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Abstract—In this paper metrics for assessing the performance 

of directional modulation (DM) physical-layer secure wireless 

systems are discussed. In the paper DM systems are shown to be 

categorized as static or dynamic. The behavior of each type of 

system is discussed for QPSK modulation. Besides EVM-like and 

BER metrics, secrecy rate as used in information theory 

community is also derived for the purpose of this QPSK DM 

system evaluation. 

 
Index Terms—Bit error rate, constellation pattern, directional 

modulation, error vector magnitude, secrecy rate.  

I. INTRODUCTION 

hrough the deployment of wireless networks we can 
readily acquire information and share data in real-time. 

However, this facility often comes at the expense of security 
due to the broadcast nature of wireless communications [1]. 
Traditionally the wireless secrecy problem has been handled at 
protocol stack level through mathematically derived 
cryptographic techniques. Physical-layer security, e.g., [2]-[4], 
has attracted research attention recently and suggests a means 
for achieving an additional level of security in a wireless 
transmission. 

Physical-layer security exploits the unique physical 
properties of wireless communication channels in order to 
significantly reduce probability of successful data interception 
by eavesdroppers. A promising new concept termed directional 
modulation (DM) offers a means for achieving this. In a 
traditional beam-forming transmitter, information formats, i.e., 
constellation patterns in IQ space, are not distorted along 
undesired communication directions. Whereas in a DM 
transmitter, constellation patterns are spatially scrambled in all 
but an a-priori specified direction.  

The authors in [5]-[7] introduced parasitic DM structures 
which rely on near-field coupling effects. In these cases the 
design process is complicated due to the complex interactions 
in the near-field and their spatial dependent transformation into 
the far-field. In contrast actively driven DM arrays [8]-[16] can 
be more synthesis-friendly since they allow linkage of array 
excitation settings to far-field patterns, and ultimately to the 
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DM system performance. A further effort at simplifying DM 
architectures was made by exploiting the beam-orthogonality 
characteristics possessed by the Fourier transforming lens [17], 
[18]. More recently the artificial noise (orthogonal interference) 
[19], [20] and DM concepts were formally linked via the 
orthogonal vector approach in [21].  

Since the DM technique is a relatively new concept, valid 
metrics to evaluate the performance of DM systems in a way 
that is consistent and which allows direct comparison between 
different systems have not been evolved. For example in [7], 
the authors only claimed that the DM properties were obtained 
by a certain physical arrangement, but no assessments were 
made. In [5], [6], [11]-[13] normalized error rate was adopted, 
however, since channel noise and coding strategy was not 
considered, this metric is not able to capture differences in 
performance if (a) a constellation symbol is constrained within 
its compartment, one quadrant for QPSK, but locates at 
different positions within that compartment; (b) a constellation 
symbol is out of its compartment but falls into a different 
compartment. In [17] an EVM-like figure of merit (FOM) for 
describing the capability of constellation pattern distortion in a 
DM system was defined. In [22] bit error rate (BER) was used 
to assess the performance of a QPSK DM system, but no 
information about how it is calculated was provided. While in 
[8], [9] a closed-form QPSK BER lower bound for DM system 
evaluation was proposed, which was recently corrected and 
extended in [14].  BER simulated via a random QPSK data 
stream was used in [9], [10], [15].  

Additionally in DM system discussions there has not been 
adequate description of the effect that receive decoder 
properties has on system performance, especially in 
eavesdropper directions. Hence before BER results reported by 
various authors can be compared the influence of receive 
decoder capability needs to be described in details, as in 
[14]-[16], [18], [21]. 

To provide better cohesion in regard to DM system 
assessment comparability this paper brings together and 
contrasts available and newly proposed DM performance 
metrics. In Section II of this paper DM systems are categorized 
and are shown to be either static or dynamic based on whether 
the constellation distortion is updated, with respect to time, or 
not. An example QPSK DM transmitter for each type is 
presented and is used for DM metrics discussions later in the 
paper. In Section III and IV the possible metrics for static and 
dynamic QPSK DM systems are respectively presented, 
leaving metric discussions and comparisons as the topic of 
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Section V. Summaries are drawn in Section VI. 

II. STATIC AND DYNAMIC QPSK DM SYSTEMS 

DM is a transmitter side technology that is able to scramble 
signal formats, i.e., constellation patterns in IQ space, along all 
spatial directions except for the direction pre-assigned for 
secure transmission.  

Constellation distortion along unselected communication 
directions can be either constant during the entire transmission 
sequence, or it can be dynamically updated usually at the 
information symbol rate. From this point onwards, these are, 
respectively, termed static and dynamic DM systems. 

A. Static DM systems 

According to the definition above, DM architectures in 
[5]-[16], [22] are labeled the static DM systems.  

A typical and synthesis-friendly static DM transmitter array 
is depicted in Fig. 1. Prior to transmission via N antenna 
elements, carrier signals (fc) are modulated by baseband 
information data controlled attenuators with amplitude weights 
Amn and phase shifters with values of Phasemn, where m (m = 1, 

2, …, M) and n (n = 1, 2, …, N) correspond to the mth unique 
signal symbol and the n

th
 array element respectively. Usually 

this type of DM transmitter is synthesized by linking 
architecture parameter settings and the predicted system 
performance, then minimizing the values of appropriate cost 
functions via iterative optimization, as in [8], [14], [16]. 
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Fig. 1.  A typical static DM transmitter array architecture, consisting of 
baseband information data controlled attenuators and phase shifters. 

 
For the purpose of metric discussions in Section III, a static 

one-dimensional (1-D) half-wavelength spaced four-element 
DM transmitter array was synthesized with settings listed in 
Table I. It is modulated for QPSK with the selected secure 
communication direction of 150º (boresight is along 90º). The 
array elements are assumed to have ideal isotropic radiation 
patterns. The resulting far-field pattern for each QPSK symbol 
is presented in Fig. 2. These far-field patterns can also be 
regarded as constellation symbols in IQ space along each 
spatial direction. Gray coding is used throughout in this paper, 
thus the phase-synchronized symbols ‘11’, ‘01’, ‘00’, and ‘10’ 
in a standard QPSK system should lie in the first to the fourth 
quadrants respectively. For comparison the steering parameters 
for a conventional beam-steered QPSK transmitter pointing to 
150º are also provided in Table I. Since in a conventional 

transmitter the signal is modulated at baseband, the Phasemn are 
fixed for each symbol transmitted, i.e., for each m. Fig. 2 shows 
the resulting far field patterns obtained for both DM and 
conventional array types. It is noted that for the conventional 
array type neither phase nor amplitude varies with transmitted 
 

TABLE I 
THE PARAMETERS OF AN EXAMPLE QPSK DM TRANSMITTER ARRAY FOR 150º 

DIRECTION COMMUNICATION AND THOSE OF THE CONVENTIONAL 

BEAM-STEERING ARRAY 
DM QPSK transmitter array for 150º communication 

 n=1 n=2 n=3 n=4 
m=1 

(Symbol ‘11’) 
Amn 1.60 1.60 1.60 1.60 

Phasemn 84º 194º 130º 240º 

m=2 

(Symbol ‘01’) 
Amn 1.47 1.47 1.47 1.47 

Phasemn 91º 184º 267º 112º 

m=3 

(Symbol ‘00’) 
Amn 1.56 1.56 1.56 1.56 

Phasemn 334º 139º 192º 344º 

m=4 

(Symbol ‘10’) 
Amn 1.60 1.60 1.60 1.60 

Phasemn 231º 58º 121º 236º 
Conventional beam-steering array pointing to 150º 

 n=1 n=2 n=3 n=4 

(m = 1, 2, 3, 4) 
Amn 1 1 1 1 

Phasemn 0º 204º 48º 252º 
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(a) Far-field magnitude patterns 
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(b) Far-field phase patterns 

Fig. 2.  Far-field (a) magnitude and (b) phase patterns of the DM and the 
conventional arrays with the settings in Table I (‘ ’: for symbol ‘11’ in the 
DM array; ‘ ’: for symbol ‘01’ in the DM array; ‘ ’: for symbol ‘00’ 
in the DM array; ‘ ’: for symbol ‘10’ in the DM array; ‘ ’: for four 
symbols in the conventional array). 
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symbol, whereas in the DM case they do with QPSK relative 
phase displacement and magnitude alignment occurring only 
along 150º. The reason of the far-field phase jumps of 180º for 
the conventional array as the power nulls are crossed is 
discussed in [23]. This is irrelevant to the phase distortion in 
DM arrays, which describes phase relations among modulated 
symbols. 

B. Dynamic DM systems 

When the constellation pattern distortions along other 
unselected spatial directions are randomly updated, usually at 
the information symbol rate, under the constraint that the 
standard modulation signal formats along the desired secure 
communication direction are well preserved, then the DM 
system is defined here as being dynamic. Dynamic DM can be 
achieved by updating either the array excitations [17], [18], 
[24] or the array element radiation patterns [25]. Dynamic DM 
systems perform better than static DM systems when 
eavesdroppers are equipped with sophisticated receivers [21].  

The dynamic DM structures in [17], [18], [24], and [25] can 
be regarded as particular implementations of the orthogonal 
artificial interference concept [19]-[21]. Thus in this paper we 
take the general approach, i.e., dynamic DM transmitter array 
behavior is achieved by updating orthogonal artificial 
interference, for discussions in Section IV. Again we assume 
that the transmitter array consists of 1-D half-wavelength 
spaced antenna elements with isotropic radiation patterns, 
modulated for QPSK. Five array elements are used and 45º is 
selected as the desired secure communication direction. 

To facilitate discussions the parameters and notations are 
provided below, 

 The normalized channel vector along the desired direction 
θ0, 45º in this example, 

0 0 0 02 201

5

T
j πcosθ jπcosθ jπcosθ j πcosθj

e e e e e
     H   (1) 

[·]T refers to vector transpose operation; 

 The normalized channel vectors along other unselected 
directions θ, θ  [0º, 180º], θ ≠ θ0, 

  2 0 21

5

T
j πcosθ jπcosθ j jπ cosθ j πcosθθ e e e e e     G  (2) 

 The input excitation signal vector S , 

+S HX W                                  (3) 

where X is a complex number representing the information 
symbol to be transmitted, e.g., ejπ/4 corresponds to the QPSK 

symbol ‘11’. W  is chosen to lie in the null space of †H . 

(· )† is the complex conjugate transpose (Hermitian) 

operation. Denote 
pZ  (p = 1, 2, N-1) to be the orthonormal 

basis for the null space of †H , then  
1

1

1

1

N

p p

p

= v
N





 
 W Z .  

It is assumed that vp has the same statistical distribution for 
each p.  

Fig. 3 shows far-field patterns for 100 random QPSK 
symbols transmitted when the vp are circularly symmetric i.i.d. 
(independent and identically distributed) complex Gaussian 

distributed variables with variance 2
v  of 0.8. The patterns are 

calculated by †H S  or †G S  for each direction. 
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(a) Far-field magnitude patterns 
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(b) Far-field phase patterns 

Fig. 3.  Far-field (a) power and (b) phase patterns of the dynamic QPSK DM 
transmitter array for 100 random QPSK symbols with circularly symmetric i.i.d. 
complex Gaussian distributed vp ( 2

v  = 0.8). 

III. POSSIBLE METRICS FOR ASSESSING STATIC DM SYSTEMS 

In this section possible metrics for assessing the performance 
of static DM systems are presented, and those for dynamic DM 
systems will be described in Section IV. The example static 
QPSK DM transmitter array presented in Section II part A with 
parameters in Table I is used throughout in this section. 

A. EVM-like Metrics 

In modern digital modulation communication systems error 
vector magnitude (EVM) is commonly adopted to quantify 
system performance because it can be calculated without 
demodulation and it also provides an insight in the physical 
origin of the distortion. Mathematically EVM can be expressed 
as [26] 

1

22

1

2

1

1

1

T

meas _i ref _ i

i
RMS T

ref _ i

i

S S
T

EVM

S
T





 
 

 
 
  




                     (4) 

http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
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where Smeas_i and Sref_i are the i
th symbols in streams of 

measured and reference symbols in IQ space respectively, and 
T is the number of symbols transmitted.  

In a non-DM system, i.e., a conventional system which refers 
to a transmitter consisting of baseband modulation, 
up-conversion and beam-steering via an antenna array, Sref 
takes the value of the corresponding standard QPSK symbol. In 
such a case, EVM can be directly mapped to signal to noise 
ratio (SNR) and bit error rate (BER) [27].  

When applying this EVM definition to the example static 
DM system and choosing Sref along undesired spatial directions 
to be distorted symbols (SDM), the EVM, denoted as EVMDM1, is 
calculated and depicted in Fig. 4. The symbol stream length T is 
set to 106. The SNR, which is defined in a DM system as signal 
to AWGN power ratio along the desired communication 
direction, 150º in this example, is chosen to be 10 dB. The 
added power of AWGN is assumed to be identical along all 
directions. It is noted that in a DM system, SNR is no longer 
deterministically linked to EVM, thus it needs to be stated 
separately. For comparison, the EVM in the conventional 
system with the settings in Table I, denoted as EVMConv is also 
illustrated in Fig. 4. 
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Fig. 4.  The EVMDM of the example static DM system and the EVMConv of the 
conventional system in Table I. SNR is set to 10 dB, and symbol length T is 
chosen to be 106. 

 
With Sref set to be noiseless but statically scrambled symbols 

(SDM) the inherent distortions along unselected directions 
introduced by static DM systems are not involved. To allow 
their effects to be integrated with that of AWGN, we can set an 
imaginary standard QPSK constellation pattern along each 
spatial direction based on the same total received power of four 

unique QPSK symbols, namely 
2 24 4

1 1ref _ j DM _ jj j
S S

 
  . 

Here we choose the phase of symbol ‘11’ as phase reference. 
With these manipulations, the power normalized EVM with 
standard QPSK constellation reference, EVMDM2, for the same 
static DM system is calculated and also shown in Fig. 4. This 
EVMDM2 is actually the FOMDM defined in [17]. 

Besides getting imaginary standard QPSK constellation 
references based on the same total power criterion, we can 
alternatively generate references to maximize the signal to 
interference ratio (SIR) along each direction. Again the phase 

of symbol ‘11’ is chosen as the phase reference. A distorted 
constellation pattern can be decomposed into a standard 
constellation pattern with an average symbol power Pe, which 
conveys the genuine information, and the interference with 

average power per symbol 2
eI , e.g.,  2 2 22

1 2 3

1

4
e e e e

I   I I I

2

4e
 I , see Fig. 5. The SIR is defined as 

2
e eP I . For a given 

distorted constellation pattern, the separation can be arbitrary. 
However, the maximum value of SIR always exists, see 
Appendix. Take the pattern formed by SDM in Fig. 5 as an 

example, the SIRmax of 8.64 is achieved when the 
e

P  is 

chosen as 1.78, Fig. 6. This 
e

P  can be used to set the length 

of the reference symbol, i.e., |Sref|. The EVM with the 
SIR-maximized references, denoted as EVMDM3, for the same 
static QPSK DM system is obtained and shown in Fig. 4. 
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Fig. 5.  Illustration of an example distorted pattern decomposition. 
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Fig. 6.  SIR as a function of 

e
P  for the example pattern in Fig. 5. The 

maximum SIR of 8.64 is achieved when 
e

P  equals 1.78. 

 
In order to gain more insights on the EVM-like metrics, the 

resulting EVM curves for the same static DM and conventional 
systems under higher SNR values of 20 dB and 100 dB (an 
extreme scenario equivalent to a noiseless wireless channel) are 
illustrated in Fig. 7 and Fig. 8, respectively. As expected, since 
the Sref for the EVMDM2 and EVMDM3 calculations is chosen to 
be a standard QPSK constellation pattern, the inherent 
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distortion possessed by the static DM system dominates the 
system ‘error vectors’ at most directions. As a consequence, the 
EVMDM2 and EVMDM3 are insensitive to SNR, which describes 
the imperfection caused by channel noise, except in a small 
spatial region around the desired communication direction, 
where the inherent DM distortion disappears. On the other hand, 
the EVMDM1 and EVMConv are convergent to zero at all 
directions when SNR increases, as the Sref choice for them 
makes AWGN channel noise the only source to the system 
‘error vectors’. 

 

0º 30º 60º 90º 120º 150º 180º 

Spatial Direction θ  

E
V

M

80%

100%

120% 

140%

160%

60%

40%

20%

0

180%

200%
EVMDM1

EVMDM2

EVMDM3

EVMConv

SNR=20 dB

 
Fig. 7.  The EVMDM of the example static DM system and the EVMConv of the 
conventional system in Table I. SNR is set to 20 dB, and symbol length T is 
chosen to be 106. 
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Fig. 8.  The EVMDM of the example static DM system and the EVMConv of the 
conventional system in Table I. SNR is set to 100 dB, and symbol length T is 
chosen to be 106. 

B. BER Metrics 

The BER criterion quantifies the effect of various distortions 
on the signals and, finally, on the recovered bit stream. Since 
receivers may have different capabilities to correct distortions, 
the same received signal can be differently decoded, resulting 
in different BER values. In other words, prior to BER 
calculations the receiver capabilities should be defined. 

In this paper the authors propose the closed-form BER 
equations in (5) and (6) for static QPSK DM systems associated 
with, so called, APSK and QPSK type receivers. APSK 
receivers enable the ‘minimum Euclidean distance decoding’, 

while standard QPSK receivers decode received symbols based 
on which quadrant the constellation points locate into. 

 2
4

1 0

21
2

4 2
ik i

DM _ APSK

i

d /
BER Q

N /

  
    
  

  
            (5) 

 
11

2 2
1

01 00 10

0

41

4 2

DM _QPSK

Error

BER

l sin
Q Error Error Error

N





 
       
  

  
  

     (6) 

Here Q(·) is the scaled complementary error function; di is the 

minimum distance between the ith noiseless symbol (SDM_i) with 
respect to any other noiseless symbols; ki, the Gray code 
inspection coefficient, equals 0 (Gray code pair) or 1 (non-Gray 
code pair); N0/2 is the noise power spectral density over a 
Gaussian channel; The Errorxy can be obtained by 

 2 2

0 2
i il sin

Q
N

 
 
 
   

(i = 2, 3, 4) when the noiseless symbol ‘xy’ is 

constrained within its quadrant. Parameter βi is the minimum 
angle between the symbol vector (with the length li) and the 
decoding boundary, which overlaps the IQ axes. Otherwise 0.5 
or 1 is assigned to Errorxy depending on which quadrant this 
distorted noiseless symbol locates. 

Using (5) and (6), we calculate the BER performance of the 
example static QPSK DM system under SNRs of 10 dB and 20 
dB. These are shown in Fig. 9 and Fig. 10, where the BER 
curves for the conventional system are also illustrated for 
comparison. It can be noticed that the BERDM_APSK and BERConv 
are scaled in all spatial directions as SNR varies, whereas the 
BERDM_QPSK has the capability of retaining high BER values 
along most unselected communication directions, 30º to 130º in 
this example. This is due to the fact that the standard QPSK 
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Fig. 9.  BER spatial distributions calculated using the closed-form equations (5) 
and (6) for APSK and QPSK receiver types in the example static QPSK DM 
system and the conventional system. SNR is set to 10 dB. The BER spatial 
distributions calculated via a random symbol stream transmission in the static 
DM system approximately overlap their counterparts obtained by the 
closed-form equations. 
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Fig. 10.  BER spatial distributions calculated using the closed-form equations 
(5) and (6) for APSK and QPSK receiver types in the example static QPSK DM 
system and the conventional system. SNR is set to 20 dB. The BER spatial 
distributions calculated via a random symbol stream transmission in the static 
DM system approximately overlap their counterparts obtained by the 
closed-form equations for spatial region where BER is greater than 10−5. 

 
receiver cannot decode symbols located in non-designated 
quadrants correctly even when the channel is noise-free. 

Instead of the closed-form approximations, BER for APSK 
and QPSK receivers can also be calculated via a random 
symbol stream transmission [17], [18], [21]. QPSK symbol 
streams with a length of 106 are used for simulation in this 
paper, which allows the BER down to 10−5 to be calculated. The 
simulated BER spatial distributions obtained by each method 
are virtually identical, Fig. 9 and Fig. 10. 

C. Secrecy Rate Metrics 

Research into information-theoretic security began with the 
wiretap channel model proposed by Wyner in 1975 [28]. The 
model and the analyses were generalized in [29], where the 
secrecy rate (Rsec) was defined as the difference in channel 
capacities between secure communication channels (Cm) and 
eavesdroppers’ channels (Ce), (7). If the difference is negative, 
meaning eavesdroppers’ channels have better quality, then Rsec 
is forced to zero. Operator (x)+ returns zero if x is negative, 
otherwise x is returned.  

 sec m eR C C
 

                                 
(7) 

In this paper we limit our discussions on transmissions of 
QPSK signals in free space, which is the case of discrete-time 
memoryless Gaussian channel with discrete input alphabets 
[30]-[34]. Thus instead of Shannon bound [35], [36] for the 
continuous input alphabets case, the channel capacity of the 
4-ary modulation in AWGN channel [31] is adopted for secrecy 
rate calculations.  

In a static QPSK DM system, let X, Y, and Z denote the 
transmitted discrete signal set, the signal detected by legitimate 
receiver, and the signals intercepted by eavesdroppers. Here X 
= {xm | m = 1, 2, 3, 4}, corresponding to four unique QPSK 
symbols transmitted. The channel capacities over the secure 
communication channel (Cm) and over eavesdroppers’ channels 
(Ce) for the QPSK systems can be calculated by finding 
maximum values of the mutual information between the 

transmitted signal X and the received signals, i.e., Y and Z 
respectively, and they are stated in (8) and (9). 

 
Cm = max [ I (X; Y) ]                             (8) 

 
Ce = max [ I (X; Z) ]                              (9) 

 
In terms of (9), since the signals Z along undesired spatial 

directions are distorted not only by AWGN, but also by unique 
properties of DM systems, Ce over each potential 
eavesdropper’s channel no longer follows the CQPSK curve in 
Fig. 2 in [32]. Furthermore, SNR in these channels cannot be 
defined. The calculation of (9) is stated below. Here we assume 
that all transmitted constellation symbols are equally likely. 
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In (10) zr is the I (for r = 1) or Q (for r = 2) components of the 

signal intercepted. smr (or sur) denotes the I (for r = 1) or Q (for r 
= 2) components of the noiseless but distorted signal for the mth 
(or uth) unique QPSK symbol, i.e., SDM mentioned in Part A this 
section. t1 and t2 are new integration variables. The two-fold 
integral K in (10) can be numerically approximated using the 
products of the Gaussian-Hermite quadrature [37], [38]. In this 
paper the integration point number of 16 is used for K 
calculations. Applying (10) we obtain the channel capacity 
along each spatial direction in the example static QPSK DM 
system for the SNR of 10 dB. From this the secrecy rate spatial  
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Fig. 11.  Secrecy rate (bits/transmission) spatial distributions for the example 
static QPSK DM system and the conventional system. SNR is set to 10 dB 
along the desired communication direction, 150º. The decodable thresholds, 
discussed in Section V, for code rates of 0.5 and 0.9 are provided. 
 

distributions can be calculated using (7), Fig. 11. The secrecy 
rate curve obtained for the conventional QPSK system is also 
shown for comparison. To confirm the calculations using (10) a 
bit-wise computation of mutual information was performed 
[39]. When the transmitted QPSK constellation symbols are 
well formatted, the resulting channel capacity values are 
identical to their counterparts calculated by (10). However, if 
constellation patterns are significantly distorted, the probability 
density function fittings, involved in the bit-wise method, can 
introduce more errors than the numerical integration of (10). 
Thus we choose (10) to calculate the channel capacity, and 
hence the secrecy rate in this paper. Under higher SNR 
scenarios, the secrecy rates for the DM and the conventional 
cases are convergent to zero at all directions except the three 
discrete power null directions for the conventional array, which 
are similar to EVMDM1 and EVMConv curves in Fig. 8.  

IV. POSSIBLE METRICS FOR ASSESSING DYNAMIC DM 

SYSTEMS 

Next possible metrics for assessing the performance of 
dynamic DM systems are presented below. The example 
dynamic QPSK DM transmitter array in Section II part B is 
used throughout in this section. The conventional system in this 
section refers to the 1-D half-wavelength spaced 5-element 
array with main beam steered to the selected communication 
direction of 45º. It is equivalent to the example dynamic DM 

system with a variance 
2
v  of zero. 

A. EVM-like Metrics 

The EVM definition for dynamic DM systems is the same as 
that for static ones, (4). Since the orthogonal artificial 
interference injected into the example dynamic QPSK DM 
system has a distribution with zero-mean, three Sref choices, 
which are averaged noiseless symbols SDM, the total power 
normalized standard QPSK symbols, and the SIR-maximized 
standard QPSK symbols, are identical, resulting in overlaps of 
EVMDM1, EVMDM2, and EVMDM3. They are illustrated in Fig. 
12 and Fig. 13, respectively, for SNRs of 10 dB and 20 dB. As 
expected, EVMDM is less sensitive to the channel noise along 

directions away from the selected communication direction, 
compared with EVMConv in the conventional system. 
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Fig. 12.  The EVMDM of the example dynamic DM system and the EVMConv of 
the conventional system. The EVMDM1, EVMDM2, and EVMDM3 overlap each 
other. SNR is set to 10 dB, and symbol length T is chosen to be 106. 
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Fig. 13.  The EVMDM of the example dynamic DM system and the EVMConv of 
the conventional system. The EVMDM1, EVMDM2, and EVMDM3 overlap each 
other. SNR is set to 20 dB, and symbol length T is chosen to be 106. 

 

B. BER Metrics 

Since the orthogonal artificial interference in the example 
dynamic DM system has Gaussian distribution, its effect on 
BER can be integrated with that of the AWGN. As a 
consequence the closed-form BER equations for the APSK and 
QPSK receiver types can be readily derived by replacing N0 

with  
2

† †
0

1
vN

N





G ZZ G  in (5) and (6). With these 

manipulations, the BER spatial distributions are calculated by 
the closed-form equations, and are shown in Fig. 14 and Fig. 15 
for SNRs of 10 dB and 20 dB. Again the zero-mean property of 
the artificial interference distribution makes BER curves for 
APSK and QPSK receiver types identical. Under both SNR 
scenarios the BERs simulated by transmitting a 106 random 
QPSK data stream are also presented.  
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Fig. 14.  The BERDM of the example dynamic DM system obtained from both 
the closed-form equations and random QPSK data streams, and the BER of the 
conventional system. The BERDM_APSK and BERDM_QPSK overlap each other. 
SNR is set to 10 dB, and symbol length T is chosen to be 106. 
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Fig. 15.  The BERDM of the example dynamic DM system obtained from both 
the closed-form equations and random QPSK data streams, and the BER of the 
conventional system. The BERDM_APSK and BERDM_QPSK overlap each other. 
SNR is set to 20 dB, and symbol length T is chosen to be 106. 

C. Secrecy Rate Metrics 

Similarly by replacing N0 with  
2

† †
0

1
vN

N





G ZZ G  in (10),  
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Fig. 16.  Secrecy rate (bits/transmission) spatial distributions for the example 
dynamic QPSK DM system and the conventional system. SNR is set to 10 dB 
along the desired communication direction, 45º. 

the channel capacity spatial distribution for QPSK modulation 
can be calculated, which results in the secrecy rate of the 
example dynamic QPSK DM system via (7), Fig. 16. SNR is set 
to 10 dB along the desired communication direction, 45º. For 
higher SNR, two curves are inevitably converged to zero except 
four discrete power null directions. 

V. METRICS DISCUSSIONS AND COMPARISONS 

In this section, we analyze the possible metrics for DM 
systems presented in Section III and IV, and make comparisons 
among them. 

A. Metrics for Static DM Systems 

Firstly, BERs calculated from the closed-form equations and 
random QPSK data streams resemble each other. 

If we still use the relationship between EVM and BER stated 
in [27], although we acknowledge that the relationship does not 
hold for static DM systems, the calculated BERDM1, BERDM2, 
and BERDM3, corresponding to the EVMDM1, EVMDM2, and 
EVMDM3 respectively, are illustrated in Fig. 17, together with 
BER curves calculated via a random symbol stream. It can be 
observed that BERDM1 can roughly predict the spatial directions 
of the ripples on the BERDM_APSK curve because the same 
symbol references, SDM, are used. However, a discrepancy of 
around 102 along undesired directions makes the BERDM1 
unusable. Although the BERDM2 and BERDM3 are approximate 
predictions of the BERDM_QPSK curve, compared with the 
closed-form BER method, they are neither precise nor 
calculation-friendly. 
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Fig. 17.  The BERDM1, BERDM2, and BERDM3, calculated from the EVMDM1, 
EVMDM2, and EVMDM3 respectively, and the BER curves calculated via a 
random symbol stream. SNR is set to 10 dB along 150º, and symbol length T is 
chosen to be 106.  

 
At first glance the results in Fig. 11 tell us that the secrecy 

performance of the conventional system is generally better. 
However, the conclusion cannot be drawn before setting a 
threshold, which is determined by modulation scheme and the 
rate of the code. The code rate is defined as the number of 
message bits per data bit. For example, if the transmitted signal 
is modulated with QPSK, which has 4 symbols and thus 2 bits 
per symbol, and the code rate chosen is 0.9, then 2×0.9=1.8 
message bits are conveyed per channel use. When the capacity 
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of a channel for QPSK input is greater than 1.8 bits per 
transmission, the receiver is able to recover the information 
with arbitrarily low error. Otherwise, it would suffer a low 
probability of decoding any data. When considering (7), the 
threshold of the secrecy rate for the QPSK modulation scheme 
is Cm – (code rate)×2. We label the spatial directions with 
secrecy rate lower than the threshold as decodable region. For 
the example static QPSK DM system, if the code rate is chosen 
to be 0.5, then the threshold for the secrecy rate in Fig. 11 is Cm 
− 0.5×2 = 1.99 − 1 ≈ 1 bit per transmission when SNR is 10 dB. 
As a consequence, the conventional system outperforms the 
static DM system since it owns wider spatial range where 
potential eavesdroppers cannot recover the encoded 
information, i.e., the decodable region in the conventional 
system is smaller. When we increase the code rate to 0.9, the 
opposite conclusion is obtained since the threshold for the 
secrecy rate is Cm − 0.9×2 ≈ 0.2 bit per transmission. In fact the 
secrecy rate and the BERDM_APSK can be mapped onto each 
other by eliminating the parameter N0 in (5) and (10). A 
distribution similarity between them can be observed in Fig. 9 
and Fig. 11. However, the secrecy rate representation provides 
guidelines for choosing code rates in various system scenarios. 

B. Metrics for dynamic DM Systems 

In Fig. 14 and Fig. 15, it can be seen that BER curves 
calculated from the closed-form equations and random QPSK 
data streams overlap each other, which can also be predicted by 
EVMDM in Fig. 12 and 13, respectively, since the injected 
orthogonal artificial interference has zero-mean Gaussian 
distribution in the example dynamic QPSK DM system. Thus 
in this type of case EVMDM is a suitable metric to evaluate 
system performance without data decoding. However, in a real 
transmitter where the linear and dynamic range is limited, 
Gaussian distributed orthogonal artificial interference is 
impossible, e.g., the dynamic DM systems reported in [17] and 
[21] generated the orthogonal interference with constant 
magnitudes. As a consequence, the EVMDM fails to provide 
much information about the system performance. Furthermore 
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Fig. 18.  The BERDM simulated from QPSK data streams for interference with 
constant magnitude and that obtained from the closed-form BER equations for 
Gaussian interference. The interference power is the same. SNR along 45º is set 
to 10 dB. 

closed-form BER and secrecy rate calculations are not 

available. Under the constraint of the same power, Gaussian 
distributed noise or interference is the worst case for decoding 
[40], thus the BER and secrecy rate obtained from the 
closed-form equations for Gaussian distributed orthogonal 
interference can be regarded as their achievable upper bounds, 
respectively. In Fig. 18 the BER for a dynamic QPSK DM 
system with constant magnitude orthogonal artificial 
interference is depicted. The interference power is the same as 

that for Gaussian distributed interference with the variance 2
v  

of 0.8. 

VI. CONCLUSION 

Metrics for assessing the performance of DM systems were 
provided in this paper. It was shown that for static DM systems 
BER, calculated from either closed-form equations or random 
data streams, and secrecy rate were applicable for system 
performance evaluation, whereas EVM-like metrics did not 
perform well. For dynamic DM systems under the scenarios of 
zero-mean Gaussian distributed orthogonal interference, 
EVM-like metrics, BER, and secrecy rate were equivalent and 
can be converted into each other. For other interference 
distributions no closed-form BER and secrecy rate equations 
were available. The work in this paper can act as an assessment 
guideline for future DM system evaluation and cross system 
comparison. 

APPENDIX 

In this Appendix, we briefly prove that for a given distorted 
DM QPSK constellation pattern, the maximum value of SIR, 
defined in Section III part A, always exists. 

2 2 2 2 2
1 2 3 4

2 2 2 2

_1 _1 _ 2 _ 2 _3 _3 _ 4 _ 4

4
SIR

4

e e

e

e

DM ref DM ref DM ref DM ref

P P

I I I I I

P

S S S S S S S S

 
  


      

 

(A1) 

In (A1), SDM_n (n = 1, 2, 3, 4) are the four QPSK symbols in 
IQ space in a static DM system along a certain unselected 
spatial direction, and Sref_n (n = 1, 2, 3, 4) are imaginary 
standard QPSK constellation. The phase of symbol ‘11’ is 
chosen as the phase reference. Thus, 

_1 _1DM refS k S                                (A2) 

_1 _ 2 _3 _ 4ref ref ref ref eS S S S P                  (A3) 

   1 2

_ _1 2, 3, 4
j n

ref n ref
S S e n

              (A4) 

 _ _1 2, 3, 4
DM n n DM

S c S n                 (A5) 

k is a real number ranging from 0 to infinite, and cn are complex 
constants. From (A1) to (A5), we can derive that 
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αn (n = 2, 3, 4) is the angle between cn and ej(n-1)π/2. Since 
2 2 2

2 3 41 0a c c c    
                       

(A7) 

The minimum value of 
4

SIR
 exists when k belongs to (0, + ). 

In other words, the maximum value of SIR always exists. The 

corresponding value of 
e

P , with which the maximum SIR is 

reached, can be obtained via (A2) and (A3). 
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