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Abstract

Establishing the Digital Chain of Evidence in Biometric Systems

Nick Bartlow

Traditionally, a chain of evidence or chain of custody refers to the chronological doc-
umentation, or paper trail, showing the seizure, custody, control, transfer, analysis, and
disposition of evidence, physical or electronic. Whether in the criminal justice system, mil-
itary applications, or natural disasters, ensuring the accuracy and integrity of such chains
is of paramount importance. Intentional or unintentional alteration, tampering, or fabrica-
tion of digital evidence can lead to undesirable effects. We find despite the consequences at
stake, historically, no unique protocol or standardized procedure exists for establishing such
chains. Current practices rely on traditional paper trails and handwritten signatures as the
foundation of chains of evidence.

Copying, fabricating or deleting electronic data is easier than ever and establishing equiv-
alent digital chains of evidence has become both necessary and desirable. We propose to
consider a chain of digital evidence as a multi-component validation problem. It ensures
the security of access control, confidentiality, integrity, and non-repudiation of origin. Our
framework, includes techniques from cryptography, keystroke analysis, digital watermark-
ing, and hardware source identification. The work offers contributions to many of the fields
used in the formation of the framework. Related to biometric watermarking, we provide a
means for watermarking iris images without significantly impacting biometric performance.
Specific to hardware fingerprinting, we establish the ability to verify the source of an image
captured by biometric sensing devices such as fingerprint sensors and iris cameras. Related
to keystroke dynamics, we establish that user stimulus familiarity is a driver of classification
performance. Finally, example applications of the framework are demonstrated with data
collected in crime scene investigations, people screening activities at port of entries, naval
maritime interdiction operations, and mass fatality incident disaster responses.
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Chapter 1

Introduction

1.1 Motivation

Traditionally, a chain of evidence or chain of custody refers to the chronological documenta-

tion, or paper trail, showing the seizure, custody, control, transfer, analysis, and disposition

of evidence, physical or electronic [142]. Whether in law enforcement, homeland security,

or military operations, ensuring the accuracy and integrity of such chains is of paramount

importance. Intentional or unintentional alteration, tampering, or fabrication of evidence

in such arenas can lead to undesirable effects. In law enforcement and certain homeland

security operations, the chain of evidence must establish, according to the requirements of

the criminal justice system, that alleged evidence is indeed related to the crime in question

as opposed to having been planted fraudulently. In military operations, identification of

enemy combatants is critical to the success of operational objectives and such identifications

must be verifiable and logged accordingly to justify various courses of action. In homeland

1
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security operations such as responding to natural disasters, the process of documenting the

identity of victims to be passed on to family members must be checked and rechecked to pre-

vent dispersal of erroneous information. Regardless of the application, there is typically an

underlying theme of identifying individuals, which naturally entails biometric data. Exam-

ples of such biometric data might include face, fingerprint, or iris images. While traditional

standards require the creation of a trail of paper documentation, creation and enforcement

of electronic equivalents of such trails is now possible. Besides facilitating more efficient

transmission and storage, adaptation of electronic chains of evidence can potentially offer a

greater capacity to verify evidence, especially when applied to biometric data. Development

of such a framework is an essential starting point for organizations that wish to enhance, or

replace currently existing paper based evidence chains and develop a means to establish and

maintain digital chains of evidence.

1.2 Goal

Creating a verifiable digital chain of evidence simplifies to a multi-component validation

problem. At any given point in time, an individual should be able to validate the content,

transmission, and source of evidence. Content validation refers to whether evidence was in-

appropriately modified at one entity in the chain before being transmitted to another entity.

Transmission validation deals with whether evidence was inappropriately modified during

the transmission from one entity to the next. Finally, source validation ensures that data

originated from the source in which it was claimed to originate from. The goal of this work

is to develop a conceptual framework for creating a digital chain of evidence which allows
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for validation at the three aforementioned levels. To do so, we first investigate and de-

velop topics which can be employed as security mechanisms within the framework including:

biometric watermarking, digital hardware fingerprinting, and the behavioral biometric of

keystroke dynamics. Next we develop the framework which relies upon these three security

mechanisms and cryptography. Specifically, we use cryptography to handle security threats

of data interception, data modification, data fabrication, repudiation of origin, and denial of

receipt. Biometric watermarking is applied to add another layer of protection against data

interception, data modification, data fabrication, and repudiation of origin. Keystroke dy-

namics (or any other biometric) is used to prevent unauthorized user access. Finally, digital

hardware fingerprinting is also used to prevent data modification and data fabrication.

1.3 Contributions

This work provides the following set of original contributions:

1. Development of an iris digital watermarking system which is not only resistant to

common application scenarios such at database compression and partial progressive

decoding, but also capable of withstanding the rewatermarking process which might

be seen in the proposed chain of evidence. Our work extends current biometric water-

marking techniques by modifying existing approaches to allow for selective encoding

in the region of interest in iris biometric images. Additionally, our approach provides

a novel asymmetric implementation of the watermarking scheme.

2. Demonstration of the ability to perform source validation on biometric modalities which

collect data with capture devices outside of typical photographic cameras. We apply an
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approach designed for digital cameras to a series of biometric fingerprint readers as well

as iris cameras using sensors which respond to the infrared band of the electromagnetic

spectrum.

3. Demonstration that input stimulus familiarity is a driver of classification performance

in keystroke dynamic systems.

4. Development of a conceptual framework for establishing and maintaining digital chain

of evidence dealing with biometric data which relies on elements of cryptography,

biometric watermarking, digital hardware fingerprinting, and biometrics. This also

includes the process of vetting the framework against security threats related to confi-

dentiality and integrity. Finally, we include an example instantiation of the conceptual

framework using specific examples from each of the security mechanisms upon which

framework relies.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides a summary

of related work regarding traditional evidence chains, biometric watermarking, hardware

fingerprinting, and keystroke dynamics. Chapters 3-5 describe specific contributions in the

areas of iris digital watermarking, digital hardware fingerprinting, and keystroke dynamics.

Chapter 6 describes the proposed conceptual framework for establishing and maintaining

digital chains of evidence. Finally, Chapter 7 concludes the work by providing a summary

of the accomplishments as well as future directions for research.



Chapter 2

Related Work

This chapter provides a summary of the related work in the fundamental areas of research

relevant to this effort. The fields of interest include traditional evidence chain systems,

biometric watermarking, digital hardware fingerprinting, and keystroke dynamics. While no

summary can be complete, each subsection attempts to offer sufficient breadth and depth to

provide the reader with a basic working knowledge of the field.

2.1 Chain of Evidence

2.1.1 Introduction

According to Breitman, a “chain of custody”, synonymous with a “chain of evidence” in our

work, refers to the to “the history of a piece of physical evidence after it has been identified

and preserved” [21]. Another definition is offered by Wikipedia, “Chain of custody refers to

the chronological documentation, and/or paper trail, showing the seizure, custody, control,

5
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transfer, analysis, and disposition of evidence, physical or electronic.” Most commonly found

in criminal justice systems, a chain of evidence serves two primary purposes as defined by

McCormick’s “On Evidence” [31], “First, it identifies the object being offered, to establish

that it is in fact the object that caused or contributed to the plaintiffs injury. This is

described as “authentication.” The second purpose is to establish that the condition of

the object is substantially the same as when the injury occurred”. While these services

are specifically aimed at criminal justice applications, they need only be altered slightly

to generalize to any application which deals with physical or electronic evidence. Perhaps

such a generalization can be found in the term “evidence management” defined as “the

administration and control of evidence related to an event so that it can be used to prove

the circumstances of the event, and so that this proof can be tested by independent parties

with confidence that the evidence provided is the evidence collected related to the event”

[143]. Whether in the criminal justice system, military operations, or other arenas, this

documentation and management of evidence is a critical component to ensure the proper

course of actions are taken in the systems which it supports.

2.1.2 Traditional Paper Based Chains

As mentioned in the introduction, traditionally, chains of evidence have been tied to the

criminal justice systems. Given the consequences, one might think there would be a widely

accepted protocol for establishing a chain of evidence or chain of custody. We find however,

historically, no unique protocol or standardized procedure exists. Breitman states that “Un-

der the Federal Rules of Evidence, that standard of proof requires only that the party offering

an item of physical evidence introduces such proof as is “sufficient to support” a finding that



2.1. Chain of Evidence 7

the [item in question] is what its proponent claims: Federal Rule of Evidence, 901(a)” [21]

[58]. Additionally, he points out that “the ultimate issues of authentication and condition

are left for the jury. If the proponent’s evidence is facially sufficient to support a finding

of authenticity, then all other issues such as credibility and probability are left for the jury

[21].” Taking these accounts into consideration, the onus of establishing a burden of proof in

a criminal justice system falls on many shoulders. At the highest level, it is the responsibility

of prosecutors and defense attorneys. At the lowest level, it is the responsibility of officers,

lab technicians, evidence clerks and all other individuals supporting local, state, and fed-

eral law enforcement activities. As one might suspect, this lack of a prescribed method for

establishing an evidentiary chain of custody results in great variability in terms of what pro-

cedures and protocols are practiced and observed at the various levels of law enforcement and

prosecution. Naturally, documenting information about evidence such as item descriptions,

date of receipts, case numbers, the name of the officer providing the evidence, and inventory

numbers provide the foundation for establishing such a chain [38]. However, information of

this nature does not encompass even minimal requirements to remove “reasonable doubt”

that evidence is original, and not been intentionally or unintentionally tampered with or

planted. The reader can probably recall several high profile cases when “smoking gun” type

evidence was presented but the failure to properly administer or present the chain of custody

rendered the evidence either inadmissable or not valid in the eyes of the jury. While one

may assume most agencies have internal protocols for establishing chains of evidence, few

agencies have public documentation of such protocols. Perhaps the most inclusive publicly

available record is provided by the Minnesota Department of Corrections [14]. Their “Ev-

idence Handling” policy describes the procedures for the collection, preservation, storage,
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and disposal of various forms of physical evidence.

2.1.3 Digital Chains of Evidence

As can be seen in the previous section, there are enormous challenges that stand in the way

of developing standardized protocols for establishing a chain of physical evidence. Given

the current state of technology, copying, fabricating, and deleting electronic data is easier

than ever, and establishing a digital equivalent of a chain of evidence involves even more

challenges. Additionally, due to the lack of standardization in traditional chains, we are

provided with no “template” in which to base a foundation for a digital chain of evidence.

Consistent with traditional chains of evidence, we see that the burden of proof once again

falls on the presenter when dealing with electronic evidence. Berg states, “Chain of custody

can be one of the most difficult issues faced by the forensic professional trying to introduce a

digital image as evidence in a criminal case. If a defendant alleges an image has been altered,

or could have been altered, the burden of proof falls upon the state to prove otherwise. If the

image is a fingerprint linking the defendant to a crime scene, it is inevitable that the defense

attorney will raise a question about the integrity of the image. In many cases, the success

of the argument will hinge upon the procedures used to safeguard the security of the images

[15].” Fortunately, if applied appropriately, existing technologies can potentially offer more

efficient and accurate means to transmit, authenticate, and present electronic evidence.

Despite the need and potential advantages of developing such digital equivalents, it is

apparent that little effort has been documented toward this end. Perhaps the most inclusive

attempts at formalizing a digital chain of evidences are presented by Duerr et. al in [37] and

Francoeur in [42]. Duerr’s work proposes an information assurance approach to authenticat-
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ing digital evidence. To that regard, it attempts to meet the five primary security services

of access control, confidentiality, integrity, availability, and non-repudiation. While the work

provides a high level overview of some of the problems associated with the task, it provides

little detailed descriptions of how to actually go about providing these services. The main

component it does touch on is integrity, explaining various aspects of traditional PKI and

digital signatures. Francoeur’s work focuses on the difficulties associated with establishing

an electronic equivalent to a handwritten signature. Figure 2.1 shows his seven component

diagram of a digital chain of evidence which touches on a number of aspects relevant to

the proposed work. The work also provides useful information regarding the U.S. e-Sign

Act which in part ensures that no signature or record will be deemed inadmissable in courts

merely because of its electronic form. Additionally, it also provides information regarding the

challenges associated with denial of signatures and the sequence in which a digital signature

should be created. Similar to Duerr’s work, we unfortunately see that while outlining many

services a digital chain of evidence should provide, it does little to describe the mechanisms

for actually providing them. Finally, while mentioning some of the challenges associated

with including techniques such as watermarking in digital chains of evidence, Berg’s work

does not address frameworks, implementation details, or methods of performing the various

aspects of validation to authenticate digital evidence. He does however, conclude his work

with the passage “In the end, when an image is introduced in court, the first question that

will need to be answered remains, “Is this image a fair and accurate representation of the

scene or object as it was found?” Questions about chain of custody or the validity of specific

computer enhancement techniques will ultimately be answered in accordance with the rec-

ognized scientific principles of the day.” The proposed approaches and techniques presented
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Figure 2.1: Francouer’s Digital Chain of Evidence [42].

in the remaining chapters should help to define the “recognized scientific principles of the

day.”

2.2 Biometric Watermarking

Biometric watermarking is a specialized version of digital watermarking which typically

involves imperceptibly embedding data in raw biometric host media for the purpose of pro-
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viding additional security to a biometric system. Watermarks can range from non-biometric

strings of random digits to system specific identifiers such as organization names and file

creation dates to feature vectors from biometrics different than the host data. The addi-

tional security gained may result from using the watermark as a mechanism for proving file

authenticity, tracking chain of custody and data reproduction, or to afford a multimodal

biometric option. Biometric watermarking is typically used in tandem with cryptography

and importantly provides a layer of security which remains intact after the decryption pro-

cess. A biometric watermarking system should operate without significantly degrading the

performance of the host biometric system it protects.

2.2.1 Introduction

First coined by Tirkel et. al [130], the term “digital watermark” originated in 1993. Unlike

their physical predecessors (i.e. currency, copyright marks, etc.), digital watermarks are

usually imperceptible to the human eye and require the use of machines to be detected in

and extracted from the host media in which they are embedded. Although separate, digital

watermarking is closely related to the field of steganography where secret messages are clan-

destinely embedded in larger, unrelated messages. Traditionally, digital watermarking has

been employed as a means of copyright protection which allows an individual to prove (or

disprove) ownership by embedding and extracting data suitable for verification of ownership.

Additionally, digital watermarking can be applied to verify the authenticity of media, pro-

vide copy protection or reproduction management, and offer another mechanism for content

description [149, 8]. Biometric watermarking is a specialized version of digital watermark-

ing with the most noticeable difference being either the content of the watermark, the host
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data, or both. Figure 2.2 shows examples of the four main classes of digital watermarking

as they relate to biometric watermarking. Although cases (a) and (c) are perhaps most

popular where biometric data serves as the host, case (b) can also be considered biometric

watermarking when biometric data is embedded in non-biometric host data.

 34.67 23.40 80.12   

20.12 30.45 90.73…

110001000000000000110001000000000000

000000000000001110

10000000000000000…

(a) Voice Cepstral analysis feature
vector embedded in an iris image.

0.2726  0.4427

-0.8443  0.1290…-0.8443  0.1290…

000011000000000000

000000000000000111

01000000000000000…

(b) Principal components from face
image embedded in baboon image.

Creation Date : 01.01.09

067 114 101 097 

116 105 111 110…

110000100000000000

000000000000000100

11100000000000000…

(c) Image creation date embedded
in fingerprint image.

Copyright West Virginia 

University 2008

067 111 112 121

114 105 103 104…

110000100000000000

000000000000001111

01100000000000000…

(d) Copyright information embed-
ded in Lena image.

Figure 2.2: The four classes of digital watermarking (a) Biometric watermark embedded in biomet-
ric host data (b) Biometric watermark embedded in non-biometric host data (c) Non-biometric wa-
termark embedded in biometric host data (d) Non-biometric watermark embedded in non-biometric
host data. Cases (a)-(c) represent biometric watermarking

. The images of Lena and the baboon are reproduced from the USC-SIPI Image Database

Besides the four main classes of watermarking, there are many types of biometric water-

marking with differentiations in three main categories (visibility, blindess, and symmetry) as

outlined in Table 2.1. The issue of visibility or perceptibility relates to whether or not the

watermark is noticeable by humans either visually or audibly depending on the nature of the
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Type Description

Visible
The embedded information is noticeable by humans, either
visually in pictures, or audibly in sound files.

Invisible
The embedded information is either completely impercep-
tible or not immediately noticeable by humans lacking the
assistance of machines.

Public (blind)
The original host file is not required to detect / extract the
embedded watermark.

Semi-blind
The embedded watermark is detected with additional infor-
mation relative to the watermark encoding scheme but does
not require the entire original host file.

Private (non-blind)
The embedded watermark can only be detected / extracted
with both the watermarked image and the original host file.

Symmetric (Private Key)
A secret / private key is utilized to encode the watermark in
the host image. This requires communication of the secret
key between the sender and receiver.

Asymmetric (Public Key)

A public-private key pair are used to encode the watermark
in the host file. The use of a public key pair prevents the need
to communicate a secret key between sender and receiver as
only the public portions of the key pairs need to be available.
Optionally, this method can ensure image integrity and non
repudiation of origin..

Table 2.1: Description of digital watermarking types applicable to biometric watermarking.

host data. The detection and extraction processes may or may not rely on the original host

data or auxiliary data to complete, this notion is referred to as blindness. Finally, water-

marking systems must make use of keys, either private, similar to symmetric cryptographic

systems or public key pairs akin to asymmetric cryptosystems. A biometric watermarking

system encompassing any combination these categories is imaginable but an invisible, blind,

and asymmetric system is arguably the most difficult to conceive.
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Beyond the scope of classes and categories, the quality of a biometric watermarking sys-

tem can be evaluated by five types of characteristics: imperceptibility, robustness, fragility,

capacity, and performability. Table 2.2 describes each of these five characteristics in depth.

Although the characteristics of imperceptibility, robustness, fragility, and capacity will gen-

eralize to to digital watermarking, the characteristic of performability is specific to biometric

watermarking.

2.2.2 Algorithms

Digital and biometric watermarking algorithms both operate on a similar framework which

can be generalized into three operating modules, namely, an encoding, decoding, and authen-

tication. Figure 3.1 outlines these modules, providing a generalization of the watermarking

framework for both digital and biometric watermarking. The first operating module, the

watermark encoder, embeds the watermark into the host data. The watermark can range

from a random binary bit sequence to biometric eigen-face coefficients utilized for face recog-

nition. Additionally, the encoding module may also utilize an embedding key / secret key

which discerns specific embedding locations in the host data to be watermarked. The second

operating module, the watermark decoder, takes as input the watermarked host data and

processes it in order to extract the watermark. If an embedding key / secret key was used

during the encoding module then the same key is required for the decoding process. Addi-

tionally, depending on the algorithm, original host data may also be required to extract the

watermark. The last module, authentication, compares the recovered watermark to the orig-

inal indicating the similarity between the two. In the event that the watermark is biometric

in nature, the biometric data can optionally be passed on to its authentication system.
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Characteristic Description

Imperceptibility

The degree in which the host image is visibly altered or distorted
due to the presence of the watermark. Watermarked images that
bear no visible difference from their original host image are said
to be imperceptible. Rarely, this characteristic may be evaluated
beyond the scope of human perception. In these cases, the question
is raised as to whether or not it is possible to reveal that an image
contains a watermark through the aid of a machine or program
(without access to the original host image).

Robustness
The ability of the watermark to be detected and extracted after the
watermarked image has been subjected to any variety of transfor-
mations (i.e. compression, filters, affine transformations).

Fragility
The ability to detect any file transformation by way of the water-
mark. The detection might result from an inability to extract the
watermark or from an extracted watermark that in not intact.

Capacity

The amount of information which can be embedded in the host data
of a watermarking system. This is a function of the type and size of
the host data that is being watermarked and the robustness of the
watermarking system in terms of detectability and extractability.

Performability

The degree in which the watermark affects the performance of the
biometric system(s) in question. At a minimum, biometric water-
marking systems should not have a significant adverse affect on the
performance of the biometric system(s) which they protect. Here
performance can entail matching error rates, image quality, effi-
ciency of computation time, etc. Some biometric watermarking
schemes may positively affect biometric system performance.

Table 2.2: Characteristics of biometric watermarking systems
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Watermark 
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Host data

Watermark
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Figure 2.3: Generalized block diagram of a watermarking process. Shaded blocks indicate the
main watermarking modules while dashed blocks / lines indicate optional areas of processing which
are algorithm specific.

Watermark embedding and decoding techniques fall into two categories: spatial and

transform domain techniques. Each category has specific advantages and disadvantages but

in general spatial domain techniques are of lower complexity and more robust to biometric

replacement attacks while transform domain techniques are of higher complexity but in ad-

dition are more robust to geometrical attacks such as rotation, scaling, and translation. In

[63], an extension of the spatial domain watermarking technique known as amplitude mod-

ulation is utilized to hide a face image inside a fingerprint image. Eigen-face coefficients are

watermarked into a fingerprint image at locations specified by a secret key. After decoding,

both the reconstructed fingerprint and the face image are used for validation. They verify

their experiments by demonstrating that the matching performance of the reconstructed fin-

gerprint images is virtually unaffected by their watermarking system. Low et. al. in [85] ,

watermark a non-biometric host image with off-line handwritten signature in the form of a

discretized bit string. They experiment and evaluate with three watermarking techniques:
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least signification bit (LSB), CDMA spread spectrum in spatial, and CMDA spread spec-

trum in a transform domain such as discrete wavelet (DWT). Their experiments show that

CMDA in the wavelet domain provides the most conclusive results with respect to jpeg com-

pression and image quality. Similarly, Noore et. al. [102], utilize the DWT to watermark

fingerprint images with face and demographic text data. They validate their experiments

by illustrating that the matching performance of the watermarked fingerprint is unaffected

by the watermark and demonstrate that their watermarking system is tolerant to various

degradations such as cropping rotation, jpeg compression, noise, and median filtering.

2.2.3 Application Scenarios and Attacks

Depending on the intended use, biometric watermarking systems are subject to a series

of application scenarios and attacks. Application scenarios can be thought of as normal

usage patterns that a watermarking system should realistically be expected to withstand

without serious side effects on the performance of any of the characteristics outlined in

Table 2.2. Examples of application scenarios can include, but are not limited to: database

(re)compression, partial progressive decoding, and noisy channel transmission. Each of these

scenarios can have an effect on one or more characteristics of a biometric watermarking

system. For instance, a highly compressed watermarked image may lead to difficulties in the

watermark extraction process as a compression algorithm often significantly alters an image,

which in turn alters the watermark itself. Occasionally operational environments result in

slow data transmission speeds which may force a system to progressively decode portions

of an image as it becomes available. This type of application scenario can have an effect

on the robustness of the extraction process, the performance of the biometric system(s) in
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question, and potentially the imperceptibility of the watermark. Many techniques are capable

of tolerating scenarios similar to these. That said, the expected application environment

should be considered when attempting to appropriately choose a watermarking technique

as the current state of the technology finds a given technique may be well suited for one

application scenario but not perform well in another

Perhaps the most notable difference between the general field of digital watermarking

and biometric watermarking is its relationship to the characteristic of performability. For

obvious reasons, a biometric watermarking system must minimize the effect it has on the

biometric system it protects. Issues such as matching performance, image quality, compu-

tational efficiency, and even legal repercussions must not be ignored. Regarding matching

performance, a biometric watermarking system should not impede the main block of the

biometric system(s) in question, specifically the feature extraction and matching blocks. It

should be noted that this effect could potentially propagate itself in two ways. Perhaps the

most obvious effect is when the host data is used in a biometric system; here the presence of

the watermark may impede the feature extraction process as the watermark may add noise

to the image. Naturally this may lead to inaccuracies in the matching block. A less obvious

effect is when a biometric feature vector serves as a watermark and is also used as part

of a biometric system. In this scenario, accurate extraction of the watermark is of utmost

importance as small changes in the values of feature vectors can lead to significant changes

in authentication results. Little or no work exists studying the latter of the two effects.

Application scenarios aside, biometric watermarking systems must also deal with attacks

or malicious attempts to subvert a system. Such attacks may involve removal, alteration, or

replacement of the embedded watermark found in an image. Although some of these may
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also fall in the application scenario domain, examples of attacks include: rotation, scaling,

translation, cropping, masking, and (re)watermarking. Similar to application scenarios, dif-

ferent biometric watermarking techniques can handle different attacks with varying degrees

of success. Although not specific to biometric watermarking, Zheng et. al provide an ex-

cellent breakdown of so-called RST (rotation, scaling, translation) invariant watermarking

algorithms in [149]. Often the ability to handle a given attack lies in the domain in which a

biometric watermarking technique operates. For instance, rotation attacks are handled with

greater ease by watermarking techniques which operate in tranform domains (i.e. Fourier,

DCT, wavelet, etc.) This type of attack is arguably more difficult to handle in techniques

that fall in the spatial domain. Conversely, the spatial domain is more akin to dealing with

a biometric replacement attacks (i.e. replacing the watermarked iris or face region of an

image) as the biometric ROI is known in the spatial domain but more difficult to localize

in a transform domain. Little work has been done addressing attacks specific to biomet-

ric watermarking systems; most work focuses only on attacks to the general area of digital

watermarking but it should be noted that many such specific attacks exist.

2.2.4 Patents, Tools, and Commercial Products

Searching the United States Patent Office for “Biometric Watermarking” yields well over 100

entries of varying relevance to the field. The most notable is entitled “Biometric Watermarks”

and was issued in 2001 to GTE Service Corporation [98]. This patent outlines the general

schematic for a biometric watermarking system. A more recent patent can be found in

USPO 7,305,089 issued to Canon in 2007 which includes an watermarking system embedded

in a camera with the intended purpose of associating a photographers biometric information
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with images taken by the camera [96]. At least two freely available tools related to digital

watermarking and biometric watermarking exist. Stirmark Benchmark 4.0 is a software tool

designed to perform robustness testing of image watermarking algorithms [113]. Checkmark

also provides a bed of attacks to evaluate the robustness of a watermarking system [111].

Many commercial entities offer a broad range of digital watermarking solutions that can

potentially fall under the category of biometric watermarking. Perhaps the most widely

known of such companies is DigiMarc Corporation based Oregon, US.

2.3 Digital Hardware Fingerprinting

Falling within the field of image forensics, digital hardware fingerprinting is the process

of identifying the source hardware used to capture an image. More often than not, this

identification process is independent of the scenery or primary image content but rather based

on some other feature of the image. Such a process is has a number of applications including

verifying authenticity and integrity of images, enforcing copyright protection, establishing

ownership of data, tracing the origin of data, and establishing a chain of evidence in criminal

cases or other arenas.

2.3.1 Introduction

Digital hardware fingerprinting deals with the investigation of techniques used to identify

the unique characteristics of devices that capture images (e.g., digital cameras, camcorders,

and scanners, biometric devices, etc.) [121]. These unique characteristics can then be used

to identify the source used to capture an image which can then be subsequently used to
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verify image authenticity, integrity, etc. In this sense, “source” can encompass any number

of ideas. Take for instance the most commonly used example of digital photography, here

the “source” is a camera and the hardware fingerprinting system is attempting to identify

which camera captured the image. In this simple example “source” identification can take

place at four different levels. Figure 2.4 shows four levels that may be considered in a source

hardware identification problem: technology, brand, model, and unit. Based on the four

���������	
�

����

�����

��

�����

����

��

�� ������

Figure 2.4: Source Hardware Identification Levels.

levels, various questions can be answered:

• Was the image in question captured from a sensor relying on technology X or technology

Y? (Technology)

• Was the image in question captured from a device manufactured by vendor X or vendor

Y? (Brand)

• Was the image in question captured from a device corresponding to model X or model

Y manufactured by vendor Z? (Model)

• Was the image in question captured from a unit A or unit B of model X manufactured

by vendor Z? (Unit)
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Naturally, unique challenges exist to performing source model identification at the different

levels. Furthermore, the choice of which feature to use may be in part dependent on the level

at which a system must operate. The overwhelming majority of research on digital image

forensics deals specifically with images captured from photographic cameras and document

scanners.

2.3.2 Features and Classification Techniques

There are many proposed approaches to performing source hardware identification at dif-

ferent levels that are well summarized in a surveys of the field by Sencar et. al in [121]

and Khanna et al. in [72]. To facilitate a better understanding of the different approaches,

this section is broken down at a high level based on the features used for classification as is

presented in [121].

CFA and Demosaicing Artifacts

The most sensors found in digital cameras are based on concept of a Color Filter Array

(CFA) composed of a surface of pixels that each have their own spectrally sensitive filter [6].

Depending on the choice of CFA, an appropriate demosaicing algorithm must be chosen to

correctly render high spatial frequency image details [121]. These demosaicing algorithms

introduce an interpolation effect which produces unique correlations between color values of

image pixels. These correlations, or demosaicing artifacts, can in turn be used to identify

source camera models [121]. Approaches utilizing these artifacts have been proposed with

varying success by Popescu [115], Bayram et. al [13], Long et. al. [84], and Swaminathan

et. al. [127] with the highest classification accuracy of 95% on four camera models achieved
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by Long et. al’s PCA based approach.

Lens Distortions

Lens distortions result from changing image magnification which in turn changes the distance

from the optical axis [121]. Choi et al. proposed an approach based on lens distortions to

distinguish between three camera models in [28]. This work uses various parameters from

algorithms that attempt to compensate for such distortions as features for identification. The

proposed approach involving a radial symmetric distortion model achieves a 91% accuracy.

Sensor Dust Characteristics

Although not inherent to the capture devices, the notion of sensor dust characteristics has

been explored by Dirik et al. in [35]. In the work, the authors examine digital single-

lens reflex (DSLR) cameras which typically acquire dust occluding the sensor when lens are

changed. The approach uses a technique based on match filtering and contour analysis [121].

While the experimental results claim an accuracy of 92% in correctly identifying a single

camera’s images from a bed of images taken from other cameras, the approach may run into

challenges as cameras increasingly embed corrective algorithms to compensate for dust [121].

Imaging Sensor Imperfections

Arguably the most attractive approaches to camera source identification are based on imaging

sensor imperfections. Due to small imperfections in the manufacturing process, whether from

the presence of hot or cold pixels or pattern noise, each sensor typically has a unique signature

which manifests itself in all images it captures. Geradts et al. proposed a technique based
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on the presence of dead pixels in [46]. Perhaps the most promising approach to date was

proposed by Lukas et al. in [86]. Based on measuring pixel nonuniformity (PNU) noise, the

approach analyzes the differences in images resulting from imaging sensor imperfections [86].

This approach uses a wavelet denoising algorithm to model the photo-response nonuniformity

(PRNU) component of the PNU which in turn serves as a reference template for each camera.

Then, a correlation algorithm is used to match the noise patterns from images to be identified

to the reference templates. The approach achieves 100% accuracy on a 9 camera set which

does include some duplicate instances of camera models. Sutcu et. al [126] tested the

technique on a larger database of images arriving at more realistic (< 100%) performance

rates. Fridrich et. al extends the approach in [26] by applying preprocessing techniques

to the noise extraction algorithm. Finally, Khanna et. al [70], and Guo et. al [49] also

proposed approaches using sensor pattern noise to fingerprint flatbed scanners instead of

digital cameras.

Not falling specifically in any of the four previously mentioned groups is a somewhat

general approach proposed by Kharrazi et al. which outlines 34 image features including

average pixel values, RGB pair correlations, and neighbor distribution center of mass [73].

The features are then input into multi-class classifiers and achieve an accuracy of 97% on a

four camera database.

2.4 Keystroke Dynamics

Keystroke recognition is a behavioral biometric which utilizes the unique manner in which

a person types to verify the identity of an individual. Typing patterns are predominantly
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extracted from computer keyboards, but the information can potentially be gathered from

any input device having traditional keys with tactile response (i.e. cellular phones, PDA’s,

etc). Although other measurements are conceivable, patterns used in keystroke dynamics are

derived mainly from the two events that make up a keystroke: the Key-Down and Key-Up.

The Key-Down event takes place at the initial depression of a key and the Key-Up occurs at

the subsequent release of that key. Various unique features are then calculated based on the

intra-key and inter-key timing variations between these events. After feature extraction, a

wide range of algorithms can be employed to establish whether the unique pattern confirms

or denies the claimed identity.

2.4.1 Introduction

The earliest form of keystroke recognition emerged in the early 1900s during the days of WWI.

During the war, the French used listening posts in which operators were able to recognize

the “fist” of enemy radio operators communicating in Morse code. These trained individuals

would learn to recognize operators by differing lengths of pauses, dots and slashes, and vary-

ing transmission speeds. This intelligence subsequently allowed the French to establish the

identity of entities such as enemy battalions. Far more sophisticated than electromechanical

telegraphs used to transmit Morse code, keyboards of today offer many more opportunities

to establish the unique manner in which one types. Intuitively, coarse level differentiation

can be achieved by investigating typing speeds. For instance, a professional typist who av-

erages 90 or more words per minute would be easily distinguished from a “hunt and peck”

amateur who averages only 20-25 words per minute. That said, this feature only goes so far

as many people type at similar speeds and the average speed that an individual types can
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vary significantly depending on many factors. The time it takes an individual to locate a key

(sometimes referred to as “seek-time”) also varies from key to key. For instance, left-handed

individuals may have quicker seek-times for keys on the left side of the keyboard and vice

versa [95]. Along those same lines, use of the shift keys to modify characters can also vary

from individual based on handedness and typing skill. Trained professionals will always mod-

ify characters on the right side of the keyboard with the left shift key while amateurs may

continually use the right shift key to do so [12]. Language undoubtedly plays a large role in

the individuality of a typing signature. Given that a person speaks English, commonly used

words like {the, and, you, are} are often “programmed” in one’s mind and typed quickly as

opposed to an individual of a different native language. Additionally, individuals typically

exhibit a consistent pattern of errors including replacements, reversals, and extraneous hits.

In an extreme case, the consistent lack of errors is a pattern in itself.

2.4.2 Keyboard Technology and Semantics

There are four different kinds of switch technology used in keyboards today; pure mechanical,

foam element, rubber dome, and membrane [97]. Each switch type has various characteristics

such as feel, durability, price, etc. No matter the key switch technology chosen, when a key

is depressed, a degree of “bounce” is present. Bounce can be defined as the effect when

the contact device rapidly engages and disengages over an extremely short period of time

[97]. Keyboards, either external to desktop PCs or internal to laptops and other devices

are computers in their own right as they contain a microprocessor, RAM, and sometimes

ROM. Using their processors and controllers, they filter out the difference between bounce

and two successive keystrokes. Each stroke therefore consists of two events, when the plates
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are engaged and when the engagement is released or disengaged. Scan codes resulting from

these events are sent from the controller in the keyboard to the event handler in the BIOS of

the device in question (usually a PC) [97]. Scan codes are recorded by the processor based

on a matrix composed of all the keys on the keyboard. The keyboard matrix operates on a

buffer that allows for the processing of simultaneous keystroke events. As mentioned before,

when a key is pressed down, the plates become engaged. It is at this point that the keyboard

processor sends a “make code” encoded as a hex value to the device. The make code can

be thought of as including both the key engaged and various other state flags indicating if

/ how the key was modified by any of the various control keys such as shift, alt, etc. Once

the key disengages, a corresponding “break code” is sent to the PC [97]. These ideas form

the basis of keyboard technology at its lowest-level.

Using this background as a foundation, the upper level semantics of keyboard operation

can be defined. The basis of all features included in keystroke recognition is founded on the

keystroke event and the associated make code / break code correlation described previously.

Instead of dealing with terms like “make code,” “disengagement,” etc., researchers usually

yield to the more intuitive, higher level definitions below.

1. Key-Down- The event that fires when a key is pressed down. This corresponds to

the event of the keyboard processor sending the device (usually a PC) a “make code.”

It should be noted that this event will continually fire until the key being depressed

is released. The speed at which the Key-Down event fires while a key is depressed

is referred as the “repeat rate.” This is a user customizable property in virtually all

operating systems.
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2. Key-Up- The event that fires when a currently depressed key is subsequently released.

3. Keystroke- The combination of an initial Key-Down event and the corresponding

Key-Up event.

4. Hold Time- The length of time between an initial Key-Down event and the corre-

sponding Key-Up event. Hold time is sometimes referred to as “dwell time.”

5. Delay- The length of time between two successive keystrokes. It should be noted that

this time can be positive or negative (overlapping strokes). Some works refer to delay

as “latency” or “flight.”

Some highly specialized keyboards can record other information such as the pressure of key

strikes, but the foundation of the technology is based on the events defined above.

2.4.3 Feature Representation and Classification

A wide variety of algorithmic approaches have been explored as suitable candidates for the

task of keystroke recognition. The problem of keystroke recognition fits well within the

general fields of pattern recognition and machine learning; the two main tasks involved in

solving problems within these fields are to define the representation of the feature space

and the algorithm used to predict the class of samples. As mentioned in previous sections,

the features in keystroke recognition are primarily derived from the elements that make up

a keystroke. Most algorithms utilize raw times or first order statistics such as minimum,

maximum, mean, median, and standard deviation of hold times and latencies [12, 44, 66,

104, 104, 94] for feature representation. Here, hold times are for individual keys whereas
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latencies are measured between two keystrokes often defined as “digraphs.” Using these

statistics, one can either calculate fixed length feature vectors as outlined in [12] or variable

length feature vectors as outline in [16]. Fixed length or static size feature vectors will always

have a predetermined length despite the length of the input sequence. The size of variable

length or dynamic feature vectors will depend on the size of the input sequence. Although

the vast majority of keystroke recognition systems rely on single key hold times and digraph

latencies, some approaches define other feature sets including trigraph durations, ordering

of keystrokes (when shift-key modification is required), etc. [16].

Beyond feature representation, a keystroke recognition system must employ an algorithm

to predict the class of incoming samples. In general, the approaches can be broken down

into two sections: distance metric based approaches and machine learning approaches. After

calculating the feature vector for an incoming sample, the chosen algorithm must predict

the class of the sample (genuine or imposter). Many approaches will do so by comparing

the incoming sample to one or more reference samples in a template database through a

distance metric. Popular distance metrics include: Euclidean, Mahalanobis, Manhattan,

Chebyshev, and Hamming. When distance metrics are employed to compare two samples,

the smaller the score the closer the two samples are to each other. Gaines and Lisowski

[44], Garcia [45], Young and Hammon [145], and Joyce and Gupta [66] are all examples of

algorithms that utilize one or more of these distance metrics as classification schemes. Table

2.3 provides an overview of selected work in keystroke recognition including the works listed

above. The table includes the features / algorithm used, input requirements, the scope, and

performance. Under the performance column the raw totals in terms of FAR and FRR are

presented within parentheses when listed in the work.
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Table 2.3: Overview of Selected Works in Keystroke Recognition

Work Feature(s) / Algorithm Input Scope Performance

Gaines & Lisowski
(1980) [44]

Latency between 87 lowercase digraphs
using sample t-tests

300-400 word pas-
sage 2 times

7 secre-
taries

FAR 0% (0/55) FRR
4% (2/55)

Garcia (1986) [45] Latency between 87 lowercase digraphs
and space key & Complex Discrimina-
tion using Mahalanobis distance func-
tion

Individual’s name
& 1000 common
words 10 times each

(N/A)

FAR 0.01% (N/A)
FRR 50% (N/A)

Young & Hammon
(1989) [145]

Plurality of features including: digraph
latencies, time to enter selected number
of keystrokes and common words using
Euclidean distance

(N/A) (N/A) (N/A)

Joyce & Gupta
(1990) [66]

Digraph latencies between reference
strings using mean and standard devi-
ation of latency distance vectors

Username, pass-
word, first name,
last name 8 times
each

33 users
of

varying
ability

FAR 0.25% (2/810)
FRR 16.36% (27/165)

Brown & Rogers
(1993) [22]

Latencies and Hold Times using Eu-
clidean distance and neural networks

Usernames, 15-16
character avg. ≈
1,000 sequences
tested

21 & 25
users

FAR 4.2%-11.5%
(N/A) FRR (N/A)

Obaidat & Mac-
chiarolo (1993)
[104]

Digraph latencies between reference
strings using Neural Networks

15 character phrase
20 times each

6 users 97% overall accuracy

Obaidat & Sadoun
(1997) [105]

Digraph latencies and key hold times
using multiple machine learning algo-
rithms

Username 225
times / day for 8
weeks

15 users FAR 0% (N/A) FRR
0% (N/A)

Monrose & Rubin
(1997) [95]

Latencies and Durations with
Normalized Euclidean distance &
weighted/non-weighted maximum
probability

Passages of text
over 7 weeks (N/A) Identification Frame-

work

Maisuria & Ong &
Lai (1999) [91]

Digraph latencies with neural networks
(multi-layer perceptron)

passwords 60 times
over 3 periods

20 users FAR ≈ 30% (N/A)
FRR ≈ 15% (N/A)

Monrose, Weiter, &
Wetzel (2001) [94]

Digraph latencies and key hold times,
algorithm employed is unclear

8 character pass-
word

20 users FAR % (N/A) FRR
45% (N/A)

Bergadano,
Gunetti, & Pi-
cardi (2002) [16]

Trigraph duration using degree of dis-
order

683 character text 5
times

44 users FAR 0.04%
(1/10,000) FRR
4% (N/A)

Yu & Cho (2004)
[146]

GA-SVM’s and wrapper FSS on hold
times and digraph intervals

6-10 character pass-
words 150-400 gen
/ user & 75 imp

21 users FAR 0% (N/A) FRR
3.69% (N/A)

Bartlow & Cukic
(2006) [12]

Random Forests on digraph latencies
and hold times digraph latencies

usernames + 8 &
12 char passwords
≈ 9,000 sequences

41 users FAR 2% (N/A) FRR
2% (N/A)

Sung & Cho (2006)
[125]

GA-SVM’s and wrapper FSS on hold
times and digraph intervals

6-10 character
passwords 150-
400 / user & 75
imposter

21 users FAR 3.85% (N/A)
FRR 13.10% (N/A)
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As the field has matured, many other machine learning approaches have emerged as viable

solutions for prediction mechanisms in keystroke recognition. Neural networks have widely

been employed with works by Obaidat et. al [104, 105], Brown et. al [22], and Maisuria

et. al [91]. Cho and Yu have applied Support Vector Machines (SVM’s) to the problem

extensively [146, 125]. Additionally, Bartlow and Cukic explored the decision tree approach

of Random Forests [12] (see Table 2.3 for more information on listed works).

2.4.4 Applications and Challenges

In application, the uses of keystroke recognition can range anywhere from stand-alone bio-

metric systems to augmenting general computer security systems. Depending on various

system specific security characteristics such as database size and operational risks, keystroke

recognition is suitable as a stand-alone biometric. Although not on the level of physiological

biometrics such as iris, fingerprint, and face, many works in the literature indicate that the

attainable performance rates are within the scope of what some operational profiles would

require. Much like the physiological biometrics, performance is typically measured by con-

ventional error measures such as False Accept Rate (FAR), False Reject Rate (FRR), and

Equal Error Rate (EER). In terms of EER, many of the previously cited works achieve

performance ≤ 5% (see Table 2.3). Naturally, FAR and FRR’s can be tailored based on

where one wishes to fall on a traditional Receiver Operating Characteristic (ROC) curve.

It is important to note that the literature has not firmly established whether the technol-

ogy is sufficient for biometric systems operating in identification mode as the focus of past

research is almost exclusively tailored to verification based systems. It is also important

to note the trend of decreasing data requirements as earlier works required extremely long



32 Chapter 2. Related Work

passages of text whereas most recent works require only usernames, passwords, or both. Re-

lated to this trend, keystroke dynamics need not be applied only at the time of login, which

may lead to time-of-check-time-of-use vulnerabilities. Instead, they can be applied transpar-

ently throughout the span of a period of use. This feature can allow systems to continually

check for the presence of insider threat where an authorized user may login to a system and

subsequently allow an unauthorized user access. If a system does not require a continual

verification environment, keystroke recognition is also very suitable for a challenge-response

type framework where the user is periodically authenticated.

Besides stand-alone biometric systems, keystroke recognition can be used as an augment

to traditional username / password systems. This process is often called credential hardening

or password hardening. Monrose et. al first proposed the idea in [94] and Bartlow et. al also

explored the concept in [12]. Both works show how the addition of keystroke recognition to

traditional authentication mechanisms can drastically reduce the penetration rate of these

systems. Works of this nature may also bode well in online authentication environments

such as banking and e-commerce websites which are now commonly requiring secondary

verification layers.

Either as a stand-alone biometric or an augment to a traditional username / password

scheme, keystroke dynamics are arguably more cancellable or replaceable than physiolog-

ical biometrics. The idea of cancellable biometrics touches on the fact that the threat of

biometric compromise exists and is often realized. With fingerprint, face, iris, etc., it is

often difficult to reissue a biometric authentication mechanism as fingers, faces, and irises

are not easily removed and replaced in humans. In keystroke recognition however, the be-

havior which induces the biometric can be changed. In other words, if a user’s keystroke
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recognition template is compromised, the data in which the template is based (i.e. password

/ passphrase) can simply be changed which will result in a new biometric template. For

obvious reasons, this is seen as a very attractive feature of keystroke recognition.

Beyond the scope of academic research, many patents have been issued in the field in-

cluding: Garcia (4,621,334 - 1986) [45], Young & Hammon (4,805,222 - 1989) [145], Brown

& Rogers (5,557,686 - 1996), and Bender & Postley (7,206,938 - 2007). In addition to

patents, there are many commercial offerings of keystroke recognition systems. Two pop-

ular systems are BioPassword c©(http://www.biopassword.com/) and iMagic Software c©

(http://www.imagicsoftware.com). Systems such as these are attractive as the overhead

of keystroke recognition in terms of hardware deployment and seamless integration into

currently existing authentication systems is typically much less than that associated with

physiological biometrics such as fingerprint, iris, and face.

Despite the maturity of the field over the last 30 years, there are still many challenges

that have yet to be solved. Three main challenges are associated with the data required to

train keystroke recognition systems. First, few works have formally set out to determine the

amount of sequences required to sufficiently establish a typing signature ready for operational

deployment. For a system to be deployable, it must have a realistic training requirement

that users are willing to incur. It seems that repeatedly typing a username and password

combination 50 or more times would be unacceptable in the eyes of most users, yet 5 may

be insufficient in terms of meeting established security goals. Second, as passwords need to

be replaced / reissued, the problem of retraining needs to be addressed. Once again, these

retraining requirements have yet to be firmly established. Third, the behavioral nature of

this keystroke recognition requires a slightly more involved data collection process than what
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is typical in conventional physiological biometric systems. Most notably, one cannot simply

compare genuine input of one user to genuine input from another user in order to establish

an instance of imposter input as the data is often different for every user (i.e. usernames

/ passwords). As a result, most academic research will have users type the credentials or

data associated with other users to arrive at imposter sequences for training. Clearly this is

not feasible in operational systems as passwords are frequently reset. Therefore, the issue of

automatic generation of imposter data is an area that needs to be explored.



Chapter 3

Biometric Watermarking

3.1 Introduction

The threat associated with identity theft in a networked society becomes even more formidable

as biometric systems become commonplace as mechanisms for identity management. In or-

der to maintain long schematic life cycles and desired levels of interoperability, systems must

often store raw biometric images in addition to templates. Furthermore, despite the push

to develop international standards for templates in various biometric modalities, one can

assume raw images will continue to be stored in many systems for reasons of insurance

and support of legacy systems. Beyond these reasons, original digital images must be cap-

tured and stored when collecting evidence for criminal justice, military operations, and some

civilian applications.

Whether in an effort to protect the identity of individuals or to ensure the integrity of

a data in a chain of evidence, state of the art cryptographic protocols must be employed

35
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to protect the data of individuals enrolled in such systems. Furthermore, even with the

available technologies for protecting such IT systems, no system is impenetrable. Therefore,

protection mechanisms must be in place even after decryption and replaceability of authenti-

cation credentials must be available regardless of the biometric nature of the data [61]. The

work outlined in this subsection includes a framework that combines biometric watermarking

and public key cryptography to address the previously mentioned challenges. Using voice

feature descriptors to watermark raw iris images, the proposed system offers multiple lev-

els of authentication through a potentially multimodal biometric system while also offering

authentication, integrity, and non-repudiation of origin through asymmetric cryptography.

Through watermarking, the scheme offers another degree of protection in terms of tracking

the origin of data, adds another layer of authentication, and improves the degree of biometric

replaceability by encoding a behavioral biometric into the raw image. By varying input pa-

rameters of our encoder, our watermarks can offer many degrees of robustness while leaving

performance of both the primary (iris) and secondary (voice) biometrics virtually unaffected.

In the work, we test the effect of our watermarking scheme on iris image quality and scoring

performance. We test the ability to extract our watermarks related to three real-life appli-

cation scenarios: database compression, partial data loss (progressive decoding), and data

transmission over a noisy channel. Additionally, we investigate the notion of rewatermarking

as it relates to the chain of evidence framework presented in Chapter 6.
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3.2 Watermark Encoding and Decoding

Amplitude Modulation is a spatial domain watermarking technique originating from [76].

This is one of the more widely studied modulation techniques in the field of communication

and signal processing. Presented below is a brief overview of such encoding and decoding

techniques as was discussed in [76], followed by how it is modified to suit biometric needs.

3.2.1 Encoding

In [76], bits are embedded multiple times by modifying pixel values, Bij , in the blue channel.

These modifications are either additive or subtractive, depending on the value of the bit, s,

and its proportionality to the luminance, Lij , as seen in Equation 3.1

Bij ← Bij + (2s− 1)Lijq























Bij ∈ embedding locations

s ∈ bit

Lij ∈ Luminance

q ∈ Encoding strength

(3.1)

3.2.2 Decoding

The decoding process estimates a linear combination of the pixels in a cross-shaped neigh-

borhood around the encoded bit as seen in Equation 3.2

Bij =
1

4c
(

c
∑

k=−c

Bi+k,j +

c
∑

k=−c

Bi,j+k − 2Bij ) { c ∈ neighbor size (3.2)

After decoding and arriving at an estimated pixel Bij value, the difference between the

estimated and watermarked pixels is averaged over all embedding locations for that bit.

Finally the sign of this value indicates the bit (if positive =1, if negative = 0). However,

to attenuate robustness to compression, cropping, and affine transformations, an adaptive
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thresholding method is introduced: append 2 bits to every bit stream that are always set to

{0, 1} respectively as seen in Equation 3.3

bit =

{

1 δb > δ0
+δ1

2

0 otherwise















δ0 average diff of all 0 reference bits

δ1 average diff of all 1 reference bits

δbaverage diff of current bit

(3.3)

3.2.3 Adaptation to Biometric Data

Biometric image medium is usually captured in grayscale. Because of this, the encoding

process has to be slightly modified to take this into consideration. For example, [61] mod-

ifies the encoding equation to take in local image information such as gradient, PGM , and

standard deviation, PSD, of the cross-shaped neighborhood to adjust watermarking strength.

Parameters A and B aid in adjusting the strength of the standard deviation and gradient

when modulating the bits to be encoded. The following equation represents this adaptation.

PWM (i, j) = P (i, j)+

(2s− 1)PAV (i, j)q

(

1 +
PSD(i, j)

A

)(

1 +
PGM (i, j)

B

)

(3.4)

PAV represents the average pixels in a 5x5 neighborhood centered around i,j. Certain con-

siderations need to be addressed in terms of encoding watermarks in the biometric region

of interest (ROI) in the host image; namely, the degree in which encoding the watermark in

the ROI affects matching performance of the biometric.
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3.3 Framework Design

In this subsection we briefly describe the overall framework of the proposed system. It is

generalized such that it could be applied to various biometric authentication environments

such as internal or external web-based identity management and point-of-entry (POE) ap-

plications. Figure 3.1 shows all phases of a potential verification process. Beginning with

a request by the user (Alice) to access to some resource protected by the system (Bob),

Alice supplies her authentication data, specifically an iris image watermarked with a voice

feature descriptor. This data could be stored electronically in a web-based profile or phys-

ically on a secure token. The most important aspect of this data is that is it will have

been previously encrypted using public key infrastructure (PKI). More specifically, the data

will first be encrypted with Bob’s public key and then signed with Alice’s private key. For

an explanation of PKI see [59]. At this point, the system would process the user’s ID and

encrypted data. Bob’s first step involves decrypting the data using Alice’s public key and

his private key. Next, the system passes the authenticated and decrypted iris image through

the watermark decoder. The extraction of the voice descriptor is then used to further verify

the authenticity of the image. Finally, the system can proceed with biometric verification

using the iris image or optionally conduct multimodal verification using both the iris image

and the voice feature descriptor. Upon conclusion of the process, the system has provided

multiple levels of authentication; through cryptography, after decryption using watermark

verification, and potentially with multimodal biometric verification. The system provides

data integrity through cryptography, and non-repudiation of origin through PKI. Addition-

ally, the watermarking provides a level of tracking cryptography alone cannot provide as the
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Figure 3.1: System Framework - Enrollment and Verification
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decrypted images will still have watermarks that indicate the origin of an image. If neces-

sary, the system could also include file hashing techniques to add another measure of data

integrity and watermark fragility.

3.4 Experimental Design

We chose to test our watermarking scheme on a subset of images from the WVU biometric

database. One hundred iris classes were selected, with two images per class. Images were

watermarked with randomly generated 64 bit binary sequences. The length of the sequence

was based on the work done by Monrose, Reiter, and Wetzel in which voice was used as a

seed to generate cryptographic private keys. Using 60 bit sequence, they were able to reliably

reconstruct keys. The 60 bit sequence represented a passphrase of approximately 10 words,

this was assumed to be more than adequate length for the proposed system [93].

Our amplitude modulation technique involves three parameters for watermarking iris images;

encoding strength, the number of times the watermark sequence is encoded or repeated, and

the percentage of watermark encoding that take place in the iris itself. Encoding strength

represents the degree in which the intensity of a bit is modulated from it’s orginal value.

Number of times encoded represents the redundancy of the watermark encoding (the larger

the number the more times the same watermark is encoded in a host image). Finally, en-

coding location represents what portion of the watermark is encoded in the iris region of

the host image. The following list represents the parameter variation scheme we chose to

analyze:
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• Encoding Strength- (0.1, 0.06, 0.04)

• Number of Times Encoded- (60, 40, 20)

• Encoding Location- (67%, 33%, 0%) (in iris)

Therefore, each of the 200 iris images were watermarked a total of 27 ways (3 X 3 X 3) for a

grand total of 5,400 watermarked images. The first two parameter sets were arrived through

preliminary extraction tests. The third set of values were chosen as a trade-off between

minimally affecting the iris recognition system and keeping the images robust to tampering.●❍■❏❑▲▼◆❑❖P▼❖◗
❘❖■❙❘P▼❚❑ 1.

❯❱❲❍P❳❖❑❙❙■❍❨ ❩❍■❙❬❲❭▼❨❨❑❪ ❫❖❍❚❖❑❙❙■❴❑❯❑❏❍❵■❨❚
2.

3.

Figure 3.2: Experimental Points of Analysis

Beyond analyzing the change in iris image quality, matching performance, and percept-

ability of the different parameter variations, we set up three watermark extractability ex-

periments outlined in Figure 3.2. The first of which involves database compression. Most

biometric databases containing raw images store data in formats derived from lossy com-

pression algorithms. As there is no current standard for compressing iris images, we took
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Original Size JPEG Quality J2K Ratio Compressed Size

301 KB 80 0.95 bpp ≈ 36 KB

301 KB 60 0.75 bpp ≈ 23 KB

301 KB 40 0.55 bpp ≈ 17 KB

301 KB 20 0.35 bpp ≈ 10 KB

Table 3.1: Compression Statistics

two popular compression algorithms (JPEG and JPEG 2000) and compressed the original

images in the following ways:

• JPEG: (compression quality)- (80,60,40,20)

• JPEG 2000 (J2K): (bpp)- (0.95,0.75,0.55,0.35)

Table 3.1 shows statistics for the two compression algorithms. It should be noted that

the compressed sizes for the JPEG images represent averages across compression qualities

whereas the sizes for J2K are exact.

Next, we attempted to simulate environments that may be subject to partial results asso-

ciated with progressive image transmission (i.e. web browsers). Using the wavelet transform,

we simulated partial image transmissions by incrementally decreasing the amount of detail

coefficients thresholded similar to techniques in [23]. The percentages of the image that were

partially decoded were as follows:

• Partial wavelet decoding:- (25%, 50%, 75%).

Figure 3.3 shows a simulated progressively transmitted image as well as an image after

application of zero mean Gaussian noise.

The final extraction experiment involved transmitting data over a noisy channel as in

mobile communication and satellite systems. We applied additive zero mean white Gaussian

noise (AWGN) to the compressed images using Equation 3.5.



44 Chapter 3. Biometric Watermarking

Noised Image = I(x,y) + N where N ∼ N (0, σ2)

σ2 ∈ {10−2, 10−3, 10−4, 10−5}

(3.5)

(a) JPEG (20) (b) Partial Decoding (50%)

Figure 3.3: Compressed and Progressively Decoded Irides

Beyond the notions of extractability in the application scenarios tested, it is important to

consider the success of the watermarking scheme in terms of specific application to a digital

chain of evidence. As we will see in Chapter 6, in the proposed framework for a digital chain

of evidence, images will be subject to ongoing watermarking and reconstruction as evidence

is passed along the chain of entities. The process involves watermarking an image at one

entity, then extracting the watermark and reconstructing the image, followed immediately

by rewatermarking the image. With this in mind, it is important to establish that the

content of the evidence does not change substantially as it is passed along the chain and

subject to this rewatermarking process. Simulating a chain of evidence with up to 10 different

entities, we examine the degree that iris images change by tracking the number of pixels that

change and the degree in which the intensity values change for those pixels that are different.

This experiment is performed by looking at 100 images from the set with the watermarking

parameter combination #17 in Table 3.2.
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3.5 Experimental Results

3.5.1 Watermark Perceptibility

As a requirement of the proposed system, watermarks should be imperceptible to the user.

Figure 3.4 shows the visibility of the watermark in two watermarking schemes. Images (a)

and (b) represent the original, (c) and (d) represent the watermarked images, and (e) and

(f) represent the difference images between the original and the watermarked. The schemes

chosen represent what we consider the most perceptible and least perceptible watermarking

parameter combinations. Clearly, the goal of imperceptibility to the naked eye is met as even

the most perceptible parameter combination is not noticeable without the help of electronic

processing techniques.

3.5.2 Effect on Image Quality

As defined in [67], overall iris image quality ranges from 0-1 based on 7 quality factors.

The original quality distribution of the experimental dataset was evenly distributed with

an approximately equal amount of images from 10 quality bins (0-0.1,0.1-0.2,0.2-0.3, etc.).

In our experiment, each of the watermarking parameter combinations have been assigned a

number 1-27. Table 3.2 outlines these assignments in order of encoding strength, number

of times encoded, and percent encoded in the iris. Differences in quality between original

and watermarked as well as between original and reconstructed images were calculated. All

differences were found to be significantly small. The average quality difference across pa-

rameter combinations for watermarked images was -0.003, and the average quality difference

across parameter combinations for reconstructed images was -0.005.
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(a) Original (b) Original

(c) 0.1-60-0.67 (d) 0.04-20-0.33

(e) 0.1-60-0.67 diff. img. (f) 0.04-20-0.33 diff. img.

Figure 3.4: Perceptability of Watermarked Images

3.5.3 Effect on Matching Performance

For each user, the hamming distance is calculated between two templates obtained from

non-watermarked images. Next, a watermark is applied to all images 27 different times; one

for each combination of the parameters. Then the average hamming distance is calculated

between all reconstructed image pairs. The Equal Error Rate (EER) of the original image
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1 0.1-60-0.67 10 0.06-60-0.67 19 0.04-60-0.67
2 0.1-60-0.33 11 0.06-60-0.33 20 0.04-60-0.33
3 0.1-60-0.00 12 0.06-60-0.00 21 0.04-60-0.00
4 0.1-40-0.67 13 0.06-40-0.67 22 0.04-40-0.67
5 0.1-40-0.33 14 0.06-40-0.33 23 0.04-40-0.33
6 0.1-40-0.00 15 0.06-40-0.00 24 0.04-40-0.00
7 0.1-20-0.67 16 0.06-20-0.67 25 0.04-20-0.67
8 0.1-20-0.33 17 0.06-20-0.33 26 0.04-20-0.33
9 0.1-20-0.00 18 0.06-20-0.00 27 0.04-20-0.00

Table 3.2: Watermarking Parameter Combinations

set was calculated to be 7.164%, and the average EER across the 27 reconstructed schemes

was 6.975%. Based on this, we conclude that our watermarking scheme has little impact on

average hamming distance across all users. As a result, we believe that recognition perfor-

mance would remain relatively unaffected by our watermarking system. Cross comparing

original to watermarked images provides further evidence to this effect. The average EER

across all 27 watermarking schemes was 7.354%, not significantly higher than the original

EER.

3.5.4 Extraction after DB Compression

Figure 3.5 shows the effect of JPEG compression on watermark extractability. The x-axis

represents each of the 27 parameter combinations as seen in Table 3.2. The y-axis represents

average percentage bit error across all 200 images for each parameter combination. As the

graph indicates, our watermarking scheme offers an average bit error at or below 5% for

JPEG compression down to a quality of 40 for many parameter combinations. Figure 3.6

shows the effect of J2K compression on extractability. We see here that the extractability

seems to be more robust offering even more combinations below 5% average bit error across
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Figure 3.5: Extractability: Original vs. JPEG compressed

compression levels. Furthermore, we see less sensitivity to a change in the encoding strength

(see parameter combinations 9-10 & 18-19).

3.5.5 Extraction after Partial Progressive Transmission

Figure 3.7 shows the ability to extract watermarks after various intervals of partial progres-

sive image transmission. The intervals were applied to a previously JPEG compressed image

at a quality level of 80. The graph demonstrates that the first 6 parameter combinations

allow for relatively successful watermark extraction with bit errors falling below 5%. This

holds true with up to 50% of the image partially decoded.

Figure 3.8 shows the same partial progressive extraction after J2K compression at 0.95
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Figure 3.6: Extractability: Original vs. J2K compressed

bpp. We again notice that the J2K compression appears to be less detrimental to the

extraction process, offering lower levels of bit error compared to similar JPEG compression

ratios.

3.5.6 Extraction after Transmission over a Noisy Channel

We found extraction at a level below 5% bit error was attainable at three amounts of additive

white gaussian noise (AWGN) (10−5,10−4,10−3) for the first 7 watermarking parameter com-

binations on JPEG (80) compressed images. These results can be seen in Figure 3.10 Once

again consistent with the J2K compression results, extraction in our watermarking scheme

was less sensitive to AWGN applied to 0.95 bpp J2K compressed images as compared to the
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Figure 3.7: Extractability:JPEG Partial Progressive Transmission

JPEG (80) compressed images as seen in Figure 3.10 In this case, it offered approximately

20 combinations with bit error less than or equal to 5% for noise levels (10−5,10−4,10−3).

Furthermore, it offered 6 combinations below 5% bit error at noise level (10−2).

3.5.7 Rewatermarking Along a Chain of Evidence

As mentioned in the experimental design, we also considered the success of the watermarking

scheme in terms of specific application to a digital chain of evidence. With this in mind,

it is important to establish that the content of the evidence does not change substantially

as it is passed along the chain and subject to this rewatermarking process. Simulating the

generation of evidence, we first watermarked 100 images with 64 bit binary sequences which
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Figure 3.8: Extractability:J2K Partial Progressive Transmission

could simulate a biometric feature vector as in the previous experiments. Then, to simulate

transmission of the evidence across a chain of entities we apply the following three-step

process 10 times on all of the 100 images:

1. Extract watermark and verify its validity.

2. Reconstruct image so evidence viewing / analysis can take place.

3. Rewatermark the reconstructed image with current entity’s biometric feature vector

before transmission to next entity in the chain.

To analyze the effect of rewatermarking on the appearance of the iris digital evidence,

Figure 3.11 shows the percentage of pixels in the reconstructed image which have different
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Figure 3.9: Extractability:JPEG Noise

values compared to the original, unwatermarked iris digital evidence. We see that after the

second entity in the chain reconstructs the evidence after extracting the watermark from

the first entity, 0.14% or 424 out of 307, 200 (640 x 480) pixels are different as compared

to the original evidence. Note, this figure represents the average difference across all 100

iris images tested. Looking further at the figure, this mean percentage difference between

the reconstructed images and the original images linearly increases as the evidence is moved

along the chain with the final difference falling at 1.35% or 4, 149 pixels. Having established

the percentage of pixels which change as the evidence is moved along a chain of entities, we

look into the degree in which changed pixels vary in terms of intensity. Figure 3.12 takes the

same form as the previous figure except the y-axis reflects the average intensity difference

for pixels of the reconstructed images having different values than the original image. In
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this case, the difference remains steady around 3.29 intensity points as the evidence moves

along the chain. Naturally, this is a function of the encoding strength parameter chosen.

As mentioned, the encoding parameter combination chosen was #17 from Table 3.2. This

resulted in perfect extraction of the watermark in every case. The differences observed

in quanity and intensity between the original and reconstructed images along the chain of

evidence are not likely perceptible to the human eye. This is supported by Figure 3.13 which

displays the reconstructed images after the first and tenth reconstructions. Looking only

at (a) and (b), one would not be able to distinguish between the two images without the

assistance of software techniques. Furthermore, in (c) and (d), the visible portions of the

difference maps between the original and reconstructed images (first and tenth) are faint at

best. Besides human perceptibilty, it is unlikely that such differences would have any level
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Figure 3.11: Percentage Pixel Differences Between Reconstructed and Original Evidence

of serious impact on software-based biometric analysis that might take place at an arbitrary

entity in the chain. This is corroborated by the results of the experiments on biometric

image quality and matching performance as well.

3.6 Chapter Summary

The combination of the techniques employed by the system offers various attractive features

and advantages. It affords multiple levels of authentication; through cryptography, after

decryption through watermarking, and through multimodal biometric verification. By wa-

termarking a feature vector from a behavioral biometric, we achieve both added protection

after decryption and a degree of biometric replaceability both at the raw image level and at

the feature vector level. Replaceability is achieved as a new watermark can be embedded to
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Figure 3.12: Intensity Differences Between Reconstructed and Original Evidence

replace the iris biometric or a new passphrase can be assigned to replace the voice biometric.

The system also decreases the chance of a true compromise of credentials. Through public

key encryption, the profile is resistant to exposure whether stored electronically or on a smart

card. The framework offers multiple levels of forgery detection with a combination of water-

marks and file hashing. Essentially the profile can be considered completely fragile as it can

detect modification of a single bit through cryptographic hash comparisons. Additionally,

the system offers non-repudiation of origin through PKI as well as origin tracking through

watermarking. Finally, the cost of compromise is lower than systems watermarking biomet-

ric data with physiological biometric templates as they effectively double the risk associated

with compromised profiles / tokens. In these systems, an unauthorized user has indefinite

access to both the original raw biometric data (one modality) and the biometric template
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data (another modality). Given template reconstruction technologies, both biometrics can

be considered compromised, whereas only one biometric is compromised in the event of a

behavioral template watermark (replaceable) [7].

Beyond the attractive features of the framework, we have shown that our watermarking

scheme does not significantly impede iris image quality or biometric matching performance.

Additionally, we have demonstrated that our watermarking scheme provides a degree of

robustness to three realistic watermarking application scenarios: database compression, data

transmission over a noisy channel, and partial data loss (progressive decoding). Finally, we

have demonstrated how rewatermarking images as evidence moves along the entities in a

digital chain of evidence is not likely to have detrimental impacts on the evidence in terms of

human pereceptibility or biometric matching. The results should suit systems requiring the

establishment of a chain of evidence nicely as reconstructed images have minimal quantities

of altered pixels.
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This page intentionally contains only this sentence.



Chapter 4

Digital Hardware Fingerprinting

4.1 Introduction

As the field of biometrics continues to grow, so does its areas of application. Such areas

can include access control in protected sites and border control, remote authentication in

commercial applications, and identification of criminal suspects or enemies on the battle-

field. Regardless of the intended application, various measures must be taken to ensure

the accuracy and integrity of these deployments. Two ways that biometric systems can be

compromised include fabrication and alteration of data. Fabrication of biometric data could

occur at many points within a biometric system and usually is the result of an act with

malicious intent. Whether at the time of data acquisition, matching, or database access,

various vulnerabilities may allow raw biometric images to be created and maliciously in-

jected into a system. Similarly, biometric data may also be maliciously altered throughout

the course of operation in a biometric system. Besides actions with malicious intent, un-

59
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intentional alteration of images during the collection, transmission, or storage blocks of a

system can take place. To make matters worse, whether intentional or unintentional, there

often is no obvious cue that an image has been fabricated or altered in the first place. This

is of particular importance to applications where a “chain of evidence” must be established.

Such a chain is useful in assembling cases to prosecute criminal activity, establishing identity

dominance in the battlefront, and discovering fraudulent activity in commercial systems.

In an effort to minimize the presence of fabricated / altered images in such systems, the

notion of source identification is applied. Falling under the field of digital forensics, digital

hardware fingerprinting provides the ability to identify and validate the source hardware

which captured an image. Whether establishing a chain of evidence or addressing a specific

biometric vulnerability, application of digital hardware fingerprinting for biometric image

source validation should prove to be very useful.

Digital hardware fingerprinting is the process of identifying the source hardware used to

capture an image regardless of the scenery or primary image content. The primary method

of identifying the source hardware from which an image originated is analyzing differences

in images resulting from imaging sensor imperfections [86]. Due to slight inconsistencies in

the production process, all sensors are subject to small manufacturing imperfections. These

imperfections lead to the necessary observance of noise (sometimes visually undetectable

by humans) in images collected. Although previous work has focused on devices using

optical technology to capture images, such noise would also be present in sensors relying on

different technologies for image capture such as capacitance, thermal, or piezoelectric signals.

Identification of source hardware can potentially occur at different levels of granularity.

Figure 4.1 shows four levels that may be considered in a source hardware identification
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Figure 4.1: Source Hardware Identification Levels.

problem: technology, brand, model, and unit. Based on the four levels, various questions

can be answered:

• Was the image in question captured from a sensor relying on technology X or Y?

(Technology)

• Was the image in question captured from a device manufactured by vendor X or Y?

(Brand)

• Was the image in question captured from a device corresponding to model X or Y

manufactured by vendor Z? (Model)

• Was the image in question captured from a unit A or unit B of model X manufactured

by vendor Z? (Unit)

Naturally, unique challenges exist to performing source model identification at different lev-

els. In this chapter, we provide a look into the feasibility of determining source identification

at the unit level (4) using photo-response nonuniformity noise (PRNU) present in biometric

fingerprint readers as well as biometric iris cameras. To our knowledge, it is the first work to

demonstrate the ability to identify the hardware source used to collect biometric fingerprint
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and iris images. To do so, we adopt the technique presented by Lukas et al. in [86]. Secondly,

we formally establish the effect of varying the amount of images used to arrive at reference

templates for capture devices at the unit level.

4.2 Approach

As a means to identify biometric capture devices, whether fingerprint readers or iris cameras,

we adopt the approach proposed by Lukas et al. in [86]. This approach is based on estimating

pixel nonuniformity (PNU), a portion of the photo-repsonse nonuniformity (PRNU) inherent

to every image captured by the readers. The remainder of this section is broken down into

two parts: a description of the general framework for identifying hardware sources through

PNU noise and a description of the wavelet-based denoising algorithm utilized in [86].

Identification Process The process of device identification can then be broken down

into two main steps:

1. Calculate Reference Patterns. For each fingerprint reader, calculate a reference

pattern by taking an average of the noise residual estimates across multiple training

images as seen in Equation 4.1.

Ri =

∑N
k=1 p(k) − F (p(k))

N
(4.1)

Here, N represents the number of images used to generate the reference pattern, Ri,

p(k) represents each image in the training set, and F represents a denoising filter. It

should be noted that while F can represent any denoising filter, Lukas et al. found that
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a wavelet-based approach yielded the best results [86]. The specifics of the wavelet-

based denoising is described later in this chapter. Figure 4.2 shows an example of

reference patterns for two different fingerprint readers within one of the databases

tested.

(a) Microsoft (b) BioTouch

Figure 4.2: Example reference patterns for Microsoft and BioTouch Readers from the WVU
database.

2. Correlate Noise Residuals to Reference Patterns. For each image to be tested,

extract the noise residual p(k) − F (p(k)), and measure the correlation, C, to each

reference pattern, Ri, for all of the reference patterns in question. In [86], Lukas et

al. propose the correlation measure seen in Equation 4.2, although in theory, any

correlation measure could be applied.

Ci = corr(p,Ri) =
(p− p̄) · (Ri − R̄i)

‖(p − p̄)‖‖(Ri − R̄i)‖
(4.2)

Wavelet-based Denoising Algorithm The wavelet-based denoising approach in [86]

is described in four steps.
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1. Calculate the first through fourth wavelet decompositions of the original noisy image

using the 8-tap Daubachies Quadratic Mirror Filters (QMF). The vertical, horizontal,

and diagnoal subbands are denoted by v(i, j), h(i, j), and d(i, j) respectively. Here

(i, j) represents the coefficients for each pixel in each of the three subbands.

2. In each subband, estimate the local variance of the noise-free image for each wavelet

coefficient using MAP estimation for four sizes of a W × W neighborhood N , for

W ∈ {3, 5, 7, 9} as seen in Equation 4.3.

σ̂2
W (i, j) = max

(

0,
1

W 2

∑

(i,j)∈N

h2(i, j) − σ2
0

)

(4.3)

Then apply Equation 4.4 to arrive at the minimum of the four variances as the final

estimate.

σ̂2

W (i, j) = min

(

σ2

3(i, j), σ2

5(i, j), σ
2

7(i, j), σ2

9(i, j)

)

(4.4)

3. Determine the denoised wavelet coefficients by applying the Wiener filter as seen in

Equation 4.5

hden(i, j) = h(i, j)
σ̂2(i, j)

σ̂2(i, j) + σ2
0

(4.5)

Similarly, the filter is applied to v(i, j) and d(i, j).

4. Steps 1-3 are repeated for each level and color channel.
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In [86], the authors used σ0 = 5 in the experiments as do we in this work. It should be

noted that due to the grayscale nature of the fingerprint and iris images, it is not necessary

to perform Step 4 across multiple color channels.

4.3 Experimental Design

As mentioned previously, this work investigated the notion of source identification in both

fingerprint readers and iris cameras. In total, four databases were tested including three

fingerprint databases and one iris database. Of the three fingerprint datasets considered, the

first was a WVU collection consisting of images from two sensor models (3 units each). The

second collection came from both WVU and Clarkson which consists of images from three

sensor models (2 units each). The last set is from the first three years of the Fingerprint

Verification Competition (FVC) which consists of images from 8 different units [88, 89, 90].

The WVU data was collected specifically with hardware fingerprinting experiments in mind,

while the other two datasets were collected primarily for biometric testing purposes. With

that in mind, the WVU dataset consists of fingerprint images from 4 subjects who each

provided 100 images per sensor (25 images from 4 digits) for a total of 2, 400 images. The

WVU / Clarkson datasets each have substantially more images and the experiment only used

a subset of the fingerprint images available from each. Specifically, we randomly selected

1, 000 images per sensor pertaining to the right index and thumb. The FVC dataset was

comprised of 10 subjects with 8 images per subject, collected from the index and middle

finger, totaling 640 images. A summary of fingerprint readers including model details can be

found in Table 4.2 and example fingerprints and corresponding noise residuals can be found
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in Table 4.1.

The final dataset tested comes from images collected with four different iris cameras.

The first set of images comes from the ICE Challenge database and the second set comes

from the CASIA III database [99, 107]. The final two sets of images were collected with

two different iris cameras at WVU. Considering only images with dimensions of 640 X 480

pixels, 200 images were used from each device. A summary of iris cameras including model

details can be found in Table 4.4 and example images and corresponding noise residuals can

be found in Table 4.3.

Although the amount of users in the WVU and FVC data may be prohibitively small

for a traditional biometric experiment, we note this experiment is not studying biometric

recognition or identification. Instead, we are studying sensor identification. To that effect, we

believe the variety subjects and associated number of fingerprint provides sufficient variation

for our tests. We applied a cross-validation framework for all datasets for testing the proposed

methods. In our experiments, we tested the success of the digital hardware fingerprinting

techniques while varying the number of images used to generate reference patterns using

the methodology described in the previous section. Table 4.5 lists the training and testing

breakdowns for each dataset. It is important to note that 10 fold cross validation was applied

for each test. Therefore, total number of tests in the WVU and FVC datase results range

depending on the split with WVU ranging from 3, 990 (399 * 10) to 1, 440 (144 * 10) and

FVC results range from 790 (79 * 10) to 160 (16 * 10) tests. On the other hand, the test

size was constant for the WVU / Clarkson set due to the availability of images and includes

includes 5, 000 tests (500 * 10 folds). Finally, applying the same 10 fold cross validation, the

number of tests in the iris experiments varied from 720 (72 * 10) to 1, 990 (199 * 10). It
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Reader Fing. Noise Sensor Fing. Noise

WVU Identix #1 WVU Microsoft #1

WVU Identix #2 WVU Microsoft #2

WVU Identix #3 WVU Microsoft #3

WVU Precise Clarkson Precise

WVU Secugen Clarkson Secugen

WVU CrossMatch Clarkson CrossMatch

FVC KeyTronic FVC Microelectronics

FVC Identicator FVC Identix

FVC Biometrika FVC Precise

FVC CrossMatch FVC DigitalPersona

Table 4.1: Example fingerprints and noise residuals from three different data sets.
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Brand Model Tech. Width Height

Microsoft Fingerprint
O 355 390

(WVU 1-3) Reader

Identix BioTouch200
O 256 255

(WVU 1-3)

Precise Biometrics AX 100
C 200 200

(WVU / Clarkson)

Secugen Hamster III
O 260 300

(WVU / Clarkson)

CrossMatch Verifier 300 LC
O 640 480

(WVU / Clarkson)

KeyTronic Secure
O 300 300

(FVC) Desktop Scanner

Microelectronics TouchChip
C 256 364

(FVC)

Identicator Technology DF-90
O 448 478

(FVC)

Identix TouchView II
O 388 374

(FVC)

Biometrika FX2000
O 296 560

(FVC)

Precise Biometrics 100 SC
C 300 300

(FVC)

CrossMatch V300
O 640 480

(FVC)

DigitalPersona U.are.U 4000
O 328 364

(FVC)

Table 4.2: Fingerprint reader details from three different data sets. Tech. = Technology
{O=optical, C=capacitive}.
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Camera Iris Image Noise Residual

ICE

CASIA

WVU 1

WVU 2

Table 4.3: Example irises and noise residuals from four different data sets.
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Image Set Brand Model Width Height

ICE LG EOU 2200 640 480

CASIA OKI IRISPASS h 640 480

WVU 1 OKI IRISPASS h 640 480

WVU 2 EverFocus EQ100A/EN 640 480

Table 4.4: Iris camera details.

WVU

Train 1 2 4 8 16 32 64 128 256

Test 399 398 396 392 384 368 336 272 144

WVU / Clarkson

Train 1 2 4 8 16 32 64 128 256

Test 500

FVC

Train 1 2 4 8 16 32 64 n/a n/a

Test 79 78 76 72 64 48 16 n/a n/a

Iris

Train 1 2 4 8 16 32 64 128 n/a

Test 199 198 196 192 184 168 136 72 n/a

Table 4.5: Experimental training variation measured in images / device / fold.

is important to note that there is no overlap of images within the training and testing sets

across any of the experiments.

4.4 Experimental Results

4.4.1 Fingerprint Readers

The results in this section report sensor identification at the unit level. In this case, we wish

to distinguish which unit the image was captured from given a pool of units. Therefore,
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a test noise residual is compared against reference patterns for each unit from the dataset

in consideration. For each dataset, we provide example histograms of match / non-match

distributions, confusion matrices for specific train / test sets, and Cumulative Match Char-

acteristic (CMC) curves as the train / test splits vary.

FVC Dataset

The first set of experiments was performed on the FVC data. Figure 4.3 displays the dif-

ference in correlation between match and non-match comparisons of test noise residuals and

sensor reference patterns. As we can see in the figure, perfect separation is achieved when

considering Identicator test residuals against reference patterns produced from 32 training

images per sensor. While perfect separation was achieved in this instance, this was not the

case across all sensors in all train and test splits. An example of which can be seen in Table

??. In the table, we see that the Identix test residuals are occasionally misclassified as hav-

ing originated from other sensors. It is interesting to note that the distribution of errors is

fairly uniform across the other seven sensors. With the exception of the Identix sensor, no

errors are made on experiments training on at least 8 images. Figure 4.4 shows a Cumulative

Match Characteristic (CMC) plot which indicates the overall accuracy across sensors as the

train / test splits are varied. Here we see the rank one identification rate when training on 1

image per sensor falls around 85%. This is fairly high considering this is the smallest amount

of data that could be used to generate a reference pattern for a sensor. When 64 images are

used to generate reference patterns for each sensor, the rank 1 identification rate exceeds

98%. Furthermore, the only reason the identification rate is not 100% is due to errors made

on classifying the Identix noise residuals.
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Figure 4.3: FVC example match and non-match distributions with 32 training images per sensor.

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 480 0 0 0 0 0 0 0

Microelectonic 0 480 0 0 0 0 0 0

Identicator 0 0 480 0 0 0 0 0

Identix 14 18 23 365 14 13 10 28

Biometrika 0 0 0 0 480 0 0 0

Precise 0 0 0 0 0 480 0 0

CrossMatch 0 0 0 0 0 0 480 0

Digital Persona 0 0 0 0 0 0 0 480

Table 4.6: FVC confusion matrix when training on 32 images per sensor

WVU Dataset

The performance on the WVU dataset is the highest among the three datasets considered.

Virtually all instances achieve perfect separation, therefore it is not beneficial to display

a histogram of match and non-match distributions. However, in Table 4.7, the confusion

matrix resulting from training on 1 image per sensor is displayed. Again considering the

minimal training requirement, we see only sporadic errors across the 3, 990 test cases per
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Figure 4.4: FVC sensor identification as a function of training set size.

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3942 14 32 1 1 0

BioTouch #2 6 3967 17 0 0 0

BioTouch #3 3 10 3977 0 0 0

Microsoft #1 0 0 0 3989 1 0

Microsoft #2 0 0 0 0 3990 0

Microsoft #3 0 0 0 0 0 3990

Table 4.7: WVU confusion matrix when training on 1 image per sensor

sensor. This high level of performance is reflected in the CMC curve shown in Figure 4.5.

Here, only 2 train / test scenarios do not achieve perfect rank 1 identification (training on

1 and 2 images per sensor). Nevertheless, the rank 1 identification when using only 1 image

per sensor exceeds 99%.

WVU / Clarkson Dataset

The most challenging dataset for sensor identification ending has been the WVU / Clarkson

dataset. Observing a notable difference compared to the previous to databases, Figure 4.6
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Figure 4.5: WVU sensor identification as a function of training set size.

shows a slight overlap between match and non-match distributions when generating reference

templates from 128 training images. In all but one sensor in the WVU and FVC datasets,

training on 128 images exceeded the minimum required to achieve perfect separation. This

pattern can also be seen in Table A.22 which displays the confusion matrix when training

on 128 images. While the results can still be considered promising as the overall rank 1

identification accuracy is near 90%, we observe far more errors across the test cases. It is

also interesting to note where the errors are made. Somewhat intuitively, more errors are

made misclassifying the WVU Secugen noise residuals as Clarkson Secugen noise residuals

than any other sensor’s residuals. This may be the case as they are the same model sensor.

Surprisingly, this pattern does not hold true for the WVU CrossMatch residuals as they are

misclassified as Clarkson residuals the fewest number of times when compared to the other

sensors. We are still investigating why this may be the case. Figure 4.7 displays the CMC

plots for the final dataset. Once again, this data proved to be the most challenging of the
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❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4979 0 0 21 0 0

WVU Secugen 364 3146 179 492 596 223

WVU CrossMatch 313 188 3781 366 246 106

Clarkson Precise 32 3 0 4963 2 0

Clarkson Secugen 14 25 7 14 4940 0

Clarkson CrossMatch 27 1 2 1 10 4959

Table 4.8: WVU / Clarkson confusion matrix when training on 128 images per sensor

three sets as we see the rank 1 identification accuracy drops to 45%. However, any reasonable

application of source identification will likely have access to more than one training image to

generate reference patterns. Along those lines, the rank 1 identification rate when training

on 256 images is approximately 95% which can once again be considered promising results.
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Figure 4.6: WVU / Clarkson example match and non-match distributions with 128 training
images per sensor.



76 Chapter 4. Digital Hardware Fingerprinting

1 2 3 4 5 6
40

50

60

70

80

90

100

Rank

Id
e

n
ti
fi
c
a

ti
o

n
 R

a
te

 %

Overall Accuracy Across Sensors with Variable Training Imgs

1

2

4

8

16

32

64

128

256

Figure 4.7: WVU / Clarkson sensor identification as a function of training set size.

4.4.2 Iris Cameras

Although we consider fewer devices (a function of availability alone), the hardware finger-

printing experiments for the iris devices are similarly encouraging. Figure 4.8 displays match

and non-match distributions for noise residual correlations to the ICE LG camera’s reference

patterns after training on 4 images. We see that although the separation between match and

non-match distributions is not perfect, there is a well defined split between the distributions.

This trend holds true against all sensors when training on only 4 images per sensor. This

can be seen in the confusion matrix for the identification experiment in Table 4.9. Here a

small number of classification errors are made in two of the sensors across each of the 1, 960

tests. This amount of errors continues to drop as more images are used to generate reference

patterns.

This relationship is visualized in Figure 4.9. In the figure we see the rank 1 identification

rate approaches 98%. Furthermore, this rate approaches 100% after using 8 or more images to
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Figure 4.8: ICE LG sensor example match and non-match distributions with 4 training images
per sensor.

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1951 8 1 0

CASIA OKI 0 1960 0 0

WVU OKI 20 13 1926 1

WVU EverFocus 0 0 0 1960

Table 4.9: Iris confusion matrix when training on 4 images per camera

generate reference templates for each device. These results are encouraging as they indicate

that the approach can be used to perform source validation on devices that capture face

(from [86], fingerprint, and iris images despite the different technologies used within the

different capture devices associated with each modality.

4.5 Discussion

While the results of the experiments clearly demonstrate that inherent PNU noise can be used

as a means for performing sensor hardware identification in biometric fingerprint readers and
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Figure 4.9: Iris camera identification as a function of training set size.

iris cameras, there are a number of considerations which must be mentioned. Most notably,

the databases tested only contain limited sets of pairs of identical units (3 sensors of each

model in WVU, 2 sensors of each model in WVU / Clarkson, and 2 matching iris camera

models). Increasing the number of identical units may result in a decrease in identification

performance. At this point, it is unclear if sensor identification with the applied technique

would be possible in a pool of 100’s or 1, 000’s of the same model sensor at the unit level.

Additionally, as different models of fingerprint readers capture images at different resolutions

(see 4.2) cropping of noise residuals was performed when necessary as the chosen method of

correlation requires that the noise residuals have the same dimension. Although the results

seem to indicate this method of handling dissimilar images sizes is sufficient, there are a

number of options one may choose to exercise when dealing with this issue, not the least of

which is resizing the original image before denoising. The images could be resized but this

may introduce artifacts that could artificially enhance performance. To avoid this, different
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correlation procedures could be applied such as normalized cross correlation which would

not require equally sized images.

4.6 Chapter Summary

This chapter investigated the notion of sensor identification in biometric fingerprint readers

and iris cameras. We established the prospects of performing identification based on estimat-

ing PNU noise inherent to image through wavelet based denoising as proposed by Lukas et al.

in [86]. Beyond presenting the ability to perform sensor fingerprinting on biometric devices

at the unit level, we established the effect of varying the number of images used in arriving at

reference patterns. Having looked at the minimum training requirements, we conclude that

sensor identification can be performed with a great deal of accuracy (in three databases) even

if one has access to only 1 image to establish a reference pattern. The application of a digital

hardware fingerprinting technique such as the one tested in this work can be used both as a

method of counteracting vulnerabilities at the time of check in biometric systems as well as

allowing an individual to establish a “chain of evidence” which is often critical in systems

such as assembling cases to prosecute criminal activity, establishing identity dominance in

the battlefront, and discovering fraudulent activity in commercial systems.
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Chapter 5

Keystroke Dynamics

5.1 Introduction

Over the history of the field, a large number of keystroke dynamics studies have taken place

in controlled environments. Whether subject to heavily supervised lab conditions, a variety

of explicit rules, or standardized and uniform capture equipment, these experiments are not

typically in line with our proposed application environments. Although stand-alone deploy-

ment in an environment with homogenous equipment is undoubtedly still a relevant area

of application, current application demands are moving toward web-oriented environments

in which choice of hardware, user supervision, and other external noise factors are not con-

trollable. Although we admittedly do not cover all potential sources of noise in this type

of application (i.e. mimicry), we attempt to simulate this “free” environment to the best

of our ability by employing a completely unsupervised, web-based collection system with no

hardware restrictions. This environment will be well suited to chain of evidence applications

81



82 Chapter 5. Keystroke Dynamics

where individual entities within the chain may be accessing evidence from remote unsuper-

vised situations.

As noted previously, the relationship between the individuals components of the creden-

tial sets are of specific interest to this work. In particular, the degree of familiarity that

the user has to each component. Figure 5.1 presents the idea that the more times a user

is exposed to a stimulus (component of a credential set), the more familiar they become

with typing the component. We hypothesize that the username is easily the most familiar

of the three components considered as most individuals are exposed (required to type it)

multiple times on a daily basis. Following the username, an English password is likely the

component with a lesser degree of typing familiarity as it may not be typed daily but it has

probably been typed before if not multiple times. Finally, a random password containing

characters of varying capitalization, digits, and special characters probably represents the

lowest attainable familiarity as there is very little chance that the user has ever seen such

a password, much less typed it. By assigning these three types of components to create

credential sets, we are able to investigate the degree in which familiarity to input stimulus

affects keystroke dynamics performance. Here again, we find this to be of particular interest

in chain of evidence applications where the input stimulus is likely to be some derivation of

the entity’s name, which in turn can serve as a form of digital signature.
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Figure 5.1: Typing Familiarity vs. Exposure to Stimulus.

5.2 Experimental Design

5.2.1 Collection System

To achieve a web based architecture for the collection system, front-end client-side Java

applets were developed in the NetBeans Integrated Development Environment (IDE) and

designed to run within standard web browsers (Mozilla Firefox, Internet Explorer, Netscape)

using the Sun Java Console. This offered both a tested open source platform as well as the

bulk of the computation to occur in the client computers. On the server side, a MySQL

database (also an open source product) was used to house the data. Therefore, once client-

side computation was finished, the input was entered into the database via the previously

established client-server connection [10]. It should also be noted that the use of a web-based

collection system does not preclude application of the techniques used in this work in non
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web-based applications such as terminals and mail clients.

During the registration process, each user was given two sets of username / password

credential sequences. The username remained the same across both sets of credentials and

was of the form Firstname.Lastname with the first letter of each name capitalized. The first

password was as an eight letter lowercase English word taken from a cryptographic dictionary

attack list [122]. Examples of such passwords included computer and swimming. The second

password, consisted of 12 randomly generated characters in a consistent pattern. The format

of the pattern was as follows:

SUUDLLLLDUUS

where S is a special symbol, U is an uppercase letter, L is a lowercase letter and D is a digit.

Examples of such passwords include +AL4lfav8TB= and UC8gkum5WH. This pattern was

not intended to elicit any specific behavior but only to allow for easy interpretation of

potentially ambiguous symbols. The extra length of the pseudo-random passwords was

incorporated to arrive at what are considered to be cryptographically strong passwords.

Beyond the structure of the input, the behavioral nature of this biometric scheme re-

quired a slightly more involved data collection process than what is typical in conventional

physiological biometric systems. Most notably, one cannot simply compare genuine input of

one user to genuine input from another user in order to establish an instance of imposter

input. In this study, the passwords were different for each and every individual. Therefore,

the collection tool required the development of two different user interfaces. One interface

requests users to input the genuine credentials provided to them in the registration phase.

The second interface requests users to input the credentials assigned to another user, gen-
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(a) Registration Front End.

(b) Genuine Input Front End.

(c) Imposter Input Front End.

Figure 5.2: The three main pages for data collection (a) The registration front end. (b) The
genuine input front end. (c) The imposter input front end.
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erating an imposter authentication attempt. Figure 5.2 shows the registration (a), genuine

input (b), and imposter input (c) front ends.

Within the genuine input front end, users were asked to input each of their credentials

(username + password1 and username + password2) 5 times every day for approximately

three weeks. The imposter input front-end was slightly different and can be seen in Figure 5.2

(c). In this front end, users were provided with credentials of a different user registered used.

To avoid inadvertently collecting genuine data in the imposter section, user always provides

his / her username from the “My UserName” field. Upon selection of the username, the data

collection system populates the “Imposter Credentials” fields, automatically selecting a pair

of credentials that is short on imposter data. In this way, the number of imposter sequences

was kept balanced over the set of all the enrolled users.

At this point, the user simply logged in the same way as if this were his / her own genuine

credentials. Pending a successful collection step, the new username / password pair appear

in the window and the process repeats itself. Similar to the genuine input screen, users were

asked to input a total of 10 imposter sequences per day.

5.2.2 User Supervision

As mentioned previously, we attempted to minimize the supervision component of the data

collection. To that effect, users were only provided with a basic series of instructions and

short video clips (for those inclined) to explain the functionality and expected use of the

system. Although a large number of the students were included in the study (from our lab

and university classes), there was no requirement to offer samples in the lab or in an on-

campus setting. Additionally, many participants had no affiliation with the university and
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their data was collected from off-site locations throughout the internet. To that regard, no

face to face guidance was provided to the participants.

5.2.3 Collection Results

At the time of final analysis, the database had a total of 53 users with over 10,000 total

input sequences. After applying a minimum number of 15 valid sequences of each type of

password, a total of 41 users and 8,882 username / password sequences were used. Out of

the 8,882 total sequences, 5,094 were of type genuine and 3,788 were of type imposter. A

summarized breakdown of the data collected for each user can be found in Table 5.1. The

demographics of the database represent a fairly diverse population in many regards. The

gender split was approximately half and half, ages ranged from mid-teens to individuals

in their early 60’s, and there was also a relatively diverse racial makeup. Perhaps most

importantly, the typing ability of the population was also very diverse, ranging from the

most inept “hunt and peck” typists to individuals with professional training / experience.

In that regard, the classification algorithms not only were required to differentiate between

professional and amateur typists but also between the members these two groups. Some

of the users have been accustomed to working with multiple keyboard layouts. However,

the type of keyboard used for data collection was not controlled. We know that a large

percentage of subjects used desktop computers as well as laptops during the data collection.

This is inevitably a source of noise but also demonstrates the ability of the technique to cope

with variable hardware setups. The collection period lasted approximately one month.
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Table 5.1: Data included in the experiment. The abbreviations E, R, and T correspond to English
passwords sequences, Random passwords sequences, and total sequences. The final row includes
the total number of users, average length for usernames and both types of passwords, and the total
number of each type of input sequence collected.

UserID Username English Random Genuine Seq. Imposter Seq.

Length Password (E) Password (R) E R T E R T

01 12 kathleen @QZ4ozka1XE$ 120 110 230 46 46 92

03 13 williams ]RR4axpe0WA> 048 050 098 46 46 94
04 14 rosemary :LC6nvau9OO~ 073 020 093 47 47 94
05 09 mitchell >YH2avia0ER# 062 070 132 47 47 94

06 16 wolfgang @WI7tjeb8WX} 117 108 225 47 47 94

07 13 aerobics }YK2zquv9IQ+ 083 076 159 47 47 94
08 10 firebird .MS1suyf8MP^ 053 052 105 47 47 94

09 11 fountain (GC5idxx8TH{ 051 051 102 47 47 94

10 18 caroline ^ZT7wyaz6JA[ 016 017 033 47 47 94
11 12 zeppelin !CN0srui6ZO= 122 119 241 46 46 92
12 19 bumbling ~XM6bywn6JL? 074 085 159 46 46 92
13 09 director ‘VA0snuv1HA: 090 104 194 46 46 92

14 12 gonzales &ZL7yfjj0GK* 059 061 120 46 46 92

15 16 password ?KK6cvuc1NK| 059 088 147 46 46 92
17 14 business ;OI6vjog4QN> 053 058 111 46 46 92

18 12 fletcher &UV1lkda5YH{ 062 065 127 46 46 92
21 10 swimming ;KO3ovpt4QC> 046 021 067 46 46 92

23 17 wheeling ;LB3chtu2YX‘ 118 137 255 46 46 92
24 12 newcourt :ZQ5grpx8VH; 027 028 055 46 46 92
25 15 snoopdog ,GG5ruft6IG+ 052 045 097 46 46 92

26 07 colorado $ZZ9ilfg9RJ( 043 025 068 46 46 92

27 14 homebrew *TY1drmj7CR$ 158 108 266 46 46 92

28 11 dolphins [LO2uqam8UI+ 047 041 088 46 46 92

29 15 plymouth )VS0iaka5WW! 048 042 090 46 46 92

30 14 broadway ;PG3xuel9LU} 054 049 103 46 46 92

31 13 woodwind }EZ7mjjp4YM+ 075 076 151 46 46 92

32 14 mountain &BA1ishf0FC| 054 041 095 46 46 92
33 10 strangle =BP8duim7IF@ 091 089 180 46 46 92

34 12 strangle <WN1zegb5RS$ 077 074 151 46 46 92

35 13 princess >GD0dgby6JU{ 030 016 046 46 46 92
37 13 clusters @UK8uudo5GS. 033 029 062 46 46 92
38 10 martinez _UC8gkum5WH@ 030 021 051 46 46 92

40 13 tacobell [VB6jveb2PC~ 015 017 032 46 46 92
43 12 baritone &FO4ovcv0VK! 028 029 057 46 46 92

44 14 frighten $IP2ulld5QT@ 053 051 104 46 46 92

46 12 starwars $SP3lhkt1YX{ 031 039 070 46 46 92
47 15 thompson #PO5dlfq0JW: 108 129 237 46 46 92
48 14 explorer <JT5ocyi8TK= 099 099 198 46 46 92

49 15 elephant &XQ5jwsp8KA] 080 080 160 46 46 92

51 13 springer @SF5sjnd5EY/ 017 015 032 46 46 92

53 12 sweatpea ^RO8wxps1HI) 062 041 103 46 46 92

41 12.93 8 12 2,618 2,476 5,094 1,894 1,894 3,788
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5.3 Authentication Algorithm and Features

As mentioned in the related work chapter, a plethora of algorithms have been investigated

as candidates for authentication mechanisms throughout the history of keystroke dynamics

research. The scope ranges from simple distance metrics between probe and gallery tem-

plates, to complicated multi-layer neural networks. In this work, we arrive at feature vectors

containing raw hold times and inter-key delays and use the decision tree based Random

Forests algorithm developed by Breiman [20] to classify input sequences. It is important

to note that we are assuming a verification framework where an identity is claimed. This

assumption leads to a two class problem; deciding whether an input sequence is genuine

or imposter in nature. The following two subsections provide expanded descriptions of the

Random Forest algorithm (including the nature of the training and testing) and the feature

set in which classification was based.

5.3.1 Random Forests and Training / Testing Framework

An elegant and powerful algorithm, Random Forests is named after two main characteristics.

One, it is is based on the development of a “forest” of decision tree classifiers, each being

similar to a C5.0 decision trees developed by Quinlan [1]. Two, the method of generating

the forests is based on the random sampling of features in the attribute space. The tree

generation algorithm works as follows: each tree is grown based on a random sample selection

of 2
3

of the instance population. In each decision tree that populates the forest: nodes,

branches, and leaves are generated by continuously choosing the feature that yields the best

split of the data based on m randomly selected features. Sub-tree generation continues to
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the extent possible without pruning. Once all trees have been generated, new instances of

feature vectors are passed through the trees of the forest and a voting process takes place to

determine the classification result.

There are a number of attractive advantages Random Forests have over other machine

learning algorithms. Our study pays particular attention to two of them. One, due to the

2
3

sampling used to train each tree, the remaining 1
3

so called out-of-bag (OOB) sample is

used to test the classification performance. Therefore, training and test sets do not need

to be explicitly separated and the estimated error results are said to provide conservative

estimates of future performance. Two, the ability to define varying voting schemes allows

for generating forests tailored to specific matching applications. For instance, a 10%-90%

voting scheme for genuine and imposter classes places particular emphasis on the minimizing

the FRR, whereas a 90%-10% scheme reverses the requirement, focusing attention on the

FAR. This mechanism allows for the generation of Receiver Operating Characteristic (ROC)

curves which describe an entire range of achievable performance characteristics relative to

FAR and FRR’s. Other learners typically generate only a single operating point along a ROC

curve. We generated 19 Random Forests for every user, each with a different voting scheme

with voting increments of 0.05, ranging between 0.05-0.95 and 0.95-0.05. Furthermore, for

each forest, 500 trees were generated and the default value of parameter m (features to

consider at each node split) was used. In this case, m =
√

X, or the square root of the total

number of attributes in the feature space, (X ), which was dependent on the particular input

sequence. For instance, an eight character English password might have 8 hold times and 7

delays for a total of 15 attributes. In this example m = 4 ≈
√

15.
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5.3.2 Feature Set

Although we previously investigated using aggregate statistics based on the keystroke hold

times and delays of each input sequence such as averages, standard deviations, etc. in

[12], this work utilizes the raw hold times and delays. In that regard, calculation of the

feature vector for each sequence is arguably as simple as possible; no secondary calculation

is necessary to arrive at the final feature vector. Given the requirement of shift key activity

in the random passwords, it was possible that not every sequence had the same amount of

hold times or delays. In this case, the longest feature vector was identified and all other

sequences (both genuine and imposter) were padded with zeros to arrive at equal length

vectors for each user’s data set.

5.4 Experimental Results

In this section we look into three areas of interest; the performance of our keystroke dynamics

system, the potential relationship between credential component familiarity and authenti-

cation results, and the credential hardening effect of applying keystroke dynamics to tradi-

tional username / password systems. We first demonstrate the performance of our keystroke

dynamics system while varying the nature of algorithmic deployment and the input require-

ments in terms of credential components. First, to reiterate the behavioral nature of the

system, genuine and imposter sequences were collected for each user in the system. Based

on both types of sequences, 19 Random Forests were constructed for each user by varying

the voting percentage required for classification. By doing so, we were able to calculate

ROC curves and EER’s for each user. Figure 5.3 shows the overall system ROC curves
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considering different credential components as input. These ROC curves were calculated by

globally applying a Random Forest voting threshold to each user’s dataset and averaging

FAR and GAR’s across the 41 users. In the figure, plot (a) shows the three curves which

result from considering only single credential components. In other words, only the hold

times and delays for the username, English password, or random password were used for

model creation and testing. Plot (b) shows the results when hold times and delays for both

the username and password components of the credential sets were used. As can be seen

in (a), the English password outperforms the random password for most areas of the ROC

curve while the username universally outperforms both passwords. This figure supports the

hypothesis that performance is driven in part by familiarity of the credential set component

used for authentication. In plot (b), there are select regions of the ROC curve where the

addition of the Random password to the username increases performance over using the

username alone. However, in most regions sole use of the username results in as good, if not

better performance, compared to the the combination of both components of the credential

set. Taking a more fine grained look into the results, Figure 5.4 displays the EER’s for each

of the 41 users in the study considering the same sets of credential components. Here we see

the upper and lower bounds of the system’s performance. The worst performing user for the

English password and username is user #14 having EER’s of 11.36% and 3.4% respectively.

User #21 has the worst random password performance with an EER of 18.22%. Approxi-

mately 25% of the users tested (10/41 ) achieve a 0% EER for usernames while 4 achieve

this rate in English passwords. The lower bound for performance on random passwords is

0.96% corresponding to user #8. If username and password components are combined, we

find the maximum EER’s for both types of passwords improves substantially falling below
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Figure 5.3: System ROC curves considering different credential set input components.

5%. Here user #21 has an EER of 4.4% for English passwords and user #43 has an EER

of 3.9%. Additionally, more users achieve an EER of 0% with 23/41 for the combination

of username and English password and 20/41 for username and random passwords. As

demonstrated earlier in Figure 5.3, system wide performance can be generalized by applying

a global voting threshold across all users. Optionally, one may choose to apply user specific

voting schemes to optimize performance. Table 5.2 shows the difference in performance of

applying global voting schemes vs. user specific voting schemes across the different compo-

nents of the credential sets. Naturally, if system wide performance is characterized using

voting schemes optimized to each user, error rates decrease. This notion is characterized

by the last column in the table indicating the decrease in EER achieved from applying the

global voting threshold to applying the user specific voting schemes. Once again, we see the

trend that credential set components that are more familiar to users perform better. Here,

usernames outperform both the English passwords and random passwords when only one
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Figure 5.4: Comparison of EERs across users considering different credential set input compo-
nents.

Table 5.2: System performance using global and user specific voting schemes.

Credential Set Component(s) EER Global Scheme EER User Specific Scheme Difference

Random Password 6.796% 5.507% 1.289%

English Password 4.578% 3.997% 0.581%

Username 1.511% 1.284% 0.226%

Username + Random Password 4.581% 1.173% 3.408%

Username + English Password 3.138% 0.852% 2.286%
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component is considered. Furthermore, incorporating both the username and English pass-

word yields the best performance result when looking at the user specific EER of 0.852%. In

one final examination of the notion of familiarity, we look into the genuine keystroke profiles

for one user over the three individual components tested: the username, English password,

and random password. Intuitively, we would expect to see less variability from sequence to

sequence in components a user is more familiar than in those a user is less familiar with.

Although space prohibits examining the profiles of every user for each sequence, Figure 5.5

shows the first 40 sequence profiles for user #17 ’s username, English password, and random

password. In the three plots, keystrokes are defined by pairs of circles with matching colors.

Here, open circles indicate a key down and filled circles correspond to the matching key up.

Therefore, the time between the open circle and closed circle of the same color represents

the hold time. The time between two open circles represents the delay between two adjacent

keystrokes. For clarity, the typed input corresponding to the first sequence is labeled in each

plot with *’s indicating a shift key was pressed. Not surprisingly, we see a greater deviation

in the profile of each sequence in the random passwords than we do in the username and

English password sequences. This is potentially a reason for the difference in performances

seen in 5.2. Should the first letter of each portion of the username not been capitalized, even

less inter-sequence variation may have been found in the usernames, shown in plot (a).

To conclude the analysis of the results, we demonstrate the credential hardening effect

of applying our keystroke dynamics system to a classic username / password authentication

system. To do so, we assume that imposters attempting unauthorized entry have obtained

the password of the user in which they are imposing. Based on this assumption, the FAR

or penetration rate of the imposter, in absence of keystroke dynamics, will be 100%. In
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Figure 5.5: The first 40 genuine input sequences of user #17 for username, English password,
and Random password components.
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other words, if the imposter knows the targeted users credentials he / she will always be able

to type them in correctly, thereby gaining access. On the other hand, when our keystroke

dynamics biometric is used to augment the system, correct content of the password is only

a partial requirement; the imposter must also type the credentials with the same keystroke

dynamics signature. Table 5.3 demonstrates the effect of this additional requirement assum-

ing operation at performance rates derived through global application of Random Forests

voting schemes across all users.

Table 5.3: Credential Hardening Effect with Globally Applied Voting Schemes.

FAR(%) FRR(%)

Credential Set Component(s) Before After Difference Before After Difference

Random Password 100.00 6.80 ↓ 93.20 0.00 6.80 ↑ 6.80

English Password 100.00 4.58 ↓ 95.42 0.00 4.58 ↑ 4.58

Username 100.00 1.51 ↓ 98.49 0.00 1.51 ↑ 1.51

Username + Random Password 100.00 4.58 ↓ 95.42 0.00 4.58 ↑ 4.58

Username + English Password 100.00 3.14 ↓ 96.86 0.00 3.14 ↑ 3.14

The penetration rate into the system in terms of FAR decreases by 93.2%, 95.4%, and

98.49% respectively for random passwords, English passwords, and usernames taken as sin-

gleton components. These rates are calculated by simply subtracting the keystroke dynamics

FAR from the assumed 100% penetration without the biometric augment. The higher secu-

rity comes at a relatively low price as the associated increases in FRR are 6.8%, 4.58%, and

1.51% in random passwords, English passwords, and usernames. By applying user specific

voting schemes we can achieve a greater credential hardening effect through the addition

of the keystroke dynamics augment. Table 5.4 shows the decrease in system penetration in

this case. Here, we see greater decreases in system penetration while also decreasing user

inconvenience in terms of the FAR. Additionally, the improvement from applying keystroke

dynamics on the username taken alone or combined with either type of password approaches
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the limits of performance with rates of penetration falling at 1.28%, 1.17%, and 0.85% re-

spectively. Similar to the globally applied voting schemes, this comes at an arguably low

cost to user convenience.

Table 5.4: Credential Hardening Effect with User Specific Voting Schemes.

FAR(%) FRR(%)

Credential Set Component(s) Before After Difference Before After Difference

Random Password 100.00 5.51 ↓ 94.49 0.00 5.51 ↑ 5.51

English Password 100.00 4.00 ↓ 96.00 0.00 4.00 ↑ 4.00

Username 100.00 1.28 ↓ 98.72 0.00 1.28 ↑ 1.28

Username + Random Password 100.00 1.17 ↓ 98.83 0.00 1.17 ↑ 1.17

Username + English Password 100.00 0.85 ↓ 99.15 0.00 0.85 ↑ 0.85

5.5 Discussion

Despite the continuing maturity of the field, many open problems remain with keystroke

dynamics and credential hardening systems. This work does not claim to answer issues

such as rigid model training requirements of operational environments, imposter mimicry,

or generation of imposter data sequences. Regarding issues specifically visited in this work,

a number of assumptions may need further explanation. Since two individual components

of the credential sets considered required shift-key behavior to modify characters, each ex-

tracted feature vector consisting of hold times and delays need not have the same number

of attributes as every other vector in a data set. As mentioned earlier, each sequence was

back filled with zeros to ensure that the extracted feature vector for each sequence had the

same length. Some may argue that this requires posteriori knowledge of the data, namely,

the maximum length feature vector of all sequences in a data set. We would argue however,

that this knowledge is superficial as a maximum keystroke limit per credential set component



5.5. Discussion 99

could be imposed without having ill effect on the user’s experience or the performance of the

classification algorithm. To justify the latter, the Random Forest algorithm will automati-

cally weed out attributes with little information gain (zero-valued for virtually all instances)

during decision tree generation.

Although this study admittedly does not consider user mimicry, we do emphasize that

imposter keystroke “attacks” are considered “zero-effort” in that users were asked to type

imposter data naturally. In other words, imposters made no effort to deviate from their

normal typing patterns in an effort to more reliably emulate the targeted genuine sequence

input. Similar to forgery in handwritten signatures, we assume that formal attempts beyond

“zero-effort” attacks may result in decreases credential hardening effects. This notion was

not considered primarily based on the fact that it would be prohibitively difficult to do

so given the completely remote and unsupervised nature of the data collection effort. We

feel the importance of these characteristics coupled with the increased size of the data set

outweigh the importance of gathering data incorporating mimicry.

Even though the results presented in this work support the hypothesis that user famil-

iarity with credential set components may drive keystroke dynamics performance, statistical

tests of sequence uniformity can be applied to further quantify differences in familiarity.

This could be achieved by fitting distributions to individual keystroke hold times and delays

across all genuine sequences of a data set and applying statistical tests of uniformity such as

Rayleigh, Rao, Neyman, etc. Should our hypothesis hold, keystroke hold times and delays

from usernames and English passwords would more closely resemble uniform distributions

than those resulting from random passwords. That said, modification of the username to all

lowercase letters may be necessary.



100 Chapter 5. Keystroke Dynamics

Additionally, the authors are aware that although the size of the data sets included in

the work is similar to those found in related academic efforts, the strength of the evidence

supporting the hypotheses presented could be increased through application on larger test

beds. To that regard, continuing data collection efforts are in place to make larger scale

studies possible.

5.6 Chapter Summary

In this chapter we further established the viability of keystroke dynamics as a method of

hardening traditional username / password credential sets in remote, unsupervised environ-

ments that lack restrictions on hardware use (selection of keyboard), similiar to what one

may expect to find if applied to digitally “signing” evidence as it passes through a chain

of entities. This hardening can be achieved by applying keystroke dynamics to individual

components of a credential set or both simultaneously depending on the nature of the ap-

plication environment and desired performance. Additionally, we investigated the notion

that credential set component familiarity has an affect on keystroke dynamics performance.

Namely, sequences that users are exposed to consistently and arguably familiar with such as

usernames and English words offer better classification potential compared to undoubtedly

unfamiliar sequences such as randomly generated strings. From a realistic application set-

ting, this may be encouraging as despite their relative weakness, most users routinely select

passwords in which they are familiar with such as family names and English words. This

phenomenon may be in part due to more consistent typing signatures in genuine sequences

corresponding to components in which users are more familiar. These conclusions are also
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encouraging as they should prove useful when applied to chain of evidence applications that

will likely use typical username and password credential sets paired with biometrics for the

purposes of user authentication.
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Chapter 6

A Conceptual Framework for Digital

Chains of Evidence

As stated in the introduction, the primary goal of this work was to develop a conceptual

framework for creating a digital chain of evidence which allows for validation of evidence

content, transmission, and acquisition source. Referring back to Chapter 2, we see that re-

lated work to this end has primarily identified the problem as opposed to providing solutions.

This chapter describes a conceptual framework which shrinks the gap between the identified

problem and an actual solution. We first offer four different motivating examples of scenarios

where it may be appropriate to maintain a digital chain of evidence. Next, we provide a

high level view of the conceptual framework which establishes the relationship between four

major aspects of a digital chain of evidence including: security service requirements, asso-

ciated security threats, mechanisms for dealing with threats, and subsequent capabilities.

After examining the framework at a high level, we provide 9 use cases which conceptually

103
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outline how an implementation of the framework would work. Next, we investigate the

success of the framework in offering validation of evidence content, transmission, and ac-

quisition source by presenting a matrix which aligns security service requirements against,

potential threats, mechanisms for countering threats, and subsequent capabilities. Having

established the capabilities, we provide commentary on the agnostic nature of the framework

which offers a desirable degree of flexibility for potential organizations that may use such a

system. Finally, we conclude the chapter with a presentation of a specific instantiation of

the framework based on the application of security mechanisms which have been discussed

in previous chapters of this work.

6.1 Chain of Evidence Scenarios Motivating the Prob-

lem

Before presenting the conceptual framework for a digital chain of evidence, it is beneficial

to further motivate its necessity by providing a number of examples where the framework

could, or perhaps should be applied. As mentioned in the introduction, there is a wide range

of scenarios which could make use of such a framework. In this subsection, we provide four

examples of such scenarios. Figure 6.1 shows the four scenarios provided including: one

example from a typical law enforcement perspective, two dealing with homeland security

operations, and one based on military operations.

The first example is likely the most intuitive example of a scenario where a chain of

evidence is established. Whether dealing with local, state, or federal law enforcement, we

consider the example of crime scene investigation.



6
.1

.
C

h
a
in

o
f
E
v
id

e
n
c
e

S
c
e
n
a
rio

s
M

o
tiv

a
tin

g
th

e
P

ro
b
le

m
1
0
5

Investigators recover evidence 

from crime scene

Fingerprints submitted to FBI 

IAFIS and hit returned

Forensic technicians digitize 

fingerprints recovered from 

crime scene

Suspect found, arrested, and 

charged with crime

Evidence presented in  

appropriate court system.

1.  Law Enforcement - Crime Scene Investigation

2.  Homeland Security – People Screening at Port of Entries

KST arrives at POE and 

provides biometric data at 

TSA / CBP Kiosk

Prints run against IDENT 

database, resulting in a likely 

hit against watchlist

Submission sent to Latent 

fingerprint examiners who 

verify the hit

KST immediately 

apprehended

Evidence presented in  

appropriate court system.

2.  Homeland Security – People Screening at Port of Entries

First responder arrives at After collecting relevant Coroner / Medical examiner Coordination between  Family Assistance Center 

3.  Homeland Security – Mass Fatality Incident Disaster Response

First responder arrives at 

scene and  locates deceased 

victim

After collecting relevant 

information disaster response 

team removes deceased 

victim en route to coroner’s 

office

Coroner / Medical examiner 

determines cause and manner 

of death, potentially  verifies 

and stores biometric 

information

Coordination between  

coroner / medical examiner 

and Family Assistance Center

Family Assistance Center 

notifies legal next of kin, and 

coordinates lawful disposition 

of remains

Expanded Maritime 

Interceptions Operations 

(EMIO) team on visit, board, 

Team stops, boards, and 

secure suspect vessel and use 

portable identity devices to 

Biometric data returned to EMIO 

capable vessel and data is 

transmitted through shipboard 

Suspect apprehended and 

transported to appropriate 

detention facility

Evidence presented in 

appropriate court system

4.  Military / Defense – Expanded Maritime Interception Operations

(EMIO) team on visit, board, 

search, & seizure (VBSS) 

mission deployed

portable identity devices to 

identify persons of interest 

and conduct search for 

weapons

transmitted through shipboard 

communication via satellite to BFC / 

ABIS. Results relayed back to ship. 

detention facility

Figure 6.1: Four Scenarios Dealing with Biometric Data Where a Digital Chain of Evidence Could Be Applied.
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In this case, a hypothetical crime has taken place and investigators reach the scene where

the crime occurred. After establishing that no immediate threats remain at the scene,

the investigation begins. As a customary part of such an investigation, members of the

investigation team will typically attempt to collect fingerprints from individuals involved in

committing the crime. For the purposes of the example, we assume prints are discovered

and collected by members of the team. After the on scene investigation is complete, the

team members would typically send lifted prints to a crime lab where the prints would

be converted from physical form to electronic form. After that, the fingerprints might be

submitted to a system such as FBI’s IAFIS which may return a hit against the criminal

database. In this case, police officers would attempt to locate and apprehend the suspect.

After apprehension and arrest, the suspect would be charged, fingerprinted, and placed in

a detention facility. Eventually the case may proceed to trial where the prosecuting team

could provide evidence that the fingerprints lifted from the scene matched those in the IAFIS

database which may lead to the conviction of the defendant. However, in order to get to

that point, we recall the discussion from Chapter 2 which outlined the challenges of those

involved in the United States criminal justice system. Breitman states that “Under the

Federal Rules of Evidence, that standard of proof requires only that the party offering an

item of physical evidence introduces such proof as is “sufficient to support” a finding that

the [item in question] is what its proponent claims: Federal Rule of Evidence, 901(a)” [21]

[58]. Additionally, he points out that “the ultimate issues of authentication and condition

are left for the jury. If the proponent’s evidence is facially sufficient to support a finding

of authenticity, then all other issues such as credibility and probability are left for the jury

[21].” Taking these accounts into consideration, the onus of establishing a burden of proof
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in a criminal justice system falls on many shoulders. It is possible that the evidence the

prosecution is relying on has passed through a multitude of entities including crime scene

investigators, lab technicians, evidence clerks, etc. With this in mind, it is the burden of the

prosecution to prove the integrity of the chain of evidence was maintained.

The second example involves homeland security people screening activities which occur

daily at U.S. Port of Entries (POEs). Everyday, thousands of individuals enter the United

States through land, sea, and air POEs. One of the responsibilities of the Department of

Homeland Security is to prevent dangerous people from entering the U.S. Given this goal,

DHS runs programs such as US-VISIT, NEXUS, SENTRI, etc. which keep track of non-

citizens entering the country. Among other information, such systems rely on biometric data

to ensure travelers are not known or suspected terrorists (KSTs) or other individuals who

may be considered dangerous. This example describes how a KST might be apprehended

when attempting to enter the country through a POE supported by US-VISIT. We assume

a KST arrives at a POE and is forced to proceed through a non-citizen lane where he is

subject to US-VISIT processing. At that point, the KST presents a machine readable travel

document (MRTD) to a border inspection officer. Assuming the system is not familiar with

the information in the MRTD (the MRTD hasn’t been seen by the system), a live-scan ten-

print fingerprint submission as well as a digital photograph are collected from the KST. The

border inspection officer submits the fingerprints to the IDENT database through US-VISIT

where the prints are searched against a database of fingerprint of KSTs as well as other

persons of interest. Next, the system registers a likely hit, which triggers both the set of

prints collected at the POE and the prints matched in the database to be transmitted to

latent fingerprint examiners supporting US-VISIT. The latent fingerprint examiners verify
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the match and the result is sent back to the kiosk of the border inspection officer. At

that point, the KST might be taken to secondary screening or apprehended and detained

immediately. From that point on, the KST could be charged and tried in an appropriate court

system for any outstanding crimes committed. In this situation, the evidence has already

traveled across a number of entities and will likely pass through more before it is used in the

appropriate court system. While the court system may or may not be in the United States,

it is safe to assume proving the integrity of the chain of evidence was maintained will be

required in order to admit the digital fingerprints as evidence.

The third example falls outside any criminal justice system and the court of law. Also

dealing with homeland security operations, this example has to do with mass fatality disaster

response. Situations such as natural disasters including hurricanes, floods, etc. often cause

tragedies resulting in mass loss of life. In situations such as these, teams of first responders

arrive at the scene of the disaster and first conduct search and rescue operations in an

attempt save the lives of individuals injured by the disaster. Although, the situations of

the particular disaster will dictate different time frames, the search and rescue operations

eventually turn into search and recover operations where responders attempt to recover the

remains of deceased victims of the disaster such that families can be notified of there loss and

the remains can be lawfully disposed to next of kin. Whether search and rescue or search

and recover, responders in mass fatality disasters are responsible for carefully maintaining

a chain of custody (evidence). According to “Mass Fatality Incidents: A Guide for Human

Forensic Identification,” distributed by The Department of Justice, mass fatality incident

teams can include [106]:

• Medical examiners / coroners
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• Forensic anthropologists

• Odontologists

• Police crime scene investigators

• Forensic photographers

• Evidence technicians

• Scribes / notetakers

The same report outlines a number of requirements that the chain of evidence should doc-

ument. As part of all data collected at such a scene, biometric data of the deceased is

collected which may be used to help establish the identity of the remains. This can include

fingerprints, dental samples, facial photographs, etc. Eventually this information will be

transferred with the remains to the medical examiners / coroners who will attempt to estab-

lish the cause of death and identity of the individuals. Once they have been established the

cause of death, the information is transferred to family assistance centers who locate and

notify next of kin and coordinate the lawful disposition of remains. For obvious reasons,

it is extremely important to provide accurate information to affected family members and

prevent to the greatest degree possible, errors in notification process due to failures of the

chain of evidence. As seen already, the number of entities in this chain may approach double

digits.

The final example we will provide to motivate the problem relates to military / defense

operations. In particular, Expanded Maritime Interception Operations (EMIO) conducted

by the U.S. Navy. In such a scenario, a properly equipped Naval vessel is deployed on
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a visit, board, search, and seizure mission (VSSS). During the operation, the naval vessel

will stop, board, and secure the suspect vessel and use portable biometric devices to collect

biometric data of persons of interest on the suspect vessel. This information is returned to

the EMIO capable naval vessel which subsequently transmits the biometric data back to the

Department of Defense (DOD) Biometric Fusion Center (BFC). The BFC submits the prints

for processing through the Automatic Biometric Identification System (ABIS) which may

return a hit indicating the individual of interest is a KST. These results are relayed back to

the naval EMIO capable vessel who transmits the information wirelessly to the EMIO team

on the suspect vessel. At that point, the EMIO team apprehends the KST and transports

the KST to an appropriate detention facility. Later on, members of agencies such as the

Naval Criminal Investigation Service (NCIS) may charge and try the KST in an appropriate

court system. Once again, in order to maximize the possibility of having the evidence viewed

as admissible and authentic, the integrity of the chain of evidence must be maintained. In

this case, the evidence minimally passed through four entities and in all likelihood will be

subject to further analysis before final presentation in court. There are likely many more

examples in which a chain of evidence must be established and maintained that have not

been included in this chapter. However, the four examples presented paint a picture of the

broad applicability and complexity of the problem that is considered in this work. With

this in mind, the following section presents the conceptual framework for establishing and

maintaining a digital chain of evidence in systems dealing with biometric information.
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6.2 High Level View of the Framework

Instead of immediately delving into the application of a framework which describes the spe-

cific use cases of establishing and maintaining a digital chain of evidence, it is useful to

examine the framework from a higher level. This section adopts this approach by consid-

ering the requirements of a chain of evidence, threats which might jeopardize the chain,

mechanisms which can be used to combat the threats, and capabilities which result from

the mechanisms. As mentioned in the introduction it is possible to consider the chain of

evidence problem as a multi-component validation problem broadly including validation of

evidence content, transmission, and acquisition source. However, it is useful to think of this

validation problem in terms of computer security attributes. Computer security attributes

are traditionally broken down into three categories: confidentiality, integrity, and availability.

Here, confidentiality refers to the concealment of information or services, integrity refers to

trustworthiness of data or resources (sometimes referred to as authenticity), and availability

refers to the ability to use the information or resource provided [114, 17]. While availability

would be an issue for systems establishing and maintaining a digital chain of evidence, it is

outside of the scope of this work. Therefore, we focus only on issues related to confidentiality

and integrity. Each of these three security attributes are then subject to a series of security

threats. While we save the discussion of these specific threats for Section 6.4, it is impor-

tant to note that security mechanisms can be used to combat the threats. In particular,

the conceptual framework utilizes mechanisms described in previous sections of this work

including biometric watermarking, digital hardware fingerprinting, biometric systems, and

cryptography.
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Figure 6.2: High Level View of Framework for Digital Chain of Evidence.
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Finally, through the use of these security mechanisms, one is able to provide security capa-

bilities. These capabilities include the ability to prevent, detect, and recover from security

threats. In the chain of evidence application, we are only concerned with prevention and

detection. The picture comes full circle when we consider that security capabilities meet the

goals of required security services. Figure 6.2 provides a graphical representation of this high

level conceptual framework. Much like the discussion, the graphic ties together the four dif-

ferent security concepts: required security attributes, security threats, security mechanisms,

and security capabilities. Furthermore, it shows how the digital chain of evidence and its

associated use cases sit at the center of these relationships.

6.3 Framework Use Cases

Having a high level understanding of the factors that must be considered in the development

of the conceptual framework, we propose a digital chain of evidence which is composed of

7 different use cases. It is important to note that our proposed conceptual framework does

not contain low level implementation details. Rather, it only provides a level of depth which

should be sufficient for developing specific implementation details. With that in mind, one

could argue for fewer or additional use cases in the framework depending on the depth one is

considering. Fortunately, as we will see in Section 6.5, the level of depth we consider affords

a level of agnosticism and flexibility which is desirable for broad application. The following

subsections provide descriptions of how the 7 different use cases would be carried out should

the framework be applied.
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6.3.1 Use Case Terms

Before examining the different use cases within the proposed framework, it is beneficial to

define terms and acronyms used the in the use case figures. Table 6.1

Term Acronym Definition

Evidence User User A user of the chain of evidence represents any individual

who is capable of generating, viewing, or analyzing evi-

dence. This can include CSI investigators, POE inspection

officers, latent fingerprint examiners, lab technicians, evi-

dence clerks, attorneys, etc.

Evidence Manage-

ment System
EMS The evidence management system is the software system

which would be used to store and maintain evidence. Ev-

idence management systems can be run by federal, state,

or local organizations.

PKI Certificate Au-

thority
PKI CA The PKI Certificate Authority is responsible for managing

public and private key pairs from users of the evidence man-

agement systems as well as evidence management systems

themselves.

Enrollment Re-

quest of a User
ERUSER A request for enrollment either with a PKI CA or an EMS

by the user.

Enrollment Re-

quest of a EMS
EREMS A request for enrollment either with a PKI CA by the EMS.

Credential Set of a

User
CSUSER The credential set of a user. This would potentially in-

clude a username and password. As well as a PKI digital

certificate.

Biometric Signa-

ture of a User
BKUSER The biometric signal of a user which is simply a feature

vector (in binary from). This can potentially come from

any biometric system relying on an arbitrary modality.

Biometric Water-

mark of a User
W(BKUSER) This is used to represent the finished process of watermark-

ing an image with the biometric
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PKI Key Pair of a

User
PKUSER This is represents a typical PKI key pair consisting of a

public key which is openly published and a private key

known only to the user.

PKI Key Pair of an

EMS
PKEMS This is represents a typical PKI key pair consisting of a

public key which is openly published and a private key

known only to the EMS.

Encryption of Data

for an EMS by a

User

E(PKUSER ,PKEMS ) This represents that data has been encrypted using the

PKUSER and PKEMS by the user, for an EMS. In other

words a data object has been encrypted through PKI using

the private key of PKUSER and the public key of PKEMS

.

Decryption of Data

by an EMS from a

User

D(PKUSER ,PKEMS ) This represents that data has been decrypted using the

PKUSER and PKEMS by an EMS, from data encrypted

by a user. In other words a data object has been decrypted

through PKI using the private key of PKEMS and the pub-

lic key of PKUSER .

Sensor ID SID The unique identification number for a biometric sensor /

capture device stored by an EMS.

Sensor Reference

Pattern
SRP The unique noise reference pattern stored by an EMS (gen-

erated during sensor enrollment).

Chain ID CID The unique identification number for a Chain Object stored

by an EMS.

Record ID RID The unique identification number for a Record Object

within a Chain Object.



116 Chapter 6. A Conceptual Framework for Digital Chains of Evidence

Record Object Record Object A Record object is a data structure which contains vari-

ous types of evidence which would be part of a chain of

evidence. Such data would include images from multiple

biometric modalities, sensor information used to capture

images, and any other data relevant to a chain of evidence

(i.e. user names, time of evidence collection, geographic

location of evidence collection, collection notes, etc.).

Chain Object Chain Object A chain object is a data structure which represents a linked

list of record objects. This is the object is used to log

creation, movement, and analysis of evidence (stored in

record objects) throughout the users in a chain of evidence.

Sensor Database Sensor DB A database maintained by an EMS which keeps track of

information on all biometric capture devices fielded by an

organization. Information would include serial numbers,

model numbers, and reference templates used for digital

hardware fingerprinting.

User Database User DB A database maintained by an EMS which keeps track of

information on all users enrolled in the system. This would

include information such credential sets and biometric keys.

Chain Database Chain DB A database maintained by an EMS which keeps track of all

chains of evidence managed by the system.

Authentication Re-

sponse for a User
ARUSER The credential set / biometric authentication response from

the biometric system accesses a User DB stored by an EMS.

Evidence from a

Subject
EVSUB The evidence captured from a live subject or bodily re-

mains. This primarily refers to biometric images.

Validation Re-

sponse
VR The validation response which either verifies a biometric

watermark or a sensors noise residual.
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Integrity Report

from a Chain of

Evience

IRCOE A report automatically generated by an EMS which iter-

atively presents all validation efforts of a Chain Object.

This report is the basis for proving the integrity of a chain

of evidence.

Table 6.1: Terms, Acronyms, and Definitions in the Framework Use Cases

Using the terms and entities described in 6.1, we have developed a framework consisting

of 9 use cases including: user enrollment, sensor enrollment, user login, evidence creation, ev-

idence transmission, evidentiary quality check, evidence storage, evidence request / analysis,

and evidence presentation. These 9 use cases are described in the following subsections.

6.3.2 User / EMS Enrollment

The first use case in the conceptual framework involves the enrollment of the EMS and users

with a PKI Certificate Authority (PKI CA) and the enrollment of users with an EMS. This

process is pictured in Figure 6.3. The process would be initiated from a newly installed EMS

submitting an enrollment request to at PKI CA. After the PKI CA received the request from

the EMS, it would generate and return a PKI pair PKEMS following standard PKI enrollment

procedures. While a discussion of standard PKI procedures is outside the scope of this work,

a summary of such procedures can be found in Appendix B. At this point, users could enroll

into the EMS first by sending an enrollment request to the PKI CA. Once again, the PKI CA

would return a PKI pair PKUSER following standard PKI procedures. Next, the user would

have to enroll with the EMS itself. This would require the user to submit his credential set,

CSUSER and a biometric key BKUSER (consisting of a biometric feature template). At that
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point the EMS would store both CSUSER and BKUSER in the EMS User DB. Note, as seen

in 6.1, CSUSER would include a username, password, and digital certificate. The BKUSER

would be used for two purposes. First, to control access of the user when logging into the

EMS and requesting specific evidence records. Second, to watermark evidence either created

or viewed by the user. In subsequent use cases, we will see how the watermark would serve

as an electronic signature for the user. In principle, any type of biometric could be used for

this process.
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Figure 6.3: User Enrollment Use Case.
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6.3.3 Sensor Enrollment

The next use case involves enrolling sensors or biometric acquisition devices (sensors) in the

EMS sensor database. Figure 6.4 shows a visual depiction of this process. Before a device is

fielded by the organization maintaining the EMS in question, it is first necessary to generate

a reference patter, SRP , which is characterized by the unique noise present in the device.

Much like the experiments in Chapter 4, a series of training images would be collected by the

sensor in the first step. In the next step, noise residuals would be extracted from each of the

training images. The third step would then create a reference pattern for the device using the

noise residuals from each of the training images (perhaps through an averaging operation).

Finally, SRP and relevant information such as the Sensor’s unique ID, SID , would be stored

in the Sensor DB of the EMS in question.
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Figure 6.4: Sensor Enrollment Use Case.
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6.3.4 User Login

The next use case considered involves a user logging into an EMS. Access control to an EMS

should be tightly monitored. With that in mind, it would be prudent to protect authen-

ticate users not only with username and password credential sets, CSUSER , but also with

biometric authentication. The distribution of user credential sets (CSUSER ) and biometric

keys (BKUSER ) was taken care of in the first use case. At this point, the user would provide

CSUSER to the EMS as well as his biometric sample from which his (BKUSER ) would be

extracted. Note this communication, as well as all communication between entities would

be secured by PKI cryptography as outlined in Appendix B. Then, the EMS checks the cre-

dentials and biometric feature templates against the enrolled data in the User DB. Pending

a positive result in the authentication response (ARUSER ), the user would be allowed to

access the system. Figure 6.5 displays this process. In the event of mismatched credentials

or a failure to match the biometric sample provided against the gallery sample, the system

would deny the EMS would deny the user access.
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Figure 6.5: User Login Use Case.
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6.3.5 Evidence Creation

Perhaps one of the most important use cases is that of evidence creation. This takes place

when the first user in a chain of evidence prepares evidence to be submitted to an EMS.

After collecting some form of biometric data and other relevant information from a subject

(EVSUB ), the user submits a biometric sample from which his BKUSER is extracted (by the

user’s EMS interface). This BKUSER is then used to watermark the biometric data creating

W(BKUSER). At that point, the watermarked biometric data and other relevant information

including the sensor information would be bundled into a Record Object and subsequently

packaged into a new Chain Object. Note, space has been allocated for the storage of other

relevant data which might include names, organizations, discovery dates, etc. However, this

work does not focus on dealing with this type of textual data. Finally the chain object would

be encrypted using the PKI pairs of the user and the EMS. After this process is complete, the

encrypted Chain Object would be ready for submission to the EMS. This process is depicted

in Figure 6.6. Note this process would not need to create a new Chain Object every time.

Rather the use case would also apply to the creation of new Record Objects to be added to

existing Chain Objects.
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Figure 6.6: Chain of Evidence Creation Use Case.
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6.3.6 Evidence Transmission

The process of evidence transmission is not unlike transmission of any other data across a

network in that an evidence object (new Chain or Record object) would be sent from a user to

an EMS. However, the important second step in the evidence transmission process would be

to verify that the evidence was not altered during transmission. Aside from typical internet

package transmission protocols, an additional check would be applied by using techniques

from PKI cryptography as outlined in Appendix B. In this case, mismatched file hashes

would indicate a change in the payload. This procedure is depicted in Figure 6.7.
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Figure 6.7: Evidence Transmission Use Case.
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6.3.7 Evidentiary Quality Check

The process of an evidentiary quality check is arguably the most important use case in a

digital chain of evidence. The evidentiary quality check allows an individual to detect if

the integrity of a chain of evidence has been compromised. The nature of this process is

somewhat diverse in that it can be used to verify the integrity of newly acquired evidence or

the entire evidence Chain Object itself. With that in mind, there are two different operations.

These operations are pictured in Figure 6.8. The first would occur when an EMS receives

new evidence from a user. This evidence can either take the form of a new Chain Object or a

new Record Object to be added to a Chain Object. Before storing the information, the EMS

must ensure the integrity of the new evidence thereby preventing alterations, fabrications,

etc. To do so, the object would first be decrypted by the EMS using the PKI key pairs

of the EMS and the user who submitted the evidence. This is represented by the notation

D(PKUSER ,PKEMS ). Afterwards, the watermarked biometric data would be decoded. This

process would produce the extracted watermark, BKUSER , and the reconstructed biometric

data. The EMS would then verify the match of the BKUSER to the gallery template of the

user within the biometric authentication system. Should the watermark and the gallery

template match, this would indicate that the user appropriately signed the evidence. While

this is also determined through successful decryption, biometric watermarking adds another

layer of certainty beyond cryptographic means. This is because the biometric watermark

remains after decryption providing evidence of integrity in unencrypted data. Finally, the

source of the biometric evidence could also be verified by extracting noise residuals from the

biometric data and comparing the residual to the SRP in the EMS Sensor database. This

provides a means another means for verifying the source of the data. Additionally, it is
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conceivable that the other relevant data may be vetted against records stored about the

user by the EMS. However, this information would be EMS specific and is outside the scope

of discussion in this conceptual framework. Should these processes return positive results,

found in VR, the evidentiary quality check would be considered a success, records of the

check could be stored in the Chain DB, and the newly submitted evidence would be stored

by the EMS as submitted by the user.
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Figure 6.8: Evidentiary Quality Check Use Case.
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As mentioned, an evidentiary quality check could verify the integrity of a new record

within a chain, or establish the integrity of the entire chain object prior to presentation

in a legal system. The latter case is simply an iterative version of the first case. Here,

the same process as described in the previous paragraph would be applied iteratively from

the first Record Object in the Chain Object through the last Record Object in the linked

list of Record Objects making up the Chain Object. This would allow for the generation

of a report, IRCOE , verifying the integrity of the chain from start to finish. IRCOE would

encompass all previously mentioned validation processes including: transmission validation,

content validation, and source validation. Such a report could be provided to a prosecutorial

team, a judge, or other pertinent individuals.

6.3.8 Evidence Storage

While evidence could potentially be stored separately by any user within the chain or system

outside the EMS, we are only concerned about storage of evidence that can be authenticated

within the EMS system. With that in mind, Figure 6.9 shows the procedure for storing

evidence in the Chain DB of an EMS. Once an EMS receives new evidence from a user

(either a new Chain Object or a new Record Object to be added to a pre-existing chain)

the system would perform an evidentiary quality check as outlined in the previous use case.

Should the new evidence fail to meet the evidentiary quality check, EMS specific business

rules could be applied to determine how best to deal with the situation. Pending a successful

result, the storage process would consist of one of two options. If the evidence is a new Chain

Object, the Object would be stored as such. If the new evidence were a Record Object to

be added to an previously existing chain, the EMS would add the new Record Object to the
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end of the linked list representing the Chain Object. This process would be facilitated by the

fact that the User provides the EMS with CID and RID unique identifiers. It is important

to note that the evidence would be stored in encrypted format using the EMS PKI key pair,

E(PKEMS ).
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Figure 6.9: Evidence Storage Use Case.
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6.3.9 Evidence Request / Analysis

Outside of creating new evidence, one important aspect of the EMS includes allowing entities

within the chain to view, analyze, and potentially create new versions of previously existing

evidence (i.e. quality enhancements). This process would be initiated by a user submitting

a request to an EMS. The request would identify what specific record and chain the user

wished to analyze using a CID and RID . Once the EMS receives the request, it would initiate

a biometric authentication process. This biometric authentication process would provide a

level of data access control which could be implemented at arbitrary levels of granularity

with any type of data level access control mechanism (access control lists, matrices, etc.).

Pending successful authentication (contained in ARUSER ), the requested evidence would be

encrypted for the user using the key pairs of the user and the EMS, E(PKUSER ,PKEMS ).

At that point the evidence would be transmitted to the user where he could perform the

necessary operations. After completing those operations (which may include creation of new

evidence), the evidence transmission, evidentiary quality check, and evidence storage use

cases would be repeated to record the transactions in the evidence chain object. This use

case is shown visually in Figure 6.10.
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Figure 6.10: Evidence Request / Analysis Use Case.
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6.3.10 Evidence Presentation

The final use case is the simplest operation within the conceptual framework. It involves

presentation of the evidence stored in a chain object as well as presentation of the integrity

of the chain object itself. As outlined in the evidentiary quality check use case, the last

operation involves the dissemination of the evidence in an appropriate court system or as a

final check before delivering news to next of kin in a mass fatality disaster incident. Here, the

onus is to establish that the integrity of the chain of evidence has been maintained thereby

preventing alterations, fabrications, false repudiations, etc. Referring back to the evidentiary

quality check use case, the conceptual EMS is capable of generating a report, IRCOE , which

verifies the aspects of integrity mentioned above. This report could be reviewed by the

last individual prior to disseminating news to disaster victim next of kin or presented in

the relevant court system by prosecutors with the help of an expert witness capable of

authoritatively explaining the processes of the EMS. At that point, the integrity of the chain

would not likely be in question. This process is pictured in 6.11
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Figure 6.11: Evidence Presentation Use Case.
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6.4 Chain of Evidence Trustworthiness: Attributes, Threats,

Mechanisms, and Capabilities

As pictured in in Figure 6.2, the conceptual framework deals with four main aspects of com-

puter security: attribute requirements, threats, mechanisms, and capabilities. While aspects

of these issues have already been discussed in previous sections, the purpose of this section

is to provide a structured discussion of how the proposed mechanisms deal with specific

threats, thereby providing capabilities which meet the requirements of the digital chain of

evidence. Figure 6.12 concisely summarizes this relationship. Before delving into specific

threats, mechanisms for countering threats, and associated capabilities, it is important to

reiterate the concept note the depth of this analysis. Given the conceptual nature of the

proposed framework, it does not include matters such as specific implementation details,

rather it provides notional concepts. With this in mind, it is not appropriate to vet the con-

ceptual framework against vulnerabilities at the level of a US-CERT maintained database.

Rather, the framework should be vetted against security threats at an appropriate level of

depth. With that in mind, we consider the proposed framework’s ability to address concep-

tual notions of six security threats related to the service requirements of confidentiality and

integrity. In the first row of the figure, chain of evidence security attribute requirements are

presented in terms of generalized computer security requirements: confidentiality, integrity,

and availability. As mentioned in Section 6.2, for the purposes of this work, we are only

concerned with confidentiality and availability. While availability should not be ignored,

we are not aware of any special circumstances that are specific to the chain of evidence, as

opposed to a generic trusted computing application.
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Figure 6.12: Security Service Requirements, Threats, Mechanisms, and Capabilities.
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Therefore, this aspect of the chain could be ensured through normal information technology

mechanisms for achieving availability such as employing appropriate firewall, redundancy,

and backup systems.

6.4.1 Confidentiality

We first consider the notion of confidentiality. As previously mentioned, confidentiality

refers to the concealment of information or services. Specific security threats related to

confidentiality include unauthorized access to software systems or data and interception of

data as pictured in second and third columns of the second row of Figure 6.12.

Unauthorized User Access (Software / Data)

Through the applications of credential management and particularly biometric systems, we

provide the ability to reasonably prevent unauthorized user access to software and data. As

mentioned in the User Login and the Evidence Request use cases, access to the software

system is protected by biometric authentication as is access to individual components of

chain of evidence data. While no biometric system is perfect, the combination of credential

management and biometric authentication is arguably the best mix of security and conve-

nience available at a reasonable price today in network systems. It would also be possible

to detect the unauthorized user access to data through the security mechanism of biometric

watermarking. As biometric watermarking is used as a means of ”signing” for evidence, the

lack of, or presence of an incorrect biometric watermark would indicate that an unauthorized

user has provided that evidence.
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Data Interception

The other security threat related to confidentiality considered in this analysis is the threat

of data interception. While it is nearly impossible to prevent all means of intercepting data

in a network environment, cryptographic approaches can be used to make the effects of risk

of data interception minimal. By that, it would be theoretically possible for an outsider

to intercept data being transmitted to or from an EMS. Yet without appropriate access to

cryptographic key pairs, the intercepted data would be of no use to the outsider. Similar

to the notion of availability, it would be possible to implement virtual private networks and

other mechanisms that would minimize the likelihood of this threat being realized. Once

again, PKI protocols are described in Appendix B.

6.4.2 Integrity

The most important security service related to systems maintaining digital chains of evidence

is integrity. By that, we wish to ensure that data has not be inappropriately altered or

modified, fabricated, etc. There are four major security threats related to integrity: data

modification, data fabrication, repudiation of origin, and denial of receipt.

Data Modification

In a data modification threat, previously existing data is altered either by someone within the

chain of evidence or someone outside the chain. Note, this modification can be intentional or

unintentional. The first mechanism for ensuring that data is not altered involves the appli-

cation of cryptography and hashing functions. Using established techniques, one can easily
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determine that data has been modified. One indication that data has been modified would

be that decryption processes fail. Once again, whether the modification was intentional or

unintentional is not relevant. If a package is correctly encrypted and transmitted it, the

homomorphic nature of the decryption process result in a readable result and failure could

indicate a modification. Additionally, while cryptography couldn’t prevent the modification

of data, it can be used to prevent the meaningful modification of data by an individual with

malicious intent. While this is one mechanism, the classic mechanism for detecting changes

in data involves file hashing. Here a file (or potentially a chain or record object) is passed

through a hashing algorithm (i.e. SHA-2) which generates a unique, fixed length string based

on the contents of the file. In theory, modifying so much as one bit in the file should change

the output of the hash function. Therefore it would be possible to detect any modification

by comparing the hash strings.

The next way to detect data modification is through biometric watermarking. In a

biometric system, the inability to correctly extract the expected biometric watermark either

indicates the host data was either not watermarked in the first place, or the the data has

been modified outside of the appropriate usage of the system. Once again, this may entail an

intentional act on the part of an individual with malicious intent or it could be an innocent

but important mistake on the part of an authorized user. Either way, such a modification is

important in the scope of digital chains of evidence and biometric watermarking would be

capable of detection.

The final mechanism presented in the framework for detecting modification of data is

hardware fingerprinting. Keeping in mind the importance of establishing the source of data,

digital hardware fingerprinting is capable of detecting modifications of an image because
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many modifications will alter the noise residual associated with an image. Although elements

of this application were not specifically presented in this study, works such those seen in [26]

have established this possibility. It should be noted that this would not necessarily apply

to all possible modifications a biometric image may be subject to. In other words, it may

be possible to modify an image in such a way that the associated noise residual is not

significantly affected such that is results in a failure to match the sensors reference template.

Data Fabrication

The threat of data fabrication is essentially the same as data modification. The main differ-

ence is that fabrication entails creation of evidence instead of modifying previously existing

evidence. With that in mind, the same security mechanisms and principles applied in the

previous subsection can be used to prevent and detect data fabrication attempts. However,

it is important to note the special consideration of this threat as it relates to the digital

chain of evidence. Whether from an outsider or individual authorized to use contribute to

an evidence chain, the notion of planting evidence is highly important. This may be viewed

as the principle application of digital hardware fingerprinting. It is conceivable to think

someone may fraudulently plant previously acquired electronic fingerprint to frame another

individual. That said, if the noise residual of the fingerprints cannot be tracked back to

the capture device used at the point of acquisition, it would be indicative of an attempt at

fabrication or forgery.
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Repudiation of Origin

The next security threat related to the security service of integrity is repudiation of origin.

In such a case, an individual denies that he sent or in the case of a digital chain of evidence,

created data. Related to the the previous threats of data modification and fabrication, it is

extremely important to log who handles and creates evidence. It is conceivable to imagine

a case relating to a digital chain of evidence where an individual would falsely deny having

handled or created evidence. However, through the application of cryptography and hashing

as well as biometric watermarking it would be feasible to detect false repudiations. Both PKI

cryptography and biometric watermarking are proposed as means to “digitally sign” evidence

within the framework. The former obviously involves cryptographic processes, the latter

takes place outside of encryption. In order for evidence to be watermarked and “digitally

signed” by the EMS, the creating user must submit his or her biometric sample. This means

it would be extremely difficult to make a case for repudiation of origin. Effectively, someone

would have had to acquire and implant the biometric evidence of the user in question which

is highly unlikely. Additionally, it is widely known that one can combat repudiation of origin

through appropriate use of PKI key pairs. Therefore, if the watermarking and cryptography

processes check out, in all likelihood, repudiation of origin is not a feasible defense for the

user in question.

Denial of Receipt

The last security threat considered in this work is denial of receipt. Similar to repudiation of

origin, here an individual or system falsely proclaims that he did not receive data, or in this

case, evidence. Classic applications of PKI cryptography as seen in [17, 114] can be used to
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prevent and detect this threat.

6.4.3 Availability

To reiterate, the security threats related to the security service of availability are not con-

sidered relevant for the purpose of this work. Therefore, analysis does not apply.

6.5 Agnostic Nature of the Framework Components

One of the reasons for proposing a conceptual framework is that it allows for a high degree of

flexibility and agnosticism with respect to the choice of specific security mechanisms applied.

Although we propose a specific instantiation of the framework in the following section, the

conceptual framework does not rely on any specific biometric authentication, cryptographic,

biometric watermarking, or hardware fingerprinting system implementation. For example,

face recognition could be used just as easily as iris recognition could be for dealing with

access control issues. An amplitude modulation approach to biometric watermarking could

be adapted just as easily as an approach operating outside the spatial domain. If one would

prefer to apply a hardware fingerprinting approach which identifies devices based on fixed

pattern noise (FPN) or any other method picture in Figure 6.13 instead of photo-response

non-uniformity noise (PRNU), this is perfectly acceptable. This flexibility is desirable for a

number of reasons. First of all, there are inevitably preferences, if not fervent disagreements

regarding the choice of technology among the various organizations who could employ evi-

dence management systems. If a the framework were not sufficiently flexible, such that it

could adapt to such preferences, the benefit the research would be significantly less broad.
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Secondly, the ideas behind the proposed framework can be sustained as technology and re-

search evolves. If a new biometric emerges that outperforms all other currently existing

biometrics, there is no immediate reason why this biometric could not be substituted for

what is currently in place. The same argument can be made for all other security mech-

anisms provided. Finally, the purpose of this work is not to provide a deployment ready

system. Rather this work aims to shrink the gap between currently existing methods for

maintaining paper based chains and the development of digital chains of evidence capable

of greater levels of authentication.
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6.6 Instantiation of the Framework through Specific

Security Mechanisms

Although there is a number of reasons to stop at the conceptual framework proposed thus

far, it is beneficial propose one more layer of depth by providing an example instantiation

of the framework relying on specific topics studied in previous chapters of this work. The

remainder of this section breaks down the instantiation by the four security mechanisms

involved.

6.6.1 Biometric Systems

The biometrics are responsible for two operations within the proposed framework. First,

they are used to control access to the software system and specific objects of evidence such

as chains and records within chains. Second, they are a component of the biometric water-

marking system the watermarking system which is used to “sign” evidence. Taking this into

consideration, there may be one biometric system which controls access and another which

is used for watermarking. Given that most software systems already maintain username and

password credential sets, we believe it would be appropriate to apply a keystroke dynamics

system similar to that described in Chapter 5 to control access to the software system itself.

Beyond that one might wish to apply an online signature based system for allowing access

to specific evidence and generating biometric watermarks. This would be a direct similarity

to currently existing paper based chains where evidence is physically signed for. However,

the process of penning a signature may be costly in terms of acquisition time in certain

situations. For instance, it may be appropriate for an inspection officer in a POE secondary
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screening room to provide a biometric watermark generated from facial feature vectors in-

stead of having to physically sign every submission. Therefore the choice of a biometric for

this purpose is truly system specific.

6.6.2 Biometric Watermarking

For the purposes of biometric watermarking we propose to use the amplitude modulation

approaches including the one described in Chapter 3. With the exception of substituting

the biometric watermark to reflect the decision in in the previous section, this algorithm

would be sufficient for watermarking evidence taking the form of iris images such as those

that might be found in a system such NEXUS maintained by DHS. Furthermore, work

such as that presented in [61, 63] have established mechanisms using similar amplitude

modulation schemes to watermark face and fingerprint images. While it is conceivable that

other biometric data would need to be watermarked, there is no immediate reason why such

a scheme couldn’t be modified to handle such cases.

6.6.3 Digital Hardware Fingerprinting

In terms of the digital hardware fingerprinting services, we would suggest using the approach

described in Chapter 4. Having established the prospects of the approach to perform source

validation on biometric fingerprint readers and iris cameras this technique would is now

potentially capable of dealing with sensors which acquire data from three most commonly

collected biometrics. This is the case other works have established the ability of the technique

to identify traditional digital cameras which are commonly used to capture face images [86].
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6.6.4 Cryptography

The choice of cryptographic is not particularly relevant to this section and it would likely be

subject to the organization maintaining the EMS. The only requirement is that it be based

on public key infrastructure with asymmetric public key pairs.



Chapter 7

Conclusion

7.1 Conclusion

There are many scenarios dealing with biometric identification which require the ability to

establish and maintain a digital chain of evidence. Whether dealing with law enforcement

cases such as those seen in crime scene investigations, people screening activities at POEs,

and expanded maritime interception operations or homeland security responses to mass fa-

tality incident disasters, the ability to establish, maintain, and prove the integrity of a digital

chain of evidence is necessary to avoid undesirable consequences. These consequences can

entail the inability to effectively prosecute known and suspected terrorists and criminals (re-

sulting in their subsequent release), wrongful convictions of innocent people, and errors in

notifying the next of kin of disaster victims. While the proliferation of digital evidence has

brought to bear new challenges in developing these verifiable chains of evidence, advances in

security technologies have afforded greater development opportunities that did not exist in

151
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years past. Through the application of security mechanisms such as cryptography and hash-

ing, biometric authentication, biometric watermarking, and digital hardware fingerprinting,

this work has proposed a conceptual framework which is capable of providing security capa-

bilities that can detect and prevent threats against the confidentiality and integrity of these

digital chains of evidence. Furthermore, specific contributions to the topics of keystroke dy-

namics, amplitude modulation based biometric watermarking, and hardware fingerprinting

of biometric sensors allow for the instantiation of the developed conceptual framework which

is even closer to the point of direct implementation.

To reiterate, this work provides four main contributions:

1. We developed an iris digital watermarking system which is not only resistant to com-

mon application scenarios such at database compression and partial progressive decod-

ing, but also capable of withstanding the rewatermarking process which might be seen

in the proposed chain of evidence. Our work extended current biometric watermark-

ing techniques by modifying existing approaches to allow for selective encoding in the

region of interest in iris biometric images. Additionally, our approach provides a novel

asymmetric implementation of the watermarking scheme.

2. We demonstrated the ability to perform source validation on biometric modalities

which collect data with capture devices outside of typical photographic cameras. We

applied an approach designed for digital cameras which relies on PRNU noise to a series

of biometric fingerprint readers as well as iris cameras using sensors which respond to

the infrared band of the electromagnetic spectrum.

3. We demonstrated that input stimulus familiarity is a driver of classification perfor-
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mance in keystroke dynamic systems. This observation is should prove to be useful in

selection process of username and password credential sets.

4. We developed a conceptual framework for establishing and maintaining digital chain of

evidence dealing with biometric data which relies on elements of cryptography, biomet-

ric watermarking, digital hardware fingerprinting, and biometric authentication. We

demonstrated how the framework is capable of dealing with security threats associated

with confidentiality and integrity as well as including an example instantiation of the

conceptual framework which makes use of the other contributions of the work.

7.2 Future Work

While this work shrinks the gap between traditional paper-based chains of evidence and im-

plementations of digital chains of evidence with enhanced mechanisms for proving integrity,

there are many more topics that can be investigated to further shrink this gap. In terms of

the proposed framework, there are benefits to its conceptual nature. However, given the level

considered, there are likely to be complicated issues which may arise when specific imple-

mentation details are developed. As the concepts move closer to deployment implementation

details at a greater level of depth will need to be developed. This extended formalization

will also be required to test the framework and associated protocol using methods from

software engineering and information assurance communities. This could also likely involve

developing a pilot system to be run in one of the many potential application environments.

Policy and legal issues must be explored to determine what, if any hurdles, stand in the way

of applying methods such as biometric watermarking and hardware fingerprinting as part of
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maintaining such chains. These mechanisms do alter the data from its original form, however

so to do state of the art image enhancement techniques. While these techniques appear to

be accepted in the court of law, it is necessary to set judicial precedence related to the pro-

posed frameworks for digital chains of evidence. We have also noted that this work does not

specifically look into all the different types of meta-data which may collected about digital

evidence. This type of evidence was labeled as “Other relevant data,” in Chapter 6. More

work could be conducted to research what specific meta-data should be collected, stored,

and presented however we belief this is best suited for individuals with legal expertise.

In the field of digital hardware fingerprinting, similar tests must be run on much larger

datasets which provide a closer reflection of the number of capture devices that may be

fielded by organization maintaining chains of evidence. Furthermore, tests must be run

on other sensors including new ten-print fingerprint scanners and mobile collection devices.

Such devices may require the need to investigate other options for source identification such

as those pictured in Figure 6.13. Additionally, it would also be interesting to look into other

levels of hardware fingerprinting potentially including model, brand, and technology. Finally,

a deeper investigation of both the limitations and potential areas of extension of the chosen

approach would be appropriate.

Related to biometric watermarking, there may be a need to integrate the aspects of

biometric cryptosystems into the watermarking process. Therefore, transformed versions

of biometric feature vectors could be used to watermark biometric host data. Although

we do not believe them to be serious, this may alleviate potential security and privacy

related concerns associated with the proposed implementation. Extending the analysis of

the proposed rewatermarking scheme in terms of the systems degree of fragility would also
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be useful.

While work continues in the field of keystroke dynamics, little work has been done to

establish minimum requirements for training classifiers that differentiate between genuine

and imposter input classes. Furthermore, a topic that has yet to be addressed is methods of

automatically generating input sequences which closely model imposter data.
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Appendix A

Hardware Fingerprinting Confusion

Matrices

A.1 Fingerprint Confusion Matrices

A.1.1 FVC Data

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 510 64 40 23 25 52 58 18

Microelectonic 3 774 2 4 1 0 1 5

Identicator 39 34 616 25 17 26 15 18

Identix 89 83 66 308 56 59 53 76

Biometrika 0 0 0 0 790 0 0 0

Precise 0 0 0 0 0 790 0 0

CrossMatch 1 1 0 0 1 1 782 4

Digital Persona 0 0 0 0 0 0 0 790

Table A.1: FVC confusion matrix when training on 1 image per sensor
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❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 713 4 16 11 12 6 16 2

Microelectonic 0 778 0 1 0 0 0 1

Identicator 16 15 714 9 3 12 5 6

Identix 77 62 53 348 51 64 50 75

Biometrika 0 0 0 0 780 0 0 0

Precise 0 0 0 0 0 780 0 0

CrossMatch 0 1 1 0 2 0 775 1

Digital Persona 0 0 0 0 0 0 0 780

Table A.2: FVC confusion matrix when training on 2 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 719 5 4 6 5 7 9 5

Microelectonic 0 760 0 0 0 0 0 0

Identicator 11 0 740 4 0 3 2 0

Identix 57 59 57 361 43 48 48 87

Biometrika 0 0 0 0 760 0 0 0

Precise 0 0 0 0 0 760 0 0

CrossMatch 0 0 0 0 1 0 758 1

Digital Persona 0 0 0 0 0 0 0 760

Table A.3: FVC confusion matrix when training on 4 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 688 8 3 7 5 3 4 2

Microelectonic 0 720 0 0 0 0 0 0

Identicator 0 0 720 0 0 0 0 0

Identix 49 46 54 400 37 40 37 57

Biometrika 0 0 0 0 720 0 0 0

Precise 0 0 0 0 0 720 0 0

CrossMatch 0 0 0 0 0 0 720 0

Digital Persona 0 0 0 0 0 0 0 720

Table A.4: FVC confusion matrix when training on 8 images per sensor
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❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 640 0 0 0 0 0 0 0

Microelectonic 0 640 0 0 0 0 0 0

Identicator 0 0 640 0 0 0 0 0

Identix 26 44 43 421 19 26 18 43

Biometrika 0 0 0 0 640 0 0 0

Precise 0 0 0 0 0 640 0 0

CrossMatch 0 0 0 0 0 0 640 0

Digital Persona 0 0 0 0 0 0 0 640

Table A.5: FVC confusion matrix when training on 16 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 480 0 0 0 0 0 0 0

Microelectonic 0 480 0 0 0 0 0 0

Identicator 0 0 480 0 0 0 0 0

Identix 14 18 23 365 14 13 10 28

Biometrika 0 0 0 0 480 0 0 0

Precise 0 0 0 0 0 480 0 0

CrossMatch 0 0 0 0 0 0 480 0

Digital Persona 0 0 0 0 0 0 0 480

Table A.6: FVC confusion matrix when training on 32 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified Key- Micro- Identi- Identix Biometrika Precise Cross- Digital-

Tronic electronic cator Match Persona

KeyTronic 160 0 0 0 0 0 0 0

Microelectonic 0 160 0 0 0 0 0 0

Identicator 0 0 160 0 0 0 0 0

Identix 2 3 3 136 4 4 3 5

Biometrika 0 0 0 0 160 0 0 0

Precise 0 0 0 0 0 160 0 0

CrossMatch 0 0 0 0 0 0 160 0

Digital Persona 0 0 0 0 0 0 0 160

Table A.7: FVC confusion matrix when training on 64 images per sensor
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A.1.2 WVU Data

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3942 14 32 1 1 0

BioTouch #2 6 3967 17 0 0 0

BioTouch #3 3 10 3977 0 0 0

Microsoft #1 0 0 0 3989 1 0

Microsoft #2 0 0 0 0 3990 0

Microsoft #3 0 0 0 0 0 3990

Table A.8: WVU confusion matrix when training on 1 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3980 0 0 0 0 0

BioTouch #2 1 3979 0 0 0 0

BioTouch #3 0 0 3980 0 0 0

Microsoft #1 0 0 0 3980 0 0

Microsoft #2 0 0 0 0 3980 0

Microsoft #3 0 0 0 0 0 3980

Table A.9: WVU confusion matrix when training on 2 images per sensor
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❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3960 0 0 0 0 0

BioTouch #2 0 3960 0 0 0 0

BioTouch #3 0 0 3960 0 0 0

Microsoft #1 0 0 0 3960 0 0

Microsoft #2 0 0 0 0 3960 0

Microsoft #3 0 0 0 0 0 3960

Table A.10: WVU confusion matrix when training on 4 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3920 0 0 0 0 0

BioTouch #2 0 3920 0 0 0 0

BioTouch #3 0 0 3920 0 0 0

Microsoft #1 0 0 0 3920 0 0

Microsoft #2 0 0 0 0 3920 0

Microsoft #3 0 0 0 0 0 3920

Table A.11: WVU confusion matrix when training on 8 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3840 0 0 0 0 0

BioTouch #2 0 3840 0 0 0 0

BioTouch #3 0 0 3840 0 0 0

Microsoft #1 0 0 0 3840 0 0

Microsoft #2 0 0 0 0 3840 0

Microsoft #3 0 0 0 0 0 3840

Table A.12: WVU confusion matrix when training on 16 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3680 0 0 0 0 0

BioTouch #2 0 3680 0 0 0 0

BioTouch #3 0 0 3680 0 0 0

Microsoft #1 0 0 0 3680 0 0

Microsoft #2 0 0 0 0 3680 0

Microsoft #3 0 0 0 0 0 3680

Table A.13: WVU confusion matrix when training on 32 images per sensor
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A.1.3 WVU / Clarkson Data

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 3707 198 213 522 192 168

WVU Secugen 948 1107 494 944 972 535

WVU CrossMatch 1131 763 834 1168 668 436

Clarkson Precise 1056 371 299 2658 315 301

Clarkson Secugen 662 567 259 594 2584 334

Clarkson CrossMatch 576 459 224 721 330 2690

Table A.14: WVU / Clarkson confusion matrix when training on 1 image per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4216 118 101 386 104 75

WVU Secugen 917 1144 522 923 972 522

WVU CrossMatch 1069 729 937 1075 709 481

Clarkson Precise 904 281 255 3088 226 246

Clarkson Secugen 356 475 203 521 3253 192

Clarkson CrossMatch 499 268 134 338 312 3449

Table A.15: WVU / Clarkson confusion matrix when training on 2 image per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4559 57 50 261 42 31

WVU Secugen 921 1253 463 911 981 471

WVU CrossMatch 1058 648 1053 1094 730 417

Clarkson Precise 511 152 137 3907 180 113

Clarkson Secugen 268 300 144 293 3820 175

Clarkson CrossMatch 263 112 69 248 199 4109

Table A.16: WVU / Clarkson confusion matrix when training on 4 image per sensor
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❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4823 20 20 97 22 18

WVU Secugen 793 1519 440 874 935 439

WVU CrossMatch 967 617 1246 1096 675 399

Clarkson Precise 516 114 81 4088 112 89

Clarkson Secugen 127 219 62 108 4386 98

Clarkson CrossMatch 144 84 21 140 139 4472

Table A.17: WVU / Clarkson confusion matrix when training on 8 image per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4907 7 6 65 12 3

WVU Secugen 737 1756 365 808 943 391

WVU CrossMatch 908 575 1732 912 581 292

Clarkson Precise 221 35 30 4647 37 30

Clarkson Secugen 73 93 21 75 4695 43

Clarkson CrossMatch 101 46 18 80 84 4671

Table A.18: WVU / Clarkson confusion matrix when training on 16 image per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4961 4 2 29 3 1

WVU Secugen 639 2150 339 686 881 305

WVU CrossMatch 708 459 2239 804 497 293

Clarkson Precise 138 35 11 4781 16 19

Clarkson Secugen 33 46 21 44 4840 16

Clarkson CrossMatch 57 30 13 29 30 4841

Table A.19: WVU / Clarkson confusion matrix when training on 32 image per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4981 1 2 14 2 0

WVU Secugen 544 2547 246 605 780 278

WVU CrossMatch 491 333 3058 592 335 191

Clarkson Precise 73 2 2 4913 5 5

Clarkson Secugen 6 29 17 32 4908 8

Clarkson CrossMatch 19 12 1 18 19 4931

Table A.20: WVU / Clarkson confusion matrix when training on 64 image per sensor
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❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4979 0 0 21 0 0

WVU Secugen 364 3146 179 492 596 223

WVU CrossMatch 313 188 3781 366 246 106

Clarkson Precise 32 3 0 4963 2 0

Clarkson Secugen 14 25 7 14 4940 0

Clarkson CrossMatch 27 1 2 1 10 4959

Table A.21: WVU / Clarkson confusion matrix when training on 128 images per sensor

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified WVU WVU WVU Clarkson Clarkson Clarkson

Precise Secugen CrossMatch Precise Secugen CrossMatch

WVU Precise 4990 1 0 9 0 0

WVU Secugen 233 3943 93 261 360 110

WVU CrossMatch 93 58 4579 144 101 25

Clarkson Precise 12 0 0 4988 0 0

Clarkson Secugen 2 15 4 10 4969 0

Clarkson CrossMatch 5 1 0 0 7 4987

Table A.22: WVU / Clarkson confusion matrix when training on 256 images per sensor
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A.2 Iris Confusion Matrices

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1895 26 33 36

CASIA OKI 0 1990 0 0

WVU OKI 36 38 1901 15

WVU EverFocus 0 0 0 1990

Table A.23: Iris confusion matrix when training on 1 images per camera

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1954 26 33 36

CASIA OKI 0 1980 0 0

WVU OKI 21 32 1919 8

WVU EverFocus 0 0 0 1980

Table A.24: Iris confusion matrix when training on 2 images per camera

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1951 8 1 0

CASIA OKI 0 1960 0 0

WVU OKI 20 13 1926 1

WVU EverFocus 0 0 0 1960

Table A.25: Iris confusion matrix when training on 4 images per camera
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❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1918 2 0 0

CASIA OKI 0 1920 0 0

WVU OKI 9 10 1900 1

WVU EverFocus 0 0 0 1920

Table A.26: Iris confusion matrix when training on 8 images per camera

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1838 2 0 0

CASIA OKI 0 1840 0 0

WVU OKI 1 10 1829 0

WVU EverFocus 0 0 0 1840

Table A.27: Iris confusion matrix when training on 16 images per camera

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1680 0 0 0

CASIA OKI 0 1680 0 0

WVU OKI 15 8 1657 0

WVU EverFocus 0 0 0 1680

Table A.28: Iris confusion matrix when training on 32 images per camera

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 1359 1 0 0

CASIA OKI 0 1360 0 0

WVU OKI 5 0 1355 0

WVU EverFocus 0 0 0 1360

Table A.29: Iris confusion matrix when training on 64 images per camera

❵
❵

❵
❵

❵
❵

❵
❵

❵❵
Actual

Classified
ICE LG CASIA OKI WVU OKI WVU EverFocus

ICE LG 720 0 0 0

CASIA OKI 0 720 0 0

WVU OKI 0 4 716 0

WVU EverFocus 0 0 0 720

Table A.30: Iris confusion matrix when training on 128 images per camera



Appendix B

Overview of PKI Cryptography

The following chapter has been borrowed from C. Enrique Ortiz’s article “The Security and

Trust Services API (SATSA) for J2ME: The Security APIs [108]” The article provides an

excellent overview of Public Key Infrastructure (PKI) cryptography and the functions which

would be used as a basis for the digital chain of evidence framework described in Chapter 6.

The National Institute of Standards and Technology (NIST) defines cryptography as

”the science of mapping readable text, called plaintext, into an unreadable format, called

ciphertext, and vice versa. The mapping process is a sequence of mathematical computations.

The computations affect the appearance of the data, without changing its meaning [108].”

Cryptography has four main goals:

1. Confidentiality or ensuring that only authorized recipients can access information. This

is accomplished by using data encryption.

2. Data integrity or the ability to detect if information has changed. This is accomplished

by using digital signatures.

167
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3. Non-repudiation or the ability to ensure that a transaction can’t be denied. This is

accomplished by using non-repudiation type of signatures.

4. Authentication or the ability to verify the source of information. This accomplished

by using data encryption and digital signatures.

Cryptography is based on the use of keys for the transformation of plaintext to cipher-

text and back. There are two cryptography models: symmetric and asymmetric. Symmetric

cryptography uses a single secret key, while asymmetric uses two keys, a private and a public

key pair. Each cryptography model has pros and cons, for example, in the areas of perfor-

mance and key distribution. From the performance perspective, symmetric cryptography is

more efficient (computationally faster) than its asymmetric counterpart, but from the key

distribution perspective (how keys are shared), asymmetric cryptography provides a more

convenient and safer model because the public keys can be shared as needed without fear

of compromising security (since the private key can be kept secret). This is contrary to

symmetric cryptography where special care must be given (secret key must be kept and

distributed secretly) to ensure security is not compromised. Because of these reasons, sym-

metric cryptography is best suited for data encryption, while asymmetric cryptography is

best suited for authentication, non-repudiation and data-integrity through the use of digital

signatures [108].

The left side of Figure B.1 shows the different functional elements within a typical PKI

scheme. The elements include:

1. End-entity - a generic term that describes the end-users consumers of PKI services.

This could be a person, or a computer. To get a digital certificate, end-entities go
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through an enrollment process [108].

2. Certificate Authority (CA) - a trusted 3rd party responsible for the management of

digital certificates. Certificate Authorities are at the center of the PKI trust model. A

CA is responsible for issuing signed digital certificates, for keeping a certificate repos-

itory (2a), and of managing revoked certificates and the associated the Certification

Revocation List (CRL) repository (2b). These repositories typically are LDAP based

[108].

3. Certificate Signing Request (CSR) - a document generated by an end-entity for

certificate enrollment. A CSR contains information about the user such as its distin-

guished name, a public key (signature), and other information. A CSR is encoded using

the Distinguished Encoding Rules for ASN.1 as defined in PKCS #10: Certification

Request Syntax Version. Once the CSR has been verified by a CA, the CA generates

a signed certificate [108].
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Figure B.1: PKI Functional Elements (left) and Public Key Certificate Enrollment Process (Right) [108].
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4. Public Digital Certificate and Certificate Path - a digital certificate, also re-

ferred to as public key certificate, is the public component in PKI. A public certificate

represents the credentials for a given end-entity by binding a specific user to a public

key. The end-entity represented by a certificate holds the private key that corresponds

to that certificate. Certificates are primarily used for digital signatures to verify the

origin (authentication), and integrity of information, and can also be used for non-

repudiation. X.509 Version 3 is the most predominant format for digital certificates.

An X.509 certificate contains all the information about an entity including authenti-

cation/verification information, for example [108]:

• The CA (issuer) serial number.

• A signature algorithm used to sign the certificate.

• The distinguished name of the certificate issuer.

• Validity period for the certificate.

• The subject’s distinguished name - the subject could be the root CA, of inter-

mediate CAs or the end-entity depending on the certificate’s role on a certificate

path; certificate path is explained shortly.

• Subject’s public key.

• The issuer’s unique ID.

• Extension fields for constraints such as key usage restrictions and certificate poli-

cies.

• The certificate’s signature of all the above fields.
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Before a digital certificate can be used, it must first be issued by a trusted Certificate

Authority following what is referred to as a certificate enrollment process. A PKI certificate

enrollment is a multi-step process and can been seen in the right side of B.1. The following

explains the steps in this process [108].

1. A distinguished name is defined. A distinguished name (DN) is a set of attribute

values that uniquely identifies an end-entity (which is stored as an object within a

directory information tree). In the case of PKI and X.509 certificates, a DN is based

on the Lightweight Directory Access Protocol (v3): UTF-8 String Representation of

Distinguished Names (RFC 2253), and is used to identify a certificate’s Subject or

Issuer; the subject is the end-entity who the certificate belongs to, and the issuer is

the CA that issued the certificate.

2. A private key is generated based on a specified algorithm and key-length, and is stored

in a certificate store that resides on a trusted security element, such as a smart-card

or maybe locally on a J2ME device.

3. Once the DN and private key have been defined, a Certificate Signing Request is

generated. The CSR contains information about the user, including the user’s DN,

public key, and other information.

4. The generated CSR is sent for verification to an enrollment computer belonging to a

trusted Certificate Authority, possibly over a secure connection. There are a number

of trusted CAs such as Verisign, Entrust, and Thawte; even institutions such as banks

or large corporations may decide to run their own CA software. The CA you would use
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will depend on your application and customers - for example, for a banking application

the bank institution may already have a relationship with a given set of CAs. Typically

there will be a root certificate already on your handset that corresponds to trusted CAs.

5. Once the CA has validated the CSR, a signed public key X.509 certificate (path) is

returned.

6. The returned X.509 certificate’s chain and/or URI are stored in the local certificate

store.

In network protocols, basic data integrity checks are performed by utilizing checksums

or cyclic-redundancy checks. But these methods are weak when compared to secure crypto-

graphic hash-functions. Also referred to as a digital fingerprint, a message digest is a fixed

length sequence of numbers, a condensed and faithful representation of a message. Generat-

ing a message digest doesn’t alter the message, and any change to the original input message

will result in a different message digest. Verifying data integrity using digests is accom-

plished by simply recalculating the digest then comparing it to the original one. Calculating

a message digest is done using a using a one-way hash function such as RSA Security MD5

or NIST’s SHA-1. This is illustrated in the left side of Figure B.2. There are three high-level

steps to generating a message digest [108]:

1. Initialize the MessageDigest using an algorithm.

2. Calculate (update) the digest from a block of bytes that comprise the signature.

3. Generate the digest.
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Additionally, three things need to be known ahead of time before digests can be generated:

1. The message digest algorithm to use.

2. The input data (byte array) to the hash function.

3. If verifying, the digest to compare to.
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Figure B.2: Generating and Verifying Message Digests (left) and The Digital Signing Process (right) [108].
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Beyond enforcing data integrity through message digests, digital signatures provide a

mechanism for authentication and non-repudiation, as well as strong data integrity. A digital

signature is a message digest that has been encrypted using a private key. As with message

digests, generating a digital signature doesn.t alter the original message. The result is an

authenticated message with integrity. It is important to note that authentication in this

case is indirect and refers to origin authentication or verification instead of authenticating

a person per-se. In other words, a signed message proves that the message came from a

trusted person, assuming the person has properly safeguarded the private key. As previously

mentioned, digitally signing a message or document is the same as encrypting the document’s

message digest using the signer’s private key. A message signed with a private key can be

verified with the corresponding public key; because public key certificates are shared to

users on a need to know basis, only those end-entities can verify the signature. This process

is show in the right side of Figure B.2. When receiving a signed message or document,

its signature should be verified prior to the message’s consumption. Signature verification

entails decrypting the original message digest that was sent with the message using the

sender’s public key, recalculating the message digest, and then comparing it to the original

message digest. Signature verification requires three high-level steps [108]:

1. Initialize the Signature using a public key and an algorithm.

2. Calculate (update) the signature from a block of bytes that comprise the signature.

3. Verifying (compare) the calculated signature against a specified signature.

Along the same lines, three things need to be known ahead of time before signatures can

be verified [108]:
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1. The public key and algorithm to use to calculate the signature. This information is

typically found in the public key certificate.

2. The algorithm used to generate the original signature. This information is typically

found in the public key certificate.

3. The original message and related signature to verify. This information may be sent

over a network connection, email or in other application-specific channels.

As previously mentioned, symmetric cryptography is best suited for data encryption,

while asymmetric cryptography is best suited for authentication, non-repudiation and data-

integrity through the use of digital signatures. In asymmetric or public key cryptography

public keys are freely distributed as needed. In this model data is encrypted using a public-

key, and is decrypted using the corresponding private-key, and vice-versa. The idea is that

if Alice needs to send a short confidential message to Bob, Alice would encrypt the message

using Bob’s public key. At a later time Bob would use his private key to decrypt the message.

The left side of Figure B.3 shows shows both signing and encryption, which are separate but

related steps, and the results of these steps combined into a single encrypted, signed message.
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Encrypting and Signing a Message

Decrypting and Message  and Verifying a Signature

Figure B.3: Encryption (left) and Decryption (right) using PKI [108].
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Decryption simply entails the opposite of data encryption. The right side of Figure B.3

shows this process. Here an encrypted message is decrypted using the recipient’s private key,

and the message digest (digital signature) is decrypted using the sender’s public key, then

verified by comparing the signatures as previously covered. As noted before, PKI cryptog-

raphy is time consuming and relatively inefficient compared to symmetric encryption. Much

simpler and faster than asymmetric encryption, Figure B.4 shows the process of symmetric

encryption suitable for encrypting large amounts of data.

Once again, the framework presented in Chapter 6 uses PKI as a basis for all commu-

nication between entities in a chain of evidence. Additional security mechanisms including

biometric watermarking and digital hardware fingerprinting are used to provide another layer

of security beyond PKI cryptography.
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