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Abstract

We review a method of generating logical rules, or axioms, from empirical data.

This method, using closed set properties of formal concept analysis, has been pre-

viously described and tested on rather large sets of deterministic data. In spite of

the fact that formal concept techniques have been used to prune frequent set data

mining results, frequency and/or statistical significance are totally irrelevant to this

method. It is strictly logical and deterministic.

The contribution of this paper is a completely new extension of this method to

create implications involving numeric inequalities. That is, numerical inequalities

such as “age > 39” can be treated as logical predicates that have been extracted from

the data itself and not postulated apriori.

Keywords: closure, numeric inequality, concept lattice, logical implication

1. Rule Based Systems

Russell and Norvig assert that “the representation of knowledge, and reasoning

processes that bring knowledge to life, are central to the entire field of artificial

intelligence” (p. 194 1). Reasoning in turn is based on logical implication which

enables both forward and backward chaining techniques. In this paper we introduce

a somewhat unusual representation of both existential knowledge and reasoning

rules, that is logical implications, about a closed world of which we have gained

some knowledge.

We assume a classical, deterministic world in which inference steps, such as

modus ponens, are valid.a Our system does not actually make inferences, but rather

simply creates a set of consistent axioms or rules or implications that can be subse-

quently used by logic programs 2 employing Prolog 3,4. Nor do we support multiple

models, as can be the case with stable set logic 5 or answer set programs 6 using,

for example A-Prolog 7. There is only one model — that of which we currently have

partial knowledge. Our understanding of this world consists only of that which we

have empirically observed, without any apriori axioms. Of course, we may have to

change our operative rules as our knowledge of the world expands — that is the

aIt is evident that in many real life situations knowledge may be probabilistic. In such a world,

inference by Bayesian-like rules is more appropriate. But, we are not prepared to engage in such

a world and deliberately ignore it.



May 27, 2008 9:55 WSPC/INSTRUCTION FILE paper

2nature of learning. We demonstrate how this occurs in Section 3.

By a rule Rk, we mean a logical implication which we denote by P → C. That

is, if the precedent P is true, then the consequent C must be true. (Some logicians

prefer the symbolism P ⊃ C, suggesting that the truth of C is contained within

the truth of P .) In this paper we will be using a simple first-order predicate logic

and we will develop implication in disjunctive normal form, that is, a premise P

can have the form P ≡ (p1 ∧ . . . ∧ pm) ∨ (pm+1 ∧ . . . ∧ pn), while the consequent

C will always be a conjunction of predicates. We will normally denote conjunction

(and) by juxtaposition, as in p1p2p3p4, unless we want to deliberately emphasize

the conjunctive aspect.

Given this preamble, our goal is to create a rule-based world view from the kinds

of existential data found in a typical relational database such as Figure 1. Here we

1
2
3
4
5
6
7
8

a b c d e f g h i

P

O

Fig. 1. A relation R1 composed of 8 objects and 9 predicates.

have 8 objects, or observations, each of which may, or may not, exhibit 9 different

properties, or predicates, a, . . . , i. Each row is an existential assertion, and we can

interpret the first row as a(o1) ∧ b(o1) ∧ g(o1) or just abg(o1). By the rule-based

world view we mean all the possible logical implications, or rules Rk, for which the

existential world described by the database can be a model. Thus the knowledge

set K = {R1 . . . Rk} must be consistent.

2. Logical Implication from Empirical Observations

The notion of “closure” plays a major role in our representation of the real

world. In particular we will be concerned with closed sets of objects, closed sets of

predicates and closed sets of numbers.

2.1. Closure Concepts

By a “closure system” over a “universe” U, we mean a collection C of sets

X, Y, . . . Z ⊆ U satisfying the property that if X, Y ∈ C then X ∩ Y ∈ C. The

sets of C are said to be the closed sets of U. Alternatively, one can define a closure

operator ϕ on U satisfying the following 3 axioms for all X, Y, Z:

X ⊆ X.ϕ,

X ⊆ Y implies X.ϕ ⊆ Y.ϕ

X.ϕ.ϕ = X.ϕ.

(For technical reasons we prefer to use suffix operator notation, so read X.ϕ as X

closure.) Readily, a set X is closed, i.e. in C, if X.ϕ = X . The equivalence of these

two alternative definitions is well known 8, and we will use both in the following

sections.



May 27, 2008 9:55 WSPC/INSTRUCTION FILE paper

3Closure systems can satisfy many other axioms, and those that do give rise to

different varieties of mathematical systems. If (X ∪ Y ).ϕ = X.ϕ∪Y.ϕ we say ϕ is a

topological closure. If the system satisfies the “exchange axiom”, that is if p, q 6∈ X.ϕ

but q ∈ (X ∪ {p}).ϕ then p ∈ (X ∪ {q}).ϕ, then the system can be viewed as a

kind of linear algebra, or more generally a “matroid”. The Galois closure we will be

using in this section satisfies neither of these additional axioms. But later in Section

5, we will be using “antimatroid” closure operators, that is those which satisfy the

“anti-exchange axiom” if p, q 6∈ X.ϕ and q ∈ (X ∪ {p}).ϕ then p 6∈ (X ∪ {q}).ϕ .

2.2. Galois Closure and Concept Lattices

The approach we will follow is similar to Formal Concept Analysis (or FCA) that

was first developed by Rudolf Wille and is best presented in 9. FCA begins with a

relation R between two sets, say a set O of objects and a set P of object predicates,

or attributes. Using standard relational terminology, each object oj ∈ O can be

regarded as a row in R and each predicate pk ∈ P is a column. Each attribute pk

is a binary, logical property, i.e. true or false. A concept Cn is a pair of subsets

Cn = (On, Pn) where On ⊆ O, Pn ⊆ P with the property T that for every oi ∈ On,

every pk ∈ Pn is true. Each concept is assumed to be maximal, that is for the set

On there is no larger subset P ′

n ⊃ Pn satisfying property T , and for Pn there is no

larger subset O′

n ⊃ On satisfying T .

The collection C of all concepts Cn, so defined, forms a closure system; that is,

the intersection of any two concepts in C is a concept. Consequently, the collection

C of concepts forms a lattice when partially ordered by containment with respect

to the predicate sets Pn.b If we start with the relation R1 of Section 1 we obtain

the concept lattice L shown as Figure 2. Each node is labelled with a closed set

abdf
56

adf
568

ad
5678

abcdf
6

acdf
68

acd
678

abcdefghi

acde

7

abc

36

ab

12356

a

12345678

ac

34678

abg
123

ag

1234

23
abgh

acgh
34

agh
234

4
abcgh

3
acghi

Fig. 2. Concept lattice L corresponding to Relation R1.

of predicates and a closed set of objects satisfying those predicates, or properties.

These two closed sets constitute the concept pair. For example, the combination of

properties adf is found in rows, or objects, 5, 6 and 8.

In the case of FCA, the closure operator is called the Galois closure between

O and P, and has been well studied 10,11 In this paper we emphasize the closure

bGanter and Wille 9 prefer to order with respect to object set containment yielding the dual

lattice.
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4aspect as denoted by ϕ, rather than the concept aspect developed in 9.

2.3. Closed Sets, Generators and Logical Implication

Let C denote a closed set. Then there is some set A ⊆ C such that A.ϕ = C. If

A is a minimal such set, w.r.t. set inclusion, we call it a generator of C denoted by

C.γ, or by A → C 8. The latter symbolism is not accidental. If ϕ is a Galois closure,

then closed set generation and logical implication are identical.

The issue now becomes: “given a lattice of closed concepts, such as Figure 2,

how does one derive the generating sets?” For example, what is the generator of the

closed set acde in Figure 2? In 12 it is shown that “if C covers Ci in a closure latticec

then C.γ ∩ (C−Ci) 6= Ø.” With this theorem, one can construct the generator of

any closed set C as a combination of elements ei ∈ (C−Ci) where C covers Ci in

L. The node acde covers only one node acd in the lattice L, so C−C1 = {e}. Thus,

using the result above we can show that the generator acde.γ = {e}, or e → acde.

That this is true is evident from Figure 1. Property e is only found in observation

7, where a, c, and d were also seen. So the property e, in this case, trivially implies

properties a, c and d. With the result above, the derivation of generating sets is an

inexpensive, local construction whose details can be found in 13. The essence of this

process is to find at least one element of C which “cannot” be an element/predicate

of the covered set Ci. We use this intuition to find numeric generators in Section 5.

3. “Learning” New Rules

We hesitate to use the term “learning” because of its many overtones. But, as we

make new observations of our world they may either add to, or contradict, existing

rules — our knowledge base must be changed. Here we should note that we assume a

static world, but one in which we are constantly making new discoveries. Therefore,

it is not equivalent to what has been called “dynamic logic programming” 14 in

which the properties associated with a single object can change as a result of agent

manipulation.

Given an entire relation R, as in Figure 1, there exist algorithms to construct

its closed set lattice L; however we, and others 15,16, find it preferable to construct

L incrementally, one row or observation, at a time. This is certainly similar to real

data acquisition.

By the nature of Galois closure each new row of observed properties is closed. So

it either already exists as a node in L, or will constitute a new node. First, one must

find its location in L using set inclusion in a search down from the top (or up from

the bottom) of L. If the observation has no new properties and so already exists

we simply increment the set of occurrences. Otherwise, the new set of properties is

inserted as a closed set C, covered by some existing set C′, which is the smallest set

containing C. Usually C′ will be covering other closed sets Ck in L. Because of the

intersection property of closed set lattices described in Section 2.1, we must now

calculate C ∩ Ck for each Ck covered by C′. If C ∩ Ck already exists in L, nothing

more needs be done; otherwise C ∩ Ck must itself be recursively entered into L as

well. This can create a recursive cascade of insertions, but as noted in 17 this is

fortunately rather rare.

cC covers Ci if we do not have Ci ⊂ C′
⊂ C, C′ closed.
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5In Figure 3(a) a new observation, labeled 9, has been entered with the properties

a, b and e. The node abe has been entered into L where it is covered by the top node

(a)

(b)

abdf
56

adf
568

ad
5678

abcdf
6

acdf
68

acd

abcdefghi

acde

7

abc

36

a

123456789

ac

34678

abg
123

ag

1234

23
abgh

acgh
34

agh
234

acghi
4

1
2
3
4
5
6
7
8

a b c d e f g h i

P

O

9

678

12356

9
abe

79
ae ab

3
abcgh

Fig. 3. Modified relation R (a) and Resulting lattice L (b).

consisting of all attributes. Now we must check the intersection of this closed set abe

with all others covered by the top of L. We have abe∩ abcdf = ab, abe∩ acde = ae,

abe∩acghi = a and abe∩abcgh = ab. Of these, only ae is new. It must be recursively

entered as indicated in Figure 3(b) by the dashed lines.

Because abe covers both ae and ab in L and abe−ae = {b}, abe−ab = {e}, its

generator must be be. Of more interest is how the generator of acde has changed.

Initially we had e → acde because acde only covered acd. Now we have ce ∨ de →

acde because acde−acd = {e} and acde−ae = {cd}. This can be more formally

expressed as (∀o ∈ O)[(c(o) ∧ e(o)) ∨ (d(o) ∧ e(o) → a(o) ∧ c(o) ∧ d(o) ∧ e(o)].

As more information is entered the generators, or premises, of many closed sets,

or conclusions, are expanded. This is not unusual in knowledge acquisition. New

examples may generate exceptions to a general rule which are often conjunctively

explained. Other rules, however, may be simplified as inappropriate predicates are

pruned from the premise/generator.

Observation and new data can change our understanding of the world.

4. Two Real Life Examples

Does this approach actually work? This is a reasonable question and the answer

is “yes”. It does; and we offer the two following working examples to demonstrate

proof of concept given binary true/false predicates.
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64.1. The mushroom Database

Using precisely the mechanisms described in the preceding section, we took as

input the physical properties of 8,124 different mushrooms as given in the “The

Audubon Society Field Guide to North American Mushrooms” 18. Figure 4 illus-

trates representative values of the first 6 (of 22) attributes used to characterize

mushrooms in 18. Each attribute was encoded as one, or more, separate predicates.

Attr-0  edibility:

attr-1  cap shape:
  e=edible, p=poisonous 

  b=bell, c=conical, f=flat, k=knobed, s=sunken,
x=convex

attr-2  cap surface:
  f=fibrous, g=grooved, s=smooth, y=scaly
attr-3  cap color:
  b=buff, c=cinnamon, e=red, g=gray, n=brown,
p=pink, r=green, u=purple, w=white, y=yellow 

  t=bruises, f=doesn’t bruise
attr-5  odor: 
  a=almond, c=creosote, f=foul, l=anise, m=musty,

attr-4  bruises?:

  n=none, p=pungent, s=spicy, y=fishy

  a=attached, d=descending, f=free, n=notched
attr-6  gill attachment:

Fig. 4. The first 6 attributes of the mushroom data set, with nominal
values.

For example, we have the predicates e0 for “edible”, p0 for “poisonous”, a6 for “at-

tached gill” and n6 for “notched attachment”. Encoded this way the attributes of

Figure 4 yield 42 effective predicates.d The lattice generated by the 8, 124×42 rela-

tion R consists of 2,641 closed conceptse; and, because some concepts have multiple

generators, 3,773 distinct implications, or rules.

To provide some sense of this data set we list in Figure 5 a few of those rules

P → C in which a singleton predicate P implies p0, or poisonous. We have added

1597 s5  ->  p0, f4, f6
1687 y5  ->  p0, f4, f6

2562 c1  ->  p0, n5, f6
2022 m5  ->  p0, y2, f4

1401 g2  ->  p0, w3, t4, n5
924 f5  ->  p0, f6
668 c5  ->  p0, x1, f4, f6

IMPLICATIONCONCEPT

 576
 576

   4
  36

   4
2160
 192

SUPPORT

Fig. 5. All implications in mushroom with |P | = 1 and p0 ∈ C.

the concept number to the left to indicate where this rule was uncovered in the

observations and the number of times the implications has been observed, or its

support, to the right.

In real life, certain properties such as the “edible” and “poisonous” categories

of the mushroom data set are more important than others. To create Figure 5 we

used a simple PERL script to pick out those implications with p0 in the consequent.

These implications show that “smell” is an important criterion of edibility, with c5,

f5, s5, y5 and m5 all indicating poisonous.

dEncoding all 22 physical attributes yields 85 distinct predicates.
eThe entire 8, 124 × 85 relation R generates a lattice of 104,104 closed concepts.
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7Are there simple combinations of attributes that also denote poisonous? Figure

6 illustrates those non-trivial conjunctive implications P → C for which |P | = 2

and p0 ∈ C. If we were using frequent set mining with σ = 1% then min sup = 81,

1495    b1, b3 -> p0, t4, n5, f6
1567    b1, p3 -> p0, t4, n5, f6
2081    y3, n5 -> p0, f4, f6

2181    y2, a6 -> p0, f4, m5
2372    c3, a6 -> p0, y2, f4, m5
2470    e3, a6 -> p0, y2, f4, m5
2561    c1, y3 -> p0, y2, f4, n5 
2561    c1, f4 -> p0, y2, y3, n5
2563    c1, y2 -> p0, n5, f6

2177    e3, f4 -> p0

 696    f2, p3 -> p0, x1, f4, c5
 667    p3, f4 -> p0, x1, c5, f6

CONCEPT IMPLICATION

  12
  12
  24
 876
  18
   6
   6
   2
   2
   3

  32
  64

SUPPORT

Fig. 6. Rules with two predicate precedents that denote pois onous
mushrooms.

so only one of these rules would have been discovered.

A more detailed description of this application can be found in 13.

4.2. Analysis of Software Trace Data

An important concept in science is that of deterministic causality in which the

occurrence of some event, or conjunction of events, must necessarily “cause” a con-

sequent event. Indeed, this was the holy grail of Newtonian physics and much of

19th century science. “Causality” implies necessity, or logical implication. But, it

also assumes a temporal aspect. The consequent event must temporally follow all

assumed antecedent events. One arena where we expect deterministic causality is

software execution. It is a reasonable place to test our ideas.

The application of FCA to re-engineering of legacy software has been explored

by others 19,20. They used closed concepts to reveal significant clusters of code mod-

ules. Our interest instead has been to uncover “likely” causal dependencies between

such modules.f To do this we examined trace sequences of procedure invocations,

which we regard as events. (Each procedure invocation, or event, can be assigned

an integer identifier for easier display, as in Figure 7.) The first step is to find which

events logically imply other events, that is, which events ei, if they occur in a trace

sequence, must imply the occurrence of events ek within the same sequence. To do

this we treat the occurrence of an event as if it were an attribute of the sequence

and create the closure lattice as in Section 4.1.

As we noted above, logical implication denoted by → need not mean deterministic

causality, which we will denote by ⇒. If P → C then we can assert P ⇒ C only if

each ek ∈ C has been preceded in the trace by every ei ∈ P .g Each trace can be

treated as a temporally ordered set. We are then looking for events that temporally

dominate other events. The logic is simplified if we create a single n×n boolean array

cant dominate, where (ek, ei) ∈ cant dominate if in any trace the first occurrence

fMichael Ernst coined the term “likely” in his search for code invariants 21. It seems extremely

appropriate here as well.
gSince events may occur multiple times in a trace, we actually ensure that the first occurrence of

ek is preceded by all ei ∈ P .
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8of ei precedes any ek. This cant dominate relation provides a filter that we use to

reduce the set of logical implications to a set of likely causal dependencies.

To test this approach on real trace data, the author examined an open source,

professional statistical package available from JBoss at www.jboss.com. All of the

method entrance events of the transaction management module in JBoss 1.4.2

were instrumented by my colleagues, Jinlin Yang and David Evans 22. They then

ran the entire JBoss regression test suite to collect 1,227 trace sequences consisting

of 498,489 events of which 144 were distinct. By an “event” in these traces we mean

the invocation of a method. The shortest trace consisted of only 6 events; the longest

involved 1,405 events.

The representation of these 1,272 trace sequences as a closed set lattice consisted

of 1,804 nodes. For simplicity we extracted the 79 logical implications that had only

singleton antecedents, similar to Figure 5. These we ran against the cant dominate

filter yielding 43 likely causal dependencies. An even smaller subset of 17 of these

is shown in Figure 7. (From what we know of the JBoss system, without having

support

concept size causal dependencies (likely)

1733 1,099 {12}=>{13...24}

445 1,100 {17}=>{22,23}
{20}=>{21}=>{22,23}

251 966 {25}=>{26}=>{27}=>{28}=>{29}
{28}=>{30}=>{31}=>{32}

391 962 {35}=>{36}=>{37}=>{38}

443 977 {41}=>{42}=>{43}=>{44}
945 852 {46}=>{47,48,49,60,62}

458 1,077 {47}=>{48}=>{49}=>{51}=>{60}=>{62}
448 1,098 {50}=>{53}=>{54}=>{55}=>{58}=>{61}

53 1,091 {56}=>{57}
375 28 {66}=>{67,69,70}

1754 28 {68}=>{69,70,71,72}

1745 65 {73}=>{74}=>{75}
725 3 {84}=>{117}=>{118}

575 62 {86}=>{87}=>{88}=>{25...44,45,63}
272 1 {89}=>{33,34,90...100)

Fig. 7. Some likely causal dependencies.

the actual source code, these all seem to be true dependencies.) More details can

be found in 23.

Although the creation of closed set lattices, as described in section 2.3 and 3,

together with the real life examples of this section may seem impossibly complex,

this lattice structured representation of data based on closed sets is really rather

simple. Precisely the same code (which is available from the author) was used to

represent both mushroom attributes and software events. In both cases there has

been a clear “value added” by providing logical rules that can provide the input for

a subsequent logical inference engine. c.f. 24,25.

5. Finding Implications with Numeric Predicates

Formal Concept Analysis, as well as our development to date, has been focused

on binary attribute predicates. Either an attribute predicate p is true, e.g. observed,

for a given object, or it is not. However, much of our understanding of the natural

world is numeric. We count and we measure.

Both Alberti et al. 26 and Simons et al. 27, find it necessary to employ mathemat-
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9ical inequalities to implement effective constraint logic programming. The approach

that we describe in this section is based on inequalities, as well. Q2 learning is

more ambitious. It seeks to discover quantitative functional relationships between

its variables; but the qualitative aspect (its second “Q”) is also couched in rules of

inequalities 28.

It is perhaps worth noting that mathematical functions constitute a compressed

and highly effective notation for expressing a family of implications of the form “if

x equals ..., then y equals ...”. But to discover such mathematical functions, Q2

and most numerical data modelling procedures presume knowledge of the indepen-

dent (generating) and dependent variables, together with an assumed dependence

structure, such as linear. Our approach does not.

Every boolean algebra, or lattice L, is a closure system because x, y ∈ L implies

x ∧ y ∈ L. In particular, any predicate p = 0 or 1 is a trivial boolean algebra, or

closure system Cp. Each element, 0 or 1, is its own generator. We achieve far greater

expressive power if we let each predicate pk of an observational tuple (p1, . . . , pn) be

the generator of a closed set in a closure system Ck, where Ck can be more complex

than just {0, 1}. If each closure system Ck is antimatroid, as defined in Section

2.1, then every closed set has a unique generator 8. Consequently, if the tuple of

predicates (p1 . . . , pn) is a tuple of unique generators, then (p1 . . . , pn) denotes a

unique closed set in the n-fold direct product C1 . . . , Cn.

What are some examples of these generating predicates? Consider the ≤ operator

on an ordered, or partially ordered, set. In 8, it is shown that a collection of principal

ideals, that is sets of the form {y : y ≤ z}, is a prototypical antimatroid closure

system with z the unique generator of the set. We use this “down set” closure, which

we denote by ϕ↓, in the following development.

It will be easier to understand the theory we are about to develop if we first

consider a concrete example. Figure 8 has been shamelessly copied from (9, p.44).

It summarizes the ratings of 14 monuments on the Forum Romanum by different

travel guides. Here, B = Baedecker, G = Les Guides Bleus, M = Michelin and P =

Polyglott.

1

1

1

1

1

1 2 1

2 2

1

1 2

1

1

1 1 1

1 3 1

2 3 1

1

2 1

2

2 2 1

B G PM

a

b

c

d

e

f

g

h

i

j

k

l

m

n

Arch of Septimus Severus

Arch of Titus

Basilica Julia

Basilica of Maxentius

Phocas column

Curia

House of the Vestals

Portico of Twelve Gods

Tempel of Antonius and Fausta

Temple of Castor and Pollux

Temple of Romulus

Temple of Saturn

Temple of Vespasian

Temple of Vesta

Fig. 8. Ratings of Roman monuments by 4 guide books.

The 14 numeric 4-tuples can be partially ordered in the usual way, that is

(x1, x2, x3, x4) ≤ (y1, y2, y3, y4) if and only if xk ≤ yk, k = 1, . . . 4. Figure 9, in

which individual tuples have been prefixed with a letter denoting the monument
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10giving rise to that tuple, illustrates this ordering. In order to make it a closure lat-

tice, whenever two tuples are covered by a common tuple, their “intersection tuple”

has been entered into the order, as mandated by the incremental growth algorithm

of Section 3. These intersection tuples have been underlined for emphasis.

(1, 1, 2, 1)(0, 2, 2, 1) (1, 2, 2, 0)

(0, 2, 2, 0)(0, 1, 2, 1) (1, 1, 2, 0)

(0, 1, 1, 1) (0, 1, 2, 0)(0, 0, 2, 1)

(0, 0, 1, 1) (0, 0, 2, 0) (0, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 0) (0, 1, 0, 0) (1, 0, 0, 0)

(1, 2, 3, 1)

(1, 1, 3, 1)

m:

f:

l: h:

c,g: k: d:

e:

n: a:

i:

j:

b:

(0, 0, 0, 0)

(B, G, M, P)

Fig. 9. Lattice of closed sets implicit in Figure 8.

Consider the tuple n : (0, 2, 2, 1) which covers the tuples (0, 1, 2, 1) and (0, 2, 2, 0)

in L. Recall from Section 2.3 that the generators of a set are determined by the

sets it covers. We claim that the generators of n : (0, 2, 2, 1) are G > 1 ∧ P > 0.

Moreover, we claim that the implication embodied by this closed set is (G > 1∧P >

0) → (M ≥ 2∧B ≥ 0). First, verify that in Figure 8 this implication is in fact true,

with j and n being confirming instances.

The principle behind this derivation, which was sketched in Section 2.3 and

rigorously proven for sets in 12, is to show “what constitutes the difference between

this closed set and the closed sets it covers”. In our case, the only difference between

(0, 2, 2, 1) and (0, 1, 2, 1) is that “G is not ≤ 1”, or equivalently “G is > 1”. Similarly,

(0, 2, 2, 1) is not in the closed set (0, 2, 2, 0 because P is not ≤ 0, that is P > 0. The

conclusion, i.e. those predicates with no differences, could be B = 0 and M = 2.

But, what we really know is that ¬(B < 0) and ¬(M < 2); so B ≥ 0 and M ≥ 2

represent the best inferences, or (G > 1∧P > 0) → (B ≥ 0∧M ≥ 3). The adjacent

tuple in Figure 9 is a : (1, 1, 2, 1) which covers the tuples (0, 1, 2, 1) and (1, 1, 2, 0).

Thus the same reasoning yields (¬(B ≤ 0) ∧ ¬(P ≤ 0) → ¬(G < 1) ∧ ¬(M < 2) or

equivalently (B > 0∧P > 0) → (G ≥ 1∧M ≥ 2) which is supported by observations

a, i and j.

Figure 10 provides a rather typical relationship between numeric data that is a

bit more complex than Figure 8. We will again use downset closure, ≤, to order

both the x and y values.

The resultant closure lattice is shown in Figure 11. Using the same logic that we

have described above, we can assert that y > 3 → x ≥ 5, based on node c and that

x > 10 → y ≥ 5, based on node i, among many others. These can be verified in

Figure 10. We have begun to reason about the relationship between x and y.

In both the two preceding examples we used downset closure z.ϕ↓ = {x|x ≤ z},

where z is the generator, to define the numeric closure spaces. We can be more

creative. For our next example we consider the same semi-random distribution of
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Fig. 10. A semi-random distribution of points.
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Fig. 11. The closure lattice corresponding to Figure 10.

points of Figure 10, but now consider 3 numeric closure spaces, specifically x with

ϕ↓, y with ϕ↓ as before, and y the upset closure ϕ↑ as well. That is, we are looking

at another collection of closed sets over the numeric “y” attribute; specifically those

sets z.ϕ↑ = {y|y ≥ z}. Thus the point i is encoded as (12, 5, 5). A node p =

(xp, y1p, y2p) is less than q = (xq, y1q, y2q) if xp ≤ xq, y1p ≤ y1q and y2p ≥ y2q.

Thus i ∧ m is not i as before, but rather i ∧ m = (12, 5, 5)∧ (18, 8, 8) = (12, 5, 8).

Figure 12 illustrates the resultant closed set lattice. The original points from

Figure 10 are emboldened. Many of the intersection nodes are labeled with respect

to these original data points. The zero element is (3, 1, 12) or (min, min, MAX),

while the supremum, or one element, is (MAX, MAX, min). We have indicated it

in just this way because our software requires such a virtual supremum as its initial

condition.

We observe that this lattice has a very different shape than that of Figure 11.

One can see various substructures emerging within it; but nevertheless it is reaching
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Fig. 12. The lattice of closed sets in Figure 10.

the limit of visual comprehension.

However, we can still reason about these numeric values. For instance the node

(12, 5, 8) = i ∧ m covers nodes (10, 5, 8) and (12, 5, 9). Consequently the node

(12, 5, 8) is characterized by ¬(x ≤ 10) and ¬(y ≥ 9) else (12, 5, 8) could not cover

both nodes. Thus we know that x > 10 and y < 9 constitute the generator of i∧m,

which together imply that y ≥ 5. Inspection of Figure 10 shows that this describes

the elements i, j, and m. The node (16, 8, 12) = l ∧ m ∧ o covers only the single

node (15, 8, 12). If ¬(x ≤ 15), then because (16, 8, 12) is closed we must have y ≥ 8

and y ≤ 12), or more compactly, (x > 15) → (8 ≤ y ≤ 12). This encompasses the

elements l, m, n and o.

6. Final Observations

In the abstract we indicated that the rules are completely derived from the data

itself with no apriori thresholds or other assumed postulates such as linear or

quadratic relationships. This is true. But, this not a case of completely undirected

learning. Readily, the researcher first chooses which attributes are likely to be of

most interest, then observes and measures only those. Further, one must then decide

for each numeric attribute which kind of order, downset (≤) or upset (≥), or both,

will be most revealing. So this sort of tool is far from mindless; the nature of the

superimposed closure structure must be chosen. The data itself then determines the

actual boundaries of the closed sets, and from that the implications.

In our examples we have always used integer values. But, this is not necessary.

We could of as well used values such as 2.7 or -12.38. The key requirement is that

the values be discrete, as in computation with a finite numeric representation they

must be. The real number system is based on open sets. This approach is based on

closed sets; there are no accumulation points, there are no limit processes. There
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13is growing evidence that closed sets are more appropriate for the organization of

discrete phenomena.

Rules of interest, such as those of Figures 5, 6 and 7, are obtained from lattices

of closed sets, such as Figures 2, 3(b), 9 and 11. But, these are tiny lattices chosen

for illustrative purposes. In practice, we are dealing with lattices more like that

of Figure 12, only much larger. Consequently, we are faced by the same problem

that bedevils all rule based systems: “which of the thousands of logically valid rules

are of interest?”. There are a variety of ad hoc ways of resolving this problem. To

create the rules of Figure 5, a procedure examined every closed set of the 2,641

node lattice for those with a singleton generator. These are the easiest to use for

subsequent inference. To create Figure 6, the procedure sought closed sets containing

the attribute p0 that had exactly two element generators.

Neither of these simple search strategies works with the lattice of Figure 12.

Instead we get more interesting implications whenever at least one of the numeric

attributes (x, y1, y2) remains constant in each of the nodes covered by the node.

On the other hand, because we have a rigorous underlying mathematical structure

there may be search techniques that have not been explored; at least we have not

investigated them. For example, in Section 5 we pointed out that we were creating

a closure space C that is a direct product of individual closure spaces C1, . . . , Cn. As

with any direct product, C can be projected onto any of its constituent subspaces,

say Ci ×Ck while preserving the relative closures in the natural way. In the process

of such a projection is there a simple way of projecting the lattice LC as well? Can

we project the relatively complex lattice of Figure 12 onto the simpler one of Figure

11? At this point we do not know.

In spite of the questions we have just raised, using the properties of closed sets to

establish logical axioms for inference systems has great promise. The two examples

of Section 4 demonstrate that we can automatically extract valid rules from rather

large sets of data. The extraction of logical implications where some of the predicates

are mathematical inequalities, as illustrated in Section 5, is, we believe, completely

new. Unfortunately, we have not yet automated it in a software system because

there are subtlies we do not fully understand. Instead, we are just beginning to

explore its potential, which we believe is considerable.

Our goal is to begin generating implications of the form “if [p1 ∧ (x > 7)]∨ [p2 ∧

p3 ∧ (y < 9)] then . . .”, We know, for example, that gene expression is dependent

not only on the boolean presence of specific genes, but also on the stage (time) of

the replication and degree of separation of gene sequences. These latter factors are

best expressed as numeric inequalities. Similarly, evidence based diagnostic systems

typically consider both the boolean presence of symptoms and the bounded behavior

of specific variables, .e.g. cholesterol > 180.

The approach of this paper can facilitate the creation of, or refinement of, a

variety of intelligent computer systems.
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