
Establishing Theoretical Minimal Sets of Mutants

Paul Ammann∗, Marcio E. Delamaro†, and Jeff Offutt∗

∗Software Engineering, George Mason University, Fairfax, VA, USA

Emails: {pammann,offutt}@gmu.edu
†Instituto de Ciências Matemáticas e de Computaçao, Universidade de São Paulo, São Carlos, SP, Brazil

Email: delamaro@icmc.usp.br

Abstract—Mutation analysis generates tests that distinguish
variations, or mutants, of an artifact from the original. Mutation
analysis is widely considered to be a powerful approach to testing,
and hence is often used to evaluate other test criteria in terms of
mutation score, which is the fraction of mutants that are killed
by a test set. But mutation analysis is also known to provide
large numbers of redundant mutants, and these mutants can
inflate the mutation score. While mutation approaches broadly
characterized as reduced mutation try to eliminate redundant
mutants, the literature lacks a theoretical result that articulates
just how many mutants are needed in any given situation. Hence,
there is, at present, no way to characterize the contribution
of, for example, a particular approach to reduced mutation
with respect to any theoretical minimal set of mutants. This
paper’s contribution is to provide such a theoretical foundation
for mutant set minimization. The central theoretical result of the
paper shows how to minimize efficiently mutant sets with respect
to a set of test cases. We evaluate our method with a widely-used
benchmark.

Keywords - Mutation testing, minimal mutant sets, dynamic
subsumption

I. INTRODUCTION

Mutation analysis [5] is an approach to generating tests

that distinguish all of a set of variants, or mutants, from

some artifact. Mutation analysis is widely considered to be

a powerful approach, so much so that other approaches to test

generation are commonly evaluated on the basis of mutation

score. One long-standing problem with using mutation score

to evaluate other approaches is the presence of “redundant”

mutants that do not contribute in any material way to the

quality of a test set. For example, some mutants are killed

by almost any test. Hence, eliminating such mutants from

consideration does not affect which tests are chosen, but does

result in a different mutation score. In other words, mutation

scores can be inflated by redundant mutants, and this can make

the mutation score harder to interpret.

The research area of reduced mutation has focused on

achieving high quality test sets with fewer mutants [20], [23],

[27], [29], [22], [21], [26], [6]. Selective mutation is a reduced

mutation approach that limits the set of mutation operators

to a subset of the available operators [20], [23], [27], [29],

[22], [21], [26], [6]. Some approaches to reduced mutation

limit the number of mutants considered to a random subset

of mutants generated [19], [24]. Other approaches analyze

relationships between specific mutants and remove redundant

mutants [13], [11], [14]. Still others engineer higher-order-

mutants (HOMs) that subsume one or more first-order mutants

(FOMs)1. While these approaches clearly reduce the number

of mutants under consideration, there is still a significant

research gap. Specifically, there is no way to measure how

close reduction techniques get to the goal of minimizing the

number of mutants created while maintaining the quality of

the corresponding test set.

This paper addresses exactly that research gap. We develop

a theoretical framework for determining minimal sets of mu-

tants. In particular, we show that, given a test set, a particular

type of subsumption, called dynamic subsumption, enables

efficient computation of minimal sets of mutants. We evaluate

our approach against a benchmark set of programs and tests.

It is important to appreciate the role of the test set in our

approach. Computing minimal mutant sets for all possible

test sets is clearly undecidable; it is the fact that we limit

attention to a particular test set that makes our approach

computable. One way to think of our approach is that it

approximates a limit: If one were able to run every possible

test, then determining minimal sets of mutants with dynamic

subsumption would, in fact, be both sound and complete. That

is, any computed minimal mutant set would be, in fact, a “real”

minimal mutant set. A corollary of this observation is that the

more comprehensive the test set used in the analysis, the more

accurate the resulting computation of minimal mutant sets.

Existing approaches to reduced mutation that use subsump-

tion, such as the HOM approach, rely on detailed white-

box analysis of the artifact under consideration. If a HOM is

engineered to subsume several other mutants, then a test that

kills that HOM will, of course, kill the subsumed mutants.

However, equivalent mutants, that is, mutants that computes

the same function as the original artifact, complicate the

situation. If a HOM happens to be equivalent, or if the test

engineer simply fails to find a test that kills the HOM, then

the subsumption relationship does not help, since there may

be tests that kill one or more of the subsumed mutants.

In contrast to the HOM approach to subsumption, our model

takes a black-box perspective. We consider only the behavior

of some fixed artifact in the context of a specific set of mutants

and a specific set of test cases. In particular, our notion of

subsumption is only assumed to hold with respect to the

specific set of test cases under consideration, and it is possible

1In the development of Jia et al. [10], one mutant subsumes a second mutant
if every test that kills the first mutant is guaranteed also to kill the second. The
same notion of subsumption is used to reduce the number of logic mutants
generated for DNF predicates [12].

that the subsumption relation would not hold for a different set

of tests. Essentially, we replace the risk of equivalent mutants,

which affects the HOM approach to subsumption, with the

risk of incomplete test sets2.

Our approach to modeling has two advantages. First, it frees

us from the details of any particular programming language or

artifact and lets us model the problem in a very general way.

Second, it allows us to provide a precise definition for what

constitutes a minimal set of mutants. While the definition itself

is not constructive; the main result of the paper shows that a

different notion of subsumption, called dynamic subsumption,

completely characterizes mutant set minimality.

We used the Siemens suite [9], [7], to show the impact

of our model. The Siemens suite includes a large number

of tests. The evaluation shows that the size of the minimal

mutant sets is much smaller than current approaches to reduced

mutation achieve. The evaluation further shows that high

mutation scores from different approaches to reduced mutation

on a given test set are potentially misleading; once redundant

mutants are removed, the scores are lower, sometimes much

lower. In other words, there is substantial room for improve-

ment in choosing mutants. Correspondingly, users of mutation

scores should be cautious; large numbers of redundant mutants

may make such scores misleading.

Again, it is important to appreciate the role of the chosen

test set in the analysis of minimal mutants: generating a differ-

ent test set might result in a different set of minimal mutants.

That being said, most applications of mutation analysis end up

with exactly one test set–namely the first set that kills enough

mutants. From a practical perspective, an important question in

this context is simply, “How many mutants (and which ones)

are really needed to end up with this test set?” It is only in the

context of the chosen test set that we determine which mutants

are relevant.

The paper is structured as follows. Section II introduces a

score function model for describing the relationship between

mutants and test cases, and then develops the main theoretical

results about minimal mutant sets. Section III applies the

Proteum mutation tool to the Siemens suite of programs and

computes minimal test and mutant sets for a specific initial

set of tests. Section IV discusses related work. Section V puts

the results into context and concludes the paper.

II. MODEL

This section presents a formal model for minimizing sets of

mutants with respect to a test set. The model does not address

any details of the artifact from which mutants are generated.

Rather, it captures the “black-box” relationship of precisely

which test cases kill which mutants.

A. Definitions

Let M be a finite set of mutants on some artifact P . P

may be any testable artifact amenable to mutation analysis–

a program, a specification, a design, etc. Let m, possibly

2Both the problem of determining whether a mutant is equivalent and the
problem of finding a test case that kills a mutant are, of course, undecidable.

subscripted, denote an element of M . Denote the cardinality

of M as |M |.
Let T be a finite test set for P . Let t, possibly subscripted,

denote an element of T . Denote the cardinality of T as |T |.
The boolean score function S specifies which mutants each

test kills. Specifically, S(i, j), i = 1, .., |T |, j = 1, .., |M |, is

true iff test ti kills mutant mj . So S can be considered to be

a binary matrix with |T | rows and |M | columns.

T is mutation-adequate for M if for each mutant mj ∈ M ,

there is some test ti ∈ T such that S(i, j) is true. The

development in this paper does not require that the test set

in the score function be mutation-adequate. From a practical

perspective, our algorithms can be applied at any stage of

testing. The richer the test set T is, the more mutants a minimal

mutant set requires to capture the behavior exhibited by the

artifact with respect to that test set.

In terms of the score function, if T is not mutation adequate,

then there will be at least one mutant m in M that is live,

which means that no test t ∈ T kills m. A live mutant m

may be equivalent, or T may rather be missing a suitable

test that kills m. Each live mutant has a column in the

score function without any true entries. Instead of insisting on

mutation adequacy, we constrain our minimization procedures

to maintain the effectiveness of mutation, evaluated by which

mutants are killed by a given test set. Formally, a subset of T ,

denoted Tmaintain, maintains the mutation score with respect

to M (and T) if for every mutant m in M , if T kills m then

Tmaintain kills m.

The score function captures all of the information about the

mutants and tests of interest in this paper. If two tests kill

precisely the same set of mutants, we consider the tests to be

indistinguished, even though, in terms of the domain of P , the

tests may have different input values. Similarly, if two mutants

are killed by precisely the same set of tests, we consider

the mutants to be indistinguished (thus far), even though

the mutants may involve different syntactic changes to the

underlying artifact. Indeed, indistinguished mutants may well

cause different semantic changes to the underlying artifact,

but these semantics are simply not captured by the test set

T , and hence are not reflected in the score function S. Put

another way, if T were augmented with additional tests, these

additional tests might distinguish previously indistinguished

mutants.

Below we show a score function for an example with

five tests and four mutants: T = {t1, t2, t3, t4, t5}
and M = {m1, m2, m3, m4}. T is mutation-adequate,

all tests in T are distinguished, and all mutants in M are

also distinguished. We use this score function as a running

example through the rest of this section.

m1 m2 m3 m4

t1 t t t

t2 t t

t3 t t

t4 t t t t

t5 t t

Observation 1: Score Function Boundedness.

The score function has, at most, 2|M | distinguished rows. The

reason is that each distinguished test kills some specific subset

of M and there are exactly 2|M | such subsets.

Observation 1 is important because it makes clear that

although the domain of P may be large or unbounded, the

number of distinguished rows in the score function is bounded.

Put another way, the score function can identify every possible

input in the domain of P with one of 2|M | equivalence classes,

depending on which mutants that input kills.

B. Minimal Sets of Tests

The key theoretical contribution of this paper is describing

sensible minimizations to the score function. The motivation

for minimizing tests is straightforward: if killing mutants is the

goal, why run tests that do not increase the mutation score?

Minimal test sets directly help the practicing test engineer.

The motivation for minimizing mutants has less to do

with the practicing test engineer than with mutation testing

researchers. The motivation for minimizing mutants is identi-

fying the theoretical boundary of just how many mutants are

required, and comparing existing mutation analysis methods

against this boundary to see whether they can be improved,

and, if so, potentially how much. While this theoretical lower

bound may never be reached, it gives testing researchers an

important tool. By knowing what’s possible, we can objec-

tively evaluate the effectiveness of our current engineering

techniques to reduce the number of mutants. That is, this

analysis gives us a firm bound against which to measure.

First we address test set minimization, a well-understood

process that we include here for completeness.

Definition 1: Minimal test sets.

A test set T̂ is minimal iff for any test ti ∈ T̂ , T̂ − {ti} does

not maintain the mutation score with respect to M and T .

Note that T̂ depends on exactly which mutants are used.

There may be multiple minimal test sets, possibly of varying

cardinalities, for any given test set T . Let T̄M = {T̂1, T̂2, ...}
denote the set of all possible minimal test sets with respect

to mutant set M . Any element of T̄M with the smallest

cardinality is not only minimal, but also minimum.

In the example, T̄M contains three minimal test sets:

T̄M = {{t4}, {t1, t2}, {t1, t3}}

Note that a given test need not be part of any minimal test

set. In the example, t5 is not in any minimal test set. Of the

three minimal test sets, one, namely {t4}, has least cardinality

(equal to 1), and hence is minimum.

Although finding a minimum test set is, like many optimiza-

tion problems, computationally hard3, generating a minimal

3Finding a minimum test set is an NP-complete problem. Finding a
minimum test set is an instance of the Set Covering Problem (SCP) [16],
where the universe is the set of mutants M , and the family of subsets of M

is given by the rows of the score function, S.

test set is straightforward. Algorithm 1 generates a minimal

test set with time complexity |T | ∗ |M |. Note that Algorithm

1 selects tests for removal in an arbitrary order. If Algorithm

1 is applied to all possible permutations of tests in T , then it

will generate all possible minimal test sets.

Algorithm 1: Test set minimization

// Input: Mutant set M and test set T

// Output: A minimal test set

minSet = T

for each t in minSet {

// Note: t selected arbitrarily

if (minSet-{t} maintains

mutation score wrt M and T)

minSet = minSet - {t}

}

return minSet

C. Minimal Sets of Mutants

We now turn to the problem of minimizing M , a topic

that, to our knowledge, has not been previously addressed in

the literature. We propose the following informal rationale for

declaring mutants to be “unnecessary”:

Testing P without considering unnecessary mutants should

yield the exact same “results” as testing P with the full set

of mutants M .

Building on this rationale, the only tests that a given set

of mutants can “force” to be in a test set are those in

some minimal test set. Hence, we define unnecessary mutants

in terms of minimal test sets. We require that M generate

precisely the same set of minimal test sets both with and

without a redundant mutant. Recall that T̄M denotes the set

of minimal test sets of T with respect to some particular set

of mutants M . The key part of the definition is the equality

at the end:

Definition 2: Redundant mutants.

Let Mj = M − {mj} for some mutant mj ∈ M . We say

that mj is redundant with respect to mutant set M and test

set T iff T̄M = T̄Mj
.

Again, note that this definition of redundant mutants is in the

context of a particular test set T . Computing T̄ for various

mutant sets in the running example, first the full mutant set

M , and then M with each mutant removed in turn, yields:

T̄M = {{t4}, {t1, t2}, {t1, t3}}

T̄M1
= {{t4}, {t1, t2}, {t1, t3}}

T̄M2
= {{t4}, {t1, t2}, {t1, t3}}

T̄M3
= {{t1}, {t4}}

T̄M4
= {{t4}, {t1, t2}, {t1, t3}, {t2, t5}, {t3, t5}}

Note that T̄M , T̄M1
, and T̄M2

are identical. This means that

both m1 and m2 are redundant with respect to M . If a pair

of redundant mutants, m1 and m2, are indistinguished, it is

possible that we might only be able to remove one of the

mutants safely. Consider the case where mutant m1 is not

redundant with respect to M . If some additional mutant m2

is indistinguished from m1 and we form M ∪ {m2} then

only one of m1 or m2 can be removed from M ∪ {m2}
without altering the associated minimal test sets. Algorithm

2, based on the dynamic subsumption relation developed

later in the paper, clarifies precisely which mutants can be

removed safely. In particular, only one mutant from each set

of indistinguished mutants is (possibly) needed; beyond that,

all redundant mutants can be safely removed.

Since m1 and m2 are distinguished and redundant, both

can safely be removed from M without altering the resulting

minimal test sets, thereby yielding a minimal mutant set of

{m3, m4}. In this example, there is only one minimal mutant

set.

When a redundant mutant m is removed, it is possible that

tests that were distinguished with respect to M are no longer

distinguished with respect to M − {m}. From the practical

perspective, this means that the test engineer has a choice

about which test to use when constructing a minimal test set. In

the example above, for the minimal set of mutants {m3, m4},

tests t2 and t3 are indistinguished.

Definition 3: Minimal mutant sets.

Mutant set M is minimal if it contains no redundant mutants.

We show the score function after minimization for our

running example.

m3 m4

t1 t

t2 t

t3 t

t4 t t

t5

Although this example has only one minimal mutant set, there

are potentially many minimal mutant sets.

Because there are a large number of minimal test sets for

any given set of mutants, the definition of minimal mutant sets,

which relies on comparing the associated minimal test sets,

does not lend itself directly to an efficient algorithm. Hence,

the next challenge is identify a way to compute efficiently

which mutants are redundant.

D. Efficiently Computing Minimal Sets of Mutants

We turn to the notion of subsumption. Traditionally, one

mutant is defined to subsume another for all possible exe-

cutions based on internal reasoning about the artifact being

mutated or the mutation operator in question. For example,

mutants that negate a term in a Disjunctive Normal Form

(DNF) predicate subsume mutants that negate the entire DNF

formula. A variety of these relationships are shown in the fault

hierarchy of Lau and Yu [18]. The proof of subsumption relies

on properties of predicates expressed in DNF.

In this paper, we define a different notion of subsumption

strictly in terms of black-box behavior of mutants M on a test

set T as captured by the score function. Crucially, this new

notion of subsumption does not necessary hold for all possible

executions. Rather it is only guaranteed to hold for executions

in the set T . Specifically, consider two mutants mx and my

where every test in T that kills mx also kills my .

Definition 4: Dynamic subsumption.

If mutant x is not live and S(i, x) → S(i, y), i = 1..|T |, we

say that mx dynamically subsumes my with respect to T .

Dynamic subsumption differs from the notion used in white-

box mutation analysis in a crucial respect: Not only are tests

that kill x also required to kill y, but T also has to have at

least one test that kills x. In other words, dynamic subsumption

disallows “vacuous” subsumption, which would be possible if

we did not have a test that killed x. For example, it is possible,

through white-box analysis, to design a HOM m that subsumes

several other mutants, but it is (usually) not be possible to tell

if m is equivalent. Since we work in the black-box context of

a specific set of test cases T , the score function can distinguish

among live mutants.

In any set M that contains both mx and my , if mx

dynamically subsumes my , then my is redundant, and hence

may be safely discarded, a fact we prove in the first part of

Theorem 1 below.

Perhaps surprisingly, dynamic subsumption completely cap-

tures the notion of redundant mutants. That is, the only way in

which a mutant becomes redundant is for it to be dynamically

subsumed by some other mutant in M , a fact we prove in the

second part of Theorem 1 below. The main result of this paper

formalizes these two properties:

Theorem 1: Dynamic subsumption and minimal test sets.

Mutant set M is minimal with respect to test set T iff there

does not exist a distinct pair mx,my ∈ M such that mx

dynamically subsumes my .

Proof:

Step 1: If M is minimal, then there does not exist a distinct

pair mx,my ∈ M such that mx dynamically subsumes my .

We proceed by contradiction. Suppose there exist mx and

my such that mx dynamically subsumes my . Consider the

process of producing a minimal test set for either M or

M−{my} by applying Algorithm 1. If Algorithm 1 considers

tests in the same order in each case, and the if test in Algorithm

1 always comes to the same conclusion, then Algorithm

1 produces the same minimal test set in for both M and

M − {my}. Since this would happen for all possible orders

of choosing tests, it means that T̄M = T̄My
. But this would

mean that M is not minimal–a contradiction.

Hence, the proof comes down to considering whether, at

some stage of Algorithm 1, the if test evaluates differently for

some test t with respect to M and M − {my}. We proceed

by case analysis:

• Case 1: t can be removed during the minimization with

respect to M , but not the corresponding minimization

with respect to M − {my}. Dynamic subsumption has

nothing to do with this case. Rather, if a test is not needed

for a particular set of mutants, it is clearly not needed for

any subset either. Hence, Case 1 is impossible.

• Case 2: t can be removed during the minimization with

respect to M − {my}, but not the corresponding mini-

mization with respect to M . In algorithm 1, the variable

minSet must have some test that kills mx, and thus, by

dynamic subsumption, my as well. Hence, my cannot

be the reason that t must be kept for set M . In other

words, the if decision must be the same for both M and

M − {my}. Hence, Case 2 is impossible.

Step 2: If there does not exist a distinct pair mx,my ∈ M

such that mx dynamically subsumes my , then M is minimal.

To show this part, for each mx in M , we incrementally

construct a test set Tx around mx. We show that this test set is

minimal with respect to M −{mx}, but does not maintain the

mutation score with respect to M . Hence mx is not redundant,

and cannot be removed from the mutant set. Since we show

this for each mutant in the set, the set M must be minimal.

To construct Tx, consider each other mutant my in M . There

must be some test in T that kills my but does not kill mx,

or else my would dynamically subsume mx. Include this test

in Tx. Note that Tx kills every mutant except for mx. Choose

some minimal set T̂x subseteq Tx using Algorithm 1. Note that

T̂x is minimal with respect to M−{mx} but does not maintain

the mutation score with respect to M . Hence no mx ∈ M is

redundant, and so M is minimal with respect to T .

QED

Algorithm 2 uses Theorem 1 to efficiently compute minimal

mutant sets. First, live mutants are removed. Next, indistin-

guished mutants are removed. Finally, dynamically subsumed

mutants are removed.

Algorithm 2: Mutant set minimization

// Input: Mutant set M; Score function S

// Output: A minimal mutant set

remove live mutants from S

remove duplicate columns from S

minSet = remaining columns in S

subsumed = dynamically subsumed

mutants in minSet

return (minSet - subsumed);

We now apply Algorithm 2 to our running example. There

are no live mutants or duplicate columns in the score function,

so the variable minSet in the algorithm starts with all four

mutants, m1, m2, m3, and m4. Mutants m1 and m2 are

dynamically subsumed by mutant m4. Removing these two

mutants from minSet yields exactly the same minimal set of

mutants, namely {m3, m4}, identified in the previous section

by considering minimal test sets.

E. Some Properties of Minimal Mutant Sets

Since a representative from each set of indistinguished

mutants is chosen arbitrarily in the first step of Algorithm 2,

where duplicate columns in S are removed, minimal mutant

sets need not contain exactly the same mutants. However,

somewhat surprisingly, minimal mutant sets do all have the

same cardinality.

Theorem 2: Mutant set cardinality

Every minimal mutant set has the same cardinality.

Proof.

The key observation is that dynamic subsumption is just

logical implication, and hence is transitive. This means that

if one removes a dynamically subsumed mutant from a set of

mutants, that removal does not affect which of the remaining

mutants are dynamically subsumed. Hence, dynamically sub-

sumed mutants may be removed in an arbitrary order, which

is why the second part of Algorithm 2 is structured the way it

is, as opposed to being an explicit loop that iteratively checks

for dynamic subsumption. Put another way, a minimal mutant

set is simply a mutant set with indistinguished mutants col-

lapsed to single representatives and the remaining dynamically

subsumed mutants removed–operations that always produce a

result of the same cardinality.

QED

The appeal of Theorem 2 is that in states that, for a given

test set T , a specific number of mutants (selected from M) are

both necessary and sufficient to generate all possible minimal

test sets (selected from T).

Observation 2. Minimal mutant sets for minimal test sets.

If T happens to be a minimal test set, then every corresponding

minimal set of mutants has exactly |T | elements. The resulting

score function is square. Every row has exactly one true

value, and every column has exactly one true value.

In particular, if T has exactly one element, so does every

minimal M . This extreme example illustrates the idea that M

simply generates tests with respect to some underlying set of

tests T . If that test set is already minimal, all M can do is

generate exactly that set. If T is not minimal, then M can

potentially generate more than one minimal test set.

III. ASSESSMENT

We now use Algorithm 2, to compute minimal sets of

mutants with respect to a given test set. This section applies

Algorithm 2 to a standard benchmark for testing research,

namely the Siemens suite [9], [7], which consists of seven

C programs and associated test sets. We have two goals:

1) Examine the relationship between total mutants gener-

ated by traditional approaches and minimal mutant sets.

2) Highlight the effect on mutation score of measuring

against traditional mutant sets vs. minimal mutant sets.

This section is not a formal experiment. Hence, we do not

enumerate research questions, results, threats, etc. Rather, we

simply apply our definitions and report facts about test set

minimization, mutant set minimization, and reduced mutation.

For each program in the Siemens suite, the Proteum tool

[4] was used to generate mutants and the score function was

collected for 512 tests randomly taken from the Siemens

suite4.

A. Minimal Test Sets

Table I presents characteristics about the test sets used in

the study. The column labeled Program lists the programs.

The column labeled Total Tests shows how many tests are

available in the Siemens suite for each program. The column

labeled Used Tests shows how many tests were used in

this evaluation–512 for each program. The column labeled

Distinguished Tests shows how many of the 512 tests are

distinguished. Recall that two tests are indistinguished if they

kill exactly the same subset of mutants. The table shows

that for each of the seven programs, very few tests were

indistinguished.

TABLE I
TEST SET CHARACTERISTICS

Program Total Used Distinguish- Minimal Union :

Tests Tests able Tests Tests Intersection

print tokens 4073 512 499 12.4 181 : 3

print tokens2 4058 512 479 12.1 160 : 1

replace 5542 512 510 44.4 218 : 19

schedule 2650 512 482 14.5 158 : 2

schedule2 1052 512 479 17.1 131 : 4

tcas 1608 512 428 41.4 207 : 10

totinfo 4073 512 452 13.3 134 : 4

The column labeled Minimal Tests shows how many tests

are in a minimal test set produced by Algorithm 1 applied to

the 512 selected tests. Since there are many possible minimal

test sets, this final number is the average of 100 minimal test

sets generated by choosing tests to remove at random in the if

statement of Algorithm 1. Note that the minimal test sets are

relatively small compared to the number of distinguished tests.

The column labeled Union: Intersection gives the number

of tests (taken from 512) that appeared in the union and

intersection of the 100 randomly selected minimal test sets. It

is clear that even though minimal test sets are relatively small,

many different tests can be used to construct a minimal test

set. Conversely, there are very few tests that appeared in all

100 trials. This suggests that there are few, if any, “necessary”

tests in the set of 512.

4The number 512 is an artifact of the Proteum tool, which processes tests in
batches of size up to 512. Since minimal mutants are calculated with respect
to a specific test set, as opposed to all possible inputs, it is sensible to carry
out the analysis with any test set. For the same reason, we don’t sample
different test sets; instead we model a testing process where a particular test
set is chosen, and then redundant mutants are identified.

B. Minimal Mutant Sets

Table II captures relevant facts about the mutants used in

the study with respect to the test sets (of size 512) described

above. Again, the column labeled Program lists the programs.

The column labeled Total Mutants reports the total number

of mutants. The column labeled Live Mutants reports live

mutants. Specifically, for each entry of the form X:Y, X is

the number of mutants live after execution of the complete

Siemens test suite, and Y is the number of mutants live

after execution of the chosen 512 tests. The column labeled

Difference (Ratio) reports the difference between these two

values in absolute form and also their ratio. By either measure,

relatively few mutants are killed by the full suite, but not by

the set of 512 tests. In terms of mutation score (not shown in

the table), the 512-sized test sets exceeds 99% for all of the

programs.

TABLE II
MUTANT CHARACTERISTICS

Program Total Live Difference Distinguished :

Mutants Mutants (Ratio) Minimal

print tokens 4336 597 : 625 28 (0.96) 437 : 28

print tokens2 4746 692 : 704 12 (0.98) 439 : 30

replace 11101 2195 : 2318 77 (0.95) 2309 : 58

schedule 2109 267 : 271 4 (0.99) 520 : 42

schedule2 2627 488 : 495 7 (0.99) 461 : 46

tcas 2384 418 : 427 9 (0.98) 596 : 61

totinfo 6698 877 : 877 0 (1.00) 835 : 19

The first entry in the column labeled Distinguished :

Minimal reports the number of distinguished mutants. Recall

that two mutants are indistinguished if they are killed by

exactly the same subset of tests. The number of mutants

that are distinguished is much smaller than the total number

of mutants. This suggests that many mutants are not only

redundant, they also exhibit identical behavior with respect

to the test set. Further, the fraction of mutants that are

distinguished (17%) is much smaller than the fraction of tests

that are distinguished (93%). In terms of distinguished entries,

the score function exhibits different behavior when viewed

from the row perspective than it does when viewed from the

column perspective.

The second entry in the column labeled Distinguished:

Minimal reports the number of minimal mutants in a minimal

mutant set5.

Not only is the number of minimal mutants much smaller

than the total number of mutants (on average, only 1.2% of

mutants are in a minimal set), it is also much smaller than the

total number of distinguished mutants (on average, only 6.6%

of distinguished mutants are in a minimal set). In other words,

the dynamic subsumption relation eliminates a large fraction

of the distinguished mutants.

For example, in the case of totinfo (last row in the ta-

bles), Proteum generated 6698 mutants, (6698−877) = 5811
of which were killed by both the full Siemens test suite and

5As Theorem 2 showed, there may be many minimal mutant sets for a
given set T , but all are of the same size. Hence, there is no reason to run
multiple trials and average the results, as was the case for minimal test sets.

also the set of 512 tests. Of these 6698 mutants, 835 were

distinguished. Of the 5811 killed mutants only 19 mutants,

or 0.3%, are needed for a minimal test set. Of the 834

distinguished killed mutants6, only 19 mutants, or 2.3%, are

needed for a minimal test set. By any measure, the number of

generated mutants far exceeds the number necessary.

The two tables given so far give the dimensions of the score

function for each program. For example, print_tokens

has a score function with 512 rows, of which 499 are distin-

guished, and 4336 columns, of which 437 are distinguished.

C. Reduced and Selective Mutation

We turn next to analyzing reduced mutation, the idea that

using fewer mutants is nearly as effective as the complete set

of mutants. We consider five reduced mutation approaches, one

random and four selective. The notion of selective mutation

was first suggested by Mathur [20], developed by Offutt et al.

[23], and studied extensively thereafter for both FORTRAN

[22], [21] and C [1].

We use the Proteum mutation tool suite. We use generic

labels for the approaches, and provide the Proteum names in

parentheses.

1) STMT: Statement Deletion (Proteum SSDL)

2) ROR: Relational Operator Replacement (Proteum

ORRN)

3) CON: Replace Scalars with Constants (Proteum CCSR)

4) 5RND: 5% random selection of all mutants

5) SELECT: An approximation of selective mutation (Pro-

teum: OOAN+OLLN+ORRN+OLNG)

STMT has been studied as a stand-alone, cost-effective

approach to mutation [6], [3], [26]. While ROR and CON

have not been studied specifically as proposals for stand-alone

operators, they are plausible candidates. A random percentage

of all mutants has been widely used to reduce the number of

mutants that need to be considered [19], [24]. We chose 5%

of random mutants because the number of mutants selected

approximated the mutants created by the SELECT strategy.

The SELECT strategy approximates the original selective

mutation definition from the Mothra system [22]. The Mothra

approach to selective mutation had five operators:

1) ABS: Absolute Value

2) AOR: Arithmetic Operator Replacement (Proteum:

OAAN)

3) LCR: Logical Connector Replacement (AND and OR)

(Proteum: OLLN)

4) ROR: Relational Operator Replacement (Proteum:

ORRN, but this does not include using the constants

true and false)

5) UOI: Unary Operator Insertion (Proteum, logic only:

OLNG)

Of these five operators, Proteum has corresponding match

for two and a partial match for two more. These matches are

indicated in parentheses in the list above.

6Of the 835 distinguished mutants, 834 are killed by the test set, and one
is live.

TABLE III
REDUCED MUTATION SCORES: TRADITIONAL VS. MINIMAL MUTANT

SETS

Program STMT ROR CON 5RND SELECT

print tokens 99 : 78 98 : 77 99 : 78 99 : 82 99 : 81

print tokens2 99 : 47 99 : 56 99 : 49 99 : 48 99 : 57

replace 97 : 31 97 : 38 99 : 57 99 : 56 98 : 48

schedule 97 : 68 94 : 53 98 : 65 98 : 67 97 : 65

schedule2 97 : 72 92 : 56 98 : 77 98 : 72 97 : 72

tcas 88 : 27 90 : 38 88 : 33 94 : 45 93 : 44

totinfo 97 : 38 99 : 59 99 : 39 99 : 54 99 : 60

Table III shows the results of analyzing these five ap-

proaches to reduced mutation in the context of the chosen

512 test cases. The rows in the tables are again the programs

from the Siemens suite. Each column of data represents one

of the five approaches to reduced mutation. Table entries are

designed to show the difference between traditional mutation

scores and a mutation score measured against the minimal

mutant set.

Each entry in the table is of the form X:Y. X is the mutation

score, as a percentage, obtained by a test set adequate to the

corresponding reduction strategy, against all mutants that are

killed by the chosen 512 test cases. Y is the mutation score,

again as a percentage, obtained by the same test set against a

minimal set of mutants, again in the context of the 512 test

cases.

The noteworthy aspect of this table is that although the tra-

ditional mutation scores generally seem excellent, the mutation

scores against the minimal mutant set are not nearly as good,

ranging from a low 27% to a high of 82%. One lesson from

this evaluation, consistent with other recent studies [11], is that

a mutation score measured over a large number of redundant

mutants is inflated–possibly to the point of being meaningless.

Figure 1 shows the data from the STMT column of Table

III in chart form. For each program, the left bar shows the

mutation score with respect to all mutants, and the right bar

shows the mutation score with respect to a minimal set of

mutants. The basic observation from the chart is that the

redundancy in the full set of mutants makes it difficult to

interpret mutations scores computed using the full set of

mutants.

To take a specific case, consider tcas. The STMT approach

appears to achieve a respectable score of 88% mutation

coverage. However, in terms of a minimal set of mutants,

statement deletion mutation only kills about one in four.

Next, we present some data about tests in the minimal test

sets. Table IV continues the analysis of reduced mutation.

This time the table shows how many mutants killed by the

512 test cases are generated by the technique, along with the

corresponding test size. Each value should be compared to

the reference value in the column labeled Minimal, which

(again) shows the number of mutants in the minimal set, along

with the corresponding test size. The average number of tests

required for the minimal mutant set is often larger than the

number of tests required by a reduced approach. The reason

is that the test sets for the reduced approaches are missing key

tests. Specifically, they are missing tests that kill mutants in

Fig. 1. Mutation Score vs. Minimal Mutation Score for STMT

a minimal mutant set. Put another way, the reduced mutation

approaches set omits key mutants; mutants that could lead to

very good tests.

TABLE IV
REDUCED MUTATION: MUTANTS GENERATED VS. TESTS

Program STMT ROR CON 5RND SELECT Minimal

print tokens 196:11 98: 9 358:10 190:11 138:10 28:12.4

print tokens2 203: 5 192: 8 445: 8 198: 9 244: 9 30:12.1

replace 219:23 264:27 1053:44 443:39 499:35 58:44.4

schedule 127:10 49: 7 78:13 95:12 84:10 42:14.5

schedule2 117: 9 75: 6 119:13 110:13 121:12 46:17.1

tcas 42:12 45:14 66:14 99:24 113:18 61:41.4

totinfo 110: 6 167:13 469:12 294:15 332:15 19:13.3

For example, consider tcas again. The STMT approach

generated 42 mutants that were killed by the 512 test cases,

which is in the neighborhood of the 61 mutants in the minimal

mutant set. Unfortunately, the choice of these 42 mutants is

far from optimal. A test set that kills these 42 mutants has

only 12 tests, compared to the average of 41.4 tests needed

to kill the minimal set of mutants. In other words, STMT is

generating about 1/3 the number of required tests, a fact that

was reflected in Table III in the poor STMT mutation score

of 27% against the minimal mutant set.

What is striking about Table IV is that in many cases,

significantly more mutants are generated than in the minimal

mutant set, but, in terms of achieving the best coverage, they

are not the optimal mutants, and significantly fewer tests than

needed for full coverage are generated. This table highlights

a research gap: it is clear that a small number of mutants

can force the generation of a very high quality test set,

but it is not known how to choose these mutants. The best

techniques in practice today, selective mutation and SDL-

mutation, are a very long way from generating mutant sets that

both include the desirable mutants and exclude unnecessary

(and, of course, equivalent) mutants. A complete solution is,

of course, theoretically impossible. But even modest partial

solutions have room to improve matters significantly. A key

point is that minimal mutant sets are not a replacement for

strategies such as reduced mutation–it is still necessary to

execute each mutant to create the set of minimal mutants.

Rather, minimal mutant sets give a bound against which to

evaluate techniques such as reduced mutation.

IV. RELATED WORK

The subsumption relation has been studied in a variety of

contexts for many years. Chusho observed that measuring

branch coverage over all branches in a program led to an

overestimation of quality, and defined the notion of essential

branches as a way of removing redundant branches from

coverage measures [2]. In this paper, dynamically subsumed

mutants play exactly the same role as non-essential branches

do in the Chusho analysis. The difference is that this paper is

“black-box,” whereas the Chusho paper considers the actual

structure of the code. Hence, the Chusho results hold for all

test sets; our results are specific to a particular test set T .

Harman and Jia defined the notion of subsuming Higher

Order Mutants (HOMs) [10]. The idea was that a single

HOM could stand in for several mutants. Langdon et al.

applied subsuming HOMs to relational operators [17]. Lau

and Yu identified subsumption relations between faults in

Disjunctive Normal Form (DNF) predicates and presented this

subsumption relation in a fault hierarchy [18]. Kaminski et

al.[12] extended this work by defining special HOMs, which,

though relatively few in number, still subsumed all of the

Lau and Yu hierarchy. In terms of the relationship to this

work, subsuming HOMs are defined by internal analysis of the

artifact under consideration; in contrast, we observe dynamic

subsumption with respect to a specific test set.

Kaminski et al. [15] observed that the four of the seven

mutants generated by Mothra’s Relational Operator Replace-

ment (ROR) were always subsumed by other mutants. The

special treatment here was that the subsumed ROR operators

depended on which operator appeared in the original code.

Just et al. raised exactly the point that raw mutation scores

led to overly optimistic evaluations of quality and defined

subsuming mutants in the context of the Conditional Operator

Replacement (COR) operator [11]. Again, in terms of the

relationship to this work, eliminating mutants in these papers is

done at the operator level before test cases are generated. Our

approach to subsumption is based on the artifact’s behavior

after a specific test set is chosen.

Given that test set minimization is NP-complete, various

researchers have developed test set minimization heuristics.

Harrold et al. gave an authoritative treatment [8]. Studies

have investigated whether minimizing test sets with respect to

various coverage criteria has an effect on fault detection of the

remaining tests. A positive result [28] reported on a case study

in which minimizing test sets with respect to the dataflow

“all-uses” coverage did not significantly reduce fault detection

ability. A subsequent study [25] on the Siemens suite came to

a contradictory conclusion: minimizing test sets with respect

to edge (or branch) coverage severely compromized fault

detection. The relevance of test set minimization to mutant

minimization is that minimal mutant sets are defined in terms

of minimal test sets; hence fault-detection bias introduced by

minimal test sets potentially affects minimal mutant sets as

well. Further research is needed to evaluate this issue.

V. DISCUSSION AND CONCLUSION

This paper has presented a way to identify precisely how

many mutants are needed in the context of a given test set.

The size of this set is much smaller than delivered by current

best-practice approaches to mutation. We conclude that there

is considerable scope for new approaches to mutation analysis

that consider only relatively few mutants while at the same

time thoroughly testing the underlying artifact.

Mutation score is widely used in the literature to evaluate

the quality of an approach to generating test cases. As noted

in Section IV, this approach has caused some disquiet in the

research community due to the presence of redundant mutants.

The results of this paper suggest a different methodology

for evaluating testing approaches. Rather than evaluating a

given approach against all mutants generated by some set of

operators, we propose that, in addition, the approach should be

evaluated against a minimal set of mutants. Any approach as

strong as the chosen mutation operators will achieve 100% in

either case. Weaker approaches can still be compared against

criteria such as random selection, but using a minimal set of

mutants for comparison removes the problem of redundant

mutants from the evaluation.

The minimization approach developed in this paper focused

on mutation analysis specifically to address the problem of

redundant mutants. However, since the approach uses only the

black-box score function, the model can also be applied to test

requirements from any other coverage criterion, e.g., statement

coverage, branch coverage, dataflow coverage, and so on.

The eventual goal of this line of research is to make

mutation testing cost-effective enough to use in practice. The

dynamic subsumption approach to minimizing the number of

mutants demonstrates that it is, indeed, possible to reduce the

number of mutants needed to a very small number. We hope

the theoretical structure presented in this paper will lead to

practical applications to dramatically reduce the number of

mutants generated by actual mutation systems.

ACKNOWLEDGMENT

Prof. Marcio Delamaro’s research is supported by FAPESP

(Fundação de Amparo a Pesquisa do Estado de São Paulo),

process number 2012/16950-5.

REFERENCES

[1] Ellen Francine Barbosa, Jose Carlos Maldonado, and Auri
Marcelo Rizzo Vincenzi. Toward the determination of sufficient
mutant operators for C. Software Testing, Verification, and Reliability,

Wiley, 11:113–136, 2001.

[2] T. Chusho. Test data selection and quality estimation based on the
concept of essential branches for path testing. IEEE Transactions on

Software Engineering, 13(5), May 1987.

[3] Marcio E. Delamaro, Lin Deng, Vinicius H. S. Durelli, Nan Li, and Jeff
Offutt. Experimental evaluation of SDL and one-op mutation for c. In
7th IEEE International Conference on Software Testing, Verification and

Validation (ICST 2014), Cleveland, Ohio, March 2014. To appear.

[4] Márcio E. Delamaro and José C. Maldonado. Proteum-A tool for the
assessment of test adequacy for C programs. In Proceedings of the

Conference on Performability in Computing Systems (PCS 96), pages
79–95, New Brunswick, NJ, July 1996.

[5] Richard A. DeMillo, Richard J. Lipton, and Fred G. Sayward. Hints on
test data selection: Help for the practicing programmer. IEEE Computer,
11(4):34–41, April 1978.

[6] Lin Deng, Jeff Offutt, and Nan Li. Empirical evaluation of the statement
deletion mutation operator. In 6th IEEE International Conference on

Software Testing, Verification and Validation (ICST 2013), Luxembourg,
March 2013.

[7] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering, 10(4):405–435,
October 2005.

[8] Mary Jean Harrold, R. Gupta, and Mary Lou Soffa. A methodology
for controlling the size of a test suite. ACM Transactions on Software

Engineering and Methodology, 2(3):270–285, July 1993.

[9] Marlie Hutchins, H. Foster, Thomas Goradia, and Thomas Ostrand.
Experiments on the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In Proceedings of the Sixteenth International

Conference on Software Engineering, pages 191–200, Sorrento, Italy,
May 1994. IEEE Computer Society Press.

[10] Yue Jia and Mark Harman. Constructing subtle faults using higher
order mutation testing. In 2008 Eighth IEEE International Working

Conference on Source Code Analysis and Manipulation, pages 249–258,
Beijing, September 2008.

[11] Ren Just, Gregory M. Kapfhammer, and Franz Schweiggert. Do
redundant mutants affect the effectiveness and efficiency of mutation
analysis? In Eighth Workshop on Mutation Analysis (IEEE Mutation

2012), Montreal, Canada, April 2012.

[12] Garrett Kaminski and Paul Ammann. Using a fault hierarchy to improve
the efficiency of DNF logic mutation testing. In 2nd IEEE International

Conference on Software Testing, Verification and Validation (ICST

2009), pages 386–395, Denver, CO, April 2009.
[13] Garrett Kaminski, Paul Ammann, and Jeff Offutt. Better predicate

testing. In Sixth Workshop on Automation of Software Test (AST 2011),
pages 57–63, Honolulu HI, USA, May 2011.

[14] Garrett Kaminski, Paul Ammann, and Jeff Offutt. Improving logic-
based testing. Journal of Systems and Software, Elsevier, 86:2002–2012,
August 2013.

[15] Garrett Kaminski, Paul Ammann, and Jeff Offutt. Improving logic-based
testing. Journal of Systems and Software, Elsevier, 86(8):2002–2012,
2013.

[16] Richard M. Karp. Reducibility among combinatorial problems. In R.E.
Miller and J.W. Thatcher, editors, Complexity of Computer Computa-

tions, pages 85–103. Plenum, New York, 1972.
[17] William B. Langdon, Mark Harman, and Yue Jia. Efficient multi

objective higher order mutation testing with genetic programming.
Journal of Systems and Software, Elsevier, 83(12):2416–2430, 2010.

[18] M. F. Lau and Y. T. Yu. An extended fault class hierarchy for
specification-based testing. ACM Transactions on Software Engineering

Methodology, 14(3):247–276, July 2005.
[19] Adidya Mathur and W. Eric Wong. Evaluation of the cost of alternative

mutation testing strategies. In Proceedings of the Seventh Brazilian

Symposium on Software Engineering, Rio de Janiero, Brazil, September
1993.

[20] Aditya Mathur. Performance, effectiveness, and reliability issues in
software testing. In Proceedings of the Fifteenth Annual Interna-

tional Computer Software and Applications Conference, pages 604–605,
Tokyo, Japan, September 1991.

[21] Elfurjani S. Mresa and Leonardo Bottaci. Efficiency of mutation
operators and selective mutation strategies: An empirical study. Soft-

ware Testing, Verification, and Reliability, Wiley, 9(4):205–232, 1999.
December.

[22] Jeff Offutt, Ammei Lee, Gregg Rothermel, Roland Untch, and Christian
Zapf. An experimental determination of sufficient mutation operators.
ACM Transactions on Software Engineering Methodology, 5(2):99–118,
April 1996.

[23] Jeff Offutt, Gregg Rothermel, and Christian Zapf. An experimental
evaluation of selective mutation. In Proceedings of the Fifteenth Interna-

tional Conference on Software Engineering, pages 100–107, Baltimore,
MD, May 1993. IEEE Computer Society Press.

[24] Mike Papadikis and Nicos Malevris. An empirical evaluation of the
first and second order mutation testing strategies. In Sixth Workshop on

Mutation Analysis (IEEE Mutation 2010), pages 90–99, Paris, France,
April 2010.

[25] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong.
An empirical study of the effects of test set minimization on fault detec-
tion capabilities of test suites. In 14th IEEE International Conference on

Software Maintenance (ICSM 1998), pages 34–43, Bethesda, Maryland,
1998. IEEE.

[26] Roland Untch. On reduced neighborhood mutation analysis using a
single mutagenic operator. In ACM Southeast Regional Conference,
pages 19–21, Clemson SC, March 2009.

[27] W. Eric Wong, M. E. Delamaro, J. C. Maldonado, and Aditya P. Mathur.
Constrained mutation in C programs. In Proceedings of the 8th Brazilian

Symposium on Software Engineering, pages 439–452, Curitiba, Brazil,
October 1994.

[28] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur.
Effect of test set minimization on fault detection effectiveness. In Pro-

ceedings of the 17th International Conference on Software Engineering

(ICSE 1995), pages 41–50, Seattle, Washington, 1995. ACM.
[29] W. Eric Wong and Aditya P. Mathur. Reducing the cost of mutation

testing: An empirical study. Journal of Systems and Software, Elsevier,
31(3):185–196, December 1995.

