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The role of gamma frequency oscillation in neuronal interaction, and the relationship

between oscillation and information transfer between neurons, has been the focus of

much recent research. While the biological mechanisms responsible for gamma oscilla-

tion and the properties of resulting networks are well studied, the dynamics of changing

phase coherence between oscillating neuronal populations are not well understood.To this

end we develop a computational model of competitive selection between multiple stimuli,

where the selection and transfer of population-encoded information arises from compe-

tition between converging stimuli to entrain a target population of neurons. Oscillation is

generated by Pyramidal-Interneuronal Network Gamma through the action of recurrent

synaptic connections between a locally connected network of excitatory and inhibitory

neurons. Competition between stimuli is driven by differences in coherence of oscilla-

tion, while transmission of a single selected stimulus is enabled between generating and

receiving neurons via Communication-through-Coherence. We explore the effect of vary-

ing synaptic parameters on the competitive transmission of stimuli over different neuron

models, and identify a continuous region within the parameter space of the recurrent

synaptic loop where inhibition-induced oscillation results in entrainment of target neurons.

Within this optimal region we find that competition between stimuli of equal coherence

results in model output that alternates between representation of the stimuli, in a manner

strongly resembling well-known biological phenomena resulting from competitive stimulus

selection such as binocular rivalry.
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1. INTRODUCTION

Oscillation in the gamma-band (approximately 30–100 Hz) is pro-
posed to underlie a diverse range of high-level cognitive functions,
including memory (Axmacher et al., 2006; Jensen et al., 2007),
associative learning (Miltner et al., 1999), and sensory selection
(Fries et al., 2002; Schroeder and Lakatos, 2009). Transient periods
of synchronization and desynchronization or “phase-scattering”
(Rodriguez et al., 1999; Womelsdorf et al., 2007) indicate a role for
gamma oscillation in long-range cortical communication, and as
a plausible mechanism for task-specific networks of functionally
related neural areas to form dynamically in response to complex
and changing cognitive demands (Varela et al., 2001; Fries, 2009).

Recent evidence supporting a functional role for gamma oscil-
lation comes from a number of sources. Task-related changes in
gamma synchronization (Montgomery and Buzsáki, 2007; Jutras
et al., 2009; Popescu et al., 2009; van Vugt et al., 2010; Vinck et al.,
2010), phase reset of cortical oscillation over multiple frequency
bands during integration of sensory information (Lakatos et al.,
2007, 2009) and changes in synchronization associated with selec-
tive attention (Brovelli et al., 2005; Womelsdorf and Fries, 2007;
Doesburg et al., 2008) have all been the subject of experimental
study. Several computational approaches have also been taken to
establishing the link between oscillation and information transfer.
It has been shown across a range of neuron models that a single

neuron will selectively phase-lock with one of multiple oscillating
inputs (Gielen et al., 2010). Application of information theoretic
measures to inhibition-induced gamma oscillation demonstrate
a relationship between the phase and the quantity and direction
of information transferred between two excitatory neuronal pop-
ulations (Buehlmann and Deco, 2010), and that one of multiple
convergent stimuli can be recovered from the activity of a receiv-
ing population by switching that stimulus from an asynchronous
to an oscillatory state (Akam and Kullmann, 2010). It is also worth
mentioning the related study of coupled oscillators and the general
properties of weakly coupled oscillator networks, where “chimera
states” formed by subsets of phase-coherent oscillators have been
shown to emerge from network dynamics (Kuramoto and Battog-
tokh, 2002; Abrams and Strogatz, 2004; Omel’chenko et al., 2008;
Shanahan, 2010).

A theoretical framework for the mechanism underlying
gamma mediated neuronal communication is provided by
Communication-through-Coherence (CTC) (Fries, 2005), the
idea that coherent phase relationships allow the effective trans-
fer of information between oscillating neuronal populations. It
is suggested that neurons undergoing oscillation open temporal
windows for communication, where synaptic input arriving at or
near the peak of oscillation has a greater likelihood of inducing a
response in the receiving neuron. Convergent oscillating stimuli
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are effectively filtered by their relative phase to oscillation in the
target neurons, a relationship subsequently modeled through cor-
related population firing rates (Masuda, 2009). Changes in the
pattern of oscillation between neuronal populations thereby reflect
changes in the flow of information in the brain.

The biological underpinnings of neuronal oscillation, and the
process by which coherent relationships between populations are
established and maintained, are key to any plausible explanation
for flexible routing of neural information through phase coher-
ence. The mechanisms underlying gamma oscillation (Whitting-
ton et al., 1995, 2011; Traub et al., 1996; Ritz and Sejnowski, 1997;
Bartos et al., 2007; Tiesinga and Sejnowski, 2009; Wang, 2010),
long-range synchronization (Roelfsema et al., 1997; Uhlhaas et al.,
2009), and the role of different classes of inhibitory interneurons
in generating and maintaining oscillation (Whittington and Traub,
2003; Middleton et al., 2008) have been extensively investigated.
Inhibition and the action of locally connected networks of pyra-
midal neurons and inhibitory interneurons has been shown to
be of fundamental importance in generating gamma oscillation
(Whittington et al., 2000). Models of dynamic communication
have focused particularly on Pyramidal-Interneuronal Network
Gamma (PING), where synchronization is driven by a recurrent
synaptic loop between excitatory and inhibitory neurons (Börg-
ers et al., 2005). Excitatory pyramidal input to local interneurons
results in alternating episodes of synchronized firing between exci-
tatory and inhibitory populations, with synchronized volleys of
spikes from inhibitory neurons temporarily suppressing excita-
tory activity. Gamma oscillation driven by this mechanism has
been shown to increase the advantage of coherent excitatory stim-
uli over less coherent stimuli by raising the effective leakiness of
target neurons (Börgers and Kopell, 2008).

Not all recent evidence supports the communication hypoth-
esis however, and it remains unclear whether oscillation within
biologically observed boundaries will support the efficient and
reliable transfer of information (Ray and Maunsell, 2010). In this
study we examine in detail a model of communication between
neuronal populations that is driven by competition between oscil-
lating stimuli. In particular we are interested in factors that allow
inhibition-induced oscillation to gate the flow of population-
encoded information when multiple sources are competing to
entrain a single target. Our starting assumption is that the trans-
mission of stimuli between communicating neuronal populations
is enabled by phase-coherent oscillation, generated via interac-
tion between networks of excitatory and inhibitory neurons, and
that the absence of a coherent phase relationship between oscilla-
tion in connected populations should also inhibit the transfer of
stimuli between them. We explore changes in the response of neu-
rons receiving stimuli to variation in key parameters of the PING
mechanism of gamma generation.

We first construct a model of stimulus selection that utilizes
coherent oscillation to communicate one of two incoming spiking
stimuli to a target neuronal population. We consider top-down
control where target oscillation is driven by an external input to
the model, and bottom-up control where the gamma oscillation is
generated internally to the model in neurons receiving the stimuli
through recurrent inhibition. In both cases entrainment of target
neurons gates stimulus transmission. Information encoded in the

entraining stimulus, a one-dimensional orientation embedded in
the firing pattern of source neurons, is reproduced in the firing pat-
tern of the target population, and the orientation encoded in the
unentrained stimulus is filtered from target activity. In the bottom-
up case we show that a competitive mechanism emerges whereby
the target neurons are more likely to entrain to the stimulus of
greater coherence.

A computational search of the model parameter space reveals
the optimal region for stimulus selection to occur. We concentrate
on parameters significant in defining the characteristics of PING
oscillation, the weight, and delay of synapses within the recurrent
excitatory-inhibitory loop, while other parameters remain fixed
at biologically plausible values. We find a continuous region in
the parameter space where the population response of target neu-
rons is maximally correlated with a single stimulus. Parameters
within this region yield model activity consistent with competi-
tive transmission of stimuli. The search was carried out using both
quadratic integrate-and-fire (QIF) and Hodgkin-Huxley neuron
models, producing similar results. If the assumption of a func-
tional role for gamma oscillation and particularly PING generated
gamma in stimulus selection is correct, it is reasonable to suggest
that biological networks should exhibit similar tuning of para-
meters in locally connected networks of excitatory and inhibitory
neurons.

For synaptic parameters within the optimal region we found
that the activity within our model resembles a well-known exper-
imentally observed phenomenon, binocular rivalry, where two
images presented to an observer compete for perceptual awareness
(Andrews, 2001; Blake, 2001; Tong et al., 2006). When differing
images are viewed exclusively by each eye, a single stimulus dom-
inates perception such that only one of the images is seen by the
observer at any time. While the images remain static the perceived
image spontaneously flips between the two at irregular intervals.
If either image is perturbed it is immediately brought forward
into perception. When equally coherent stimuli are presented to
our model, the output of target neurons exhibits a similar alterna-
tion between representation of each incoming stimulus. We show
that the period and distribution of switching events within the
model is a close to match experimentally observed results, and
that changes in stimuli characteristics lead to realistic changes in
model behavior.

2. MATERIALS AND METHODS

We use two neuron models of differing complexity to establish the
robustness of network behavior to changes in the underlying neu-
ronal dynamics. Results were generated first using the QIF model
and repeated using the Hodgkin-Huxley model.

2.1. QUADRATIC INTEGRATE-AND-FIRE NEURON MODEL

The time evolution of the neuron membrane potential in the QIF
neuron model (Latham et al., 2000) is given by

dV

dt
=

1

τ

(V − Vr ) (V − Vt )

ΔV
+

I

C
(1)

where Vr and Vt are the resting and threshold values of the mem-
brane potential V, C is the capacitance of the cell membrane,
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ΔV =Vt −Vr, and τ = RC is the membrane time constant with
resistance R. The value I represents a constant depolarizing cur-
rent to the neuron. An action potential occurs when V reaches a
value Vpeak at which point it is reset to value Vreset. The dynam-
ics of the model are described by two fixed points, one stable
and one unstable, which merge in a saddle-node bifurcation to
produce an action potential. This corresponds to type I neuron
dynamics (Ermentrout, 1996), hence the model supports arbitrar-
ily low frequencies of firing and the phase response curve is strictly
positive (Gutkin et al., 2005), excitatory input can only advance
and not delay spike onset. For the reset condition Vpeak = ∞ and
Vreset = −∞ the QIF model is equivalent to the theta neuron model
described in (Ermentrout and Kopell, 1986). For all results relating
to the QIF model we use values Vr = −65 mV, Vt = −55 mV, and
τ = 50 ms.

2.2. HODGKIN-HUXLEY NEURON MODEL

The time evolution of the membrane potential in the classical
Hodgkin-Huxley model (Hodgkin and Huxley, 1952) is described
by the equations

C
dV

dt
= gNa m3h (VNa − V ) + gK n4(VK − V ) + gL (VL − V ) + I

(2)

dm

dt
= αm (V ) (1 − m) − βm (V ) m (3)

dh

dt
= αh (V ) (1 − h) − βh (V ) h (4)

dn

dt
= αn (V ) (1 − n) − βn (V ) n (5)

where V is the neuron membrane potential, C is the membrane
capacitance, and g the conductance. Reversal potentials are set to
VNa = 45, VK = −82, VL = −59.387 and maximum conductances
to gNa = 120, gK = 36, gL = 0.3. The rate functions for each channel
are given by

αm (V ) =
(V + 45) /10

1 − exp (− (V + 45) /10)
(6)

βm (V ) = 4exp (− (V + 70) /18) (7)

αh (V ) = 0.07exp (− (V + 70) /20) (8)

βh (V ) =
1

1 + exp (− (V + 40) /10)
(9)

αn (V ) =
(V + 60) /100

1 − exp (− (V + 60) /10)
(10)

βn (V ) = 0.125exp (− (V + 70) /80) (11)

We take a spike to occur at time t when V (t ) = 0 and
dV /dt (t ) > 0 (Börgers et al., 2010). In contrast to the QIF model,
the Hodgkin-Huxley model displays type II dynamics. Action
potentials are produced via a subcritical Hopf bifurcation (Mato
and Samengo, 2008). The phase response curve displays both pos-
itive and negative regions, small depolarizing current may delay
spike onset in the early phase of the firing cycle.

2.3. SYNAPTIC MODEL

We include synaptic input via a standard conductance-based
approach (Börgers and Kopell, 2003, 2005) with an additional
parameter for synaptic delay. For each synapse connecting neu-
rons i and j, a time dependent current is added to the right-hand
side of Eq. 1

sij(t ) =

{

gij e
−(t−ti+λ)/τ

(

Rev − Vj

)

if t ≥ (ti + λ)

0 if t < (ti + λ)
(12)

where t is the current simulation time, ti is the time of last firing
of neuron i, λ is synaptic delay, gij is the maximum conductance of
the synapse between neurons i and j, Rev is the synaptic reversal
potential, and τ is the synaptic decay time constant. When a spike
occurs the synaptic current jumps to value gij at the arrival time
of the spike (ti + λ) and decays exponentially with rate τ.

For excitatory and inhibitory decay time constants we use values
τ = 2 ms and τ = 10 ms respectively, based on the experimentally
determined time constants of AMPA receptor mediated excita-
tory synapses and GABAA receptor mediated inhibitory synapses
(Börgers and Kopell, 2005). For excitatory synapses we use rever-
sal potential above the spiking threshold of the neuron model
(Table 2). There are two cases to consider for inhibitory neurons.
If the reversal potential is below the resting potential of the neu-
ron the inhibition is hyperpolarizing, if it is near or above the
resting potential it is termed shunting. Inhibitory input to hip-
pocampal primary cells has been shown to undergo a coordinated
transformation from shunting in early development to hyperpo-
larizing in mature cells (Ben-Ari, 2002), although there is evidence
that certain classes of inhibitory synapse connecting interneurons
remain shunting throughout development (Banke and McBain,
2006). In this study we take all inhibitory-to-excitatory synapses
to be hyperpolarizing.

2.4. NETWORK ARCHITECTURE

We use a two-layer feedforward architecture, based on a common
motif in the visual system of input from two neuronal popula-
tions converging on a third (Fries, 2009). The model consists of
three populations of 1000 excitatory and a single population of
200 inhibitory neurons (Figure 1) each representing a local cor-
tical network of excitatory pyramidal or inhibitory interneurons.
Two excitatory populations in the source layer of the network
project synaptic connections onto the target excitatory population,
source populations generating separate stimuli that are received
in the target layer. The source and target excitatory populations
are connected topographically (S1, S2 in Figure 1) to preserve
transmission of stimuli between the two layers of the network,
each source excitatory neuron projecting a single synapse onto
an opposing neuron in the target excitatory population. Simu-
lation parameters are given in Table 1. We maintain the same
network connectivity for both QIF and Hodgkin-Huxley neu-
ron models with modified synaptic conductance. Delays for all
synapses between any two populations within the model are con-
stant, with the maximum conductance for each synapse sampled
from a uniform random distribution (Table 2).

We consider two variations of the model representing both
top-down and bottom-up control of stimulus selection. Attention
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FIGURE 1 | Schematic of the two-layer feedforward network model

used in this study. The source layer consists of two populations of

excitatory neurons (E 1, E 2). The target layer contains a single population of

excitatory (E 3) and a single population of inhibitory (I1) neurons. Each

excitatory source layer neuron receives oscillating external current and

Poisson spiking input, resulting in a random pattern of firing with the

stimulus represented by elevated activity within the population at a

preferred orientation. Excitatory neurons of the target layer (E 3) receive

both stimuli via a set of topographic synaptic connections (S1, S2). Within

the target layer excitatory and inhibitory populations are fully connected

(S3, S4).

has been modeled previously as a top-down process (Buia and
Tiesinga, 2006, 2008) where the top-down signal is assumed
to represent some prior knowledge or goal. Imaging and neu-
rophysiological studies indicate prefrontal and parietal areas as
the source of top-down control in the brain (Buschman and
Miller, 2007) in agreement with attentional deficits introduced
by lesions to these areas, although much of the evidence is cor-
relative (Miller and D’Esposito, 2005) and the nature of these
signals remains unclear. Detection of behaviorally relevant but
unexpected stimuli, such as the process of biased competition
proposed to underlie visual attention (Desimone and Duncan,
1995; Reynolds and Desimone, 2003), is assumed to be bottom-
up, i.e., driven by properties of the stimulus and not by prior
expectation.

In the top-down case the model contains only excitatory popu-
lations (E1, E2, and E3 in Figure 1), there is no inhibitory synaptic
input to excitatory target neurons. Subthreshold oscillation is gen-
erated in both source and target excitatory neurons via an external
input of the form

o (t ) = ε sin(2πft + θ) (13)

where ε is the amplitude of oscillation, f is frequency, and θ is phase
offset. Each neuron in the model additionally receives a unique
noise term sampled from a Poisson distribution with scaling fac-
tor F, representing external synaptic input from the surrounding

Table 1 | Simulation parameters.

QUADRATIC INTEGRATE-AND-FIRE MODEL

Vr −55 mV

Vt −65 mV

τ 50 ms

C 1 µF

Resolution 0.1 ms

HODGKIN-HUXLEY MODEL

VNa 45 mV

VK −82 mV

VL −59.387 mV

gNa 120 nS

gK 36 nS

gL 0.3 nS

C 1 µF

Resolution 0.01 ms

EXTERNAL INPUT (POISSON)

ψ ([0.9,0.1]), 0.1

FQIF 22 mV

FHH 12 mV

EXTERNAL INPUT (CURRENT)

ε ([1.0,9.0]), 3.0 mV

f 40 Hz

STIMULUS

a 1

m 2

γ1 π/4

γ2 3π/4

θ2 − θ1 ([−π,π]), π

Where a range of values was used for some simulation results, the maximum and

minimum values considered for the parameter are given first in brackets followed

by the default value.

Table 2 | Synaptic parameters.

Stimulus (S1, S2) Excitatory (S3) Inhibitory (S4)

τ (ms) 2 2 10

λ (ms) 1.0 ([0.0, 6.0]), 2.2 ([0.0, 6.0]), 2.2

QUADRATIC INTEGRATE-AND-FIRE MODEL

g (nS) 5 Rand(0, 1]*0.03 Rand (0,1]*0.1

Rev (mV) 0 0 −80

HODGKIN-HUXLEY MODEL

g (nS) 0.1 Rand(0, 1]*0.01 Rand(0, 1]*0.013

Rev (mV) 0 0 −80

neural tissue. Every neuron within a single excitatory population
receives input of the same parameter values (Table 1). By main-
taining a constant frequency of oscillation within the gamma range
of f = 40 Hz for all excitatory populations, while varying parame-
ters ε and θ of Eq. 13 within the source layer of the network, we
control the relative phase and coherence of oscillation between
stimuli, and between stimuli and the target layer. We consider the
effect of varying parameters of both synapses and of incoming
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stimuli on entrainment of target neurons and the resulting model
output.

In the bottom-up case the model includes all excitatory and
inhibitory populations (E1, E2, E3, and I 1). Oscillation is gener-
ated in source excitatory populations (E1, E2) via an external input
of the form given in Eq. 13, and all neurons in the model receive the
same Poisson input with scaling factor F. We replace the external
current supplied to the target excitatory population (E3) with the
action of the inhibitory population (I 1) and the PING mechanism
of generating gamma oscillation. All-to-all synaptic connectivity
between excitatory and inhibitory neurons in the target layer of
the network (S3 and S4 in Figure 1) forms a recurrent excitatory-
inhibitory loop, resulting in a sustained oscillation in the target
neurons in response to activity generated by the incoming stimuli.
This allows us to consider the relationship between the phase and
coherence of the oscillating stimuli and the activity of receiving
neurons. The frequency, phase, and coherence of oscillation are the
result of interaction between target excitatory and inhibitory pop-
ulations, and are strongly dependent on characteristics of synapses
local to the target layer. For all results we assume equal delay on
synapses in both directions of the excitatory-inhibitory loop.

2.5. STIMULUS AND ANALYSIS OF POPULATION RESPONSE

We establish transmission of information between layers of the
model by encoding a one-dimensional circular variable in the
activity of each source layer excitatory population, and decoding
the response of the target excitatory neurons in order to recover
the angle of the transmitted stimulus. Each source layer excitatory
neuron within a single population is assigned a preferred orienta-
tion varying between −π and π, with neurons arranged in a ring
topology with equal spacing between them. Following (Seung and
Sompolinsky, 1993) we represent the circular variable with the
tuning curve generated by the function

r(t ) =

{

cosm(πγ/2a) if |γ| < a

0 otherwise
(14)

where m controls the rise, a controls the width, and γ controls the
angle of the curve. The output of Eq. 14 is supplied as an addi-
tional input to each excitatory source population modulated by
the oscillating current described in Eq. 13. This results in an ele-
vated firing rate within the population where the angle is closest
to the preferred orientation of the neuron, oscillating at frequency
f with phase θ. The difference in angle supplied to each source
layer excitatory population determines the spatial separation of
the stimuli. Stimulus parameters are given in Table 1.

We use the cross-correlation of average binned spike counts to
measure the similarity in activity of the target neuronal population
to each incoming stimuli, with the correlation coefficient between
a single source population si and target population t defined as

c (si , t ) =

∑nbin
j=0 (sij − s̄i)(tj − t̄ )

√

∑nbin
j=0 (sij − s̄i)

2 ∑nbin
j=0 (tj − t̄ )2

(15)

where nbin is the total number of bins, and each sij and tj is the
average spike count across all neurons in a source population and

target population for a single bin j. Each simulation was divided
into a series of trials of equal length, where synaptic weights and
the initial phase of stimuli were re-initialized with random val-
ues at the start of each trial. The average values over all bins for
a single trial are denoted by s̄ i and t̄ . We are interested in model
parameter values that result in one of the stimuli being commu-
nicated to the target and the other being filtered out, where target
activity is maximally correlated with one stimulus and decorre-
lated with the other. We measure this using the absolute difference
in cross-correlation between stimuli and target

ρ = |c(s1, t ) − c(s2, t )| (16)

where large values indicate strong correlation between the target
and a single stimulus, and low values correlation with both or
neither stimuli.

Additionally in Section 1 we apply a template-based method to
decode the response of the target layer excitatory network, where
the template is a function fitted to the output of target cells esti-
mating the population response to a single stimulus (Deneve et al.,
1999; Quiroga and Panzeri, 2009). Following (Akam and Kull-
mann, 2010) the excitatory population is grouped into 20 bins
of 50 neurons of adjacent preferred orientation. After each trial
the total spike count in each bin is transformed to the frequency
domain using a short-time Fourier transform (STFT) with binned
spike counts filtered across a 1 s Hamming window. We use the
normalized amplitude of the STFT at 0 Hz across bins, corre-
sponding to the normalized average firing rate, as the output of
the target layer of the network. The 40-Hz spectral component
of the STFT represents power in output signal at the frequency
of the stimuli. We base our template on the binned average fir-
ing rate however as biological implementation is clear, a plausible
network for comparatively complex maximum-likelihood decod-
ing of two-dimensional stimuli has been demonstrated previously
(Deneve et al., 1999).

A template was generated for each stimulus over each varia-
tion of the model using training data generated independently of
simulation results. The output of the network was first averaged
over several presentations of a single stimulus to produce a mean
amplitude across bins. A Von Mises distribution was then fitted
minimizing the least-squares error to the normalized power in
each bin, where the distribution is given by

f (θ, b) = S
ebcos(θ)

2πI0 (b)
+ C (17)

with parameters angle θ and concentration b, and where S is a
scaling factor, C a constant, and I 0 the modified Bessel function of
order 0. The decoded output of the network is then taken to be the
stimulus with minimal error between the template and normal-
ized average binned firing rate on any given trial. We use the value
ϕ to denote the proportion of trials for any given set of model
parameters corresponding to the first stimulus.

2.6. NUMERICS

All simulations using the QIF model were run over a fixed step size
of 0.1 ms, with numerical integration of differential equations for
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all neurons carried out using a fifth-order Runge-Kutta method.
The code for each simulation and the following analysis was writ-
ten in C++,utilizing routines from the GNU Scientific Library
(Galassi et al., 2009) for random number generation and frequency
domain conversion of binned output. Visualization of results was
carried out in MATLAB. The simulation framework, developed
specifically for this study, is designed to allow search over multi-
ple dimensions of a user-defined subsection of model parameter
space with variable resolution per dimension. Computation can
be carried out in parallel between cores of multiple CPUs on a dis-
tributed computing system when required. The workload run on
each core is independent, giving a linear increase in performance
for each additional core added to the system. Our simulation and
analysis were accelerated with the aid of the Imperial College High
Performance Computing (HPC) system.

The complete model contains 3200 QIF neurons and 4.02 × 105

conductive synapses. Generation of 1 s of simulation time at 0.1 ms
resolution takes approximately 12 s of CPU time when run on a
single core of one of the 3.6-GHz Intel Xeon nodes comprising
the HPC system. Parallel execution using a large distributed clus-
ter allowed us to explore the parameter space of the model over
an area and resolution that would have been otherwise infeasible.
Search over the space of excitatory-inhibitory synapses, compris-
ing three parameters divided into a 41 × 41 × 41 grid with 100
iterations per data point, required 6.89 × 106 total iterations of the
model, and approximately 6 h of real-world time per core when
distributed over 5000 cores of the HPC system.

In Section 1 we present results with the QIF model replaced
by the Hodgkin-Huxley model for all neurons. We used the same
fifth-order Runge-Kutta method for integration of all differen-
tial equations involved in the model, with increased resolution of
0.01 ms per step. Search over the model parameter space was per-
formed over a 41 × 41 × 41 grid with 10 iterations per data point
for 6.89 × 105 total iterations. Each second of simulation time
required approximately 200 s of CPU time to execute, the entire
simulation requiring approximately 4 h per core when run over
10000 cores of the HPC system, or 4.5 years of total CPU time.
Generating Figures 5E,F over a 101 × 101 grid with 100 iterations
per data point required approximately 8 h per core over 10000
cores, or 9 years of total CPU time for each figure.

3. RESULTS

3.1. COMMUNICATION-THROUGH-COHERENCE

In this section we develop a model of stimulus selection through
phase coherence. We consider both top-down selection, where the
properties of target oscillation are determined by an external con-
trol signal applied to the target neurons, and bottom-up selection,
where oscillation is driven by recurrent inhibition. Our network
consists of three populations of excitatory neurons each receiv-
ing Poisson input and oscillating current. Two source populations
generate stimuli which are sent to a third target population via
a set of topographically connected synapses (Figure 1). In the
bottom-up case oscillating drive to the excitatory target popula-
tion is replaced by the action of a population of inhibitory neurons,
with all-to-all recurrent target excitatory-inhibitory connectivity.
The frequency and distribution of inhibitory spikes and resulting
oscillatory dynamics of the target layer in response to excitatory

input is dependent on parameters of the synaptic loop linking
the two target layer neuronal populations. We aim to establish
a competitive mechanism between source and target layers of the
model where communication is the result of entrainment to one of
the incoming stimuli, using stimulus coherence as the competitive
characteristic driving selection.

When activity of the target population is unfiltered by an exter-
nal input, with no top-down control signal applied to the network
and target afferents restricted to synaptic and Poisson input, each
stimulus is equally represented in the firing of the target neu-
rons (Figure 2A). The average firing rate of target excitatory
neurons exhibits two equal peaks at the preferred orientations of
each stimulus (Figure 2B). With oscillation induced in the target
excitatory population via an external control signal, the relative
phase between the target oscillation and that of incoming stimuli
determines representation of the stimuli in the firing of the tar-
get neurons. When the target oscillation is in-phase with a single
arriving stimulus, the activity of the model in the top-down case
is in agreement with the hypothesis that coherent oscillation aids
transmission of information (Figure 2C). Coherent phase between
target and stimulus results in elevated activity in the target neurons
at the orientation of the in-phase stimulus and reduced activity at
the orientation of the out-of-phase stimulus (Figure 2D).

The entrainment properties of neuronal models subject to
oscillatory input have received extensive numerical and analyti-
cal treatment. The role of top-down attention in regulating the
coherence of oscillation in a target neuron (Tiesinga et al., 2004;
Tiesinga, 2005) and the selective response of a neuron to multiple
oscillating inputs (Börgers and Kopell, 2008; Gielen et al., 2010)
have been discussed in detail. We include two properties observed
in biological networks in the present model to extend previous
results. Single neurons recorded during cortical gamma rhythm
have been shown to fire irregularly and at slower rate than the
oscillation frequency of local field potential (LFP) (Pesaran et al.,
2002; Geisler, 2005; Kondgen et al., 2007; Colgin et al., 2009), with
the effect observed in both pyramidal and interneurons (Csicsvari
et al., 1999), and individual neurons comprising the oscillating
population displaying approximately Poisson interspike interval
(ISI) distribution (Softky and Koch, 1993). The combination of
coherent network oscillation and intermittent firing of single neu-
rons has been shown to result from high levels of input noise
coupled with strong recurrent inhibition (Brunel, 2000; Brunel
and Wang, 2003). The effect is reproduced in the current model.
Figure 4A shows the membrane potential and firing of a sin-
gle excitatory and a single inhibitory neuron against normalized
spiking activity of excitatory and inhibitory populations for the
QIF model, and Figure 4B for the Hodgkin-Huxley model. Oscil-
lation in both target populations is composed of the aggregate
activity of a changing subset of neurons, with no single neuron
firing regularly or with a fixed phase offset within the period
of oscillation. The ISI distribution for a single excitatory neu-
ron and fitted negative exponential is shown for both models in
Figure 4C.

Additionally, each excitatory target neuron within the model
receives as input an independent spike train with properties rel-
ative to its position within the population. Each input is highly
random, with average coefficient of variation (CV) across spike
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FIGURE 2 | (A) With no external oscillation applied to the target layer of

the top-down model of stimulus selection, both stimuli (E 1, E 2) are equally

represented in the activity of the excitatory target population E 3. The

average activity in Hertz of the excitatory source (red/blue line) and target

(black line) populations are shown in the lower panel of each plot. (C) An

external top-down control signal applied to the target population in-phase

with arrival of stimuli E 1 results in elevated firing at the orientation of that

stimulus and effective filtering of the out-of-phase stimulus E 2. The

average firing rate (bar) and fitted Von Mises template for activity of each

stimulus (red/blue lines) are shown in (B,D), where each bar is the

normalized average firing rate of a single bin of 50 neurons of consecutive

preferred orientation.

trains comprising each source population greater that 0.9, and SD
within ±0.15, for values of ε Eq. 13 in the range [0, 1.0]. This is
consistent with the CV of experimentally observed neurons within
the visual cortex (Softky and Koch, 1993). The synchronization of
the population of neurons comprising the stimulus increases with
ε however. Applying multivariate ISI-diversity (Kreuz et al., 2009)
as a measure of population synchrony to neurons within ±0.3c

of stimulus maximum results in decreasing values in the range
[0.7, 0.45] over the same range [0, 1.0] of ε, indicating an increase
in the coherence of firing within the population with increasing
amplitude of oscillating input. Orientation selective cells are found
widely throughout sensory areas of brain such as the visual and
motor systems. It is reasonable that in a model of sensory selec-
tion between connected neuronal populations, such as converging
areas of the visual cortex, input to each neuron is non-uniform
and related to the stimuli being received. Entrainment of the tar-
get population to an individual oscillating stimulus within the
current model then results from the aggregate activity of a popu-
lation of target neurons receiving independent spatially encoded
spiking input.

We start by considering the boundary cases for communica-
tion of a single stimulus to occur following CTC, specifically
the dependence of transmission of stimuli between source and
target on the phase relationship between the three oscillating
populations. Given stimuli and target oscillating at the same fre-
quency, we expect the relative phase of oscillation to be optimally
aligned when one stimulus arrives close to the peak and the other
close to the trough of target oscillation, i.e. when both stimuli
arrive at the target neurons directly out-of-phase with a single
stimulus in-phase with the target. We expect the corresponding
worst-case to occur when the phase of both stimuli is directly
aligned. Measures of correlation and decoding discussed in Section
5 are used to examine cases in between. An initial series of tri-
als run with no sinusoidal modulation of stimuli resulted in low
mean correlation between source and target excitatory popula-
tions (4.3 × 10−3 ± 0.02), confirming that results were not simply
due to the presence of the control signal. Figure 3A shows the
relationship between the relative phase of oscillation of the three
excitatory populations and the cross-correlation of stimuli and tar-
get activity. Results are presented over a 41 × 41 grid with each data
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FIGURE 3 | Properties of QIF model output for stimuli of equal

coherence, where oscillation is driven in target neurons by a top-down

control signal. (A) Difference in cross-correlation (indicated ρ) of stimuli and

target activity enumerated over the range of relative phase values for

oscillation in the three excitatory populations. Peaks indicate points of

greatest correlation with a single stimulus, and θ1, θ2, and θ3 represent the

phase of the two source and target populations respectively. (B) Cumulative

values along the axis maintaining θ3 (upper) exhibit a single maxima where

stimuli are directly out-of-phase. At this point, differences in source and target

phase (lower) lead to two maxima at points where target oscillation is

in-phase with either arriving stimulus accounting for delay. (C) The proportion

of decoded trials corresponding to the first stimulus (indicated ϕ) over the

same range of relative phase values. (D) Cross-section taken at the optimal

relative phase for selection of each stimuli (upper panel, the first stimulus

shown by a solid line and the second by a dashed line) and cumulative values

along the axis of varying stimulus phase (lower).

point the mean over 100 trials. Values over a single dimension are
shown in Figure 3B. In-line with intuition, target activity is maxi-
mally correlated with a single stimulus when |θ1 − θ2| = π, where
both stimuli oscillate directly out-of-phase (Figure 3B upper). For
the case θ1 = θ2, where stimuli are directly aligned, both exhibit
approximately equal correlation with target output regardless of
the phase difference between model layers.

Results maintaining maximal phase offset between source pop-
ulations and considering correlation relative to target oscillation
are shown in the lower panel of Figure 3B, with peaks correspond-
ing to the optimal phase offset between the target neurons and each
stimulus for communication to occur accounting for the delay
over synaptic connections linking model layers. In regions where
the phase of target oscillation is unbiased relative to the phase
of stimuli, top-down control is similarly of no benefit in filtering
the stimuli in target activity. The results of decoding model output

over the same parameters and dimensions are shown in Figure 3C,
with areas where target neurons are highly correlated with a single
source corresponding to consistent decoding to a single stimulus
across trials. A cross-section of decoding results at points where
correlation between source and target is maximal is shown in the
upper panel of Figure 3D. Coherent oscillation between target
neurons and a single stimulus produces reliable decoding results
to within a small phase offset between stimuli, suggesting a wide
margin within which decoding is unaffected by variation in rel-
ative stimulus phase. In the lower panel of Figure 3D we show
cumulative results for decoding while varying source and target
phase, with maxima and minima corresponding to points where
correlation with a single stimulus is greatest.

Results for the bottom-up case are given in Figure 4D. We show
correlation between activity of target neurons and stimuli, varying
both the base and relative amplitude of oscillating input to source
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FIGURE 4 | Membrane potential of a single excitatory (upper) and

inhibitory (lower) neuron within the target excitatory (E 3) and

inhibitory (I 1) populations, for the (A) QIF and (B) Hodgkin-Huxley

bottom-up model of stimulus selection. Neuron firing is indicated by a

square at the peak of membrane potential, and the normalized spiking

activity of the entire excitatory or inhibitory neuronal population shown as

a shaded area. In both cases firing of individual neurons within the model

is irregular, with no single neuron firing regularly or at fixed phase offset

within the period of oscillation. (C) The normalized distribution of interspike

intervals with fitted negative exponential for a single target excitatory

neuron, for QIF (upper) and Hodgkin-Huxley (lower) neuron models. (D)

Cross-correlation of QIF excitatory target activity to the first (upper) and

second (lower) stimulus for varying magnitude and relative stimuli

coherence.

populations. Selection is competitive in that the stimulus display-
ing greater coherence of firing within the encoding population
of neurons is more likely to entrain the target layer. In order to
understand the sensitivity of this effect to changes in model para-
meters, a number of simulations were run with constant difference
in stimulus coherence (ε1 = 3 mV, ε2 = 2.5 mV) for varying model
parameters over both QIF (Figures 5A–C) and Hodgkin-Huxley
(Figures 5D–F) variants of the bottom-up model. The range of
potential parameters was constrained by fixing experimentally
observed values such as the excitatory and inhibitory synaptic

decay constants discussed in Section 3, while iterating over three
synaptic variables, the weight of excitatory-to-inhibitory synapses,
the weight of inhibitory-to-excitatory synapses, and synaptic delay
within the excitatory-inhibitory loop. Results were generated via
a computational search over the parameter space divided over a
41 × 41 × 41 grid, with 100 trials per data point and one vari-
able per dimension. When viewed over all dimensions, synaptic
parameters that result in high correlation to a single stimu-
lus form a continuous region within the space of both models
(Figures 5A,D). While the different characteristics of each neuron
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FIGURE 5 | Enumeration of the synaptic parameter space for the

bottom-up model of stimulus selection. The difference in

cross-correlation (ρ) for the QIF neuron model is shown in (A–C), and

Hodgkin-Huxley neuron model in (D–F). Hi-lighted regions in (A,D) indicate

values of ρ > 0.7 (solid) and ρ > 0.5 (transparent) for the parameters

excitatory-inhibitory weight, inhibitory-to-excitatory weight and synaptic

delay local to the target later of the network. Delay was increased

simultaneously for excitatory-inhibitory and inhibitory-excitatory synapses

so both remained equal, the value (λ) indicating delay in a single direction of

the recurrent synaptic loop. A cross-section of the difference in

cross-correlation is shown in (B,E) for excitatory-to-inhibitory and (C,F)

inhibitory-to-excitatory weight relative to synaptic delay. Within the hi-lighted

region behavior of both variants of the model is consistent with

communication of a single stimulus through phase-coherent oscillation.

model lead to variation in the dimensions of this area, activity
within the region is consistent in both cases with communication
of a single stimulus through phase-coherent oscillation. Target
neurons entrain to a single stimulus and the orientation encoded
in that phase-locked stimulus is represented in the activity of the
target excitatory population, with activity at the orientation of the
unentrained stimulus greatly reduced.

3.2. BINOCULAR RIVALRY

We next consider whether the resulting activity within the model
parallels experimentally observed results for binocular rivalry. The
long-term activity of the model where both stimuli are of equal
coherence is shown in Figure 7A. Entrainment of the target layer
alternates between one source and the other in periods of unequal
length, elevated activity in the excitatory target population switch-
ing between the two preferred orientations encoded in the stimuli.
The distribution of switching events with equally coherent stimuli

(Figure 6A) is both unimodal and skewed toward longer durations
of mean within the range 1–2 s, in agreement with experimental
data. We include fits for both the gamma distribution commonly
used in studies of rivalry (Wade, 1975; Kovács et al., 1996) and
more recently used log-normal distribution (Gomez et al., 1995;
Lehky,1995). The auto-correlation coefficients of dominance peri-
ods for the same data are shown in Figure 6B. The lack of
significant correlation above zero lag is also in agreement with
experimental observation (Walker, 1975; Lehky, 1995). Applying
the Lathrop statistic (Fox and Herrmann, 1967; Logothetis et al.,
1996), a measure of successive dependence between values in time
series data, confirmed the lack of dependence between interval
times generated by the model (L̂ = 1.0, σ = 0.05 with z-value
−0.14).

It is well-known that the rate and behavior of dominance inter-
vals in episodes of binocular rivalry are influenced by variation in
predominant stimuli characteristics such as luminance, contrast,
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FIGURE 6 | (A) The distribution of periods of entrainment of the bottom-up

QIF model to a single stimulus with fitted gamma (solid) and log-normal

(dashed) probability density functions and (B) auto-correlation of entrainment

periods for the same data, both matching empirical results for binocular

rivalry. (C) In accordance with Levelt “Proposition II,” when the strength of a

single stimulus in the model is reduced, changes in relative duration of

entrainment result mainly from a lengthening of periods of entrainment to the

unchanged stimulus. (D) Similarly for Levelt “Proposition IV,” increasing the

coherence of both stimuli simultaneously leads to an overall decrease in

mean dominance time.

and spatial frequency. The effect of modifying the contrast of visual
stimuli on the alternation dynamics of rivalry is captured in a set
propositions put forward by Levelt (Levelt, 1965). Of particular
importance in constraining models of stimulus competition are
Levelt “Proposition II,” increases in dominance times caused by
weakening a single stimulus occur mainly through an increase
in mean dominance duration of the unchanged stimulus, and
“Proposition IV,” increasing the strength of both stimuli simul-
taneously increases the frequency of alternation. More recently it
has been shown that changes in predominance produced through
varying the strength of a single stimulus result largely from changes
in the average dominance duration of the strongest stimulus (Bras-
camp et al., 2006; Klink et al., 2008) with a large non-linear increase
in dominance duration of the unchanging stimulus coupled with
a small decrease in the changing stimulus (Laing and Chow, 2002).
Both effects are reproduced in the current model, where we treat
varying coherence as analogous to a change in visual contrast.

A non-linear increase in relative mean dominance duration was
reproduced through a decrease in parameter ε to a single stimulus
(Figure 6C), and model behavior consistent with proposition IV
from a simultaneous increase in ε for both stimuli (Figure 6D).
The model displays an additional dependence between mean dom-
inance duration and the delay of synaptic connections within the
recurrent excitatory-inhibitory loop (Figure 7A). In Figure 7B we
show the effect of changing both synaptic delay and coherence on
switching within the model, where traversal down either axis leads
to non-linear variation in mean dominance times.

Models of binocular rivalry can be broadly categorized into
those based on mutual inhibition and adaption (Blake, 1989;
Kalarickal, 2000; Tong, 2001; Laing and Chow, 2002; Stollenwerk
and Bode, 2003; Wilson, 2003; Lankheet, 2006), where pools of
neurons representing alternate stimuli compete to inhibit one
another and gradual adaptation allows switching, and models
where alternation is driven by noise (Kim et al., 2006; Moreno-Bote
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FIGURE 7 | (A) Raster plot of alternation in entrainment of target neurons

between incoming stimuli of equal coherence for the bottom-up QIF neuron

model. Results are shown with synaptic delay (λ) connecting target excitatory

and inhibitory populations of 2.2 ms (upper), 2.1 ms (middle), and 2.0 ms

(lower) in either direction. (B) The mean duration of dominance intervals

shows a non-linear dependence on both synaptic delay and stimulus

coherence, while (C) increasing the level of input noise results in

progressively faster switching times.

et al., 2007). Given the mutually exclusive and stochastic nature
of perceptual switching, we can consider all models of binocular
rivalry to be consistent with a double-well potential framework
with two marginally stable states (Suzuki and Grabowecky, 2002;
Kim et al., 2006; Kang and Blake, 2011), where alternation between
states is driven either by adaption or noise. The current model is
consistent with a noise-based interpretation of stimulus rivalry,
where the energy function is defined by model parameters and
alternation driven by Poisson input. An increase in the level of
noise to the system maintaining all other parameters should result
in an increased rate of alternation between the two marginally sta-
ble states. The model behaves as expected, with increasing rate ψ

of Poisson input to all neurons resulting in decreasing mean dom-
inance intervals (Figure 7C). Many recent models of rivalry have
been proposed that do not rely on oscillatory dynamics (Dayan,
1998; Freeman, 2005; Ashwin and Lavric, 2010; Laing et al., 2010),
although there is evidence that perceptual switching is modulated
by gamma-band oscillation (Doesburg et al., 2009) and oscilla-
tory models have been put forward (Mishra et al., 2006; Zeitler
et al., 2008). Ours differs from previous oscillatory models in that
the influence of inhibitory connections is local and selection a
function of entrainment of the target population to the incoming

stimuli. The population of inhibitory neurons is connected only to
the target excitatory neurons with no direct connections between
the stimuli generating source neurons and inhibitory neurons of
the target layer. The inhibitory neurons serve only as a mecha-
nism of generating gamma oscillation in the local target excitatory
population.

4. DISCUSSION

The aim of the present study was to explore competitive selection
of stimuli in networks of spiking neurons via oscillation, where
transmission of a single relevant stimulus and filtering of irrele-
vant stimuli between multiple source and a single target neuronal
population occurs through variation of stimulus characteristics.
We build on previous work examining the CTC hypothesis and
the role of neuronal oscillation in the dynamic routing of infor-
mation in the brain. Recent studies have begun to address the
phase dynamics of connected neuronal populations and the role
of recurrent inhibition. It has been shown in a network con-
sisting of a single bi-connected excitatory and inhibitory neuron
that sinusoidal input across different neuron models gives rise to
phase-locked firing suitable for coherent communication (Gielen
et al., 2010) and that differences in the coherence of spiking input
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leads to predictable changes in entrainment (Börgers and Kopell,
2008). We have examined the transmission of population-encoded
stimuli between oscillating neuronal populations and the compet-
itive mechanisms that allow transmission of a single stimulus and
filtering of a second stimulus to occur.

There is significant biological evidence for the stimulus-driven
detection of unexpected but behaviorally relevant events in selec-
tive attention (Corbetta and Shulman, 2002). That a competi-
tive mechanism exists is suggested by influential experiments in
the macaque visual cortex (Moran and Desimone, 1985; Luck
et al., 1997; Reynolds et al., 1999) demonstrating competition
between multiple stimuli placed in the receptive field of visual
primary cells. This has spawned a number of computational stud-
ies exploring the role of inhibition and gamma oscillation in the
biased competition of stimuli (Tiesinga et al., 2004; Tiesinga, 2005;
Börgers et al., 2008; Zeitler et al., 2008). Subsequent biological
studies of macaque V4 provide evidence for increased gamma
coherence associated with selective attention (Fries et al., 2001;
Bichot et al., 2005). The underlying assumptions of our model
are that competition between the stimuli is driven by relative
coherence, where a stimulus of greater coherence is more likely
to be attended, and that communication of the attended stim-
ulus between oscillating populations is enabled by CTC. In the
single neuron case (Börgers and Kopell, 2008) competition is
generated through suppression of a less coherent input follow-
ing firing of the excitatory neuron, where both the additional
leakiness introduced by inhibitory synaptic input and timing of
inhibition are important. The current model is similarly depen-
dent on the timing and leakiness induced by recurrent inhibitory
input, where the firing of each neuron is irregular and ISI times
near Poisson. Oscillation, resulting from the aggregate activity of
target neurons to independent spatially encoded spiking stim-
uli, results in filtering of the less coherent stimulus from target
output. The relative coherence of the population of neurons
encoding the stimuli determines entrainment of the target, and
the phase difference between stimuli relative to target results in
transmission of the entraining stimulus from source to target
neurons.

A computational search of the bounds of this competitive
process in relation to synaptic parameters linking target excita-
tory and inhibitory neuronal populations reveals the space within
which those parameters are optimally tuned for selection of a
single stimulus. Detailed exploration of even a few parameters
of a model of several thousand neurons and tens of thousands
of synapses requires significant computational resources, and the
development of a framework for parallel simulation, collation,
and analysis of results over a large distributed computing cluster
was an essential component of this study. For parameters within
the optimal region of our model, oscillation in target neurons
entrains to the phase of incoming stimuli. Results of decoding
model output over the complete range of relative phases between
stimuli, and between stimuli and target oscillation, suggest that
even a small difference in the phase of incoming stimuli is suf-
ficient for the communication of a single entraining stimulus.
That the same mechanism works for identical network con-
nectivity using both QIF and Hodgkin-Huxley neuron models,
which have significant differences in underlying dynamics and

mechanism of action potential generation, supports the validity
of the results.

A number of measures have been applied to the activity of
connected oscillating neuronal populations, such as correlation
(Masuda, 2009), phase coherence (Gielen et al., 2010), and infor-
mation theoretic measures such as transfer entropy (Akam and
Kullmann, 2010) and causal density (Shanahan, 2008). Given stim-
uli occupying distinct regions of coding space, we used the binned
average firing rate as a basis for both correlation and template-
based decoding. Ignoring additional information available in the
frequency domain for distinguishing between oscillating and asyn-
chronous stimuli allows for simple biologically plausible decoding
of model output. A circuit for decoding the activity of target neu-
rons based on binned average firing rate is not included in the
model, but it is not difficult to imagine how this would be done.

It is interesting that the model displays alternation between
transmission of stimuli analogous to binocular rivalry. That
switching episodes in the model are well represented by gamma
and log-normal distributions, the lack of correlation between
successive dominance periods, and that model behavior is consis-
tent with both Levelt Propositions II and IV, suggest competitive
entrainment as a plausible basis for this type of stimulus rivalry.
This is not the first model to draw a link between binocular rivalry,
biased competition, and mechanisms of inhibition and oscilla-
tion, although we differ from previous models in that the effect of
inhibition is local to the target population receiving the stimuli.
Long-range connections between stimuli generating and receiving
neurons in the model are entirely excitatory, with inhibitory neu-
rons receiving no synaptic connections outside of the target layer
of the network.

The assumption of a specific phase relationship between the
oscillating populations requires some justification, forming the
basis of not only the current model but as an underlying assump-
tion of CTC and models of phase-coherent neuronal communica-
tion in general. Episodes of transient long-range phase-coherent
synchronization in gamma and beta ranges have been shown to
occur in frontal and visual areas during visual attention (Gross
et al., 2004; Gregoriou et al., 2009), between hippocampal and
prefrontal areas during learning (Benchenane et al., 2010; Col-
gin, 2011), and cross-frequency phase-coupling to occur during
working memory tasks (Palva et al., 2005). Additionally there
is direct evidence of oscillatory phase-encoding of stimuli in
the insect olfactory system (Perez-Orive, 2002; Sivan and Kopell,
2004; Schnitzler and Gross, 2005) where odors induce precise and
reproducible phase offsets in LFP oscillation between interacting
neuronal areas. While it is not clear that similar phase-encoding
mechanisms extend to the mammalian brain, methods for mea-
suring phase-synchronization (Nolte et al., 2004; Stam et al., 2007;
Hindriks et al., 2011; Pascual-Marqui et al., 2011; Vinck et al.,
2011) and recovering structure from phase dynamics (Cadieu and
Koepsell, 2010; Kralemann et al., 2011) remain active areas of
research, and improved understanding is likely. It is reasonable
to assume that generation of stimuli should result in reproducible
if transient phase relationships occurring between the encoding
regions.

Taken together these results suggest a plausible mechanism of
competitive selection between stimuli through PING generated
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gamma oscillation. A combination of the entrainment of a pop-
ulation of oscillating excitatory neurons to spiking stimuli and
CTC, where competition between stimuli is determined by rela-
tive coherence and CTC between source and target neurons by
phase difference, allows both selection of a single salient stimulus
and filtering of irrelevant stimuli. Stimuli of different orientation
but equal coherence reproduce both the behavior and statistical

properties of the well-known phenomena of stimulus rivalry.
The results are robust to changes in the dynamical properties
of the neuron model, and the underlying assumptions of model
construction are consistent with biological evidence supporting
both competition and changes in gamma frequency coherence
in the bottom-up attentional selection of behaviorally relevant
stimuli.
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