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Abstract

Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation.

Here we investigate a ball and beam implementation of a dexterity puzzle in which subjects stabilize a ball at the mid-point

of a beam by manipulating the angular position of the beam. Stabilizability analysis of different biomechanical models for

the ball and beam task with time-delayed proportional-derivative feedback identified the angular position of the beam as the

manipulated variable. Consequently, we monitored the changes in the dynamics with learning by measuring changes in the

control parameters. Two types of stable motion are possible: node type (nonoscillatory) and spiral type (oscillatory). Both

types of motion are observed experimentally and correspond to well-defined regions in the parameter space of the control

gains. With practice the control gains for each subject move close to or on the portion of the boundary which separates

the node-type and spiral-type solutions and which is associated with the rightmost characteristic exponent of smallest real

part. These observations suggest that with learning the control gains for ball and beam balancing change in such a way that

minimizes overshoot and the settling time. This study provides an example of how mathematical analysis together with careful

experimental observations can shed light onto the early stages of skill acquisition. Since the difficulty of this task depends

on the length of the beam, ball and beam balancing tasks may be useful for the rehabilitation of children with dyspraxia and

those recovering from a stroke.
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1 Introduction

It is well established that practice is required to attain and

maintain dexterity in the performance of voluntary, goal-

directed movements. Dexterity requires that an individual

is able to more effectively plan and correlate physical move-

ments in a manner consistent with underlying biomechanical

and neuromuscular constraints (Inouye and Valero-Cuevas

2016; Metcalf et al. 2014; Milton et al. 2016). The under-

lying neural mechanism involves many levels of sensory

and motor integration. This complexity makes it difficult to

uncover the guiding principles which underlie dexterity (for

a recent review of the control of complex motor tasks see

Parrell et al. (2019)). However, indirect evidence that such

principles may exist is provided by the observation that over-

all cortical activation decreases as dexterity improves with a

selective enhancement of these cortical regions most relevant

for task performance (Bilalic 2017; Hatfield and Hillman

2001; Milton et al. 2007; Puttemans et al. 2005).
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Ultimately theoretic studies and mathematical modeling

acting together with careful experimental observations will

be necessary to uncover the pathway toward dexterity. Pre-

vious studies involving a variety of voluntary, goal-directed

motor tasks have emphasized that the nervous system learns

by developing an internal model which predicts the sensory

consequences of the movement (Kawato 1999; Mehta and

Schaal 2002; Shadmehr et al. 2010; Milton et al. 2016). In

the neuroscience literature this is referred to as feedforward

control and in the modern engineering control theory litera-

ture as predictor feedback (Krstic 2009; Milton et al. 2016).

The role of an internal model is most important in situations

where the controller must compensate for the destabilizing

effects of a time delay (Nijhawan 2008; Nijhawan and Wu

2009). The present day efforts focus on the analysis of a num-

ber of relatively simple biomechanical tasks including tasks

based on spring compression (Lyle et al. 2013, 2015; Row-

ley et al. 2018; Venkadesan et al. 2007), rhythmic ball-racket

bouncing (Schaal et al. 1996; Ronsse et al. 2010), balance

board balancing (Chagdes et al. 2013; Cruise et al. 2017)

and a variety of virtual tasks which involve an interaction

between a human and a computer (Bazzi et al. 2018; Cabrera

and Milton 2004; Chu et al. 2016; Mehta and Schaal 2002;

Milton et al. 2013). An important practical advantage of these

tasks is that the active participation of the participants is eas-

ily gauged since with no effort the subject fails the task. A

fundamental challenge has been to determine quantitative

metrics that describe the learning process. A notable excep-

tion occurs in tasks related to learning of balance control. For

example, in the case of pole balancing at the fingertip (Cabr-

era and Milton 2002; Foo et al. 2000; Mehta and Schaal 2002;

Milton et al. 2016), control theoretic analysis suggests that

the important metric is not the time the pole can be balanced

but is the shortest pole length that can be balanced for a given

time and time delay (Insperger and Milton 2014; Milton et al.

2016).

The inherent instability of uncontrolled human balance

tasks places stringent requirements on the control strategy

since time delays are an essential component of the feed-

back Milton et al. (2009); Stepan (2009). A consequence is

that the Smith predictor, which uses an internal model to pre-

dict the actual state variables of the system, cannot be used to

compensate for the delay (Michiels and Niculescu 2003; Pal-

mor 2000). Predictor feedback controllers, e.g., the modified

Smith predictor or the finite spectrum assignment, overcome

these limitations of the Smith predictor by solving the system

over the delay interval only (Krstic 2009; Molnar et al. 2019).

The main point of predictor feedback is that consequences of

motor commands are estimated based on an internal model

over the delay period and hence the delay is eliminated from

the control loop. Thus, the infinite spectrum of the time-delay

system is reduced to a finite dimensional spectrum. However,

the internal models for novices just learning a balance task,

those undergoing rehabilitation to re-learn a balance task and

those with dyspraxia are most certainly inaccurate. When the

internal model is inaccurate, the spectrum becomes infinite

again. Moreover it is unlikely that an internal model with-

out any direct feedback would be a useful control strategy in

an uncertain environment such as walking blindfolded and

barefoot on a rough gravel surface. Thus an internal model

cannot readily be used to identify practical, experimentally

measurable parameters that can be used to follow the learning

process in a variety of contexts.

Here we evaluate whether a state-dependent controller,

such as the one which incorporates proportional-derivative

(PD) feedback, can be used as a proxy for control under sit-

uations where the internal model is expected to be poorly

developed. We simplify the dexterity puzzle to a ball and

beam task in which the subject is required to stabilize a

rolling ball (in the experimental realization a rolling cart)

at the mid-point of the beam by manipulating the angle of

the beam (Fig. 1). Ball and beam systems are widely used

in engineering as a benchmark for different control schemes

(Wellstead 1979; Astrom and Wittenmark 1984). The angle

of the beam is identified as the controlled variable in Sect. 2.

Thus it becomes possible to describe ball and beam balancing

with three parameters: the time delay (τ ), the proportional

gain (Px ) and the derivative gain (Dx ). Sections 3 and 4

describe, respectively, the methods and results. It is shown

that with learning the control gains change in such a way that

the settling time and overshoot are reduced. The observation

that settling time and overshoot decrease with practice has

also been reported for certain arm pointing and trajectory-

following exercises (Burdet et al. 2001; Flanagan et al. 2003;

Franklin and Wolpert 2011; Thoroughman and Shadmehr

2000). The important point here is that we have demonstrated

that settling time and overshoot are the proper metrics for

monitoring learning in the ball and beam balancing task. The

development of dexterity puzzles of graded difficulty may

be useful for both classifying dyspraxia and following its

response to rehabilitation.

2 Model

The ball and beam balancing task shown in Fig. 1 is modeled

as two DoF mechanical systems where x is the position of the

ball measured from the middle of the beam and m1, ψ are,

respectively, the mass and the angle of the beam. The ball

is modeled as a particle of mass m2. Both static and kinetic

frictions are neglected in the model.

The human control mechanism is modeled as a PD con-

troller with continuous feedback involving a reaction delay.

The time delay arises because axonal conduction times are

finite and because of the time required for perception, plan-

ning and execution of the corrective movements. Thus it
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Fig. 1 Top: The experimental device for the ball and beam system with

a rolling cart playing the role of the ball. Bottom: the mechanical model

of the ball and beam system

becomes necessary to take into account the time it takes to

detect an error and then act upon it. Mathematical investiga-

tions indicate that the controlled variable can be either the

angular position of the beam or the torque applied to the

beam, but not the angular velocity of the beam or its accel-

eration (Buza and Insperger 2018).

2.1 Angular position as manipulated variable

Experimental observations suggest that ball and beam bal-

ancing can be performed by holding the seesaw in a tilted

position for certain time relying on the gravity to roll the ball

to the desired middle position. The corresponding mechani-

cal model is a one DoF system, and the linearized equation

of motion reads

ẍ(t) = −gψ(t), (1)

where g is the acceleration due to gravity.

The angular position ψ(t) in (1) is given by the assumed

PD feedback mechanism in the form

ψ(t) = Px x(t − τ) + Dx ẋ(t − τ), (2)

where Px and Dx are the proportional and derivative gains

for the displacement x of the ball, respectively, and τ is the

reaction delay. The governing equation reads

ẍ(t) + gDx ẋ(t − τ) + g Px x(t − τ) = 0, (3)

and the corresponding characteristic equation is

D(λ) = λ2 + gDxλe−λτ + g Px e−λτ = 0. (4)

The stability properties can be depicted in stability diagrams.

After substituting λ = α ± iω, ω ≥ 0 and setting α = 0,

the D-curves can be given in the form (Insperger and Stepan

2011)

ω = 0 : Px = 0, Dx ∈ R, (5)

ω > 0 : Px =
ω2

g
cos(ωτ), Dx =

ω

g
sin(ωτ). (6)

The number of unstable characteristic exponents in the

domains separated by the D-curves can be given using

Stepan’s formula (Stepan 1989). The stability diagram with

the number of unstable characteristic exponents is shown in

Fig. 2 for τ = 250 ms. The stable region is indicated by

gray shading. Stabilizability properties can be characterized

by the critical delay, τcrit, i.e., the smallest delay for which

the fixed point can be stabilized. Parametric investigation of

(5)–(6) shows that the region of stability shrinks as the delay

increases; however, the stable region never disappears com-

pletely. Thus, (3) is delay-independent stabilizable.

Two main features of the motion of the ball are the over-

shoot and the settling time of the response. Both features are

associated with the rightmost characteristic exponents.

Overshoot: oscillatory versus nonoscillatory motion

The dashed line within the stable region in Fig. 2 separates

two types of solutions. Parameter pairs (Px , Dx ) located to

the left of the dashed line are associated with a real rightmost

characteristic exponent. The corresponding motion is a node-

type (i.e., nonoscillatory) motion (Fig. 2 bottom left). For

node-type solutions there can be at most one overshoot. For

parameter pairs (Px , Dx ) located to the right of the dashed

line, the rightmost characteristic exponents form a pair of

complex numbers. The corresponding motion is a spiral-type

(i.e., oscillatory) motion (Fig. 2, bottom right). For spiral-

type solutions there are more than one overshoots. The line

separating the nonoscillatory and the oscillatory behaviors

is referred to as the node–spiral separation line. It should

be noted that the node–spiral separation line indicates the

parameter values at which either the rightmost characteristic

exponent is real and has a multiplicity of 2 or a real and a

complex pair of characteristic exponents coexists with the

same real part.

Settling time

The settling time is associated with the real part α of the right-

most characteristic exponent. Colored lines in Fig. 2 indicate

contour levels of different α. The smaller α (more negative),

the shorter the response time to a given perturbation. The

control gains associated with the fastest response are located
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Fig. 2 Top: D-curves and stability diagrams with the number of unstable poles for the case when the angular position is the manipulated variable

with feedback delay τ = 250 ms. Bottom: node-type solution (left), fastest response time (middle) and spiral-type solutions (right)

on the node–spiral separation line. The fastest response is

shown in the bottom middle panel of Fig. 2.

2.2 Control torque as manipulated variable

The alternate hypothesis is that the manipulated variable is

the torque applied on the beam. In this case, the angular

position is no longer restricted, and the mechanical sys-

tem has two degrees of freedom. Therefore, we introduce

q(t) = (x (t) , ψ (t))T as the vector of general coordinates.

The system is now governed by

(

m2 0

0 I1

)

q̈(t) +

(

0 m2g

m2g 0

)

q(t) =

(

0

−Q(t)

)

, (7)

where I1 = m1l2
1/12 is the mass moment of inertia of the

seesaw and Q(t) is the control torque. Note that the gov-

erning equation in Model 1 was independent of the physical

parameters of the system. Here, however, the parameters m2

and I1 show up in (7). The control torque is assumed in the

form

Q(t) = Px x(t−τ)+Dx ẋ(t−τ)+Pψψ(t−τ)+Dψ ψ̇(t−τ),

(8)

where Px and Dx are the proportional and the derivative gains

for the position x of the ball, while Pψ and Dψ are those for

angular position ψ of the beam. The equation of motion can

be written in the compact form

Mq̈(t) + Sq(t) = Kdq̇(t − τ) + Kpq(t − τ), (9)

where

Kd =

(

0 0

−Dx −Dψ

)

, Kp =

(

0 0

−Px −Pψ

)

. (10)

Numerical analysis shows that this system can only be sta-

bilized by delayed PD feedback for delays less than τcrit =

180 ms (Buza and Insperger 2018). For the ball and beam

balancing τ > 180 ms (see Sect. 3). Thus we do not consider

this case further. Note, however, that this model might be

of relevance when other types of control concepts are used,

such as predictor feedback (feedforward) controller.

3 Experimental methods

3.1 Construction of the ball and beam system

The ball and beam system was constructed as a cart driven

on linear bearing rail. The rail was fixed to a wooden beam,

which was connected to a wooden stand frame via a shaft

as shown in Fig. 1. The length of the beam was 1.06 m, the

length of the rail was 0.94 m, and the bounding dimensions

of the cart were 60 × 60 × 40 mm. The mass of the cart

was 0.12 kg, and the moment of the inertia of the beam was
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0.1889 kgm2. Subjects could adjust the seesaw by grabbing

the handle at either end and were instructed to move the cart to

the mid-point of the beam by changing the angle of the beam.

(Accuracy limits were ±5 mm, and they were indicated by

dark tape stripe.)

3.2 Participants

A convenience sample of 25 subjects was recruited from

the local student and faculty population (age 26 ± 5 years,

2 females, 23 males). All subjects were free of any neu-

rological or musculoskeletal impairment that could affect

balancing of a ball on a beam. The research was carried out

following the principles of the Declaration of Helsinki. All

participants provided informed consent for all research test-

ing and were given the opportunity to withdraw from the

study at any time.

3.3 Procedure

Two types of balancing sessions were performed.

Session 1

Twenty-two subjects did a single trial for each of the dif-

ferent initial positions x(0) = 450, 380, 280, 170, −170,

−280, −380, −450 mm (8 trials in total) without any prior

practice. In this way the effect of familiarity with the task was

eliminated. Subjects were instructed to guide the cart to the

mid-point of the beam as fast as possible with the smallest

overshoot. The task was considered to be completed when

the subjects declared that the cart is stopped at the desired

position, i.e., between the two dark tape stripes indicating the

middle of the beam with ±5 mm tolerance. After complet-

ing the task, the subjects themselves positioned the cart at

the instructed initial position and started the next trials. All

subjects were able to successfully complete the task within

6 s. In this session, subjects were completely unfamiliar with

the task since they performed the trials from different initial

conditions. We assume that the employed control mechanism

is based only on the state (position and velocity) of the cart

and hence a delayed PD feedback was used rather than a

predictor feedback.

Session 2

Ten subjects (7 from Session 1) performed 20 balancing trials

per day, all from the same initial position x(0) = −450 mm,

for five consecutive days (100 trials per subject in total). This

experiment was performed two months after Session 1. The

decision to repeat the trials on consecutive days was based on

previous observations for pole balancing on the fingertip that

the increase in skill between two practices on consecutive

days is typically more pronounced than when two practice

sessions are performed on the same day (Milton et al. 2016).

The parameters τ, Px , Dx for ball and beam balancing on

Day 1 of Session 2 for the 7 subjects who had participated

in Session 1 were unchanged compared to those estimated

based on the trials in Session 1. In this session, subjects get

more and more familiar with the task day by day, which

allows the possible detection of the learning process.

3.4 Measurements

An OptiTrack motion capture system was used to track the

movements of the cart and the seesaw. Three reflective spher-

ical markers (12.7 mm diameter) were used: one was attached

to the rolling cart, and the other two were attached at each

end of the beam. The sampling frequency was 120 Hz. All

programs were written in MATLAB. For motion capturing

the commercial motive software of the OptiTrack system was

used.

3.5 Parameter estimation

For each balancing trials, the feedback delay τ was varied

from τ = 0 to τ = 0.7 s with step ∆τ = h = 8.33 ms.

For each τ , the best fitting pair (Px , Dx ) was determined by

linear regression (Myers 1990). Then numerical simulation

was performed for these control gains for initial conditions

taken from the measured time series x(t) over the interval

t ∈ [0, τ ]. The time delay was selected such that the accu-

mulated error E =
∑N

i=1 (|xsim(ti ) − xmeas(ti )|) between

the simulated and the measured signal was minimal over

the whole trial. Here, ti is the instants of measurements,

∆t = ti − ti−1 = 8.33 ms and N∆t indicates the end of

the trial. Figure 3 shows an example for the measured time

signal and the parameter estimation.

(a) (b)

(c) (d)

Fig. 3 Time histories for Session 1 by subject S2 (a), fitted control

parameters in the stability diagram (b), time-delay estimation (c) and a

sample for the measured and the fitted time history (fitted parameters:

τ = 270 ms, Px = 0.511 m−1 and Dx = 0.2963 sm−1)
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For the estimation of the control gain parameters Px and

Dx , Eq. (3) is rewritten as

ż(t) = Az(t) + bKz(t − τ), (11)

where

z(t) =

(

x(t)

ẋ(t)

)

, A =

(

0 1

0 0

)

, b =

(

0

−g

)

, (12)

and K =
(

Px Dx

)

. The solution by means of explicit Euler

method gives the discrete map

zi+1 = zi + h(Azi + bKzi−r ), i ∈ N, (13)

where r = round(τ/h) is the delay resolution, h = 1/ fs

is the time step size with fs = 120 Hz being the sampling

frequency, and the notation

zi = z(ti ), ti = ih (14)

is used for the sake of brevity. Similarly to Mehta and Schaal

(2002), the control gains in K can be estimated by linear

regression analysis of (13) using the measured data (Fig. 3b).

Due to the structure of vector b, the elements of K appear

in the second equation of (13) only, which can be rewritten

as

ẋi − ẋi+1

gh
= K

(

xi−r

ẋi−r

)

. (15)

Augmentation of (15) over i = r +1, r +2, . . . , N −1 gives

y = XKT + u, (16)

where u is the error term and

y =

⎛

⎜

⎜

⎝

ẋr+1−ẋr+2

gh

...
ẋN−1−ẋN

gh

⎞

⎟

⎟

⎠

, X =

⎛

⎜

⎝

x1 ẋ1

...
...

xN−r−1 ẋN−r−1

⎞

⎟

⎠
. (17)

Here, N is the number of time instances used for the param-

eter identification. Following Mehta and Schaal (2002), we

employed ridge regression to achieve numerical robustness.

This way K is obtained from the regression formula as

KT = (XT X + εI)−1XT y. (18)

The ridge regression parameter ε was determined by mini-

mizing the mean-squared PRESS residual error (Myers 1990)

J =

N−r−1
∑

1

(yi − Kzi )
2

(1 − zT
i (XT X + εI)−1zi )2

(19)

for each individual balancing test and for each subject.

3.6 Reaction delaymeasurement

Three classic forms of reaction delay test were used (Tal-

land and Cairnie 1961; Welford 1988; Woods et al. 2015). In

the first task (referred to as the “Single Flash”), the subject

pressed a button in response to a single light flash. In the

second task (referred to as the “Individual Flash”), the sub-

ject was presented with three sets of buttons and lights and

was asked to press the button associated with the flashing

light. In the third task (referred to as the “RGB Flash” task),

the subject was presented with one light which could pro-

duce red, blue and green flashes and three buttons (red, blue,

green). They were asked to press the button that matches

the color of the flash. In all cases, the time increments

between flashes were randomized (uniform distribution over

the period between 4 and 6 s). Every subject performed each

task 10 times without prior practice. These tests were per-

formed before Session 1 and on the first day of Session 2.

The result of the reaction delay measurement can directly be

related to the reaction delay obtained by parameter estima-

tions described in Sect. 3.5.

4 Experimental results

The mean time delay for the ball and beam dexterity test in

Session 1 was 316.4 ms (range 200−475 ms for 22 subjects).

Since the time delays are greater than 180 ms for all of the

subjects we can eliminate the possibility that the manipulated

variable is the torque (see Sect.2.2). Time delays for a variety

of visuomotor tracking are typically larger than 180 ms in

both humans (Brenner and Smeets 1997; Mehta and Schaal

2002; Miall 1996; Milton et al. 2016; Talland and Cairnie

1961; Woods et al. 2015) and rhesus monkeys (Georgopoulos

et al. 1981; Miall et al. 1986).

Ten (10) subjects performed repeated trials over five con-

secutive days (Session 2). At the completion of this training

we observed that the subjects could be separated into two

groups (compare with Figure 2). Five subjects classified as

Group 1 subjects exhibited spiral-type dynamics, and there

was greater trial-to-trial variability. (An example is shown

in Fig. 6 top.) The other five subjects classified as Group 2

subjects exhibited node-type dynamics, and there was less

trial-to-trial variability. (An example is shown in Fig. 7 top.)

After 5 days of practice all subjects exhibited node-type

dynamics with reduced trial-to-trial variability (see bottom

of Fig. 7 and 6). The training did not affect the time delay

(mean delay 310.8 ms on Day 1 and 309.2 ms on Day 5,

P-value = 0.83, paired t test) suggesting that the duration of

the neural processing had not changed.

Figure 4a and 4b show the variation of the magnitude of

the first overshoot for Subject 17 (typical Group 1 subject)

and for Subject 16 (typical Group 2 subject) during Session 2,
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(a)

(b)

(c)

Fig. 4 Variation of the overshoot for Subject 17 (a) and Subject 16 (b)

over the trials. Red curve is an exponential function fitted to the data.

Variation of the mean overshoot with min–max error bars for Group 1

and Group 2 subjects and for all subjects as a function of days of practice

(c). Black crosses indicate the daily average overshoot of Subject 17

(Group 1) and Subject 16 (Group 2)

(a)

(b)

(c)

Fig. 5 Variation of the settling time for Subject 17 (a) and Subject 16

(b) over the trials. Red curve is an exponential function fitted to the data.

Variation of the mean settling time with min–max error for Group 1 and

Group 2 subjects and for all subjects as a function of days of practice

(c). Black crosses indicate the daily average settling time of Subject 17

(Group 1) and Subject 16 (Group 2)

respectively. Overshoot was assessed as the maximum pos-

itive position of the cart (note that the initial condition was

x(0) = −450 mm). Red line indicates a least-squares fit of

an exponential function to the data following Burdet et al.

(2001). Figure 4c shows the average ± min/max overshoot

over the days of practice for Group 1, Group 2 and all sub-

jects. The mean overshoots for Subject 17 (Group 1) and

Subject 16 (Group 2) are indicated by black crosses. On

Days 1 and 2 the mean overshoot for Group 1 subjects is

about twice that observed for Group 2 subjects, while the

variance is about triple of that. However, by Days 3 through

5 the magnitude of the first overshoot and its variance are

about the same for the two groups. This observation sug-

gests that significant learning of these tasks occurs between

Day 2 and 3 of practice for the least skilled ball and beam

balancers. The mean overshoot for Group 1 members on Day

1 and Day 5 was 57.8 mm and 28.0 mm, respectively, while

for Group 2 members, the mean overshoot decreased from

34.9 to 21.0 mm. The P-value for the t test comparing the

mean change in the overshoot to zero was 0.283 for Group 1

and 0.001 for Group 2. Thus, Group 1 members significantly

reduced their overshoot, while the reduction of the overshoot

for Group 2 members is not so pronounced.

Figure 5a and b shows the variation of the settling time,

which is required to position the ball at the mid-point with

accuracy of ±10 mm, for Subjects 17 and 16. Thus, set-

tling time was assessed as the time instant ts for which

|x(t)| < 10 mm if t > ts. Figure 5c shows the average ±

min–max settling time over the days of practice. The mean

settling times for Subject 17 (Group 1) and Subject 16 (Group

2) are indicated by black crosses. For both groups the set-

tling time becomes slightly shorter with days of practice. For

Group 1 members, the mean settling time was 3.89 s on Day

1 and 2.88 s on Day 5, while for Group 2 members, the mean

settling time decreased from 3.30 to 2.66 s. The P-value for

the t test comparing the mean change in the settling time to

zero was 0.043 for Group 1 and 0.077 for Group 2. Thus, the

improvement in the settling time in Group 1 is slightly more

pronounced than in Group 2.

The changes in the settling time and overshoot shown in

Figs. 4 and 5 are similar to those observed in other studies that

associate learning with a decrease in settling time (Flanagan

et al. 2003; Franklin and Wolpert 2011; Thoroughman and

Shadmehr 2000). Taken together the observations in Figs. 4

and 5 suggest that skilled subjects have a common strategy

that minimizes the response time and reduces the overshoot

as much as possible.

The values of Px , Dx were always located within the sta-

ble region for (1). However, the trial-to-trial distribution of

the gains was different for Group 1 and Group 2 subjects.

For Group 1 subjects on Day 1, the values of Px , Dx were

scattered within the region of stability on both sides of the

node–spiral separation line. By Day 5 the values of Px , Dx
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Fig. 6 Time histories (left) for Subject 17 from Group 1 and the cor-

responding control gain parameters plotted on the stability diagram

(right) during Session 1 (top) and Session 2 in Day 1 (middle) and Day

5 (bottom)

were distributed close to or on the node–spiral separation line,

particularly, in the region where the real part α of the char-

acteristic exponent is the smallest (see right-hand column

of Figs. 6 and 7). This observation suggests that learning of

this task involves tuning of the important control parameters

close to the node–spiral separation line. In contrast the values

of Px , Dx for Group 2 subjects were close to the node–spiral

separation line on both Days 1 and 5. Thus subjects who

already know the better strategy on Day 1 do not substan-

tially change it with practice, suggesting that this strategy is

a goal of the learning process.

We observed that the measured time delay for ball and

beam balancing was quite variable (see Figs. 6 and 5). Fig-

ure 8 compares time delay measured for ball and beam

balancing to the values obtained for three classic forms of

the reaction delay test for the same subjects. For the reaction

delay tests, both the mean delay and the standard devia-

tion increased as task complexity increased. The mean time

delay for ball and beam balancing most closely resembles

that obtained for the “Individual Flash” test, but the variance

resembles most closely the range observed for the RGB test.

These observations suggest that during ball and beam balanc-

ing subjects do not simply react to changes in the angle of

the beam as fast as possible (“Single Flash” test), but rather

respond in a more planned manner to a task that itself is

changing.

Fig. 7 Time histories (left) for Subject 16 from Group 2 and the cor-

responding control gain parameters plotted on the stability diagram

(right) during Session 1 (top) and Session 2 in Day 1 (middle) and Day

5 (bottom)

Fig. 8 Time delays measured for 10 subjects determined by parameter

fitting (ball and beam) and measured by reaction tests (single, individual,

RGB) before performing the ball and beam balancing task

5 Discussion

There are two advantages of balance tasks for the investi-

gation of dexterity. First, the “plant,” namely the task to

be controlled, can be precisely described using Newtonian

dynamics. Thus, it becomes possible to focus on the nature

of the neuromuscular control. Second, the fact that the uncon-

trolled position is unstable places very stringent requirements
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on the nature of the feedback. Here we identified the control

system for a ball and beam dexterity task. Since the control

system can be identified, important parameters, namely τ ,

Px and Dx , can be easily measured using a linear regression

analysis. Thus, the early stages of development of dexterity

with practice can be monitored quantitatively in the dynam-

ical space of the important control parameters.

Our observations indicate that during the early stages of

learning the ball and beam dexterity task a PD controller with

three parameters provides a good description of the observed

dynamics. With practice the settling time and overshoot for

the ball and beam task decrease. Mathematical analysis and

the measurements of the time delay established that the con-

trolled variable is the angular position of the beam. The

addition of a derivative term in the controller is essential for

the control of any mechanical task with time-delayed feed-

back (Stepan 1989, 2009). In this situation it is known that

the addition of an integral term, such as for a PID controller,

does not improve stability performance against reaction delay

over that afforded by PD feedback (Lehotzky 2017). We

emphasize that our observations do not imply that the nervous

system is not in the process of developing an internal model-

based method for control. Our observations merely suggest

that a PD controller serves as a reasonable proxy in situations

in which the internal model has not been well developed by

the nervous system. We note in passing that most individuals

perform tasks that have not been well learned on a daily basis.

One can argue that humans have developed internal mod-

els for the interaction with inertial systems (Newtonian

dynamics) over their lifetime. Still, positioning tasks cannot

be performed precisely based on only feedforward control.

This is due to the inaccurate information about the environ-

ment, which are required for an inverse dynamics calculation.

For instance, in the ball and beam task, the mass of the ball,

the inertia of the beam, the friction and the initial position

are all partially unknown to the subjects. This implies that

the employed control law shall involve some direct feed-

backs in order to compensate the inaccurate prediction by

the internal model. On the other hand, it is possible that by

practicing the same task regularly, the role of an internal

model-based feedforward mechanism becomes more domi-

nant part of the balancing process. This phenomenon is also

captured by the delayed PD feedback in the sense that the

gains of the PD feedback after practice become close to the

ones that result in a fast control with minimal overshoot.

Thus, although delayed PD control might not be physiologi-

cally adequate control concept, it describes well the changes

in its parameters during a learning process.

After the completion of this study the same subjects were

asked to guide the ball to the middle of the beam with eyes

closed (i.e., in the absence of visual feedback). In all cases

the subjects were unable to accomplish this task successfully.

This supports the idea that even though feedforward control

with internal models may partially be involved, additional

visual feedback is also necessary component of the control

task.

Predictor feedback and delayed PD feedback present two

extremes of a range of possible control concept candidates

for human balancing. Predictor feedback accounts for the

consequences of motor commands and estimates the state

based on an internal model over the delay period. A per-

fect predictor feedback (with an accurate internal model,

with perfect implementation and without any sensory uncer-

tainties and noise) totally eliminates the feedback delay and

gives a delay-free PD feedback. In this case, any positive

values of the gains Px and Dx result in a stable control

process, i.e., the stable region represented in Fig. 2 trans-

forms to the positive quarter of the plane (Px , Dx ). This

implies that control performance can be improved without

limits: any large perturbations can be compensated in any

short time. This is not the case in reality; human perfor-

mance has limitations both in gaining sensory information

and in exerting control force. These can also be considered

as imperfection in the implementation of the control law.

It shall be mentioned that there are many other candidates

to the control concepts, e.g., clock-driven or event-driven

intermittent predictive control (Gawthrop et al. 2011, 2014;

Yoshikawa et al. 2016), act-and-wait control (Insperger and

Milton 2014), proportional-derivative-acceleration feedback

(Insperger and Milton 2014), hierarchical control concepts

with different level organizations (Valero-Cuevas et al. 2009)

can be mentioned as possible examples.

There are two possible explanations for our success in

describing ball and beam balancing using PD feedback con-

trol. First, it is possible that the subjects have not practiced

this task long enough to develop a reliable internal model.

For example, expertise in pole balancing on the fingertip for

seated individuals requires weeks of practice (Milton et al.

2016). It should be noted that during the early stages of acqui-

sition of pole balancing skill the observed balance times are

also consistent with a PD controller. In this case with practice

extending over weeks the minimum pole length that could be

successfully balanced became so short that the balance times

could not be explained by time-delayed PD feedback, but

were consistent with balance times predicted by feedforward

control (Flanagan et al. 2003; Franklin and Wolpert 2011;

Thoroughman and Shadmehr 2000). Unfortunately there is

no formal way to reduce a predictor feedback controller to a

PD feedback controller. Thus it is not yet possible to identify

the stage of learning process at which a PD controller is no

longer useful as a proxy.

The second possibility is that there may be tasks, such

as ball and beam balancing, for which feedforward control

is neither required nor beneficial. Ball and beam is an 1-D

example of 2-D dexterity puzzle (e.g., ball and plate). These

puzzles were developed by Charles Martin Crandell in 1889;
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an example is the Pigs in Clover puzzle. In these tasks a sub-

ject tilts a maze in order to guide one or more balls toward

a goal. These tasks place a premium on perseverance and

patience rather than on critical thought and logic as required

for other types of puzzles. Intuitively, this observation sug-

gests that this task is controlled using primarily feedback

control.

The difficulty of the ball and beam dexterity task increases

as the length of the beam decreases and/or the handle is

moved to change the length of the effort arm. This is because

for a given beam displacement the change in angle is greater

the shorter the effort arm of the beam. Children with dys-

praxia and those undergoing neural rehabilitation often find

tasks related to spring compression and stick balancing ini-

tially intimidating. However, as dexterity increases, task

difficulty must be increased to maintain the challenge. In

this context it is important to keep in mind that most non-

linear types of state-dependent feedback, i.e., feedback that

depends on x , ẋ , can be reduced to a PD feedback after lin-

earization. Thus, as task difficulty increases we cannot rule

out the possibility that the control strategy also changes to

accommodate, for example, biomechanical and neuromuscu-

lar constraints. In other words, the road from novice to expert

is likely to be complex. It may be possible to design a range

of dexterity tasks each of which favors one control strategy

over the others. By the judicial use of such tasks together

with mathematical modeling it may be possible to obtain a

quantitative description of the development of dexterity.
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