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Abstract
A highly stereoselective synthesis of 11-acetoxy-4-deoxyasbestinin D (1) has been completed in 26
linear steps. The synthesis hinges on a selective glycolate aldol addition to establish the C-2
stereocenter, a ring-closing metathesis reaction to complete the oxonene, and an intramolecular Diels-
Alder cycloaddition to establish the relative configuration at C-1, C-10, and C14. This initial total
synthesis of an asbestinin also serves to confirm the absolute configuration of this sub-class of the
C2-C11-cyclized cembranoid natural products.

Synthesis of C2–C11 cyclized cembranoids has intensified over the past decade, due to their
fascinating molecular topology and interesting biological properties.1 Various approaches to
the syntheses of the cladiellins and briarellins have been implemented;2 however, none of the
asbestinins have been prepared by total synthesis, leaving some doubt regarding their absolute
configuration and biosynthetic origin.1b,3 In 1990, Rodríguez and co-workers isolated 11-
acetoxy-4-deoxyasbestinin D (1) from Briareum asbestinum, making note of its particular
cytotoxicity against CHO-K1 cells (ED50=4.82 μg/mL) and strong anti-microbial activity
against Klebsiella pneumoniae.3 The tetracyclic framework of 11-acetoxy-4-deoxyasbestinin
D includes nine contiguous stereocenters and a fully-substituted tetrahydrofuran, rendering it
a formidable and intriguing target for chemical synthesis.

We recently reported a successful strategy for the synthesis of members of the eunicellin class
of cembranoids involving the construction of the oxonene ring through ring-closing metathesis,
4–6 followed by stereoselective formation of the hydroisobenzofuran via an intramolecular
Diels-Alder cycloaddition.2k The total synthesis of 11-acetoxy-4-deoxyasbestinin D (1) was
undertaken with the intent of validating the intramolecular Diels-Alder approach for the
synthesis of the asbestinins.7 Our synthetic plan hinged on an asymmetric glycolate aldol
reaction of oxazolidinethione 4 to assemble the diene 3, a precursor of the oxonene 2 (Scheme
1). This report describes the first total synthesis of an asbestinin verifying the absolute
configuration of the sub-class.

The synthesis of the oxonene core began with the addition of isoprenylmagnesium bromide to
(R)-benzyl glycidyl ether (5) to afford a secondary alcohol,8 which was O-alkylated with
sodium bromoacetate (Scheme 2). The resultant glycolic acid was coupled with (S)-4-
benzyloxazolidinethione to deliver thioimide 4. Addition of 4-pentenal,9 to the chlorotitanium
enolate of thioimide 4 in the presence of NMP,5c,7 gave syn-aldol adduct 6 in good yield and
diastereoselectivity (70%, >95:5 dr).10 Reductive removal of the chiral auxiliary and
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protection of the diol afforded diene 3. As anticipated, based on previous successful metathesis
reactions to form medium ring ethers,4–6 treatment of diene 3 with the Grubbs catalyst11 led
to facile formation of oxonene 7 (99% yield).

With the oxonene 7 in hand, efforts focused on construction of the required Diels-Alder
precursor. To this end, the benzyl ether was reductively cleaved, and the resultant alcohol was
oxidized to the aldehyde under Swern conditions (Scheme 3).12 The aldehyde was subjected
to successive Wittig reactions, first using phosphorane 813, then methylene
triphenylphosphorane to yield the requisite diene 9. Selective deprotection of the primary TBS
ether was carefully carried out in the presence of the labile enol ether.14 Oxidation12 of the
alcohol provided an aldehyde, which was treated with phosphorane 1 015 at elevated
temperature. Subsequent to the Wittig reaction, a spontaneous Diels-Alder cycloaddition
ensued through the more favorable exo transition state providing adduct 11 in 80% yield as a
single diastereomer. Earlier work in related systems had demonstrated the importance of both
the C-3 configuration and the C3 hydroxyl protecting group in controlling the
diastereoselectivity of the Diels-Alder reaction.2k,16

Ketone 11 was converted to an alkene to introduce a handle to establish the C-15 stereocenter
(Scheme 4). Deprotection and oxidation17 of the C3 secondary alcohol, followed by addition
of methylmagnesium chloride to the resultant ketone provided the tertiary alcohol 12 in
excellent yield as a single isomer.

With the required tricyclic core in place, refunctionalization of the cyclohexane ring was
undertaken. Acidic hydrolysis of the enol ether yielded the α-methyl ketone (10:1 dr);
however, 1H NMR analysis (COSY, nOeSY) indicated the undesired isomer was the major
product. This problem was easily corrected by base catalyzed equilibration to the desired
isomer, to provide 84% of the desired ketone after two recycles. Reduction of the ketone with
L-Selectride® yielded the secondary alcohol as a single diastereomer, which was esterified to
give acetate 13.

The final stage of the synthesis required introduction of the C-15 stereocenter and formation
of the oxapane. The regioselective and stereoselective hydroboration of the 1,1-disubstituted
olefin of diene 13 proved to be a challenge. Regioselective hydroboration occurred in high
yield with 9-BBN, but the reaction was not stereoselective.18 It was speculated that increasing
the steric bulk at C-3 could impede addition from the undesired face of the alkene, improving
the diastereoselection. Accordingly, the C-3 hydroxyl was protected as triethylsilyl ether 1 4,
but only moderate improvement in the diastereoselectivity (2:1 dr) was observed.

Fortunately, the use of (+)-diisopinocampheylborane delivered the desired alcohol 15 as a
single isomer after oxidative workup.19,20 The triethylsilyl ether was subsequently cleaved
to deliver the diol 16 in 64% yield over two steps. Taking advantage of the conditions employed
by Overman in the syntheses of briarellins E and F,2i the diol 16 was treated with triflic
anhydride and 2,6-lutidine to deliver 11-acetoxy-4-deoxyasbestinin D (1) in 66% yield.
Spectroscopic data for synthetic 1 matched the reported data for the natural product in all
regards.3 Of particular note, the specific rotation of synthetic 1 and a purified sample of natural
1 were identical ([α]D

26; CHCl3; = −15) when measured under the conditions.

In summary, a highly stereoselective synthesis of 11-acetoxy-4-deoxyasbestinin D has been
completed in 26 linear steps, hinging on a selective glycolate aldol addition to establish the
C-2 stereocenter, a ring-closing metathesis reaction to complete the oxonene, and an
intramolecular Diels-Alder cycloaddition to establish the relative configuration at C-1, C-10,
and C14. This initial total synthesis of an asbestinin also serves to confirm the absolute
configuration of this family of natural products.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Retrosynthetic Analysis of 1
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Scheme 2.
Synthesis of the Oxonene Ringa
a(a) CH2=C(CH3)MgBr, CuI, THF, −40 °C, 99%; (b) NaH, BrCH2CO2H, THF, DMF, 95%;
(c) (S)-benzyl-1,3-oxazolidine-2-thione, DCC, DMAP, CH2Cl2, 86%; (d) TiCl4, i-Pr2NEt,
NMP, 4-pentenal, CH2Cl2, −78 °C, 70%; (e) LiBH4, MeOH, Et2O, 0 °C, 95%; (f) TBSCl,
imid., DMAP, DMF, 50 °C, 87%; (g) Cl2(Cy3P)(IMes)Ru=CHPh, CH2Cl2, 40 °C, 99%.
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Scheme 3.
Intramolecular Diels-Alder Cycloadditiona
a(a) Na, NH3, THF, −78 °C, 86%; (b) (COCl)2, DMSO, Et3N, CH2Cl2, −78 °C to 0 °C, 94%;
(c) Ph3P=C(OMe)C(O)Me (8), PhCH3, 110 °C, 84%; (d) Ph3PCH3Br, t-BuOK, THF, 0 °C,
87%; (e) NH4F, MeOH, 79%; (f) (COCl)2, DMSO, Et3N, CH2Cl2, −78 °C to 0 °C, 93%; (g)
Ph3P=CHC(O)Me (10), PhCH3, 110 °C, 80%.
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Scheme 4.
Completion of 11-Acetoxy-4-deoxyasbestinin Da
a(a) Ph3PCH3Br, KO-t-Bu, THF, 85%; (b) n-Bu4NF, THF, 95%; (c) Dess-Martin periodinane,
pyridine, CH2Cl2, 98%; (d) MeMgCl, THF, 0 °C, 98%; (e) HCl, CHCl3, 96%, 10:1 dr; (f) NaH,
MeOH, 99%, 1:1.2 dr; (g) L-Selectride®, THF, −78 °C, 94%; (h) Ac2O, Et3N, DMAP,
CH2Cl2, 99%; (i) TESOTf, 2,6-lutidine, CH2Cl2, 0 °C, 80%; (j) (+)-Ipc2BH, THF; NaOH,
H2O2; (k) n-Bu4NF, THF, 64% (two steps); (l) Tf2O, 2,6-lutidine, CHCl3, 0 °C to 25 °C, 66%.
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