomes is still high. More publicly

available, unfragmented genomes will give key insights into pathogenicity, structural

variance, orphan genes, and ultimately, microbial taxonomy and evolution. Financial

burdens, an excessive amount of assembly algorithms, and no appropriate estimate for

needed sequencing coverage may discourage bringing sequencing projects to completion.
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We believe that providing scientists with a concept of how much sequencing should be

done in order to enable assembly of a complete genome, carrying out benchmarks of

assembly algorithms on various sequencing data profiles, and gaining more information

regarding multiplexing options will aid in the completion of more bacterial and archaeal

genomes.
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Chapter 2

Genomic Variation Influences Genome Assembly Quality Metrics

2.1 Background

Genome assembly benchmark studies [55, 59, 60, 61] have demonstrated variation in

standard bacterial and archaeal de novo genome assembly quality statistics. Variation in

these statistics – most notably the number of contigs, N50 values, and percentage of a

reference genome covered by de novo assemblies – may still be predominant in highly

similar genomes when given equal sized datasets of similar read quality. This raises the

question: if we hold genome size approximately the same and stardardize sequencing

quality and depth of coverage, what causes the resulting variation in genome assembly

quality and varying amounts of assembly fragmentation?

Variation in genome assemblies may stem from simply using different assembly al-

gorithms [62, 63]. Natural differences in composition inherent in microbial genomes

impact the assembly quality downstream [24]. Most notably, assembly quality metrics

may vary among assemblies generated using the exact same algorithm independent of

insufficient overall coverage differences [64]. Genome assembly quality is most notably

negatively impacted by sequencing errors [65]. Short-read sequencing technologies can

fail to produce sufficient coverage in genomic regions that are difficult for assembly

programs to resolve [66], such as those with high GC content or regions affected by se-
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quencing library preparation amplification biases [7, 67, 68, 69]. Additionally, the bias

of certain motifs such as homopolymer runs [70] negatively impacts genome assembly

quality. However, independent of biases that are introduced during sequencing, the

complexity and frequency of repeat regions is considered the main factor that causes

assembly quality variation [8, 71] and this lies at the crux of why genome assembly is

classified as an NP-hard problem [72].

Short-read high throughput sequencing is insufficient to close gaps in many repeated

regions when read length does not exceed the length of genomic repeats [20, 43, 51, 73].

Resolution of these repeated regions is difficult or impossible without manually intensive

processes. Typically these techniques consist of cloning genomic fragments of small sizes

into plasmids, then utilizing Sanger-type sequencing, and the subsequent assembly and

ordering of the fragments into a complete sequence [1]. These methods are generally

lengthy and consist of labor-intensive tasks that may prohibit the completion of single

chromosome contiguous bacterial or archaeal genome assemblies. Genome assembly

using long-read technologies is another solution to generating higher-quality genomes

[74], but long-read sequencing comes at a much higher cost than short-read sequencing

[75] and typically is more error prone than short-read technologies. Due to either labor-

intensive processes, prohibitive costs of long reads, or the desire to use low error rate

of short-read data, automated genome assembly using short reads (or ideally a hybrid

of short and long-read data) will probably remain the common method for genome

assembly in the immediate future.

The fact that genomic repeats of various lengths make assembling a complete genome

using short reads nearly impossible is known [8]. It is not known how the overall abun-

dance of genomic repeats affects genome assembly. Additionally, it is still unclear how

other factors such as GC content, k-mer count variation and complexity, homopolymeric

regions of sequencing reads, genome size, number of genes, fraction of the genome sub-
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sisting of coding regions, percentage of non-coding vs. coding sequences, and repeat

density correlate to genome assembly quality [53, 76, 77]. Here, we address the role of

various genomic characteristics on genome assembly quality metrics. In order to elim-

inate confounding factors of high levels of genome complexity variation, we chose to

focus on datasets from genome sequencing projects that were both high in depth and

from highly similar strains. Providing insights into what genome characteristics convo-

lute genome assembly can aid in future algorithm development and help understand

issues as to why genome assembly projects do not often provide complete genome as-

semblies.

2.2 Experiments and Results

2.2.1 Data Curation

To address the role of genomic variation on assembly quality, we began by selecting 96

publicly available short-read sequencing datasets of highly similar E. coli strains from

NCBI’s Sequence Read Archive (SRA). The list of SRA accession numbers can be found

in Appendix A. The same DNA library preparation kit (Nextera XT shotgun) and se-

quencing platform (Illumina NextSeq 500) were used as a part of the same sequencing

project, the U.S. Department of Agriculture’s Genome Trakr Project [78]. The FDA Cen-

ter for Food Safety and Applied Nutrition (College Park, Maryland) submitted all of the

datasets, which consisted of 75 bp paired-end reads.

Overall read quality in the datasets was found to be high (mean Phred score no

lower than 30, even at the most error prone read positions) as measured by assessment

using FastQC [79] analysis. In order to focus solely on strain-level variation, data were

subsampled to minimize differences in sequencing run statistics, such as quality score

and depth, between pools of sequencing reads. Total coverage of the datasets ranged
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from x135 to x400 across the complete calculated and actual genome size. In order to

reduce the variance among strains in GC bias due to Illumina sequencing technology

[66], all selected strains had highly similar levels of GC content (50.5) with less than one

percent of variance.

2.2.2 Assembly Quality Definition

While not always possible, we acknowledge that simply observing internal assembly

statistics of a draft genome without comparing assemblies to a known reference genome

results in a lack of information about assembly accuracy [80, 81], genome length [82],

and coding sequences available to annotation [83]. In order to understand completeness,

we mapped the assemblies (described in detail in following sections) using MUMmer4

[84] to more than 600 E. coli gapless genomes categorized as ”Complete” by NCBI’s Gen-

Bank and discovered that the percentage of various reference genomes represented by

an assembly varied between 70 and 90 percent. In an attempt to find the most appropri-

ate reference genome for our various strains, we looked at the highest percentages of a

reference genome covered by a given strain. This turned out to be of limited value, as

several of the reference genomes were all covered by around 90% of a de novo assembly,

which indicated no clear appropriate reference genome for either an individual strain or

the entire collection of de novo assemblies. This complicated our desire to compare the

de novo assembled genomes to a standard reference. As no adequate reference genome

existed for all of the selected strains, no way to measure assembly accuracy existed. In

the second chapter of this thesis, we focused on assembly contiguity as our measure of

assembly completeness and use the terms ”contiguity” and ”quality” interchangeably at

times.
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2.2.3 Assembly Quality over Coverage Increment

In order to assess genome assembly contiguity under differing sequencing coverage, we

selected 34 out of the original 96 datasets (ranging from SRR3989774 to SRR3989808 but

excluding SRR3989775, which was a Mus musculus sample) to subset over a coverage

increment, assemble, and assess contiguity for each strain. We used our custom analysis

pipeline (code available in Appendix C) to perform these analyses, which provided us

with a mean of 41 independent datasets for each individual strain. We then assembled

these normalized datasets using the SPAdes assembler [85] and assessed the quality of

the subsequent assemblies using QUAST [86].

We found that for almost all of the E. coli sequencing data, great improvement in the

number of contigs (in this case, fewer contigs of longer length) occurred at low coverage

levels up until x50 coverage, but increased assembly contiguity leveled off around x100

coverage for most strains (Figure 2.1). At higher depths of coverage, the number of

contigs increased for some of the selected strains, but this finding was not consistent or

widespread. This is most likely due to the difficulty genome assembly programs have in

dealing with large accumulations of sequencing errors found in larger datasets [87].

Using the entire pool of the 96 E. coli strains we initially selected, we subsampled each

dataset down to 3.25 million reads. This translated into approximately 95-fold coverage

when dividing the total number of sequenced base pairs by the median total length of

these E. coli strains’ genome size. We then assembled each subsampled dataset using two

de Bruijn graph assemblers, IDBA [88] and SPAdes [85]. The resulting assemblies were

quality assessed using QUAST [86]. We then counted the number of k-mers of length 21

using Jellyfish [53] and used the software Genome Scope [77] to estimate genome size

and repeat region sequence lengths based on k-mer profiles. Analyzing k-mer profiles is

a standard method of estimating genomic repeat complexity and genome size [53, 76].
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Figure 2.1: Depth of coverage vs. number of contigs from assemblies of 34 various E.
coli strains. Each colored line represents a different strain. Assembly contiguity varies
among the closely-related bacterial strains and increased coverage provides little increase
in genome assembly contiguity past 100-fold coverage for most strains. Coverage was
calculated by dividing number of sequenced base pairs by the total length of contigs ≥
500 bp. The corresponding coverage vs. N50 graph based on analysis of the same strains
can be found in Appendix B.

Using Prokka [89], we annotated all of the assemblies and calculated the number of

coding sequences and the average coding sequence length. Assembly statistics of the



19

SPAdes and IDBA assemblies for each strain were very similar, supporting the obser-

vation that assembly quality statistics and gaps in genome assemblies do not simply

stem from the failings of a specific genome assembly algorithm. All of the correlations

reported in the second chapter of this thesis are based on information derived from

SPAdes assemblies, except for Figure 2.2, where genome size was estimated by analyz-

ing k-mer profiles. Correlations and graphs based on IDBA assemblies can be found in

Appendix B.

2.2.4 Assembly Quality vs. Genome Size and Number of Coding Regions

Genome size in bacteria and archaea is positively correlated with the number of coding

sequences, as well as the total length of the coding sequences [90, 91]. While the qual-

ity of annotation can be negatively impacted by gene fragmentation [83], Prokka can be

modified to annotate partial or fragmented genes [89]. Keeping in mind that a typical

gene length averages around 1,000 bp in E. coli [92] and that it is estimated that the av-

erage bacterial genome consists of between 5-15% of non-coding sequences [93, 94], we

observed the expected number of coding sequences compared to genome size for the

strains we assessed (Figure 2.2). After verifying the relationship between genome size

and number of coding sequences, our expectations that larger genomes (and those con-

sisting of a larger number of coding sequences) would have more fragmented genome

assemblies were confirmed (Figure 2.3).

Not surprisingly, the number of contigs in the assemblies of closely related E. coli

strains generally increased with an increase in estimated genome size and an increase

in the number of coding sequences identified. In line with large scale differences in

genome complexity and genome assembly contiguity observed across disparate lineages

of organisms [95], the number of contigs generated in our analysis increased from 47 to

369 with only a 1.2 Mb increase in genome size when maintaining both read quality and
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Figure 2.2: Number of coding sequences vs. genome length for 96 E. coli strains. The
number of coding regions at various genome sizes lies within an expected range when
factoring in the positive correlation between genome size and number of genes, mean
coding region length in bacteria, and typical percentages of coding vs. non-coding se-
quences. The p value and 95% confidence interval of ρ are 2.2e-16 and 0.74–0.87.

read depth. It is important to note that other researchers have also observed similar

trends when comparing genome assemblies of various organisms at different coverage

levels [96].
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Figure 2.3: Contig number vs. the number of coding regions and genome size for 96

E. coli strains. Variation in genome assembly quality, assessed here as genome assembly
contiguity, can be attributabed to the correlation between genome size and the number
of coding regions. The p values and 95% confidence intervals of ρ from left to right are
1.29e-11 and 7.57e-10 and 0.48–0.73 and 0.43–0.70.

2.2.5 Assembly Quality vs. Repeat Density

Some complex genomic repeat regions are difficult or mathematically impossible for

assembly algorithms to resolve when using short-read datasets [51, 73]. In terms of

understanding the causes of variation in genome assembly quality, an obvious impact

of assembly quality is the number of repeat regions present in a genome. Quantifying

repeats is difficult, as many different classes and lengths of repeats exist [97]. Therefore,

we did not exhaustively search for certain categories or types of repeats, but instead esti-

mated total repeated length based on k-mer profiles. We chose to compare overall repeat

density, which is defined as total repeat sequence length divided by genome length [98],

to assembly quality (recognized here by NG50 values) instead of simply observing total

repeated length vs. fragmentation. The NG50 statistic is a version of the N50 statistic

that is weighted for genome size [99], which makes comparison of NG50 values across
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different genome size possible. By observing repeat density and NG50 (Figure 2.4), we

effectively eliminate biases introduced by variations in genome size.
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Figure 2.4: NG50 vs. repeat density of the assembled genomes. This correlation indi-
cates that assembly quality does not only decrease while genome size increases due to a
natural growth in repeats along with genome size, but rather that an increase in repeats
in a genome negatively affects assembly quality independently of genome size. The p
value and 95% confidence interval of ρ are 1.99e-05 and -0.57−-0.24.
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2.2.6 Coding Sequence Density vs. Assembly Quality

Previous studies have shown the number of coding sequences to increase in a linear

fashion along with genome length in microbes [91]. Therefore, simply comparing the

number of open reading frames to a contiguity statistic would result in similar correla-

tion between the number of coding regions and genome size in most cases. Since we

previously reported the correlation between genome size and assembled contigs, here

we compared coding sequence density (recognized here as the percentage of a genome

that is coding sequence) to NG50 (Figure 2.5). We found no significant correlation, which

indicates the density of a genome represented by coding regions by itself is not a signifi-

cant factor that complicates genome assembly.

2.3 Discussion

Many studies have used reference genomes, typically assembled from incredibly high

depth reads from multiple platforms or from Sanger-based ”primer-walking” sequenc-

ing, to provide a standard to infer the genome size and number of genes for particular

de novo assemblies [55, 59, 60]. We realize that most standard sequencing projects for

bacteria or archaea do not have the luxury of starting with much knowledge about the

genomic structure of their organism of interest prior to sequencing. Some of the most

common questions from researchers wanting to complete bacterial or archaeal genome

sequencing projects are focused on how many reads to sequence and what the optimal

length of the sequencing reads should be.

To assess the amount of reads needed to complete genome assemblies for a suite of

single chromosome genomes of similar phylogenetic distance, we subsampled data from

96 E. coli strains and assembled the reads at a range of depths using different assembly

algorithms. We found the point at which increased coverage did not improve assembly
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Figure 2.5: NG50 shows little correlation with the abundance of coding regions in a
genome. The p value and 95% confidence interval of ρ are 1.69e-3 and 0.12–0.49.

contiguity for most of the E. coli strains to be around x100, but the question of how much

coverage is enough should be answered in a more phylogenetically diverse manner.

The number of annotated genes compared to genome size fell within an expected

range (Figure 2.2) in the assemblies. However, the correlation between coding sequence

density and assembly quality (summarized in the NG50 value) may still be somewhat
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impacted by poor assembly affecting the ability to annotate a genome properly and

partially explain why no significant correlation between coding region density and NG50

was found. The statement of the authors from the GAGE-B paper [55] that a single, short

fragment sequencing library generally contains the majority of genes most likely does

not apply to our assemblies, as read length was 75 bp. This lies in a length range where

even a 25 bp length increase of reads can significantly improve assembly quality [100].

Expectations of assembly quality must be lowered as genome size and repeat den-

sity increases, because as microbial genomes grow in size, coding sequence, and repeat

complexity, genomes become poorer in quality (Figures 2.3 and 2.4). Even gene-level

questions for difficult to assemble genomes may not be fully answered if relying solely

on short-reads. Sequencing short reads of longer length may increase quality [100], but

one may have to turn to long-read technologies to be able to produce more accurately

assembled genomes as closely representing the real genome structure as possible. As

Richards [101] emphasizes, researchers must fully inform their audience regarding how

the accuracy and quality of de novo genomes (as well as their subsequent annotations)

especially when assembling with short reads. This may be extremely pronounced in

genome structure variation. Instead of making unverifiable claims based on genomes

whose exact sequence is not known, researchers must always keep in mind the uncer-

tainties surrounding de novo assemblies.

Short-read sequencing alone simply does not have the ability to answer many biolog-

ical questions requiring high quality genomes. Instead of the generally futile attempt to

reduce fragmentation by sequencing short reads at unnecessarily high depths, providing

the scientific community with better ways to lower the cost of long-read sequencing in

terms of microbial sequencing is needed. Recently, both Heiner et al. [46] and Wick et

al. [48] took advantage of new higher-throughput sequencing platforms (both PacBio’s

Sequel System and Oxford Nanopore’s MinION, respectively) to sequence and assem-
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ble nearly gapless genomes for more than 8 microbes simultaneously on one flow cell,

greatly reducing overall price per sample. This strategy of multiplexing is able to greatly

reduce long-read sequencing costs, which could cause a shift away from short-read se-

quencing in the future. However, research about best practices and optimal number of

microbes per multiplexed flow cell must be carried out.

Overall, we show here that repeat variation, often compounded over longer genomes,

can be a main factor that contributes to the inability to assemble quality genomes when

utilizing short-read data sets. We recommend that researchers utilize a combination of

high-quality short-reads and more error prone (or high depth) longer-read technologies

to complete bacterial and archaeal genomes.
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Chapter 3

Coverage Benchmarks for Bacterial Genome Assembly

3.1 Background

In the last two decades, whole-genome sequencing has become common place. As a

result, benchmarks of sequencing technologies and optimal assembly algorithms have

been established [50, 55, 56, 59, 61, 102]. While our knowledge of the effects of assembly

algorithm and sequencing error rate on genome assembly quality is well established, rec-

ommendations for optimal sequencing depth of coverage and read length are not well

understood. This fact is a contributor to why so many bacterial and archaeal genome

sequencing projects remain in draft stages (Chapter 1). Additionally, the capabilities of

various levels of multiplexing with long-read platforms in order to generate highly accu-

rate, single-contig assemblies for various taxonomic groups and complexity classes are

lacking in the literature. For the few cases where this information exists, these estimates

are only based on a few select species in a small subset of the microbial phylogenetic

breadth. Factors such as genome size and repeat complexity vary dramatically among

the bacteria and archaea [97, 103], which in turn adds uncertainty to optimal sequencing

parameters and coverage depths [50].
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3.1.1 Genome Assembly Algorithms

The choice of which genome assembler to use largely depends on the type of corre-

sponding read data. Assemblers typically fall into one or more of the following broad

algorithm categories – greedy, overlap-based, and de Bruijn graph. Overlap-based and

de Brjuin graph approaches utilize graph theory [104], a mathematical theory in which

nodes represent objects and edges that connect the vertices represent relationships be-

tween objects. In the case of genome assembly, nodes represent nucleotide strings and

edges represent overlap between strings. Generally speaking, overlap-based methods are

best suited for low coverage, long-read data and de Bruijn graph approaches for high

coverage, short-read data [105]. The usefulness of most greedy approaches is currently

limited, as they are not well suited for short-read data assembly or able to assemble

strings larger than 100 kb [106]. Some software use a combination of two or more of

these approaches during different steps of assembly [107].

One of the earliest completed bacterial genomes, Mycoplasma genitalium [108], was as-

sembled using the TIGR assembler [109], which utilizes the greedy approach – a heuristic

method that combines reads in the most optimal, local manner. The workflow for this

project utilized a laboratory intensive strategy which fragmented the bacterial genome

through bacterial cloning and subsequently Sanger sequenced [110] the resulting frag-

ments. The researchers then used the TIGR assembler to assemble the reads into contigs,

and used a smaller set of paired-end reads sequenced from λ-clones with an insert size

of 10 kb to order the contigs. Using this approach, the TIGR assembler was able to pro-

duce a completely contiguous and accurate genome assembly. Such early assembly algo-

rithms used heuristics to combine reads into the shortest possible string, an NP-complete

problem when attempting to find the true answer [111]. These strings were generated

through overlapping the strings by finding the best Hamiltonian paths through the con-
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necting reads [106]. TIGR, for example, combines reads with the highest scoring overlaps

in a decreasing manner. While this assembly strategy can be sufficient for small assem-

bly targets in the 10’s of kb in length with simple repeat structures, greedy algorithms

often fail to produce accurate assemblies for larger, more complex strings [106, 112]. In-

deed, reads from non-contiguous repeated regions can often score higher than the actual

adjacent region, resulting in chimeric reads or collapsed repeats [113].

The use of greedy algorithms was soon replaced with overlap approaches, a method

that was used in software as early as 1984 [114]. The Celera Assembler [115] was one

of the most successful overlap assemblers and is still used today in different software

packages [116]. Overlap methods look for statistically significant overlaps between reads

and then use this overlap information to combine reads into contigs in a global manner,

unlike the greedy approach. What makes overlap between reads statistically significant

depends on a selected minimum length of overlap, which is determined by the mean

read error rates [106]. In the terms of graph theory, nodes represent reads and edges

the overlap between reads. Once the overlap graph is constructed, the optimal path

traversed through the nodes represents the unpolished, assembled genome.

The advent of high throughput, short-read sequencing [117] caused a necessary shift

in the foundation of assembly algorithms. Assembling high-coverage, short reads using

an overlap method is a computationally unrealistic problem, as the subsequent overlap

graph would be too large to deal with computationally [118]. This caused researchers to

begin utilizing a de Bruijn graph approach [85, 119], which is based on early assemblers

and theoretical work of Idury & Waterman [120] and Pevzner [121, 122]. Using this

method, reads are first split into substrings, termed k-mers, with the selected length of

k. A de Bruijn graph is then constructed with unique k-mers representing nodes and

overlap between k-mers representing edges. The optimal Eulerian paths are then found

in the graph, which in turn represent contigs. De Bruijn assembly is much more time
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efficient when compared to overlap approaches because large numbers of read pairwise

alignments do not need not to be calculated to identify overlap between reads, as read

overlap is implicit in graph topology [118]. While the de Bruijn graph approach is

computationally efficient, assembly of short reads almost always results in fragmented

assemblies with limited quality due to limited read length [20].

Methods for assembly shifted once again following the coming of high-throughput,

long reads [123, 124]. While variations on de Bruijn graph methods have been proposed

to assemble long-reads [125, 126], most long-read assemblers rely on some overlap based

approach [16, 127]. De Bruijn graphs can become very tangled due to the high error

rates of long reads and lose the most important characteristic of long reads – positioning

information. Several methods have been developed to deal with long reads, such as

filling gaps and scaffolding with long reads [128, 129, 130], but a certain class of overlap-

based graph approaches, termed the hierarchical approach, has been shown to generate

the least fragmented assemblies for long-read only assembly [116, 127, 131].

Hierarchical methods are well-suited to deal with the high error rates of long reads.

One of the key steps of this method is error correcting long reads before the merging

of reads, which takes advantage of sufficient read depth to reach a consensus sequence.

This can at times increase the base calling accuracy rate of long reads from ≈85% to

≈99.9% for the consensus reads [132]. Assemblers that do not initially error correct reads

have been developed [133, 134], but are outperformed by hierarchical approaches [127,

131]. Hierarchical methods can be further split into two subcategories: hybrid methods,

in which accurate consensus reads can be generated by aligning high-quality, short-read

sequencing data onto long reads [132, 135], and non-hybrid methods, which usually

involve mapping long reads onto themselves [15], although errors can be corrected using

a de Bruijn graph approach [136, 137]. Hybrid methods are generally thought to be best

suited when less than x30 long-read coverage is available, and non-hybrid assembly
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when at least more than x30 is available [138]. Once reads are error corrected, an overlap

graph is constructed through detecting read-to-read overlap [139] and then traversed,

resulting in an assembly.

3.1.2 Sequencing for Complete Recovery of Prokaryotic Chromosomes

When put in the context of generating complete bacterial and archaeal genomes, a clear

answer regarding which sequencing technologies to use exists. The presence of long-

read data is clearly required in order to produce a complete genome [8], as read length

must exceed repeat length in order for complete assembly to be likely [51, 73]. Short-

read sequencing alone is insufficient to close the gaps in many repeated regions [20, 43].

Whether long-read only assembly quality can match that of hybrid remains at this point

somewhat convoluted, as some comparative analyses give a positive answer [15, 116]

and some a negative [44, 48].

3.1.3 Current Recommendations for Optimal Coverage Depths

Determining necessary coverage for sequencing projects depends on several factors that

include the choice of sequencing technology, sequencing biases inherent in different

technologies, sequence read length, read error rates, choice of assembly algorithm, and

repeat complexity of the target genome [51, 52, 140]. We define optimal coverage as the

point where increased coverage does not improve assembly quality in terms of contiguity

or accuracy. The question of how much coverage is required to generate a complete de

novo assembly is the equivalent of asking at what point will almost all of sequencing

errors be corrected and even the most complex repeats in a genome be resolved.

In 1988, Lander and Waterman presented the equation C=LN/G, where C equals ex-

pected genome-wide coverage, L equals read length, N equals the number of reads, and

G equals the haploid genome size [141]. Key assumptions when calculating expected
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percentage of genome covered by assembled contigs is that reads are sampled in a com-

pletely randomly fashion [142]. However, theoretical coverage depths ignore sequencing

biases, such as the biases introduced by amplification in regions of high GC content [68],

k-mer specific biases introduced by stochastic disturbances at the pores in Nanopore

sequencing [143], sequence biases of homopolymer regions [70], and that not all reads

are assembled into contigs [144]. Therefore, estimates of the percentage of a genome

covered by contigs using the Lander-Waterman approach often do not always match up

with the true percentage of the genome covered by assembled contigs [144]. Even if ev-

ery base pair in a genome was represented at least once, higher depth of coverage would

be necessary in order to correct sequencing errors.

Non-theoretical approaches to estimating optimal depths of coverage also exist [96,

145]. These approaches assemble sequencing data at incremental depths and then at-

tempt to identify the point where increased coverage does not increase assembly quality.

However, these approaches are limited for two main reasons. First, these coverage bench-

marks are derived from sequencing and assembling only a small number of bacteria and

ignore the fact that optimal depths of coverage vary among lineages [51, 52, 140]. Sec-

ond, the accuracy of assemblies is determined by comparing the de novo assemblies to

an already known reference genome. This method of determining accuracy can be in-

accurate, as regions that are characterized as assembly errors can in reality be due to

naturally occurring strain-level variation [9, 26, 55].

3.1.4 Capabilities of Multiplexing Remain Underexplored

Multiplexing on a single long-read sequencing flow cell has produced several high-

quality, complete genomes using either a non-hybrid assembly approach with PacBio

sequencing [45, 46] or a hybrid assembly approach with MinION sequencing [48]. The

question of how many microbial genomes can be effectively completed by sequence data
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from multiplexing has not been accurately answered.

3.2 Experiments and Results

3.2.1 Analysis of Short-read Only Assemblies

3.2.1.1 Data Curation

We selected 30 publicly available short-read sequencing datasets from NCBI’s Short Read

Archive (SRA database numbers located in Appendix A) in order to determine if high

levels of coverage increased contiguity of short-read only assemblies. The data repre-

sented sequencing of various Salmonella strains, for a total of 28 strains, and the other

2 from E. coli strains that came from a single-cell sequencing project. The average read

length from the Salmonella strains was 150 bp and coverage ranged from x30 to x100.

The reads from the two E. coli sequencing runs had average read lengths of ≈250 bp

and coverages of ≈x2,000. All of the selected reads were paired-end. Collectively, our

selection represented sequencing data with a diverse range of read lengths and coverage

depths for two common model organisms.

3.2.1.2 Assembly Contiguity over Coverage Increment

We subset each dataset at an increment of 7-fold coverage, assembled the subsequent

downsized reads using the SPAdes assembler [85], and assessed the contiguity of the

subsequent assemblies using QUAST [86]. We previously found that for almost all of

the E. coli sequencing data with read lengths of 75, great improvement in number of

contigs occurs at low coverage levels up until ≈x50 coverage, but increased assembly

contiguity levels off between x50-x100 coverage (Fig. 2.1). Here, even with longer read

lengths of 150 bp, contiguity still levels off at a certain point, which was ≈x30 in the

case of the Salmonella strains (Figure 3.1). Contiguity leveled off at around x150 and x200
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coverage even when sequencing to an ultra-high depth of x2000 in the case of the two E.

coli strains (Figure 3.2).
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Figure 3.1: Contiguity of genome assemblies of 28 Salmonella strains at various depths
of coverage. These datasets were 150 bp Illumina NextSeq 500 paired-end reads. All
contigs are greater than 500 bp.

Indeed, at higher depths of coverage, the number of contigs increases in some of the

selected strains. This is likely due to genome assemblers having difficulty dealing with

large accumulations of sequencing errors [87]. In order to show that the leveling off of

contiguity was not simply due to failings of the SPAdes algorithm, but simply due to

the inherent biases of short-read sequencing and limits of short read length, we also ran

our pipeline on an E. coli strain (SRA # SRR3989809) with the IDBA [88] and MEGAHIT
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Figure 3.2: Contiguity of genome assemblies of 2 E. coli strains sequenced to ultra-high
depths at various depths of coverage. All datasets were 250 bp Illumina MiSeq paired-
end reads and were single-cell sequencing projects. All contigs are greater than 1,000

bp.

[146] assemblers, and the trend of the number of contigs decreasing none or very little

at certain coverage depths remained (Appendix B).

3.2.2 Analysis of Non-hybrid Assemblies and Multiplexing

Due to the inherent limits of short reads being able to generate complete assemblies

that we demonstrated in Chapter 2 of this thesis and that have been also demonstrated

theoretically [20], we began to ask to what extent long-read only assemblies can produce
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high-quality assemblies. Long-read only assemblies have shown to be able to produce

gapless genomes [8, 15]. However, simply gaging quality based on the number of contigs

per chromosome or N50 value is not a full measure of completeness [80], as assembly

accuracy is ignored. In order to get an exact measurement of the quality of a genome

assembly, we simulated long-read sequencing data based on publicly available genomes

classified as ”Complete” according to NCBI curation. Mapping the assemblies built

with the simulated data unto their corresponding reference genomes gave us an exact

measurement of assembly accuracy.

We chose to focus our analyses on PacBio data rather than Nanopore data. Non-

hybrid assemblies of Nanopore data have shown to be limited in contiguity [48] most

likely due to biases in base calling [16], while PacBio currently generates the least bi-

ased long reads available [70]. Furthermore, multiplexing on the Nanopore MinION

produces highly variable distribution of reads per sample. Read output per sample has

ranged from 0.092 Gb to 1.2 Gb per sample (a 13-fold difference) when multiplexing 12

K. pneumoniae (5.7 Mb) [48]. Multiplexing on PacBio’s Sequel System has shown much

less variation in output – output has ranged from 0.74 Gb to 1.7 Gb per sample [46]

when multiplexing 8 various bacteria (≈4.0 Mb), 0.16 Gb to 0.4 Gb with 12 multiplexed

Bacillus subtilis (4.0 Mb) [45], and 0.029 Gb to 0.056 Gb with 12 multiplexed Helicobacter

pylori (1.6 Mb) [45]. In these studies, PacBio multiplexing exhibited at most only about a

2.5-fold coverage difference.

PacBio provides recommendations regarding the upper bound of how many total Mb

of microbial genomes can be multiplexed (30-40 Mb depending on target genome com-

plexity and quality of gDNA available) and has a cap of 16 on the level of multiplexing

possible on their platforms [47]. To the best of our knowledge, there are no publicly

available guidelines or recommendations to the upper-bound regarding the number of

microbes that can be multiplexed on Nanopore’s MinION. Without an idea of the upper
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bound of multiplexing level for a given sequencing platform, our recommending which

types and sizes of microbial genomes that could be completed by multiplexing would

be only marginally useful.

3.2.2.1 Data Curation

We filtered the complete list of single-chromosome prokaryotic, plasmid-free genomes

from NCBI’s GenBank that had an assembly status classified as ”Complete Genomes”

down to a count of 7,779. From this list, we selected 311 genomes over various size

ranges to analyze (Table 3.1).

Genome Size (Mb) # Selected for Analysis

1.9-2.1 64

2.9-3.1 48

3.9-4.1 42

4.9-5.1 32

5.1-6.1 89

6.1-7.1 36

Table 3.1: Size ranges of all selected genomes for analysis

For every selected reference genome (complete list of GenBank accession numbers

located in Appendix A), we simulated long-read data with read profiles identical to

previously sequenced x8 multiplexed E. coli genomes (available at https://github.com/

PacificBiosciences/DevNet/wiki/8-plex-Ecoli-Multiplexed-Microbial-Assembly)

using the software SimLoRD [147]. Error rate model was set to the standard for PacBio

data (1, 2, and 12% error rate for substitutions, deletions, and insertions, respectively),

read length was log-normal distributed, and mean read length was ≈4,410.

We randomly subsampled the simulated PacBio reads at coverage increments of x5

ranging from 5-fold to 150-fold and then assembled the subset read data using the Canu

assembler [116]. We used the software QUAST [86] to assess the quality of each assembly

https://github.com/PacificBiosciences/DevNet/wiki/8-plex-Ecoli-Multiplexed-Microbial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/8-plex-Ecoli-Multiplexed-Microbial-Assembly
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across the range of coverage. We also used QUAST to map the assembled contigs back

onto the corresponding reference genome off of which a read set was simulated, which

provided the percentage of the true genome represented and amount of genes compared

to the known amount. All assemblies at a coverage depth of 5 were filtered out of

all downstream analyses, as every assembly at this depth was highly fragmented and

possessed extremely low accuracy.

3.2.2.2 Gapless Assemblies and Genome Size

Genomes without gaps were generated for slightly over 90% of the 311 selected organ-

isms at some coverage depth between x5 and x150. Assemblies for 96% of the organisms

covered more than 99.5% of their corresponding reference genome. We then reported

the percentage of genomes that were completed in terms of genome size (Table 3.2).

Genome Size (Mb) % of Gapless Assemblies

1.9-7.1 91.0

1.9-4.1 94.2
4.9-7.1 87.9

1.9-2.1 92.2
2.9-3.1 97.9
3.9-4.1 92.8
4.9-5.1 87.5
5.1-6.1 89.9
6.1-7.1 83.3

Table 3.2: Percentage of gapless assemblies across genome size ranges

3.2.2.3 Optimal Coverage and Genome Size

We then found the minimum coverage that yielded the highest amount of contiguity

or accuracy for each organism (Tables 3.3 and 3.4). Out of the entire pool, the mean

and median of the optimal coverage were 36 and 30, respectively, and excluding the
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28 fragmented assemblies had little effect on the mean and median of the depth of

coverage. The higher means as compared to medians indicate that the distribution of

required coverage is skewed towards genomes that require higher coverage depth.

Genome Size (Mb) Mean Median

1.9-7.1 x36 x30

1.9-2.1 x27 x25

2.9-3.1 x33 x26

3.9-4.1 x36 x30

4.9-5.1 x34 x30

5.1-6.1 x43 x30

6.1-7.1 x42 x35

Table 3.3: Optimal coverage in terms of contiguity across genome size ranges

Genome Size (Mb) Mean Median

1.9-7.1 x70 x61

1.9-2.1 x73 x63

2.9-3.1 x73 x66

3.9-4.1 x72 x61

4.9-5.1 x71 x61

5.1-6.1 x66 x66

6.1-7.1 x63 x56

Table 3.4: Optimal coverage in terms of accuracy across genome size ranges

As genome size increased, mean required coverage in terms of contiguity to generate

a gapless genome increased by x15 and mean required coverage in terms of accuracy

decreased by x10 as genome size increased. Due to assembling these genomes at a

coverage increment of x5, the corresponding coverage estimates could be affected by

probable variations. Therefore, the trends between coverage estimates and genome size

could be impacted by assembling across a coverage increment and/or random variation

of selected strains.
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3.2.2.4 Assembly Accuracy over Coverage Increment

The authors of Canu [116] show that as little as x20-x30 coverage can produce complete

genomes. They cite contiguity statistics which show that this coverage depth can pro-

duce a single contig per chromosome assemblies in bacteria. However, this definition of

completeness is somewhat narrow, as it does not properly address assembly accuracy. By

analyzing the mean fraction of the corresponding reference genome that is represented

over a coverage increment for each of our 311 selected strains, we found that increasing

coverage from x5 to x30 initially greatly improved assembly accuracy and increasing cov-

erage beyond x30 generally returned minimal benefits (Figure 3.3). However, by plotting

out a local regression line using the LOESS method [148], we observed that local vari-

ation in accuracy along the coverage increment exists and that 30-fold coverage is not

adequate for all strains (Figure 3.3). Such local variations explain why the ≈x70 mean

optimal coverage in terms of accuracy for various genome sizes (Table 3.4) and repeat

profiles (Table 3.7) is higher than x30 coverage.

Even the seemingly small increase of accuracy from 99.7% to 99.9% translates into a

decrease from 12,000 errors to 4,000 for a 4 Mb genome. An optional and computation-

ally intensive post-assembly polishing step may be able to further the mean percentage of

reference genome represented [149]. Only expending the resources needed to sequence

to only x20-x30 coverage for bacteria is impossible on PacBio’s Sequel System without

multiplexing due to high sequencing data output.

Here we report coverage vs. percentage of reference genome represented. Percent-

age of assembly that represents the true reference assembly provides better measure of

assembly quality than only contiguity statistics. Some of the assemblies only contained

one contig at low coverage levels (x20-x30), but then became more fragmented as cover-

age increased, possibly due to Canu having difficulties with accumulation of sequencing
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Figure 3.3: The mean fraction of an assembly’s corresponding reference genome covered
over a coverage increment. Each colored line represents a different strain. Gaps in a
given colored line are simply due to lying out of the selected y-axis range. The smoothed
regression line was set to red, and the local regression line calculated using the LOESS
method (f = 0.09) was set to black. While generating a perfectly contiguous or almost
contiguous assembly at depths as low as 20 in bacteria is possible [116], an increase of
read data improves assembly accuracy for many strains. While the mean accuracy of the
311 assembled genomes was ≈99.9%, average percentage of reference genome covered
varied among strains.

errors [87].

3.2.2.5 Gapless Assemblies and Complexity Class

Comparing total repeat length or percentage of the genome that contains repeated se-

quence with assembly quality as we did earlier with our short-read assemblies would

not be useful. Long reads generally span most mid-sized repeats (repeats less than 5

kb) found in the majority of prokaryotic genomes [8]. Summing up total repeat length

does not correctly measure genomic complexity in terms of long reads, as long reads
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typically resolve mid-sized repeats relatively easily. However, since PacBio read lengths

are generally log-normally distributed [147], mid-sized repeats may not be covered by

sufficiently long enough reads at all times.

Defining repeat complexity of an organism is difficult, as many different repeat

classes exist [71, 150]. Koren et al. define three classes of repeat complexity in prokary-

otes in terms of the rDNA operon [8], the largest repeat (5-7 kb) in most bacteria and

archaea [97]. Class I prokaryotes contain few repeats other than the rDNA operon, Class

II prokaryotes contain many mid-sized repeats while the rDNA operon remains the

longest, and Class III prokaryotes contain repeats longer than the rDNA operon. The

boundary between Classes I & II is set to the arbitrary count of 100. Out of all our 311

genomes analyzed, 86%, 5%, and 8% belonged to Class 1, 2, and 3, respectively.

We mapped each reference genome onto itself and found every repeat over 500 bp

and 95% identity using MUMmer4 [84]. We found that out of the 26 Class III genomes

(containing repeats longer than 7 kb) analyzed, 12 contained gaps. Class I & II genomes

were on average much easier to resolve as compared to Class III genomes (Table 3.5).

Complexity Class % of Gapless Assemblies

I, II, & III 91.0%

I & II 94.4%
III 53.8%

Table 3.5: Percentage of gapless assemblies in terms of genomic complexity classes

3.2.2.6 Optimal Coverage and Complexity Class

We then looked at the mean optimal coverage across our entire selected clade of organ-

isms in terms of both contiguity and accuracy. We found that more complex repeat

structure and higher desired assembly accuracy required higher levels of coverage (Ta-
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bles 3.6 and 3.7).

Complexity Class Mean Median

I, II, & III x36 x30

I & II x34 x26

III x60 x48

Table 3.6: Optimal coverage in terms of assembly contiguity across complexity classes

Complexity Class Mean Median

I, II, & III x70 x61

I & II x69 x61

III x76 x71

Table 3.7: Optimal coverage in terms of assembly accuracy across complexity classes

Koren et al. [116] show that assembling with x20 PacBio coverage using Canu out-

performs a x20 PacBio and x100 Illumina hybrid SPAdes assembly when simply looking

at contiguity statistics and recommend using a hierarchical method when over x20 cov-

erage of PacBio is attainable. We show that for the most complex class of genomes,

x76 coverage produced the highest level of accuracy on average (Table 3.7). We note

that since genomes were assembled across a coverage increment of x5, these coverage

estimates lie within the corresponding range.

3.2.2.7 Gapless Assemblies and GC Content

Bacteria range in GC content from 17% to 75% and variation in base composition has

been found to be corrlated with several factors, which includes genome size, coding se-

quence length, and and various environmental factors [151, 152]. The mean and median

GC content of all 311 genomes were 53.5 and 54.4, respectively. We reported GC content

ranges of selected genomes and percentage of completed genomes across each GC con-
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tent range (Tables 3.8 and 3.9). Genomes at the high and low of the GC content spectrum

were slightly more likely to contain gaps. We found no correlation between GC content

and optimal coverage in terms of contiguity or accuracy.

% of GC Content # Selected for Analysis

28.0-40.0 54

40.0-50.0 70

50.0-60.0 68

60.0-67.0 66

67.0-75.0 53

Table 3.8: GC content ranges of all selected genomes for analysis

% of GC Content % of Gapless Assemblies

28.0-75.0 91.0

28.0-40.0 87.0
40.0-50.0 92.9
50.0-60.0 97.1
60.0-67.0 84.8
67.0-75.0 92.5

Table 3.9: Percentage of gapless assemblies across a GC content ranges

3.2.2.8 Phylogenetic Perspective

We then attempted to answer the following question: do genomes that are not able to

be completely resolved cluster phylogenetically? Reporting which clades are especially

problematic for assemblers would give researchers better guides to sequencing projects.

We then used the software RNAmmer [153] to annotate the 16S rDNA sequence of

each reference genome and constructed a maximum-likelihood phylogenetic tree using

IQTree [154]. Ideal substitution model was found using ModelFinder [155] and boot-

strap values were calculated using the bootstrap method from Hoang et al. [156]. The
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phylogenetic tree was annotated using software from He et al. [157]. We found that

unresolved genomes clustered together on some clades of the phylogenetic tree while

many clades assembled without problem (Figure 3.4). Phylogenetic trees of the same

organsisms as on Figure 3.4 that include taxonomic labels, bootstrap values, and branch

lengths can be found in Appendix B.

3.2.2.9 Evolution of Repeats

The evolution of repeats, genome size, or other genomic characteristics in microbes has

been well documented in the literature. Genome size has already been found to be

correlated to bacterial and archaeal clades on the Tree of Life [103] and evolution of

repeats is a complex research area that has previosuly been studied [97]. Our findings

add that genomes that are unable to be resolved by a level of x8 multiplexing also

cluster together to some extent. This level of clustering may be due to simple chance.

Calculating if statistically significant clustering of traits across a phylogenetic tree occurs

due to chance is possible using statistics such as Pascal’s λ [158, 159]. However, such

statistical methods have been scrutinized, as the resulting measures of significance can

be based on the topology of only one tree [160] and varying evolutionary rates can cause

drastic bias of phylogenetic signal [161].

Theoretically, an evolutionary event that introduces a repeat longer than 7 kb (as

defined as the border between Class II & III genome complexity levels), would cause

all subsequent lineages to be almost 40% more likely to be unresolved by our chosen

level of multiplexing. This percentage increase is based on our previous findings of the

percentages of genomes in each complexity class that were resolved. However, one may

still be able to resolve genomes for species in complex clades at a level of multiplexing,

even if the odds are significantly lower. Out of the pool of selected genomes containing

the top 10 longest repeat regions ranging from 17 to 61 kb, two were still gapless. Two
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Figure 3.4: A maximum-likelihood unrooted tree of the 16S rRNA sequences of the 311

selected prokaryotic strains. Red dots represent Class I & II lineages that were unable to
be fully resolved with x8 multiplexed PacBio simulated data, black dots represent Class
III lineages that were unable to be fully resolved with x8 multiplexed PacBio simulated
data, and blue bars signify GC content.

characteristics of long-read sequencing platforms explain this phenomenon – the ability

of long-read sequencing platforms to generate sequence reads in a more uniform and

random fashion across the genome as compared to short-read sequencers [15] and the
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fact that long-read length profiles possessing a log-normal distribution [147]. These

characteristics can account for the longest repeats in these two genomes to be spanned

by the longest reads simply due to chance.

3.3 Discussion

Improved developments of sequencing technologies are typically followed by optimiza-

tion of genome assembly algorithms designed to deal with the types of new read data

[162]. This can be seen in the shift of using greedy, de Bruijn, or overlap assembly ap-

proaches over time [106]. These trends are still seen, with recent assemblers specifically

designed to deal with noisy long-reads [116, 133]. However, the practical use of such

algorithms is still limited by researchers not knowing the ideal sequencing depth at the

beginning of sequencing projects.

To the best of our knowledge, no usable model of how much coverage is optimal

for genome assembly exists. The theoretical depth coverage from reads can vary greatly

from the amount of coverage provided by assembled contigs [144]. Single, broad esti-

mates for optimal coverage depth for bacterial genomes have been provided [96], but

these estimates ignore the diverse levels of complexity in bacteria and archaea and the

fact that different assembly algorithms require different depths of coverage [51]. Fur-

thermore, simply assuming that longer total repeat sequence of a genome translates into

higher optimal coverage is also a fallacy. Repeats of several kbs in length are harder than

repeats of a few hundred bps to resolve, but the total length of repeats in the length

of hundreds can add a significant amount to the total repeated sequence. Even if indi-

vidual regions in prokaryotic repeat databases like the GenomeCRISPR database [163]

or Microsatellite Database [164] had some sort of individual measure of complexity, no

widely accepted genome-wide complexity classification system currently exists.



48

Excessive short-read coverage not only fails to produce high-quality genomes, but

can also be an unnecessary expenditure of time and finances. Too much coverage trans-

lates into higher costs of sequencing, more data storage space, and increased runtime of

assembly algorithms [165]. For example, one of the previously mentioned E. coli datasets

(SRA # DRR079902) was sequenced to past the depth of x1,800. Past the depth of x600,

there was inconsequential improvement of the number of contigs, largest contig, and

N50 value. Therefore, the x1,200 additional coverage (≈5 Gb of sequencing data) rep-

resented unnecessary sequencing in terms of assembly contiguity. Additional required

storage space may be multiplied when accounting for many funding sources now requir-

ing multiple backups of raw sequencing data. The runtime of SPAdes at x600 coverage

was only 1.5 hours, while at x1800 it was 8.25 hours, despite utilizing 16 cores, each

with 30 GB of RAM, on our university’s high-performance computing clusters. Ultra-

deep sequencing may be needed to detect extremely rare variants [166], but for typical

sequencing projects this represents unnecessary data.

We found that certain genomes were unable to be resolved with simulated reads

possessing multiplexed length profiles. Naturally, criticisms that simulated data are

not ”real data” always will be raised, but without simulated reads, no efficient way to

measure the true accuracy on a large scale exists due to the inherent nature of de novo

assembly.

Different genomic characteristics can impact how much coverage is needed to as-

semble a complete genome. The largest change in mean optimal coverage in terms of

either contiguity or accuracy occured as genomic complexity increased. The shift be-

tween Class I & II and III genomes caused a jump of 24-fold in mean optimal coverage

in terms of contiguity and a 7-fold increase in terms of accuracy. Mean optimal cov-

erage in terms of contiguity only increased by 15-fold for ≈2 Mb to ≈7 Mb genomes

and decreased by 10-fold in terms of accuracy across the same size range. The fact that
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mean optimal coverage in terms of assembly accuracy slightly decreased over a genome

size increment could be due to more larger genomes being unable to be completed than

smaller genomes proportionally – the gaps more commonly found in larger genomes

in our analyses that were unable to be resolved at any coverage between x5 and x150

limit higher assembly accuracy due to missing pieces that are unable to cover sections

of the subsequent reference genome and increased coverage can do nothing to increase

assembly accuracy in this case.

Our report on the percentages of Class I & II and Class III genomes that were able to

be completed by multiplexed data (94% and 54%, respectively) using the Canu assembler

and the estimates on optimal coverage depths in terms of contiguity and accuracy may be

impacted by inherent bias in NCBI’s GenBank. The genomes we analyzed were database

dependent, and some difficult to assemble genomes may not have been deposited into

the database as completed in the first place. Additionally, the quality of around 10%

of publicly available, long-read assembled de novo genomes that were not closed with

labor-intensive steps such as primer walking has been questioned [162]. For example,

some Pseudomonas koreensis strains contain ultra long, highly similar repeats (around 70

kb) that cannot even be closed by PacBio reads in some cases [167]. Currently, these

errors in such publicly available genomes cannot be corrected, outside of resequencing

every de novo genome with ultra-long Nanopore reads. Due to current database biases,

our estimates of the amount of genomes able to be resolved without gaps and major

errors by a level of x8 multiplexing most likely lies on the upper bound.

We also reported that the inability to close genomes clustered somewhat in a GC

content specific and phylogenetic manner. Genomes ranging in GC content from 50.0%

to 60%, which can be described in terms of information theory as prokaryotic genomes

with relatively high levels of entropy [168], were more likely to be completed (97.1%)

than genomes at the highs or lows of GC content. It must be noted that bacterial genomes
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can abruptly change due to movement of mobile elements [169], so categorizing a certain

clade as ”assembly friendly” or not can be contradicted by acquisition or loss of mobile

elements.

We recognize that some microbial sequencing projects do not have the ability to

definitively label the target genome into a certain complexity class prior to long-read

sequencing and assembly. Yet there are methods to estimate genomic complexity prior

to long-read sequencing. Repeat structure of a target organism can be inferred by the

repeat profile of a closely related species if taxonomic information is known. Species

belonging to some sort of taxonomic grouping, such as species belonging to the Yersinia

genus, have similar repeat profiles [170]. When taxonomic information is unknown, to-

tal repeat sequence length can be estimated by analyzing k-mer profiles [77]. However,

as repeats’ lengths can not be estimated, this technique is limited in terms of placing

genomes into the aforementioned complexity classes.

The coverage needed to generate the most accurate and contiguous assembly de-

pends on the complexity class of the target species. We show here that genomes con-

taining repeats longer than the rDNA operon are unsuccessfully assembled with x8 mul-

tiplexed reads almost 40% more than genomes with no such repeats. We recommend

that when a bacterial or archaeal target genome contains repeats longer than the rDNA

operon, researchers should use either non-multiplexed long-read data or a low level of

multiplexing. We suggest that researchers utilize multiplexing on long-read sequencing

platforms when working with lineages belonging to complexity Class I & II and that

more research be carried out to explore appropriate levels of multiplexing for genomes

in various complexity classes.
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Appendix A

Sequencing Read Data

SRA # Organism SRA # Organism SRA # Organism

SRR3989713 E. coli SRR3989714 E. coli SRR3989715 E. coli

SRR3989716 E. coli SRR3989717 E. coli SRR3989718 E. coli

SRR3989719 E. coli SRR3989720 E. coli SRR3989721 E. coli

SRR3989722 E. coli SRR3989723 E. coli SRR3989724 E. coli

SRR3989725 E. coli SRR3989726 E. coli SRR3989727 E. coli

SRR3989728 E. coli SRR3989729 E. coli SRR3989730 E. coli

SRR3989731 E. coli SRR3989732 E. coli SRR3989733 E. coli

SRR3989734 E. coli SRR3989735 E. coli SRR3989736 E. coli

SRR3989737 E. coli SRR3989738 E. coli SRR3989739 E. coli

SRR3989740 E. coli SRR3989741 E. coli SRR3989742 E. coli

SRR3989743 E. coli SRR3989744 E. coli SRR3989745 E. coli

SRR3989746 E. coli SRR3989747 E. coli SRR3989748 E. coli

SRR3989749 E. coli SRR3989750 E. coli SRR3989751 E. coli

SRR3989752 E. coli SRR3989753 E. coli SRR3989754 E. coli

SRR3989755 E. coli SRR3989756 E. coli SRR3989757 E. coli

SRR3989758 E. coli SRR3989759 E. coli SRR3989760 E. coli
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SRR3989761 E. coli SRR3989762 E. coli SRR3989763 E. coli

SRR3989764 E. coli SRR3989765 E. coli SRR3989766 E. coli

SRR3989767 E. coli SRR3989768 E. coli SRR3989769 E. coli

SRR3989770 E. coli SRR3989771 E. coli SRR3989772 E. coli

SRR3989773 E. coli SRR3989774 E. coli SRR3989776 E. coli

SRR3989777 E. coli SRR3989778 E. coli SRR3989779 E. coli

SRR3989780 E. coli SRR3989781 E. coli SRR3989782 E. coli

SRR3989783 E. coli SRR3989784 E. coli SRR3989785 E. coli

SRR3989786 E. coli SRR3989787 E. coli SRR3989788 E. coli

SRR3989789 E. coli SRR3989790 E. coli SRR3989791 E. coli

SRR3989792 E. coli SRR3989793 E. coli SRR3989794 E. coli

SRR3989795 E. coli SRR3989796 E. coli SRR3989797 E. coli

SRR3989798 E. coli SRR3989799 E. coli SRR3989800 E. coli

SRR3989801 E. coli SRR3989802 E. coli SRR3989803 E. coli

SRR3989804 E. coli SRR3989805 E. coli SRR3989806 E. coli

SRR3989807 E. coli SRR3989808 E. coli

Table A.1: SRA accession numbers of all short reads

analyzed in Chapter 2

SRA # Organism SRA # Organism SRA # Organism

SRR3934217 S. enterica SRR3934218 S. enterica SRR3934230 S. enterica

SRR3934231 S. enterica SRR3934240 S. enterica SRR3934245 S. enterica

SRR3934246 S. enterica SRR3934247 S. enterica SRR3934248 S. enterica

SRR3934249 S. enterica SRR3934250 S. enterica SRR3934251 S. enterica

SRR3934251 S. enterica SRR3934252 S. enterica SRR3934253 S. enterica
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SRR3934254 S. enterica SRR3934255 S. enterica SRR3934256 S. enterica

SRR3934257 S. enterica SRR3934262 S. enterica SRR3934263 S. enterica

SRR3934264 S. enterica SRR3934265 S. enterica SRR3934281 S. enterica

SRR3934282 S. enterica SRR3934283 S. enterica SRR3934284 S. enterica

SRR3934285 S. enterica SRR3934286 S. enterica DRR078802 E. coli

DRR078803 E. coli

Table A.2: SRA accession numbers of all short reads

analyzed in Chapter 3

GenBank # Organism GenBank # Organism

GCA 000247605.1 Acetobacterium GCA 001457475.1 Achromobacter

GCA 000021485.1 Acidithiobacillus GCA 000176855.2 Acidovorax

GCA 001307195.1 Acinetobacter GCA 002234535.1 Actinoalloteichus

GCA 001747425.1 Actinoalloteichus GCA 001262055.1 Actinomyces

GCA 001553935.1 Actinomyces GCA 001553565.1 Actinomyces

GCA 001543145.1 Aerococcus GCA 001543175.1 Aerococcus

GCA 900097105.1 Akkermansia GCA 000300005.1 Alcanivorax

GCA 001310225.1 Algibacter GCA 000016985.1 Alkaliphilus

GCA 001698205.1 Altererythrobacter GCA 000025885.1 Aminobacterium

GCA 900128415.1 Anaerococcus GCA 000022145.1 Anaeromyxobacter

GCA 000092365.1 Arcanobacterium GCA 000385565.1 Archaeoglobus

GCA 000194625.1 Archaeoglobus GCA 001294625.1 Arthrobacter

GCA 000010525.1 Azorhizobium GCA 000380335.1 Azotobacter

GCA 000196735.1 Bacillus GCA 000007845.1 Bacillus

GCA 000008165.1 Bacillus GCA 001318345.1 Bacteroides
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GCA 001314995.1 Bacteroides GCA 000012825.1 Bacteroides

GCA 000512915.1 Barnesiella GCA 002007565.1 Bartonella

GCA 000046705.1 Bartonella GCA 000743945.1 Basilea

GCA 000525675.1 Bdellovibrio GCA 000265505.1 Bernardetia

GCA 000010425.1 Bifidobacterium GCA 001025155.1 Bifidobacterium

GCA 000022965.1 Bifidobacterium GCA 000800475.2 Bifidobacterium

GCA 001676705.1 Bordetella GCA 000318015.1 Bordetella

GCA 002119665.1 Bordetella GCA 001078275.1 Bordetella

GCA 000195715.1 Bordetella GCA 000067205.1 Bordetella

GCA 000010165.1 Brevibacillus GCA 000635915.2 Brevundimonas

GCA 000016545.1 Caldicellulosiruptor GCA 000281175.1 Caldilinea

GCA 001886815.1 Caldithrix GCA 000018305.1 Caldivirga

GCA 002024185.1 Campylobacter GCA 000017465.2 Campylobacter

GCA 000612685.1 Castellaniella GCA 000006905.1 Caulobacter

GCA 000022005.1 Caulobacter GCA 001308265.1 Celeribacter

GCA 000016085.1 Chlorobium GCA 000018865.1 Chloroflexus

GCA 002025665.1 Chryseobacterium GCA 000833105.2 Clostridium

GCA 000022065.1 Clostridium GCA 000145275.1 Clostridium

GCA 000473995.1 Clostridium GCA 000331995.1 Clostridium

GCA 001584185.1 Collimonas GCA 000012325.1 Colwellia

GCA 000739375.1 Comamonas GCA 000025265.1 Conexibacter

GCA 000550805.1 Corynebacterium GCA 000196315.1 Croceibacter

GCA 000222485.1 Cyclobacterium GCA 000953715.1 Defluviitoga

GCA 000512895.1 Dehalobacter GCA 001953175.1 Dehalogenimonas

GCA 001644565.1 Deinococcus GCA 000018665.1 Delftia
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GCA 000021925.1 Desulfitobacterium GCA 000307105.1 Desulfobacula

GCA 000018405.1 Desulfococcus GCA 000023225.1 Desulfomicrobium

GCA 000235605.1 Desulfosporosinus GCA 000215085.1 Desulfotomaculum

GCA 000021385.1 Desulfovibrio GCA 000177635.2 Desulfurispirillum

GCA 000092205.1 Desulfurivibrio GCA 001278055.1 Desulfuromonas

GCA 900070355.1 Devriesea GCA 002214645.1 Diaphorobacter

GCA 001644705.1 Dickeya GCA 000020965.1 Dictyoglomus

GCA 000626635.1 Draconibacterium GCA 000023125.1 Dyadobacter

GCA 000632805.1 Dyella GCA 000013005.1 Erythrobacter

GCA 000026345.1 Escherichia GCA 000178115.2 Ethanoligenens

GCA 000152265.2 Ferroplasma GCA 000017545.1 Fervidobacterium

GCA 000163895.2 Filifactor GCA 000724625.1 Fimbriimonas

GCA 001831475.1 Flavobacterium GCA 000455605.1 Flavobacterium

GCA 000016645.1 Flavobacterium GCA 000013345.1 Frankia

GCA 000016745.1 Geobacter GCA 000025345.1 Geodermatophilus

GCA 001698225.1 Gordonia GCA 900170005.1 Gordonibacter

GCA 001951155.1 Gramella GCA 000178955.2 Granulicella

GCA 000940805.1 Gynuella GCA 001886955.1 Halodesulfurarchaeum

GCA 002075285.2 Halomicronema GCA 000696485.1 Halomonas

GCA 001545155.1 Halomonas GCA 001460635.1 Helicobacter

GCA 000019165.1 Heliobacterium GCA 002025725.1 Herbaspirillum

GCA 001267925.1 Herbaspirillum GCA 001040945.1 Herbaspirillum

GCA 000184685.1 Intrasporangium GCA 000723165.1 Janthinobacterium

GCA 001017655.1 Kiritimatiella GCA 000215745.1 Klebsiella

GCA 000300455.4 Kosakonia GCA 000011985.1 Lactobacillus
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GCA 000785105.2 Lactobacillus GCA 000010145.1 Lactobacillus

GCA 001050435.1 Lactobacillus GCA 000016825.1 Lactobacillus

GCA 000026505.1 Lactobacillus GCA 000224985.1 Lactobacillus

GCA 000269925.1 Lactococcus GCA 000166395.1 Leadbetterella

GCA 000019785.1 Leptothrix GCA 000196855.1 Leuconostoc

GCA 000196035.1 Listeria GCA 001190945.1 Luteipulveratus

GCA 001543325.1 Lutibacter GCA 001442535.1 Lysobacter

GCA 001442785.1 Lysobacter GCA 000284615.1 Marinobacter

GCA 001043175.1 Marinobacter GCA 000024425.1 Meiothermus

GCA 000024185.1 Methanobrevibacter GCA 000006175.2 Methanococcus

GCA 001560915.1 methanogenic GCA 001889405.1 Methanohalophilus

GCA 000025865.1 Methanohalophilus GCA 000306725.1 Methanolobus

GCA 000007345.1 Methanosarcina GCA 000970285.1 Methanosarcina

GCA 000970085.1 Methanosarcina GCA 000021965.1 Methanosphaerula

GCA 000785705.2 Methylomonas GCA 000214665.1 Methylomonas

GCA 000093025.1 Methylotenera GCA 002209385.1 Methylovulum

GCA 000202635.1 Microbacterium GCA 001617625.1 Microbulbifer

GCA 000010625.1 Microcystis GCA 000270245.1 Microlunatus

GCA 000145235.1 Micromonospora GCA 000306785.1 Modestobacter

GCA 900078775.1 Mycobacterium GCA 001632805.1 Mycobacterium

GCA 002105755.1 Mycobacterium GCA 001307545.1 Mycobacterium

GCA 000277125.1 Mycobacterium GCA 002007745.1 Mycobacterium

GCA 001583415.1 Mycobacterium GCA 000230895.3 Mycobacterium

GCA 000317305.3 Mycobacterium GCA 000015005.1 Mycobacterium

GCA 001655245.1 Mycobacterium GCA 000015305.1 Mycobacterium
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GCA 000833025.1 Myroides GCA 000024365.1 Nakamurella

GCA 002156705.1 Natrialbaceae GCA 000591055.1 Natronomonas

GCA 001654455.1 Niabella GCA 001007935.1 Nitrosomonas

GCA 900169565.1 Nitrospira GCA 000284035.1 Nocardia

GCA 000294515.1 Nocardiopsis GCA 000332115.1 Nonlabens

GCA 001586165.1 Obesumbacterium GCA 002162375.1 Oleiphilus

GCA 000143845.1 Olsenella GCA 000019965.1 Opitutus

GCA 000236705.1 Owenweeksia GCA 000961095.1 Paenibacillus

GCA 001465255.1 Paenibacillus GCA 000758725.1 Paenibacillus

GCA 000758685.1 Paenibacillus GCA 001644605.1 Paenibacillus

GCA 001685395.1 Paenibacillus GCA 000767615.3 Pandoraea

GCA 002079945.1 Parasaccharibacter GCA 000017565.1 Parvibaculum

GCA 000152825.2 Parvularcula GCA 001590605.1 Pedobacter

GCA 000023825.1 Pedobacter GCA 001721645.1 Pedobacter

GCA 000020645.1 Pelodictyon GCA 000271665.2 Pelosinus

GCA 001678945.1 Phaeobacter GCA 001010285.1 Photorhabdus

GCA 000785495.1 Pimelobacter GCA 000025185.1 Pirellula

GCA 000317025.1 Pleurocapsa GCA 000757785.1 Pluralibacter

GCA 001017435.1 Polyangium GCA 000973625.1 Polynucleobacter

GCA 000973725.1 Pontibacter GCA 001663175.1 Porphyrobacter

GCA 001026985.1 Pragia GCA 000193395.1 Prevotella

GCA 000014225.1 Pseudoalteromonas GCA 001563225.1 Pseudodesulfovibrio

GCA 000006765.1 Pseudomonas GCA 000237065.1 Pseudomonas

GCA 000213805.1 Pseudomonas GCA 000016565.1 Pseudomonas

GCA 000397205.1 Pseudomonas GCA 000007565.2 Pseudomonas



58

GCA 000012245.1 Pseudomonas GCA 002119765.1 Pseudorhodoplanes

GCA 000217815.1 Pseudothermotoga GCA 000007305.1 Pyrococcus

GCA 001577775.1 Pyrococcus GCA 001412615.1 Pyrodictium

GCA 000215705.1 Ramlibacter GCA 001580455.1 Ramlibacter

GCA 002116905.1 Rhizobacter GCA 000982715.1 Rhodococcus

GCA 000196695.1 Rhodococcus GCA 000166055.1 Rhodomicrobium

GCA 000013365.1 Rhodopseudomonas GCA 000013745.1 Rhodopseudomonas

GCA 000014825.1 Rhodopseudomonas GCA 001483865.1 Roseateles

GCA 000017805.1 Roseiflexus GCA 000165715.3 Rubinisphaera

GCA 000284255.1 Rubrivivax GCA 000013665.1 Saccharophagus

GCA 000018265.1 Salinispora GCA 000016425.1 Salinispora

GCA 001006005.1 Serratia GCA 000513215.1 Serratia

GCA 001572725.1 Serratia GCA 002075795.1 Shewanella

GCA 000018285.1 Shewanella GCA 000014885.1 Shewanella

GCA 002005305.1 Shewanella GCA 000018025.1 Shewanella

GCA 000091325.1 Shewanella GCA 000025705.1 Sideroxydans

GCA 001586195.1 Solibacillus GCA 000242635.3 Solitalea

GCA 000485905.1 Spiribacter GCA 001988955.1 Spirosoma

GCA 000974425.1 Spirosoma GCA 002067135.1 Spirosoma

GCA 000024545.1 Stackebrandtia GCA 000831485.1 Streptococcus

GCA 000463355.1 Streptococcus GCA 000007465.2 Streptococcus

GCA 000007045.1 Streptococcus GCA 000253395.1 Streptococcus

GCA 000993785.2 Streptomyces GCA 900079115.1 Sulfolobus

GCA 000014965.1 Syntrophobacter GCA 000014725.1 Syntrophomonas

GCA 001483385.1 Tenacibaculum GCA 000023025.1 Teredinibacter
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GCA 000265425.1 Terriglobus GCA 000179915.2 Terriglobus

GCA 000355675.1 Thalassolituus GCA 000305935.1 Thermacetogenium

GCA 002214465.1 Thermococcus GCA 000265525.1 Thermococcus

GCA 000816105.1 Thermococcus GCA 000009965.1 Thermococcus

GCA 000585495.1 Thermococcus GCA 000517445.1 Thermococcus

GCA 001647085.1 Thermococcus GCA 002214505.1 Thermococcus

GCA 002214545.1 Thermococcus GCA 000020985.1 Thermodesulfovibrio

GCA 000024385.1 Thermomonospora GCA 000021285.1 Thermosipho

GCA 000016905.1 Thermosipho GCA 000828655.1 Thermotoga

GCA 000321415.2 Thioalkalivibrio GCA 001020955.1 Thioalkalivibrio

GCA 000012745.1 Thiobacillus GCA 000227745.3 Thiocystis

GCA 000214825.1 Thiomicrospira GCA 000212415.1 Treponema

GCA 000214375.1 Treponema GCA 000184745.1 Variovorax

GCA 001677435.1 Woeseia GCA 000007145.1 Xanthomonas

GCA 000019585.2 Xanthomonas GCA 000973105.1 Zobellia

GCA 000023465.1 Zunongwangia

Table A.3: GenBank accession numbers of all complete

genomes used to simulate long-read data in Chapter 3
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Appendix B

Supplementary Graphs
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Figure B.1: Depth of coverage vs. N50 from assemblies of 34 various E. coli strains.
Each colored line represents a different strain. Assembly contiguity varies among the
closely-related bacterial strains and increased coverage provides little increase in genome
assembly contiguity past 100-fold coverage for most strains. Coverage was calculated by
dividing number of sequenced base pairs by the total length of contigs ≥ 500 bp.
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Figure B.2: Contig number vs. the number of coding regions and genome size – based
on IDBA assemblies. Variation in genome assembly quality, assessed here as genome
assembly contiguity, can be attributabed to the correlation between genome size and the
number of coding regions. The p values and 95% confidence intervals of ρ from left to
right are 4.77e-15 and 7.50e-13 and 0.57–0.78 and 0.52–0.75.
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Figure B.3: NG50 vs. repeat density of the assembled genomes – based on IDBA as-
semblies. This correlation indicates that assembly quality does not only decrease while
genome size increases due to a natural growth in repeats along with genome size, but
rather that an increase in repeats in a genome negatively affects assembly quality inde-
pendently of genome size. The p value and 95% confidence interval of ρ are 8.72e-06

and -0.59−-0.26.
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Figure B.4: NG50 shows little correlation with the abundance of coding regions in a
genome – based on IDBA assemblies. The p value and 95% confidence interval of ρ are
1.25e-3 and 0.13–0.49.
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Figure B.5: Contiguity levels off at certain depth of coverage independent of assembly
algorithm. Such leveling off of contiguity of these assemblies (E. coli, SRA # SRR3989809)
is due to limitations surrounding short reads’ lengths and biases and not simply the
failings of one specific assembly algorithm.
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Figure B.6: A maximum-likelihood unrooted tree containing bootstrap values and tax-
onomic lables of the 16S rRNA sequences of the 311 selected prokaryotic strains. Red
branches represent organisms that were unable to be fully resolved with x8 multiplexed
PacBio simulated data.
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0.1

Figure B.7: A maximum-likelihood unrooted tree containing branch lengths drawn to
scale of the 16S rRNA sequences of the 311 selected prokaryotic strains. Red branches
represent organisms that were unable to be fully resolved with x8 multiplexed PacBio
simulated data.
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Appendix C

Pipeline Code

#!/bin/bash

# This bash pipeline downloads sequencing data from NCBI in

fastq format , subsets data across a coverage increment ,

assembles all of the subset sequencing data , assesses the

quality of all the assemblies , and generates a csv file with

all of the statistics of the organisms over the selected

coverage increment. Read comments in the script to change

SRA numbers to analyze , output directory , and coverage

increment at which to run this script.

# Dependencies for this script available at the below links:

# SRAtoolkit \url{https ://www.ncbi.nlm.nih.gov/sra/docs/

toolkitsoft /}

# seqtk \url{https :// github.com/lh3/seqtk}

# SPAdes \url{http ://cab.spbu.ru/software/spades /}

# QUAST \url{http :// bioinf.spbau.ru/quast}

# For this script to run , all dependencies must be in your path
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# Exit function and trap to clean up files

function CLEAN_UP {

echo "We’re done!"

exit

}

trap CLEAN_UP SIGHUP SIGINT EXIT

# Set the variable $LIST to a list of SRA numbers you would

like to analyze

LIST=’SRR3989779 SRR3989780 ’

# Set output directory you would like all of the work to be

done in. Default is Coverage_analysis

OUTPUT=Coverage_analysis

mkdir ${OUTPUT}

# Downloads list of SRA numbers

prefetch -v ${LIST}

# For loop for running entire pipeline

for ACCESSION_NUMBER in $LIST; do

# Converts .sra files to .fastq

echo "Fastq -dumping , this may take some time ..."

fastq -dump --outdir ./${OUTPUT }/ --split -files ~/ncbi/public/
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sra/${ACCESSION_NUMBER }.sra

# Randomly subsets fastq files. If desired , change the

sequence increment corresponding to which coverage

increment is desired

for INCREMENT in $(seq 250000 250000 15000000); do

seqtk sample -s100 ./${OUTPUT }/${ACCESSION_NUMBER}_1.fastq

$INCREMENT > ./${OUTPUT }/${ACCESSION_NUMBER}_sub_${

INCREMENT}_1.fastq

seqtk sample -s100 ./${OUTPUT }/${ACCESSION_NUMBER}_2.fastq

$INCREMENT > ./${OUTPUT }/${ACCESSION_NUMBER}_sub_${

INCREMENT}_2.fastq

# Running the SPAdes genome assembler

spades.py -1 ./${OUTPUT }/${ACCESSION_NUMBER}_sub_${INCREMENT}

_1.fastq -2 ./${OUTPUT }/${ACCESSION_NUMBER}_sub_${

INCREMENT}_2.fastq -o ./${OUTPUT }/${ACCESSION_NUMBER}

_sub_${INCREMENT}_spades_assembly

# Running QUAST to generate statistics regarding the SPAdes

assemblies

quast.py -o ./${OUTPUT }/${ACCESSION_NUMBER}_sub_${INCREMENT}

_quast --no -plots ./${OUTPUT }/${ACCESSION_NUMBER}_sub_${

INCREMENT}_spades_assembly/contigs.fasta

# Adding SRA numbers into quast report files

sed -i "4i SRA_number ${x}" ./${OUTPUT }/${ACCESSION_NUMBER}

_sub_${INCREMENT}_quast/report.txt

}



71

done

done

# Converting quast results to a transposed csv file. This file

is now optimized for importation into R, the ggplot package ,

ect. Thanks to ghostdog74 for help with the awk command! \

url{https :// stackoverflow.com/questions /1729824/an -efficient

-way -to -transpose -a-file -in -bash} and ValeriyKr for help

with the sed command! \url{https :// unix.stackexchange.com/

questions /335276/ grep -v-how -to -exclude -only -the -first -or -

last -n-lines -that -match}

paste ./${OUTPUT }/* _quast/report.txt | tail -n +4 | sed ’s

/\(.\) /\1/g’ | awk ’

{

for (i=1; i<=NF; i++) {

a[NR ,i] = $i

}

}

NF>p { p = NF }

END {

for(j=1; j<=p; j++) {

str=a[1,j]

for(i=2; i<=NR; i++){

str=str" "a[i,j];

}
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print str

}

}’ | sed ’2 {h; s/.*/ iiii/; x}; /contigs/ {x; s/^i//; x; td; b;

:d; d}’ | tr ’ ’ ’,’ > Total_results.csv

exit
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genes. Nature Reviews Genetics, 12(10):692, 2011. 1.3.3



78

[33] Cyrus Chothia. One thousand families for the molecular biologist. Nature, 357:543–

544, 1992. 1.3.3

[34] Dennis Vitkup, Eugene Melamud, John Moult, and Chris Sander. Completeness in

structural genomics. Nature Structural and Molecular Biology, 8(6):559, 2001. 1.3.3

[35] Michael Levitt. Nature of the protein universe. Proceedings of the National Academy

of Sciences, 106(27):11079–11084, 2009. 1.3.3

[36] Chuan-Yun Li, Yong Zhang, Zhanbo Wang, Yan Zhang, Chunmei Cao, Ping-Wu

Zhang, Shu-Juan Lu, Xiao-Mo Li, Quan Yu, Xiaofeng Zheng, et al. A human-

specific de novo protein-coding gene associated with human brain functions. PLoS

Computational Biology, 6(3):e1000734, 2010. 1.3.3

[37] Adrian J Verster, Erin B Styles, Abigail Mateo, W Brent Derry, Brenda J Andrews,

and Andrew Fraser. Taxonomically restricted genes with essential functions fre-

quently play roles in chromosome segregation in Caenorhabditis elegans and Saccha-

romyces cerevisiae. G3: Genes, Genomes, Genetics, pages g3–300193, 2017. 1.3.3

[38] Cory Weller and Martin Wu. A generation-time effect on the rate of molecular

evolution in bacteria. Evolution, 69(3):643–652, 2015. 1.3.4

[39] Samuel K Sheppard and Martin CJ Maiden. The evolution of Campylobacter jejuni

and Campylobacter coli. Cold Spring Harbor Perspectives in Biology, page a018119,

2015. 1.3.4

[40] John W Drake. A constant rate of spontaneous mutation in DNA-based microbes.

Proceedings of the National Academy of Sciences, 88(16):7160–7164, 1991. 1.3.4

[41] Javier Alonso Iserte, Betina Ines Stephan, Sandra Elizabeth Goñi, Cristina Silvia
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and non-hybrid methods for de novo assembly of nanopore reads. Bioinformatics,

32(17):2582–2589, 2016. 3.1.3

[146] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam.

MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics

assembly via succinct de Bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

3.2.1.2
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