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ARTICLE

Establishing microbial composition measurement
standards with reference frames
James T. Morton1,2,10, Clarisse Marotz 1,10, Alex Washburne3, Justin Silverman4,5,6, Livia S. Zaramela 1,

Anna Edlund7, Karsten Zengler 1,8,9,11 & Rob Knight 1,2,9,11

Differential abundance analysis is controversial throughout microbiome research. Gold

standard approaches require laborious measurements of total microbial load, or absolute

number of microorganisms, to accurately determine taxonomic shifts. Therefore, most stu-

dies rely on relative abundance data. Here, we demonstrate common pitfalls in comparing

relative abundance across samples and identify two solutions that reveal microbial changes

without the need to estimate total microbial load. We define the notion of “reference frames”,

which provide deep intuition about the compositional nature of microbiome data. In an oral

time series experiment, reference frames alleviate false positives and produce consistent

results on both raw and cell-count normalized data. Furthermore, reference frames identify

consistent, differentially abundant microbes previously undetected in two independent

published datasets from subjects with atopic dermatitis. These methods allow reassessment

of published relative abundance data to reveal reproducible microbial changes from standard

sequencing output without the need for new assays.
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N
ext-generation sequencing data used to study the micro-
biome is inherently compositional and provides infor-
mation in the form of relative abundances, independent

of the total microbial load of the original sample. Numerous
analytical approaches including rarefaction1, median2, and
quantile normalization2,3 have been proposed for comparing
compositional samples. However, these analytical solutions can-
not control false discovery rates4,5, and their application con-
tributes to lack of reproducibility among microbiome studies6–8.
Here we illustrate mathematical challenges in analyzing compo-
sitional microbiome data from DNA sequence reads, and define
the concept of “reference frames” for inferring changes in
abundance.

To illustrate the pitfalls of inferring changes in abundance
among samples using relative abundance data, consider the fol-
lowing example (Fig. 1). Samples from a population containing
only two taxa (orange and blue) are collected pre- and post-
treatment. Before treatment, the two taxa occur in equal pro-
portions. After treatment, the orange taxon is twice as abundant
as the blue taxon. It is tempting to conclude that orange increased
and blue decreased.

However, many different scenarios could lead to the same
observation. For example, the orange taxon could quadruple and
the blue taxon only double. The orange taxon could remain
constant, and the blue taxon halve. Or the orange taxon could
halve, but the blue taxon could decrease four-fold. Because we
only observe relative abundance data, we cannot differentiate
among these outcomes, which have markedly different biological
significance. Infinite different outcomes produce the same 2:1
ratio of orange to blue, greatly complicating the generation
of a meaningful null hypothesis and therefore yielding misleading
p-values, as has been previously established9–11.

Multiple processing steps are required to generate microbiome
sequencing data. Samples are collected from a much larger
population (e.g., fecal material from the gut, or water sample from
the ocean). From these samples, a subsample is used for DNA
extraction (e.g., a swab from a fecal sample, or an aliquot of a
water sample). Even if the same amount of sample is extracted
throughout an experiment, many DNA extraction kits are opti-
mized for efficiency and can become saturated, complicating
direct correlations of DNA yield and microbial load. A subsample
of the extracted DNA is then used as input for PCR, a subset of
the resulting amplicon is pooled into a library, and a subset of the
library is sequenced.

By the time quality-filtered sequencing data are obtained, the
sequences reflect only a small subset of the population and are not
an accurate representation of the microbial load in the original
sample12. Analyzing relative abundance data with inappropriate
statistical tools can yield up to 100% false discovery rates13,14.
Therefore, in addition to relative abundance data, quantitative
information about total microbial load is necessary to determine
which microbes are changing.

Multiple approaches at each level of sample processing have
been proposed to quantify the total microbial load from envir-
onmental samples. Adding a known amount of reference DNA as
an internal standard has been used to extrapolate the amount of
starting nucleic material15,16. Normalization by this method is
complicated due to the calibration challenges of choosing the
proper amount of internal standard16. At the post-extraction
level, quantitative PCR (qPCR) of genomic DNA with universal
primers against the 16S rRNA gene has been deployed to estimate
total microbial load17. However, it is impossible to prevent primer
bias, resulting in uneven amplification of rRNA genes across
species, and the DNA extraction method can influence microbial
composition18–20. Further, quantification by both spike-in and
qPCR is performed on multiple subsets of the original sample.

Quantifying microbial load by flow cytometry is performed on
the original sample, and is agnostic to nucleotide sequences. One
recent study reported that adding quantitative information
obtained by flow cytometry dramatically improved interpretation
of 16S rRNA gene amplicon sequencing data12. However, flow
cytometry requires expensive, relatively low-throughput equip-
ment, and often can only estimate the cell concentration rather
than the total microbial load.

The total microbial load of an environmental sample is one
dimension of measurement among the hundreds to thousands of
dimensions measured by microbial relative abundances. If the
absolute abundance of one taxon and the relative abundance of all
taxa is known, it is feasible to compute the absolute abundance of
all taxa. As such, considerable information rests in relative
abundances, and important insights can be gleaned without costly
microbial quantification methods. Below we describe two meth-
ods to evaluate relative differential abundance independent of
microbial load information.

Results
Ratios circumvent bias without microbial load quantification.
Computing changes in abundance from compositional data
introduces a bias due to the lack of total microbial load (Fig. 1
approach#1). Simulated data in Fig. 1b shows how different biases
(i.e., ratios between total microbial loads) can cause either false-
positives or false-negatives. By simply comparing the ratio of taxa
between samples, the bias constant introduced by unknown
microbial load cancels out. Taking the logarithm of this ratio (log-
ratio) enforces symmetry around zero, giving equal weight to
relative increases and relative decreases9,10.

A novel approach to rank differential abundance. Comparing
ratios of taxa can circumvent the bias introduced by unknown
microbial loads. However, choosing taxa for comparison from the
thousands in a given sample set can be challenging. Here we
provide a way to rank microbes that are changing the most
relative to each other. The term “differential” refers to the loga-
rithm of the fold change in abundance of a taxa between two
conditions. With microbial load information, one can calculate
absolute differentials. Microbiome sequencing datasets provide
relative abundances, and thus can only infer relative differentials.

The ranks of relative differentials are identical to the ranks of
absolute differentials (Fig. 1d). However, because of the bias
described above, we cannot infer if a microbe has changed based
on rank alone, and therefore a coefficient of zero does not imply
that the microbe has not changed abundance.

Relative differentials can be estimated directly using multi-
nomial regression, which has been proposed previously to handle
sampling zeros21–24. The coefficients from multinomial regres-
sion analysis can be ranked to determine which taxa are changing
the most between samples. We refer to this ranking procedure as
differential ranking (DR).

Reference frames in compositional data analysis. Analyzing
compositional data requires a choice of reference frames for
inferring changes in abundance. By “reference frame”, we draw
on the concept from physics where velocity is measured relative
to another moving object. As microbial populations change, we
can constrain our inferences to how microbial populations
change relative to reference frames given by other microbial
populations. The denominator in a log-ratio determines the
reference frame for inferring changes. In DR, the differential
abundance of each taxon serve as a reference to each other when
they are ranked numerically. To demonstrate these principles, we
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Pitfalls of comparing relative abundance
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Fig. 1 Illustration demonstrating statistical limitations inherent in compositional datasets. a Two different biological scenarios can yield the exact same

proportions of taxa in samples from a population pre- and post-treatment. b Simulated datasets plotting the true differential obtained using absolute

abundance data on the x-axis, versus the inferred differential obtained using relative abundance data on the y-axis. Each dot represents a taxon in the

dataset, and the colors represent datasets with various ratios of total microbial load (K) between before and after samples. The red line represents the

optimal scenario where the samples have equal microbial load. This illustrates the prevalence of either false positives (FP) or false negatives (FN) when

performing differential abundance analysis on samples with unequal total microbial load. The presence of either FPs or FNs is dictated by a nonlinear

function of the true differential (see online methods). c An illustration of differential proportions of bacterial species before and after treatment. d Same

data as b but plotting the rank of the differentials, demonstrating that ranks are equivalent regardless of differences in microbial load
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confirm the utility of employing reference frames in biological
datasets.

DR reveals differentially abundant microbes in saliva. We
demonstrate the utility of DR in a sample set with dramatic
differences in total microbial load. Unstimulated saliva samples
were collected before and after brushing teeth (n= 32), and
processed in parallel for microbial load quantification with flow
cytometry and 16S rRNA gene amplicon sequencing. Impor-
tantly, participants were asked to provide unstimulated saliva for
exactly 5 min. As a result, we obtained a proxy for the total
microbial load by taking into account salivary flow rate. As
expected, the total microbial load significantly decreased after
brushing teeth (Fig. 2a).

We performed paired t-tests to evaluate the change in
abundance of each taxon before and after brushing teeth using
either relative or absolute abundance data (microbial load
multiplied by 16S copy number-corrected relative abundances)
(Fig. 2c). Applying t-tests to the relative data had a high false-
positive rate, as seen by the disagreements between the relative
and absolute t-statistics (Spearman r= 0.53). Further, there was
no correlation in p-value distribution between the relative and
absolute abundance data (Spearman r= 0.09), highlighting issues
when the null hypothesis is not consistent between the relative
abundances and the absolute abundances.

Alternatively, evaluating the ratio between Actinomyces and the
remaining taxa produced identical t-statistics and p-values
between the relative and absolute abundance data (Spearman
r= 1.0). Ratio-based analyses are unaffected by microbial load
(Eq. (3) in methods) and result in identical interpretations as one
obtains from costly and rate-limiting flow-cytometry
measurements.

From the DR analysis (Fig. 2c), we can identify which taxa are
changing the most relative to each other. Here, we highlight
Actinomyces and Haemophilus species, which have very different
ranks. Actinomyces tend to have low ranks and Haemophilus have
high ranks. The difference in ranks between these taxa correctly
suggests that Haemophilus taxa are more prevalent relative to
other taxa before brushing, and Actinomyces taxa are more
prevalent relative to other taxa after brushing. From the t-test
results on relative abundances it appears that Actinomyces
significantly increased (t-statistic= 3.74, p-value= 0.002) after
brushing teeth and that Haemophilus significantly decreased (t-
statistic=−3.67, p-value= 0.002). However, absolute abundance
data revealed that only Haemophilus significantly decreased (t-
statistic=−2.155, p-value= 0.0478) (Fig. 2d).

The log-ratio of Actinomyces and Haemophilus between the
relative and the absolute abundance data is identical. While we
cannot observe the decrease of Haemophilus or the consistency of
Actinomyces abundance, with the log-ratio of their relative
abundance we can observe the interaction between these two
taxa and the increase of Actinomyces relative to Haemophilus after
brushing teeth (t-statistic= 5.289, p-value= 9.07 × 10−5).

These results are consistent with our knowledge about oral
biogeography. Haemophilus is typically found on the periphery of
oral biofilms and was likely removed from the biofilm during the
brushing process, whereas Actinomyces is generally found on the
surface of the tooth and acts as an anchor for biofilm
attachment25. Importantly, this experiment demonstrates the
potential fallibility of relying on relative abundance; it is incorrect
to conclude that Actinomyces increases after tooth brushing
despite the increase in relative abundance. As demonstrated by
flow cytometry, total microbial load decreases, and while both
Haemophilus and Actinomyces decrease, Haemophilus
decreases more.

To investigate how other compositional methods perform, we
ran ANCOM and ALDEx2 on the same dataset (Fig. 2e). ALDEx2
did not identify any of the microbes to be changing, which
contradicts flow-cytometry measurements that show there is a
large decrease in the microbial community after tooth brushing.
ANCOM identified multiple significantly changing microbes.
One of these detected microbes was Veillonella, which conflicts
with absolute abundances suggesting that Veillonella is not
significantly changing (t-statistic= 1.04, p-value= 0.315). The
false-positive detected by ANCOM likely arose due to their choice
of reference frame (Supplementary Fig. 1).

Elucidating interkingdom changes in atopic dermatitis using
DR. The tooth brushing example provides ground truth for using
log-ratios and DR, but many clinically relevant microbiome
questions involve less obvious differences. Using data from
patients with atopic dermatitis (AD), an important skin disease,
we demonstrate how viewing relative abundances alone can
produce false negatives.

AD has a complex etiology. Many microbiome studies
performed using next-generation sequencing have focused on
bacterial changes associated with AD, especially the pathogen
Staphylococcus aureus. The yeast genus Malassezia has also
been implicated in AD, although conflicting results have been
published as to which Malassezia species are involved and
whether they are more or less prevalent in AD26. A recent
shotgun metagenomic study examined the skin microbiome over
time during an AD flare and recovery. The authors observed a
decrease in Staphylococcus aureus relative abundance in the
healthy, recovered skin (non-lesioned) compared to AD flare
(lesion), but no significant changes in the relative abundance of
Malassezia species over time in these AD patients27.

Applying compositonal methods to this dataset revealed new
insights. Observing the DR results (Fig. 3a), it is apparent that,
compared to lesioned skin, S. aureus is one of the taxa to decrease
the most relative to all other microbes in the non-lesioned sites,
followed by S. epidermidis, and M. globosa. Consistent with the
analysis of relative abundance in Fig. 3b, the ratio of S. aureus:
P. acnes was significantly increased in flare (t-statistic= 3.397,
p-value= 3.02 × 10−3) and correlated with SCORAD score, a
clinical assessment of AD severity (Pearson= 0.603, p-value=
3.516 × 10−6). Contrary to previous findings, both S. epidermidis:
P. acnes and M. globosa: P. acnes were also significantly increased
in lesioned skin (t-statistic= 4.2297, p-value= 4.53 × 10−4, and
t-statistic= 4.297, p-value= 3.889 × 10−4, respectively) and cor-
related with SCORAD score (Pearson r= 0.464, p-value=
6.975 × 10−4, and Pearson r= 0.668, p-value= 1.125 × 10−7,
respectively) (Fig. 3c).

To validate this observation, we analyzed shotgun data from
an independent AD dataset28. In this dataset, the relative
abundance of M. globosa significantly increased between lesioned
and non-lesioned skin (Fig. 3e, t-statistic= 4.135, p-value=
0.0001). But the ratio of M. globosa: P. acnes increased even more
dramatically in lesioned skin (t-statistic= 7.298, p-value=
9.729 × 10−9) (Fig. 3d). These results are congruent with a
previous report that M. globosa was cultivated more successfully
from lesioned versus non-lesioned sites in AD29. Thus, DR
analysis can identify novel, clinically significant microbial
changes, which can be validated across cohorts by choosing
insightful reference frames.

DR across environmental gradients in the Central Park soils.
Differential ranks can also be learned for continuously valued
data. We demonstrate this with data from the Central Park soil
experiment30, which contains more than 1000 samples and
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30,000 taxa sampled across pH and nitrogen gradients. The lar-
gest factor driving diversity was pH, and Washburne et al.31

showed that there were lineages of microbes associated with
nitrogen when pH was accounted for. Here we applied multi-
nomial linear regression to estimate microbial DR along both
nitrogen and pH gradients (Fig. 4).

Of the top five and bottom five ranked microbes in the
nitrogen and pH gradients, only four microbes were annotated.
The top fourth and fifth microbe that is associated with acidic
environments was a putative match against Candidatus Solibacter

and Telmatobacter, which has been found to grow in a pH range
of 3.5–632,33. The top microbe most associated with high pH was
Chryseolinea, which has been shown to grow between pH range of
5–10. The top third microbe associated with low nitrogen
concentration was a putative match against Gemmatimonas,
which is a known nitrogen reducer34.

The multinomial regression was able to appropriately identify
which organisms were most associated with low pH, high pH, and
nitrogen. However, even amongst the highly ranked organisms
there is a major lack of functional annotations. Having the
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aureus, S. epidermidis, M. globosa, and P. acnes in lesioned (blue) and non-lesioned (orange) skin (left) and correlation of relative abundance with SCORAD

score (right). c Log-ratios of (S. aureus: P. acnes), (S. epidermidis: P. acnes), and (M. globosa: P. acnes) (left) and correlation of ratio with SCORAD score

(right). Error bars represent standard deviation across participants (n= 20). d Change in log-ratio of (M. globosa: P. acnes) from Leung et al.28. e Change in

relative abundance of M. globosa between lesioned and non-lesioned skin from Leung et al.28. Presented p-values are from paired t-test statistics
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appropriate rankings in place may provide new insights into these
organisms and guide experimental validation.

Discussion
Adding information about absolute microbial load between
samples can highlight issues inherent in compositional data
analysis. However, there are multiple practical and technical
challenges in quantifying microbial load. For example, skin swabs
are often difficult to use in flow cytometry due to very low
microbial load and difficulty in transferring intact cells from
swabs into liquid solution. Furthermore, skin samples are
notoriously sensitive to 16S rRNA gene primer choice making
qPCR quantification challenging35. Similarly, for historically
collected samples that exist only as DNA in a freezer or as
sequences in a database, flow cytometry approaches to determine
absolute microbial load are not feasible.

However, absolute abundances of a community are only one
degree of freedom; in a community of N species, N – 1 degrees of
freedom exist in the relative abundances. By using flow cytometry
to quantify total microbial load, we validated these analytical tools
in 16S rRNA gene amplicon sequencing data from unstimulated
saliva. We found evidence of false-positives when looking
exclusively at changes in relative abundance before and after
brushing teeth. By evaluating the ratio of Actinomyces: Haemo-
philus, we reached an identical conclusion to our absolute
abundance data without the need for microbial load quantifica-
tion. The consistency of our results rests in the use of ratios
defining reference frames for inferring compositional changes.

Furthermore, we highlighted an example of a false-negative in
previously generated shotgun metagenomic data from the skin of
individuals with AD. We were able to reproduce the findings that
S. aureus, and to a lesser extent S. epidermidis, are differentially
abundant in AD lesions. Additionally, using log-ratios and dif-
ferential ranking, we were also able to show a more subtle but
statistically significant change in M. globosa abundance in AD
lesions. This same result was obtained in two independent
metagenomic studies of AD patients and agrees with previous

cultivation-based work quantifying increased colony forming
units of M. globosa in AD lesions.

Consistency between inferences made based on relative and
absolute abundance data is crucial, because in many circum-
stances it is not possible or practical to estimate total microbial
load. The seeming contradiction between absolute and relative
abundances does not invalidate data from the existing 100,000+
experiments utilizing 16S rRNA gene amplicon or metagenomic
sequencing36,37. Importantly, these techniques are not limited to
next-generation microbiome sequencing, but can be applied to
any experiments involving compositional data (e.g., metabo-
lomics, proteomics, etc.).

Although various methods of multinomial-based models have
been developed21–24, the interpretation of the resulting model
requires care. A zero valued coefficient does not imply that the
corresponding species abundance has not changed, due to the
total microbial load bias as discussed in Fig. 1. DR provides a
novel means to correctly interpret the coefficients of these
models. By ranking the coefficients we can determine which taxa
have changed the most relative to each other. This subtle dis-
tinction acknowledges the limits of compositional data analysis,
and as demonstrated above can have dramatic impacts on data
interpretation.

While there are widespread misconceptions concerning how to
interpret microbial abundances, we have shown that mis-
interpretations stem from a misunderstanding of the reference
frame used in analysis. Ongoing efforts at the NIH and EMBL-
EBI have already stored petabytes of multi-omics datasets ready
to be re-analyzed, and databases, such as Qiita and gcMeta,
contain curated data and metadata from hundreds of thousands
of samples36,37. There is much promise for resolving outstanding
controversies by re-analyzing these datasets using reference
frames to make stable inferences of compositional change.

Methods
Cancelling out bias in compostional data. The change between two samples
containing compositions (e.g., absolute abundances of D microbes) A= (a1, ..., aD)

4

a

b

Ammonia oxidizers

Acidophiles

Nitrogen reducers

Nitrogen ranks

2

0

–2

–4

log (
High nitrogen

Low nitrogen
) + K

pH ranks

3

1

2

0

–2

–1

–3

log (
High pH

Low pH
) + K

Fig. 4 DR analysis of the Central Park dataset. a Microbes ranked with respect to their association with nitrogen. b Microbes ranked with respect to their

association with pH. Putative hits against an acidophile, an ammonia oxidizer and a nitrogen reducer are highlighted

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10656-5 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2719 | https://doi.org/10.1038/s41467-019-10656-5 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and B= (b1, ..., bD), can be computed as follows

A

B
¼

a1
b1

; ¼
aD
bD

� �
ð1Þ

If we are only able to measure relative abundances, as is the case with next-
generation amplicon sequencing, we can only estimate the proportion pai for

species i in the sample A (i.e., pai ¼
ai
Na
). Estimating the true abundance can be done

via a1 ¼ Napa1 , where Na is the total abundance of sample A. To estimate the true
change,

A

B
¼

Na ´ pa1
Nb ´ pb1

; ¼
NA ´ paD
NB ´ pbD

 !
¼

pA
pB

´

NA

NB

ð2Þ

To determine if species i abundance has changed between samples A and B, we
test to see if ai

bi
¼ 1. However, as shown above, we cannot perform this test, since

the results of this test would be confounded by the total biomass bias NA

NB
.

In many cases the total biomass cannot be estimated, so any techniques to
identify important species will need to alleviate this bias. One alternative is to use
ratios. If we choose species D to be the reference species, it is clear that the total
biomass cancels as follows

a1=aD
b1=bD

¼
pa1=paD
pb1=pbD

ð3Þ

Another alternative is to use ranks. Ranks have been shown to be context of
microbiome studies38,39 and have been commonly employed to study species
richness in the context of ecology40. Since the bias is applied uniformly across the
differential, it will not affect the ordering of the species. Hence, ranks are agnostic
to the total biomass bias.

rank
A

B

� �
¼ rank

pA
pB

´

NA

NB

� �
¼ rank

pA
pB

� �
ð4Þ

Because of the equivalence of ranks between absolute and relative data, it is
possible to identify the species that are increasing or decreasing the most. This
means that the following statements hold

argmax
A

B

� �
¼ argmax

pA
pB

� �
ð5Þ

argmin
A

B

� �
¼ argmin

pA
pB

� �
ð6Þ

The ranks are connected to the log-ratios, the differences between ranks will
yield differences in log-ratios given by

log
ai=Na

bi=Nb

� log
aj=Na

bj=Nb

¼ log
ai=bi
aj=bj

¼ log
ai=aj
bi=bj

ð7Þ

These ranks are still relative; a microbe that is detected to be increasing the most
could still be decreasing in absolute abundance. For instance, in the tooth brushing
example, ranks identified specific genera of Actinomyces to be increasing the fastest,
but all of the microbes are depleted, suggesting that Actinomyces is just decreasing
much less than the other microbes.

This differential is also commonly referred to as a perturbation in the context of
the compositional literature10. It is important to note that this does not justify
applying rank-based statistical methods, such as Spearman correlation or
Kruskal–Wallis, to relative abundance data since these tests do not satisfy scale
invariance41,42.

Both the log-ratios and the differential ranking techniques satisfy scale
invariance, meaning that both of these techniques are agnostic to the total
microbial load. This concept is critical when analyzing relative abundance data,
since this is one step closer to maintaining consistent conclusions between the
original environment and the observed sequences.

False discovery rates in relative differential abundance. Attempting to estimate
absolute log-fold differentials from relative abundances can result in either false-
positives (FP) or false-negatives (FN) depending on the distribution of true dif-
ferential abundance. Whether FNs or FPs are observed depending on a nonlinear
relationship involving the true (unobserved) differential abundance. To demon-

strate this, let δ ¼ ðδ1; ¼ ; δDÞ ¼ log a1
b1

� �
; ¼ ; log aD

bD

� �� �
denote the absolute

differential of the D species between two conditions, A and B. Further, let bδ ¼

ðδ̂1; ¼ ; δ̂DÞ ¼ log a1=NA

b1=NB

� �
; ¼ ; log aD=NA

bD=NB

� �� �
represent the relative differentials

from compositional data. By definition, we know the following is true

log
ai
bi

� �
¼ log

ai=NA

bi=NB

� �
þ log

NA

NB

� �
ð8Þ

If log NA

NB

� �
> 0, then that will mean that for every microbe i, δi > δ̂i . This implies

that there is increased microbial load in A compared to B, and that this increase
will give rise to FNs. This is because the overall community increase will not be
captured from the relative abundance data.

In contrast, if log NA

NB

� �
< 0, then for every microbe i, δi < δ̂i . This means that

there is a decrease in the absolute microbial load in A compared to B. This decline
in the total community will not be captured from the relative abundances, and
some of the species will be detected to be increasing, giving rise to FPs. An example
of this was shown in the saliva microbiota study (Fig. 2).

Multinomial regression. To perform the differential ranking (DR) analysis, we
used multinomial regression. Multinomial regression and related count regression
models are commonly used in the context of microbiome analysis. Here, we use the
multinomial regression model since these models can reliably estimate the means
and can be easily reinterpreted in the context of compositional data analysis.

Counts from the multinomial regression can be formulated using additive log-
ratio transformation (alr) in the following generative model

βjk � Nð0; μβÞ ð9Þ

ηi ¼ alr�1ðXiβÞ ð10Þ

Y i � MultinomialðηiÞ; ð11Þ

where Yi represents the measured microbial load for sample i. β represents the
coefficients of the model across all measured covariates indexed by k. These
coefficients can be interpreted as a relative differential discussed in the examples
above. Xi represents the vector metadata covariates for sample i. These metadata
covariates can represent both continuous and categorical variables, where
categorical variables are represented as binary variables. A normal prior centered
around zero was placed on the coefficients β to serve as regularization to combat
issues associated with high dimensionality. The jth component of the βk coefficient
vector represents the jth alr coordinate, which can be interpreted as a log
concentration using one of the microbes as a reference. It does not matter which
microbe is used as a reference, since the proportions ηi will be identical regardless
of reference microbe.

The inverse alr function is commonly used in the context of compositional data,
given as follows

alr�1ðxÞ ¼ C½expð0; x1; ¼ ; xD�1Þ� C½x� ¼
x1
PD

i¼1
xi

; ¼ ;
xD
PD

i¼1
xi

2

6664

3

7775 : ð12Þ

This is also referred to as a degenerate softmax function, which is commonly
used in the context of neural networks. This function is isomorphic between RD�1

and SD (the space of proportions), so this will ward against identifiability issues
when estimating these model parameters. The alr function is defined as

alrðxÞ ¼ log
x2
x1

; log
x3
x1

; ¼ ; log
xD
x1

� �
ð13Þ

The models were estimated using a maximum a posteriori priori (MAP)
estimation using stochastic gradient descent.

Multinomial regression was implemented using Tensorflow43 and can be found
in https://github.com/biocore/songbird.

Interpreting ranks. Supplementary Fig. 2 outlines how to draw hypotheses using
the proposed ranking procedure. First the relative differentials need to be com-
puted, preferably using a count-based regression model such as the multinomial
regression described above. As noted in the introduction, the coefficients can be
represented as centered log ratio (clr) coordinates as follows

β
ðclrÞ
k ¼ clrðalr�1ðβkÞÞ ð14Þ

clrðxÞ ¼ log
x1
gðxÞ

� �
; ¼ ; log

xD
gðxÞ

� �� �
ð15Þ

where g(x) represents the geometric mean. These coordinates are typically centered
around zero, meaning that the chosen reference frame is the center-of-mass, or in
other words the average microbe. This is the same reference frame that ALDEx2
and sometimes ANCOM uses. Once the relative differentials are estimated there
are two possible analyses. It is possible to construct compositional biplots to
visualize all of the regression coefficients and determine how microbes are clustered
and driven by metadata covariates. This procedure is outlined in the Songbird
tutorial on github.

The other possibility is to identify candidate differentially abundant microbes.
To this end, one can construct rank plots (e.g., Figs. 2b and 3a). The rank plots
show the ordering of all of the taxa with respect to how much they are associated
with a particular metadata covariate, and specific taxa can be highlighted to show
their ranks as positions on the rank plot. From the ranks, one can focus on taxa
that have very high ranks or very low ranks, since those are the ones that are
increasing/decreasing the most relative to each other, and are likely to be important
contributors.

These ranks can also help inform which taxa can be used for a suitable reference
frame since the difference between the relative differentials can approximate the
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effect size that those two microbes will have. As a result, microbes that have very
different ranks can be suitable candidates for a log-ratio test. An ideal reference
microbe is present across most samples, since this will allow the denominator in a
log-ratio to be defined. This was one of the reasons why Actinomyces and P. acnes
were chosen as reference microbes in the case studies. Furthermore, if a microbe is
anticipated to be stable across experimental conditions, this could provide
additional motivation to select that microbe as the reference microbe.

Zeros will remain to be problematic when comparing log-ratios of taxa among
conditions—the procedure used here was to treat zeros as missing data and drop
them from the analysis. However, this approach may not be optimal, for instance if
two microbes never occur together in the same sample, but one microbe has a very
high rank, and the other microbe has a very low rank. The two microbes may have
significant explanatory power, but it will not be possible to perform a log-ratio test
without imputing the zeros. In scenarios such as this, it may be more appropriate to
utilize presence/absence procedures.

While the above procedures provide some recommendations on how to pick an
appropriate reference frame, picking a reference frame for hypothesis testing is still
an outstanding challenge. Since a reference frame can be defined as the average of a
set of microbes, there are 2N possible reference frames for N microbes.
Rivera–Pinto proposed one approach towards finding an optimal reference
frame44; however, this solution maybe suboptimal. Furthermore, it is not clear what
properties an optimal reference frame should satisfy, or how false discoveries could
be controlled. More theoretical work will need to be done in order to understand
statistical properties of these reference frames.

Simulated benchmarks comparing ANCOM2, ALDEx2, and DR. We used
simulated data to benchmark DR to the output of ALDEx245 and ANCOM46.
Details can be found in the simulation-benchmarks ipynb at https://github.com/
knightlab-analyses/reference-frames. Here, we compared the linear mixed effects
model in ANCOM2, the t-test in ALDEx2 and ranked multinomial regression
coefficients in DR. ALDEx2 determined taxa were significant if the FDR corrected
p-value fell below 0.05. A taxon was determined to be significant by ANCOM if it
passed the 0.9 cutoff.

ALDEx2 and the proposed multinomial regression for DR in this paper use
nearly identical models concerning categorical metadata. The major difference is
the choice of priors; our model uses a normal prior whereas ALDEx2 uses a
Dirichilet prior. As a result, the coefficients from ALDEx2 and the multinomial
regression are nearly identical (Supplementary Fig. 1), suggesting that the same
ranking procedure can also be applied to the ALDEx2 output. However, ALDEx2
can only handle a single categorical covariate at a time, whereas the multinomial
regression proposed can handle multiple covariates, including continuously valued
covariates, as shown in the Central Park soils dataset (Fig. 4).

It is important to note that the hypothesis tests that ANCOM and ALDEx2 use
may not be consistent with the absolute differentials. Under perfect conditions
when the absolute differentials are centered around zero (Supplementary
Fig. 1a–d), both ANCOM and ALDEx2 correctly infer that microbes with a
differential close to zero are likely not changing.

However, if the center of mass changes and the average microbe is now
decreasing on average −2 log fold (Supplementary Fig. 1e–h), both ALDEx2 and
ANCOM will incorrectly infer that microbes changing −2 log fold are not
changing. In this example, the center of mass reference frame is inappropriate, and
leads to predictions that microbes are not changing when they are actually
changing on an absolute scale. This highlights difficulties when attempting to link
information from relative data to absolute data using hypothesis tests. The
hypothesis tests that ALDEx2 and ANCOM perform here are not necessarily
incorrect, but could be misleading in situations where microbial load differs
dramatically among conditions.

Interpreting relative differentials through balances. Balances are ratios of taxa,
or groups of taxa, that were previously presented as a valid approach to analyzing
compositional data14. If we examine the model parameters βk 2 R

D�1 , we rein-
terpret the quantities given by alr−1(βk) as relative differentials as discussed in
Fig. 1. It is also worthwhile to note the connection between βk and balances. Since
βk is expressed in alr coordinates, there is also a direct connection to ilr coordi-
nates, meaning that βk can also be transformed into balances. More explicitly, the
ilr coordinates of these coefficients can be computed as follows

β
ðilrÞ
k ¼ ilr

Ψ
ðalr�1ðβkÞÞ: ð16Þ

The resulting coefficients are represented as coordinates given by the
orthonormal basis Ψ. An example of such a basis can be dervied from bifurcating
trees discussed in Morton et al.14, Silverman et al.47, and Washburne et al.31 This
can allow for relative changes in abundances as given by alr−1(βk) to inform which
balances are changing in ancestral states given by the tree. The multinomial
regression serves as an alternative means to compute regression coefficients
discussed in PhILR, Phylofactor and Gneiss, while avoiding issues with imputation
and zeros.

Saliva microbiota study. Nine volunteers provided unstimulated saliva so that
salivary flow rate could be measured according to a standardized protocol48.

Briefly, individuals were asked to allow saliva to flow for exactly five minutes
through a disposable funnel (Simport, SIM F490-2) into a sterile, 15 mL conical
tube preloaded with 2 mL sterile glycerol for bacterial preservation. Participants
were asked to provide samples before brushing and after brushing teeth in the
morning and in the evening. Samples were inverted several times to mix with the
glycerol and stored at −20 °C immediately after collection. This study was
approved by an Institutional Review Board (IRB# 150275) and written informed
consent was acquired before sample collection

Unstimulated saliva samples were thawed on ice and aliquots were diluted
tenfold with sterile, 1x PBS. To remove human cells and salivary debris, samples
were filtered using a sterile 5 μm syringe filter (Sartorius Stedim Biotech GmbH). 5
μl 20x SYBR green (SYBRTM Green I Nucleic Acid Gel Stain, Invitrogen) was
added to 1 mL of the microbial suspension (0.1x final concentration) and incubated
in the dark for 15 min at 37 °C. Finally, 50 μl AccuCount Fluorescent Particles
(Spherotech, ACFP-70-10) were added for assessment of microbial load. Samples
were processed on a SH800 Cell Sorter (Sony Biotechnology) using a 100 μm
chip with the threshold set on FL1 at 0.06%, and gain settings as follows; FSC= 4,
BSC= 25%, FL1= 43%, FL4= 50%. The gating strategy was adapted from
Vandeputte et al.12 Briefly, fluorescent microbial cells were gated from background
on a FL1-Fl4 density plot. Aggregates were excluded by taking the linear fraction
on a plot of FL1-height versus FL1-area as previously described49, and remaining
background was removed by eliminating large events detected on a FSC-BSC
density plot (Supplementary Fig. 3). Negative controls (sterile PBS stained
identically to samples) were run between each sample set to exclude cross-
contamination. Settings were identical among all samples.

DNA extraction and 16S rRNA amplicon sequencing were done using Earth
Microbiome Project (EMP) standard protocols (http://www.earthmicrobiome.org/
protocols-and-standards/16s). Five hundred microliter of unstimulated saliva was
used for gDNA extraction with MagAttract PowerSoil DNA Kit (QIAGEN) as
previously described50. Amplicon PCR was performed on the V4 region of the 16S
rRNA gene using the primer pair 515f to 806r with Golay error-correcting barcodes
on the reverse primer. Two hundred forty nanogram of each amplicon was pooled
and purified with the MO BIO UltraClean PCR cleanup kit and sequenced on the
Illumina MiSeq sequencing platform.

Demultiplexed fastq files were processed using QIIME2 (https://qiime2.org)51.
Deblur was used to denoise the sequences52. Taxonomy was assigned and 16S
rRNA gene copy number-corrected using RDP classifier53 then collapsed to the
genus-level. All taxa reported in the manuscript were validated using the NCBI
BLAST database54. Absolute abundances were estimated by multiplying the total
cell-count estimated by flow cytometry by the copy number-corrected microbial
proportions from sequencing as outlined above.

For differential abundance testing (Fig. 2e), ALDEx2 determined taxa were
significant if the FDR corrected p-value fell below 0.05. A taxon was determined to
be significant by ANCOM if it passed the 0.6 cutoff. Songbird was used to perform
multinomial regression and the repository can be found here: https://github.com/
mortonjt/songbird. Paired t-tests were performed to evaluate the differences before
and after brushing teeth. All log-ratios that were evaluated to either positive or
negative infinity were dropped prior to statistical analysis.

Analyzing the Central Park soils study with reference frames. Data from
Ramirez et al.30 were retrieved from Qiita55 (https://qiita.ucsd.edu/study/
description/2104). Amplicon sequence variants that appeared in less than
24 samples were filtered out, reducing the number of analyzed taxa to 30, 248 taxa.
This filtering criteria was chosen to ensure that each of the six covariates had at
least four samples to fit against. The following multinomial linear model was
estimated

yi � MultinomialðxiβÞ

β ¼ ½β0; βwater; βnitro; βpH; βcarbon; βbiomass�

where yi represents the microbial relative abundances in sample i, xi are the
measured covariates for sample i, βwater are the relative differentials with regard to
water content, βnitro are the relative differentials with regard to nitrogen con-
centration, βpH are the relative differentials with regard to pH, βcarbon are the
relative differentials with regards to carbon measurements and βbiomass are the
relative differentials with regards to measured biomass.

Shotgun metagenome studies. We used supplementary data from Byrd et al.27

and Leung et al.28. The provided relative abundances were compared to log-ratios
of given taxa from the raw count data. Paired t-tests were performed to evaluate the
differences between lesion and non-lesion skin samples. All log-ratios that were
evaluated to either positive or negative infinity were dropped prior to statistical
analysis. These numerical issues occur when particular microbes are not observed,
and we treat them as missing data, respectively.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10656-5 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2719 | https://doi.org/10.1038/s41467-019-10656-5 | www.nature.com/naturecommunications 9

https://github.com/knightlab-analyses/reference-frames
https://github.com/knightlab-analyses/reference-frames
http://www.earthmicrobiome.org/protocols-and-standards/16s
http://www.earthmicrobiome.org/protocols-and-standards/16s
https://qiime2.org
https://github.com/mortonjt/songbird
https://github.com/mortonjt/songbird
https://qiita.ucsd.edu/study/description/2104
https://qiita.ucsd.edu/study/description/2104
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Data availability
The sequences and biom tables56 from the saliva microbiota study can be found on Qiita
(http://qiita.microbio.me)55 under study ID 11896 and at EBI under ERP111447.

Code availability
All analyses can be found under https://github.com/knightlab-analyses/reference-frames
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