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ABSTRACT 1 

Objective: Assessments of the medial olivocochlear reflex (MOCR) may have clinical utility. The 2 

MOCR is measured using contralateral inhibition of otoacoustic emissions but concurrent 3 

activation of the middle ear muscle reflex (MEMR) confounds test interpretation. MEMR 4 

activation can be detected using the change in ear-canal stimulus amplitude without versus with 5 

an MOCR elicitor. This study provides a description of how critical differences in ear-canal 6 

stimulus amplitude can be established. 7 

Design: Clicks were presented in right ears without and with a contralateral MOCR elicitor. Ear-8 

canal stimulus amplitudes were measured. Two measurements without an elicitor were used to 9 

develop critical differences. MEMR activation was considered present if the difference in ear-10 

canal stimulus amplitude without versus with an elicitor exceeded the critical difference. 11 

Study Sample: Forty-six normal-hearing adults (mean age = 23.4 years, 35 females) participated, 12 

with data from 44 participants included in the final analysis. 13 

Results: Two participants exceeded the 95% critical difference. The 80%, 90%, and 99% critical 14 

differences are also reported for reference.  15 

Conclusions: Results suggest that the contralateral elicitor can evoke the MEMR in a small 16 

number of participants. The methods described in this paper can be used for developing equipment- 17 

and clinic-specific critical differences for detecting MEMR activation.  18 
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Introduction 19 

The auditory brainstem can exert control over outer hair cell motility via the medial olivocochlear 20 

(MOC) efferent system (reviewed in Guinan 2006; Lopez-Poveda 2018). MOC activation 21 

improves neural encoding of sounds in the presence of background noise (Winslow and Sachs 22 

1987; Kawase et al. 1993) and reduces auditory damage due to high-intensity sound (Rajan 1988; 23 

Maison and Liberman 2000). Human studies suggest that the MOC contributes to the perception 24 

of speech in background noise (e.g., Giraud et al. 1997; Kumar and Vanaja 2004; Mishra and 25 

Lutman 2014; Mertes et al. 2019). Potential clinical applications of MOC assessments include 26 

determining individual susceptibility to noise-induced hearing loss (Maison and Liberman 2000), 27 

screening for auditory neuropathy spectrum disorder (Hood et al. 2003), and identifying the 28 

potential physiologic source of auditory complaints in clinical populations such as auditory 29 

processing disorder (Muchnik et al. 2004; Morlet et al. 2019), tinnitus (Riga et al. 2016), and 30 

hyperacusis (Wilson et al. 2017). 31 

MOC activity can be assessed indirectly using otoacoustic emissions (OAEs), which are 32 

low-level sounds generated as a byproduct of outer hair cell motility (reviewed in Kemp 2002). 33 

OAE amplitudes are often compared when measured without versus with a contralateral elicitor 34 

noise to activate the MOC reflex (MOCR), where amplitude typically decreases in the presence of 35 

the contralateral elicitor (Collet et al. 1990). OAEs are a routine component of audiologic practice, 36 

suggesting that OAE-based assessments of the MOCR may be clinically feasible. 37 

However, a complication of such measurements is that the contralateral elicitor can also 38 

simultaneously activate the middle ear muscle reflex (MEMR), which causes contraction of the 39 

stapedius muscle and thus alters the impedance of the middle ear (Møller 1962). MEMR activation 40 

can decrease OAE amplitudes much like the MOCR does, which complicates test interpretation 41 
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because the relative contribution of the MEMR versus the MOCR must be disentangled (for a 42 

detailed discussion, see Guinan et al. 2003; Marks and Siegel 2017). 43 

Alternatively, avoidance of MEMR activation during the measurement ensures that 44 

changes in OAE amplitude caused by the contralateral elicitor are due to the MOCR. From both a 45 

clinical and research perspective, it is important to examine the contribution of the MOCR in 46 

isolation. A common method of detecting MEMR activation is to examine the change in OAE-47 

evoking stimulus amplitude measured in the ear canal without versus with the contralateral elicitor 48 

(e.g., Abdala et al. 2013). Because the MEMR alters middle ear impedance, it has the ability to 49 

change the amplitude of the OAE-evoking stimulus that is reflected back to the ear canal 50 

microphone. In contrast, the MOCR alters outer hair cell function which has no effect on ear-canal 51 

stimulus amplitudes.  52 

Most recent work has determined the presence of MEMR activation using a criterion 53 

change in ear-canal stimulus amplitude without versus with a contralateral elicitor. If the difference 54 

exceeds a specified amount, this is taken as evidence that the MEMR was activated by the 55 

contralateral elicitor (Abdala et al. 2013; Boothalingam and Purcell 2015; Lichtenhan et al. 2016; 56 

Bhatt 2017; Marks and Siegel 2017; Boothalingam et al. 2018; Mertes 2018). Many of these 57 

studies have used a criterion of 0.12 dB reported in Abdala et al. (2013) which was based on studies 58 

of wideband acoustic immittance measures of the MEMR (Feeney et al. 2003). It is of note that 59 

the 0.12 dB criteria originated from MOCR measurements using distortion-product OAEs 60 

(DPOAEs) for a contralateral elicitor level of 60 dB SPL, which may not be applicable to other 61 

OAE types and/or elicitor levels. Other studies have used statistical resampling procedures to 62 

identify significant changes in ear-canal stimulus amplitude for individual subjects (Goodman et 63 

al. 2013; Mertes & Goodman 2016; Lewis 2018). 64 
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An alternative method to detecting significant MEMR activation is to establish critical 65 

differences in ear-canal stimulus amplitude. The critical difference is the minimum amount of 66 

change in a measurement that is considered a true change and not due to random variation. The 67 

concept of the critical difference has related terms in the literature, including “minimum detectable 68 

change”, “smallest detectable difference”, and “reference range”. Establishing the critical 69 

difference involves measuring test-retest variability and calculating cutoff values. Often, the 70 

cutoffs are computed using the standard error of measurement (SEM), described in more detail in 71 

the Methods section. As discussed in Reavis et al. (2013), an SEM approach has been utilized in 72 

the study of test-retest variability for a number of audiologic measures including otoacoustic 73 

emissions and MOCR assessments (Beattie et al. 2003; Keppler et al. 2010; Helleman and 74 

Dreschler 2012; Kumar et al. 2013). Additionally, an SEM approach has been implemented in 75 

hearing research for detecting differences in measurements including speech recognition (e.g., 76 

Wilson and McArdle 2007) and hearing aid outcome questionnaires (e.g., Smith et al. 2009). 77 

Often, the goal of establishing critical differences is to determine when a change in an 78 

audiologic outcome is considered clinically significant, such as a decrease in OAE amplitude or 79 

word recognition due to progression of hearing loss. However, we can apply the same principles 80 

to the detection of MEMR activation. The ear-canal stimulus amplitude during an OAE 81 

measurement is expected to be stable during a measurement, provided there is no appreciable 82 

change due to factors such as probe slippage, environmental noise, or changes in middle ear 83 

pressure. In the presence of a contralateral elicitor, any change in stimulus amplitude that exceeds 84 

the critical difference can therefore be attributed to MEMR activation. 85 

The purpose of this article is to provide a description of establishing critical differences in 86 

ear-canal stimulus amplitude which will serve as a guideline for establishing ones’ own critical 87 
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differences using different equipment setups. A secondary interest was whether a brief 88 

measurement (<30 s) could reasonably detect MEMR activation, which could be useful for clinical 89 

assessments of the MOCR.  In studies implementing bootstrap analyses, MOCR measurements 90 

were made over the course of several minutes, and MEMR activation was assessed afterwards 91 

(e.g., Mertes and Goodman 2016). It is possible that a shorter measurement of the MEMR itself 92 

could allow for faster detection in a clinical setting, which could provide guidance on how to 93 

proceed with the MOCR assessment. 94 

 95 

Materials and methods 96 

Participants 97 

Participants were recruited from the University of Illinois at Urbana-Champaign campus. The 98 

research protocol was approved by the Institutional Review Board of the University of Illinois at 99 

Urbana-Champaign. Written informed consent was obtained from all participants. Participants 100 

were provided monetary compensation. 101 

Forty-six individuals with normal hearing participated (11 males, 35 females, mean age = 102 

23.4 years, standard deviation = 5.5 years). Participants were required to be right-handed and have 103 

no history of the following: hearing loss, vertigo, use of ototoxic medications, middle ear disease, 104 

severe and/or bothersome tinnitus, and noise exposure within the past 6 months. At the laboratory 105 

visit, eligible participants were required to have an unremarkable otoscopic examination, 226-Hz 106 

tympanograms within normal limits based on Mertes (2018) [tympanometric peak pressure: -100 107 

to +50 daPa; ear canal volume: 0.6 to 2.5 cc; compliance: 0.2 to 1.8 mL], air-conduction thresholds 108 

≤20 dB HL at octave frequencies from 250–8000 Hz, and measurable transient-evoked 109 

otoacoustic emissions (TEOAEs) from 1000 to 2000 Hz in the right ear. We defined “measurable” 110 
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as having a signal-to-noise ratio (SNR) of at least 6 dB and a reproducibility of at least 70% in 111 

response to 1250 sweeps of clicks presented at 65 dB peak SPL (pSPL) at a rate of 19.51/s (Mertes 112 

2018). 113 

 114 

Equipment 115 

Testing was conducted in a single-walled sound-treated booth. Participants were seated in a 116 

recliner during testing and watched a silent, closed-captioned video of their choice on an iPad Air 117 

2 tablet computer (Apple, Cupertino, CA). Measurements were conducted using an RZ6 I/O 118 

processor (Tucker-Davis Technologies, Alachua, FL) interfacing with a WS4 PC workstation 119 

(Tucker-Davis Technologies), an ER-10B+ probe microphone (Etymōtic Research, Elk Grove 120 

Village, IL) with +40 dB preamplifier gain, and ER-2 insert earphones (Etymōtic Research). 121 

Analyses were conducted using MATLAB (ver. 2018a, The MathWorks, Inc., Natick, MA) and 122 

SPSS (ver. 25.0.0.0, IBM Corp., Armonk, NY). 123 

 124 

Measurement paradigm 125 

The overall measurement paradigm follows that of previous investigations that incorporated 126 

TEOAE-based assessments of the MOCR (e.g., Hood et al. 1996; Mishra and Lutman 2014; 127 

Mertes 2018). This paradigm involves a series of clicks presented to the right ear without a 128 

contralateral elicitor (no-elicitor condition) to establish baseline TEOAE amplitudes, followed by 129 

a series of clicks presented to the right ear along with presentation of a contralateral elicitor for 130 

evoking the MOCR (elicitor condition), followed by another series of clicks to the right ear without 131 

a contralateral elicitor (a second no-elicitor condition) to establish short-term stability of TEOAE 132 
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amplitudes in the absence of the contralateral elicitor (note that the focus of this study was on ear-133 

canal stimulus amplitudes). 134 

The stimulus and recording parameters are based on our previous research for investigating 135 

the MOCR using TEOAEs (Mertes 2018). Broadband clicks for eliciting TEOAEs consisted of 136 

40.96-μs pulses (electrical bandwidth = 0 to 24414 Hz) delivered at a rate of 19.51/s to avoid 137 

eliciting the ipsilateral MOCR (Boothalingam and Purcell 2015). Clicks were presented through 138 

ER-2 insert earphones attached to the ER-10B+ probe assembly. Clicks were presented to right 139 

ears at 65 dB pSPL. Immediately prior to the recording, click levels were calibrated in-situ to be 140 

within ±0.25 dB of the target level. The contralateral elicitor consisted of broadband Gaussian 141 

noise (electrical bandwidth = 0 to 24414 Hz) presented through ER-2 insert earphones to left ears 142 

at 60 dB SPL as calibrated in an AEC202 2-cc coupler (Larson Davis, Depew, NY). We chose to 143 

measure TEOAEs in right ears and present the contralateral elicitor in left ears because this 144 

configuration yields larger MOCR effects in right-handed individuals (Khalfa and Collet 1996). 145 

The TEOAE microphone recordings were sampled at a rate of 24414.1 Hz, highpass filtered using 146 

a second-order Butterworth filter with a cutoff frequency of 500 Hz, and stored to disk for offline 147 

analysis. 148 

A schematic of the stimulus presentation is shown in Figure 1. For the first no-elicitor 149 

condition (no elicitor 1), a train of clicks was presented to the right ear for 8 s with no stimuli 150 

presented to the left ear for 8 s. This was followed by 0.5 s of silence in the right ear and 0.5 s of 151 

the contralateral elicitor to allow for the full onset of the MOCR prior to the next condition (Backus 152 

and Guinan 2006). The elicitor condition (elicitor 1) consisted of a train of clicks presented to the 153 

right ear for 8 s along with presentation of the contralateral elicitor in the left ear for 8 s. The 154 

elicitor condition was followed by 0.5 s of silence in both ears to allow for full offset of the MOCR 155 
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prior to the second no-elicitor condition (Backus and Guinan). Finally, the second no-elicitor 156 

condition (no elicitor 2) was presented and was identical to the first no-elicitor condition. Because 157 

of the interest in a rapid assessment of MEMR, this stimulus paradigm only included one 158 

measurement of these three elicitor conditions. 159 

 160 

Data extraction 161 

The recorded click stimuli in each elicitor condition were stored in separate matrices and analyzed 162 

offline in MATLAB. To isolate the click stimulus, recorded waveforms were time windowed with 163 

a rectangular window as in Mertes and Goodman (2016). The window was 1.36 ms in duration, 164 

starting 0.2 ms before the peak of the click stimulus and extending to 1.16 ms after the peak of the 165 

stimulus (example stimulus waveforms for one participant are shown in Fig. 2A). This time 166 

window was chosen to maximize the measured effect of the MEMR on the ear-canal stimulus 167 

amplitude, given the delay between stimulus presentation and activation of the MEMR (Feeney et 168 

al., 2017; Marks and Siegel, 2017). 169 

We removed linear trends in each recorded waveform (e.g., due to probe slippage or 170 

changes in middle ear pressure) by applying the MATLAB function ‘detrend.m’. Visual inspection 171 

of the stimulus waveforms before and after detrending demonstrated that the procedure performed 172 

as intended. An example of the detrended stimulus waveforms for one participant is shown in 173 

Figure 2B. It can be seen that detrending reduced the noise present in the recorded waveforms. 174 

Across all participants, detrending decreased the mean percentage of rejects by 0.59% and 175 

decreased the mean noise floor by 2.04 dB SPL relative to no detrending when collapsed across 176 

elicitor conditions. Although nonlinear trends such as a participant briefly swallowing during the 177 

measurement would not be removed by this procedure, such instances would presumably result in 178 
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high-amplitude responses that would be discarded by the artifact rejection procedure. Given the 179 

performance of the detrending procedure, we recommend that future work in this area consider 180 

implementing detrending to reduce the noise floor and reduce the number of sweeps identified as 181 

artifact. 182 

Because the presence of high-amplitude artifacts could impact measured ear-canal stimulus 183 

amplitudes, we performed artifact rejection post-hoc based on methods described in Goodman et 184 

al. (2009). Stimulus waveforms with a root-mean-square (RMS) amplitude that exceeded 1.5 times 185 

the interquartile range across all recorded waveforms within a participant were discarded.  186 

We quantified the ear-canal stimulus amplitudes as well as the SNR of the stimuli. Signal 187 

and noise floor waveforms were obtained using a two-buffer approach, where odd-numbered 188 

waveforms were stored in buffer A and even-numbered waveforms were stored in buffer B (Prieve 189 

et al. 1993). The signal was obtained as 
(𝐴+𝐵)2  and the noise floor was obtained as 

(𝐴−𝐵)2 . The first 190 

and last 0.045 ms were ramped with a Hann window. The mean of the signal and noise floor 191 

waveforms was computed. For each participant, the RMS ear-canal stimulus amplitude (i.e., the 192 

signal) amplitude and RMS noise floor amplitude (both in dB SPL) were computed across the 1.36 193 

ms time window. RMS amplitudes in each condition are shown for one participant in Figure 2B. 194 

For each elicitor condition, each participant contributed one signal amplitude and noise floor 195 

amplitude. 196 

 197 

Data analysis 198 

When assessing the MOCR, the data are often analyzed as the difference in TEOAE amplitude in 199 

the first no-elicitor condition and the elicitor condition. For this difference to be attributed to the 200 

MOCR (and not due to other factors such as probe drift), the magnitude of this difference should 201 
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exceed the magnitude of the difference in TEOAE amplitude between the first and second no-202 

elicitor conditions. However, the current analysis differs because the focus is on the recorded ear-203 

canal stimulus amplitudes obtained in the no-elicitor and elicitor conditions. Therefore, we do not 204 

report any MOCR data in this paper (MOCR data from a subset of participants are reported in 205 

Mertes 2018 and Mertes et al. 2019). 206 

 To calculate critical differences, we first computed the standard error of measurement as: 207 𝑆𝐸𝑀 =  𝑆𝐷√1 − 𝑟𝑥𝑥  (1), 208 

where SD is the standard deviation across all ear-canal stimulus amplitudes in the two no-elicitor 209 

conditions and 𝑟𝑥𝑥 is the Pearson product-moment correlation coefficient for the ear-canal stimulus 210 

amplitudes in the two no-elicitor conditions. The 95% critical difference is defined as: 211 𝐶𝐷95 = ±(1.96 × 𝑆𝐸𝑀 ×  √2)  (2). 212 

Other critical differences that have been utilized in the clinical literature include 80%, 90%, and 213 

99% [in which case the value of 1.96 in Eq. 2 would be replaced with 1.282, 1.645, and 2.576, 214 

respectively (McMillan and Hanson 2014)]. We report all of these critical differences values for 215 

reference, with the caveat that the values will be influenced by the choice of stimulus, recording, 216 

and analysis parameters. For a given participant, the difference in ear-canal stimulus amplitude 217 

between the first no-elicitor and elicitor conditions is compared to the critical difference, and if 218 

this difference falls outside the critical difference, it suggests that MEMR activation was present 219 

due to the contralateral elicitor. 220 

 221 

Results 222 

Two participants had >10% of their stimulus waveforms rejected due to excessively noisy 223 

recordings. Therefore, the data from these two participants were excluded from the analysis based 224 
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on the inclusion criterion specified in Boothalingam and Purcell (2015). We did not attempt to 225 

retest these individuals for this study, but future studies should ensure that all participants are 226 

sufficiently quiet during the test session to maximize the number of data points included in the 227 

analysis. A Friedman nonparametric test was conducted to examine differences in percentage of 228 

rejects across elicitor conditions in the remaining participants. However, there was no statistically 229 

significant difference across conditions (Mdn = 0.641% in all conditions), χ2(2) = 0.695, p = 0.706. 230 

It was first of interest to determine if any differences in ear-canal stimulus amplitude and 231 

noise floor across elicitor conditions were present at the group level. Ear-canal stimulus amplitudes 232 

and noise floors were normally distributed, as assessed with Shapiro-Wilk tests of normality (p > 233 

0.05 in all cases). Additionally, there were no outliers as assessed using median absolute deviation 234 

(MAD), where cases with a MAD exceeding 3.5 would be considered an outlier based on work by 235 

Helleman and Dreschler (2012). Mean RMS ear canal stimulus amplitudes (±1 SD) were 55.101 236 

± 0.968 dB SPL for no elicitor 1, 55.104 ± 0.971 dB SPL for elicitor 1, and 55.102 ± 0.969 dB 237 

SPL for no elicitor 2.  A repeated measures analysis of variance (ANOVA) with Greenhouse-238 

Geisser correction revealed no significant differences in ear-canal stimulus amplitudes across 239 

elicitor conditions, F(1.299,55.850) = 0.195, p = 0.725, partial η2 = 0.005. Mean RMS noise floor 240 

amplitudes (±1 SD) were 6.174 ± 1.270 dB SPL for no elicitor 1, 6.230 ± 1.690 dB SPL for elicitor 241 

1, and 6.128 ± 1.572 dB SPL for no elicitor 2. Mauchly’s test for sphericity revealed that the 242 

assumption of sphericity was not violated, χ2(2) = 2.064, p = 0.356. A repeated measures ANOVA 243 

revealed no significant differences in noise floor amplitudes across elicitor conditions, F(2,86) = 244 

0.049, p = 0.952, partial η2 = 0.001. Mean SNRs were 48.927 dB for no elicitor 1, 48.874 dB for 245 

elicitor 1, and 48.974 for no elicitor 2 (no statistical test was run on SNRs due to lack of significant 246 
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difference in stimulus amplitudes and noise floors). These high SNRs allowed for the detection of 247 

small changes in ear-canal stimulus amplitude (Goodman et al. 2013; Lewis 2018). 248 

 A scatter plot of amplitudes in the two no-elicitor conditions is shown in Figure 3. There 249 

was a statistically significant correlation between amplitudes in the two no-elicitor conditions, 250 

r(42) = 0.999, p < 0.001, indicating high short-term stability. 251 

In computing the SEM, SD was 0.9626 and rxx was 0.9998, resulting in an SEM of 0.0137. 252 

The resulting critical differences are listed in Table 1. All critical differences were in hundredths 253 

of a decibel, suggesting that small changes in ear-canal stimulus amplitude can be indicative of 254 

MEMR activation. 255 

After establishing the critical differences, the decibel difference in ear-canal stimulus 256 

amplitude in the no elicitor 1 and elicitor 1 conditions were computed for each participant. If this 257 

difference exceeded the critical difference, the result was interpreted as significant MEMR 258 

activation. We considered changes in amplitude in both directions (i.e., amplitude increasing and 259 

decreasing in the presence of the elicitor, respectively) as indicative of MEMR activation based 260 

on work using wideband acoustic immittance to measure frequency effects of the MEMR (Feeney 261 

et al. 2003). 262 

The mean ear-canal stimulus amplitude difference between no elicitor 1 and elicitor 1 was 263 

0.0028 ± 0.0403 dB (range = -0.0729 to 0.2368 dB). The number and percentage of participants 264 

whose amplitude differences exceeded the critical difference are shown in the last column of Table 265 

1. Figure 4 displays the amplitude difference sorted from low to high for all participants. The 95% 266 

critical difference is shown by the dashed horizontal lines, where values falling outside these lines 267 

indicated significant MEMR activation. Two participants exceeded the 95% critical difference. 268 

One participant had an amplitude difference in the negative direction (i.e., ear-canal stimulus 269 
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amplitude decreased in the presence of the contralateral activator). It is of note that only one 270 

participant had an amplitude difference that exceeded the commonly-used criterion of 0.12 dB. 271 

 272 

Discussion 273 

Detection of the MEMR is critical for proper interpretation of OAE-based measurements of the 274 

MOCR. This study is the first to construct critical differences in ear-canal stimulus amplitude using 275 

an SEM approach. The critical differences reported in Table 1 are considerably smaller (more 276 

stringent) than a 0.12 dB criterion. Although there were no significant differences in mean ear-277 

canal stimulus amplitude across conditions at the group level, two participants exceeded the 95% 278 

critical difference, suggesting probable MEMR activation. In contrast, only one participant 279 

demonstrated MEMR activation using the criterion of 0.12 dB.  This suggests that the current 280 

method identified smaller amounts of MEMR activation than the typically used criterion for the 281 

click-based measurements as they were conducted in this sample of participants. We acknowledge 282 

that an MEMR detection approach that examines ear-canal stimulus amplitude changes is likely 283 

conservative because the ear-canal stimulus amplitudes have a higher SNR than the TEOAEs and 284 

because of the potential difference in frequency effects of the MEMR versus the MOCR (Liberman 285 

and Guinan 1998). 286 

Additionally, it is of note that the 0.12 dB criterion originated from the work of Abdala et 287 

al. (2013) who conducted MOCR measurements using DPOAEs. Because DPOAEs involve tonal 288 

stimuli whereas TEOAEs involve transient stimuli, it is possible that different critical difference 289 

values would apply to the two types of stimuli. DPOAEs are typically elicited with higher-290 

frequency stimuli relative to the frequencies contained within broadband clicks used for eliciting 291 

TEOAEs. The MEMR impacts middle ear function across a broad range of frequencies, but 292 
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activation of the MEMR causes the largest changes in wideband acoustic immittance below 1000 293 

Hz (Feeney et al. 2017). The click stimuli used in this study may therefore exhibit smaller critical 294 

differences than tonal stimuli due to increased low-frequency energy. 295 

The ear-canal stimulus amplitudes in the current study were normally distributed. This 296 

allowed us to compute the SEM. Nonparametric approaches are possible, which include using the 297 

percentiles from the sample distribution for determining the limits of variability. However, as 298 

discussed in McMillan and Hanson (2014), the sample size will need to be larger for a 299 

nonparametric approach. When developing one’s own critical differences, the sample size and 300 

normality of the data are important factors to consider. Future work in our lab will include 301 

establishing critical differences using a larger number of participants and across a broader range 302 

of TEOAE-eliciting stimulus levels and contralateral elicitor levels.  303 

An advantage of computing critical differences over using a single criterion value is that 304 

the stringency of the MEMR detection can be adjusted depending on the application and/or patient 305 

population. For example, some individuals with hyperacusis can present with abnormally low 306 

MEMR thresholds (Gordon 1986) which would need to be accounted for when assessing MOCR 307 

activity. Conversely, detecting susceptibility to noise-induced hearing loss for occupational or 308 

military applications may require less stringency in terms of differentiating MEMR from MOCR 309 

[see the comments of J. Guinan in the “Post-Talk Q&A” section of Goodman et al. (2018)]. 310 

Regarding our secondary interest of implementing a rapid (<30 s) measurement of MEMR 311 

activity, it remains to be seen whether this particular approach is clinically feasible. The SNRs of 312 

the click stimuli were high (mean of approximately 48 dB in all elicitor conditions), so further 313 

signal averaging does not appear to be necessary, at least for the 65 dB pSPL clicks used in this 314 

study. An advantage of the current methodology is that MEMR activation could be detected prior 315 
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to conducting a longer MOCR measurement, rather than examining the presence of MEMR post-316 

hoc after the MOCR measurement is conducted. However, it could be desirable to find the highest 317 

elicitor level that does not activate the MEMR and then conduct the MOCR test at that intensity. 318 

In such a case, the current methodology would need to be repeated with one or more elicitor 319 

intensities, increasing test time. It should be noted that adjusting the elicitor intensity affects the 320 

magnitude of the MOCR effect on OAEs (Hood et al. 1996) and would need to be taken into 321 

account when comparing MOCR measurements across participants and studies. We presented the 322 

contralateral elicitor at 60 dB SPL, a typical intensity for studies of the MOCR. If the goal is to 323 

avoid MEMR activation in all participants, our data suggest that lower contralateral elicitor levels 324 

may be required. Our finding of MEMR activation in some participants at 60 dB SPL is also 325 

consistent with past work (Guinan et al. 2003). 326 

We present the critical difference method as one potential tool for MEMR detection. 327 

However, it is important to consider that other methods for detecting MEMR activation have also 328 

been described recently. Goodman et al. (2013) computed bootstrapped confidence intervals for 329 

detecting MEMR activation in individual participants. The ear-canal stimulus amplitudes from the 330 

no-elicitor and elicitor conditions were pooled. Two random samples were drawn from this pool 331 

and the difference was computed. This procedure was repeated 10,000 times to form a distribution 332 

of resampled differences. If the actual mean difference in stimulus amplitude between conditions 333 

exceeded the bootstrapped confidence intervals, MEMR activation was considered present. The 334 

authors found that three participants out of 16 (18.75%) total showed significant MEMR activation 335 

for contralateral white noise presented at 35 dB SL. This percentage is similar to that obtained 336 

using the 80% critical difference in the current study. Because the critical difference is driven by 337 

the results obtained in a sample of participants, a potential disadvantage is that it may be too 338 
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stringent or too lax in identifying MEMR activation in a particular individual, whereas the 339 

bootstrap method only considers the variability within the individual. However, by establishing a 340 

normative range of expected differences in ear-canal stimulus amplitude, this could be useful for 341 

identifying participants with excessively weak or strong MEMR activation.  342 

For clinical purposes, a test of MEMR activation would ideally be brief. Future work 343 

should consider assessing if there is a difference in required data collection time for the critical 344 

difference method versus the bootstrapping method. Our method lasted approximately 30 s, 345 

whereas the bootstrapping methods used in Mertes and Goodman (2016) lasted 160 s and those 346 

used in Goodman et al. (2013) lasted 7.2 min. Of note, Goodman et al. (2013) used a nonlinear 347 

TEOAE extraction method which required 3 times the number of stimuli used in the linear 348 

extraction method used by Mertes and Goodman (2016) and in the current study. Additionally, the 349 

studies implementing bootstrapping analyzed MEMR activation from the MOCR recordings  350 

which required sufficient signal averaging to uncover the low-amplitude TEOAEs, whereas the 351 

current study used a brief measurement of the ear-canal stimuli which did not require as much 352 

signal averaging. An empirical investigation of the number of synchronous averages to include in 353 

a bootstrapping procedure to reliably detect MEMR activation should provide insight into the 354 

clinical feasibility of the different potential methods of detecting MEMR activation. 355 

Marks and Siegel (2017) examined the difference waveform between the no-elicitor and 356 

elicitor conditions. For MEMR activation to be considered present, the SNR of this difference 357 

waveform had to exceed 5 dB within a time window that encompassed the stimulus. The authors 358 

found that participants did not exhibit significant MEMR activation until contralateral pink noise 359 

intensities reached 70 dB SPL or above. We only implemented one contralateral elicitor intensity 360 

of 60 dB SPL because this is commonly reported in the literature, so we could not assess the 361 
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MEMR threshold in our participants. The work of Goodman et al. (2013) and Marks and Siegel 362 

(2017) differed considerably in terms of methodology and participant samples from the current 363 

work, so comparisons of the relative sensitivity to MEMR activation should be interpreted with 364 

caution. A direct comparison of MEMR detection across methodologies in the same participant 365 

population appears warranted. 366 

Marks and Siegel (2017) highlighted the important potential impact of synchronized 367 

spontaneous OAEs (SSOAEs) on measurements of MEMR activation. SSOAEs are similar to 368 

TEOAEs because they are both evoked by transient stimuli, but the SSOAEs persist for longer 369 

than TEOAEs (Wable and Collet 1994). If SSOAEs are of sufficient amplitude and are inhibited 370 

by the MOCR, this could be exhibited as a change in ear-canal stimulus amplitude even in the 371 

absence of an MEMR effect on the stimulus (see Supplemental Material 1 for further analysis and 372 

discussion; http://tandfonline.com/doi/suppl). The current study did not account for the MOCR 373 

effect on SSOAEs, so more work is needed to understand how SSOAEs can impact the 374 

establishment of critical differences in ear-canal stimulus amplitude. 375 

We examined changes in the RMS amplitude of the click stimulus obtained in the time 376 

domain. However, this quantification did not allow for an examination of the effects across 377 

frequency. Feeney et al. (2003) have shown that the MEMR can cause increases in ear-canal 378 

reflectance below 1000 Hz which could cause an increase in ear-canal stimulus amplitude. 379 

However, above 1000 Hz, decreases in reflectance can occur which could cause decreases in ear-380 

canal stimulus amplitude. Boothalingam and Purcell (2015) noted that these increases and 381 

decreases in stimulus pressure may cancel out if only examining the total ear-canal pressure, as 382 

was done in the current study. Goodman et al. (2018) used measurements of wideband reflectance 383 

to detect MEMR activation across different frequency bands, but they reported that there was 384 
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considerable inter-subject variability in terms of the patterns. The frequency-dependent effects of 385 

the MEMR on ear-canal stimulus amplitudes requires further investigation. However, this method 386 

introduces the complication of how to quantify the change in amplitude across frequency due to 387 

the large number of frequencies involved and due to the possibility of both increases and decreases 388 

in amplitude. A future direction of our research group is to incorporate wideband acoustic 389 

immittance methods (e.g., Feeney et al. 2017; Keefe et al. 2017; Goodman et al. 2018) to verify if 390 

the MOCR elicitor activates the MEMR. Such measurements would provide more precise 391 

identification of MEMR activation during measurements of the MOCR to enhance interpretation 392 

of the results, which is crucial for clinical implementation of MOCR measurements. 393 

The methods to compute critical differences described in this paper can be implemented 394 

by others to develop their own normative ranges. It is crucial to note that the critical difference 395 

values will depend upon a number of factors, including instrumentation, stimulus and recording 396 

parameters, and characteristics of the participants. Therefore, the critical differences reported in 397 

this paper (Table 1) should not be interpreted as the sole critical difference value to apply in any 398 

context, but they will serve as a point of reference. Determining the critical differences is an 399 

important step to implementing interpretable OAE-based tests of the MOCR for research and 400 

clinical practice. 401 
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Figure Captions 572 

Figure 1. Block diagram of the stimulus presentation across time. Black and gray boxes represent 573 

stimuli presented to the right and left ears, respectively. Solid boxes represent the time periods that 574 

comprised each test condition, while dashed boxes represent the time periods for the onset and 575 

offset of the MOCR that were not included in the analysis. 576 

 577 

Figure 2. Example data from one representative participant. Panel A: Recorded ear-canal stimulus 578 

waveforms without detrending are shown. Gray tracings represent individual stimulus waveforms 579 

in the no elicitor 1 condition (for visual clarity, waveforms from the other conditions are not 580 

shown). The thick black tracing represents the mean waveform. Time zero on the x-axis is shown 581 

relative to the peak of the stimulus. Panel B: Recorded ear-canal stimulus waveforms are shown 582 

after the detrending was applied. Panel C: RMS ear-canal stimulus amplitudes in each elicitor 583 

condition. Error bars represent 1 SD. 584 

 585 

Figure 3. Scatter plot of RMS ear-canal stimulus amplitudes in the two no-elicitor conditions. 586 

Circles are individual data points (n = 44). The line represents a 1:1 correspondence between 587 

amplitudes in each condition. 588 

 589 

Figure 4. Differences in ear-canal stimulus amplitude between no elicitor 1 and elicitor 1 590 

conditions for all participants. The dashed lines represent the 95% critical difference. Circles 591 

represent individual participant data sorted from low to high. Unfilled circles are results that did 592 

not exceed the 95% critical difference (n = 42) and filled circles represent results that exceeded 593 

the 95% critical difference (n = 2).  594 
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Table 1. Critical differences in ear-canal stimulus amplitude. The last column displays the number 595 

of participants exhibiting probable MEMR (exceeding the critical difference), with the percentage 596 

of participants shown in parentheses.  597 

Critical 

Difference (%) 

Cutoff Values  

(dB) 

Cases of  

Probable MEMR 

80 ±0.0249 8 (18.18%) 

90 ±0.0320 4 (9.09%) 

95 ±0.0381 2 (4.55%) 

99 ±0.0500 2 (4.55%) 

 598 
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Supplemental Material 1: Analysis of Synchronous Spontaneous Otoacoustic Emissions 

 

The presence of synchronous spontaneous otoacoustic emissions (SSOAEs) was investigated 

using methods adapted from Mertes and Goodman (2016). SSOAEs were obtained from the 

transient-evoked otoacoustic emission (TEOAE) screening procedure described in the Methods 

(the short duration of the middle ear muscle reflex measurement did not allow for sufficient signal 

averaging to detect SSOAEs). SSOAEs were analyzed in the time window from 34 to 44 ms 

(relative to the location of the stimulus peak) because this window would not contain TEOAEs 

(Sisto and Moleti 2007). Waveforms were band pass filtered from 1000 to 4000 Hz using a Hann-

window-based finite impulse response filter with a filter order of 128. The first and last 1-ms were 

ramped on and off with a raised-cosine ramp. Artifact rejection and comuptatuion of the root-

mean-square signal and noise floor amplitudes were performed as described in the Methods. 

SSOAEs were considered present if the signal-to-noise ratio exceeded 6 dB. 

 Results revealed that 34 of 44 participants (77.27%) had present SSOAEs. This prevalence 

is consistent with that reported by Sisto et al. (2001), but differs from other reports (Jedrzejczak et 

al. 2008; Mertes and Goodman 2016; Lewis 2018). These discrepancies may be due to a 

combination of differences in stimuli, analysis, and participant characteristics. Of the 34 

participants with present SSOAEs, the mean amplitude ±1 SD was 3.579 ± 5.773 dB SPL (range 

= −5.505 to 16.590 dB SPL). 

The potential influence of SSOAEs on the middle ear muscle reflex (MEMR) results was 

examined through the scatter plot shown in Figure 1. Ear-canal stimulus amplitude differences are 

plotted against SSOAE amplitude. The SSOAE amplitude is shown for participants with present 

SSOAEs as well as absent SSOAEs to look for any qualitative differences between the two groups. 
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Visual inspection revealed no apparent relationship between the size of the difference in ear-canal 

stimulus amplitude and the SSOAE amplitude. This observation was confirmed by lack of a 

significant correlation, r(42) = −0.129, p = 0.403. Participants with absent SSOAEs showed a 

smaller range of difference values compared to those with present SSOAEs, but this may be due 

to the smaller number of participants with absent SSOAEs. The participant with the largest 

difference value (0.237 dB) that fell outside the 95% critical difference had an SSOAE amplitude 

that was on the lower end of the distribution of SSOAE amplitudes (−1.738 dB SPL, below the 

25th percentile), suggesting that SSOAEs did not contribute appreciably to the difference in ear-

canal stimulus amplitude. Conversely, the other participant with a difference value (−0.073 dB) 

falling outside the 95% cirtical difference had an SSOAE amplitude that was on the higher end of 

the distribution of SSOAE amplitudes (11.130 dB SPL, above the 75th percentile). This could 

suggest an influence of SSOAEs on the measured difference in ear-canal stimulus amplitude in 

this participant, although it is of note that other participants with SSOAEs of a similar amplitude 

did not exceed the 95% critical difference.  

One factor we cannot account for in this analysis is the amount of medial olivocochlear 

reflex (MOCR) inhibition of the SSOAE (recall that the TEOAE screening data were analyzed for 

SSOAEs, which did not include a contralateral elicitor). If a large-amplitude SSOAE was 

sufficiently inhibited by the MOCR and was out of phase with the stimulus, this interaction could 

exhibit as a change in ear-canal stimulus amplitude even if there were no MEMR activation. The 

following equation illsturates the potential impact of SSOAEs. Equation 1 computes the difference 

value that would result from an interaction of the stimulus amplitude and an SSOAE that is 

inhibited by the MOCR: 𝛿𝑠𝑡𝑖𝑚 = 20 log10[(𝐴𝑠𝑡𝑖𝑚 + (𝐴𝑠𝑠𝑜𝑎𝑒 × 𝐴𝑚𝑜𝑐)) / (𝐴𝑠𝑡𝑖𝑚 +  𝐴𝑠𝑠𝑜𝑎𝑒)]  (1), 
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where 𝛿𝑠𝑡𝑖𝑚 is the estimated change in ear-canal stimulus amplitude in dB, 𝐴𝑠𝑡𝑖𝑚 is the RMS 

amplitude of the ear-canal stimulus in Pascals, 𝐴𝑠𝑠𝑜𝑎𝑒  is the RMS amplitude of the SSOAE in 

Pascals, and 𝐴𝑚𝑜𝑐 is the amplitude of MOCR inhibition of the SSOAE in linear units. For the 

aforementioned participant with a difference value of −0.073 dB and an SSOAE amplitude of 

11.130 dB SPL, if we use an 𝐴𝑠𝑡𝑖𝑚 of 55 dB SPL and a reasonable value of 𝐴𝑚𝑜𝑐  of 0.707 (3 dB 

inhibition), the resulting 𝛿𝑠𝑡𝑖𝑚 is −0.016 dB. This value is smaller than the participant’s actual 

difference value, and 𝛿𝑠𝑡𝑖𝑚 did not exceed the 95% critical difference. This suggests a lack of 

effect of SSOAEs on the results for this participant. Conversely, for the participant with the largest 

SSOAE amplitude (16.590 dB SPL), if we again use an 𝐴𝑚𝑜𝑐  of 0.707,  𝛿𝑠𝑡𝑖𝑚 is −0.030 which 

exceeds the participant’s actual difference value of −0.024 dB but does not exceed the 95% critical 

difference. In this participant, it could suggest that the value of 𝐴𝑚𝑜𝑐  overestimated the actual 

MOCR effect and/or that the inhibited SSOAE is not completely out of phase with the stimulus 

waveform. 

Because no measurement of MOCR inhibition of the SSOAEs was obtained in the current 

study, these estimated effects of SSOAEs remain speculative. It appears that very large-amplitude 

SSOAEs may potentially impact the measured change in ear-canal stimulus amplitude, but only if 

the size of MOCR inhibition is substantially large. Further work is needed, but we recommend that 

future work include the analysis of SSOAEs and the MOCR effect on SSOAEs when developing 

critical differences. 
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Figure 1. Differences in ear-canal stimulus amplitude (no elicitor 1 versus elicitor 1) as a function 

of SSOAE amplitude. Open circles represent participants with present SSOAEs and x symbols 

represent participants with absent SSOAEs. The dashed horizontal lines represent the 95% critical 

difference. 
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