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ARTICLE

Establishment of a morphological atlas of the
Caenorhabditis elegans embryo using deep-learning-
based 4D segmentation
Jianfeng Cao 1,8, Guoye Guan 2,8, Vincy Wing Sze Ho3,4,8, Ming-Kin Wong3, Lu-Yan Chan3,

Chao Tang 2,5,6✉, Zhongying Zhao 3,7✉ & Hong Yan1✉

The invariant development and transparent body of the nematode Caenorhabditis elegans

enables complete delineation of cell lineages throughout development. Despite extensive

studies of cell division, cell migration and cell fate differentiation, cell morphology during

development has not yet been systematically characterized in any metazoan, including C.

elegans. This knowledge gap substantially hampers many studies in both developmental and

cell biology. Here we report an automatic pipeline, CShaper, which combines automated

segmentation of fluorescently labeled membranes with automated cell lineage tracing. We

apply this pipeline to quantify morphological parameters of densely packed cells in 17

developing C. elegans embryos. Consequently, we generate a time-lapse 3D atlas of cell

morphology for the C. elegans embryo from the 4- to 350-cell stages, including cell shape,

volume, surface area, migration, nucleus position and cell-cell contact with resolved cell

identities. We anticipate that CShaper and the morphological atlas will stimulate and enhance

further studies in the fields of developmental biology, cell biology and biomechanics.
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E
mbryogenesis in metazoans involves multidimensional,
spatiotemporal cellular changes, including cell proliferation,
differentiation, and morphogenesis. The eutelic organism

Caenorhabditis elegans adopts an invariant developmental tra-
jectory, with reproducible cell lineages and consistent cell division
timings, division orientations, cell migration trajectories, and fate
differentiations1. Therefore, it has been widely used as a model
organism for developmental biology research at the cellular level,
affording exceptional temporal resolution to such research2–5.
Previous studies have constructed quantitative C. elegans devel-
opmental atlases, including atlases of cell division timing6, gene
expression and cell position7–9, and cell–cell contact mapping and
signaling2,10. However, due to the lack of an effective cell-
membrane marker for the later stages of embryogenesis and a
reliable algorithm for the segmentation of time-lapse three-
dimensional (3D; hereafter referred to as 4D) images, most of the
existing studies have been based on theoretical prediction or
modeling, which commonly use nucleus position as a proxy of
cell location for cell segmentation. During metazoan embry-
ogenesis, cell morphology is tightly associated with several bio-
logical processes, including cell-cycle control11, spindle
formation12, cell-fate asymmetry and differentiation13, inter-
cellular signaling2,14,15, cytomechanics, morphogenesis, and
organogenesis16–18. However, a precise knowledge of changes in
cell morphology during development (e.g., cell shape, cell size,
and cell neighborhood) is lacking.

Although recent advances in confocal microscopy have pro-
moted in vivo 4D imaging of the C. elegans embryo throughout
embryogenesis, the large quantity of volumetric imaging data
makes the visual identification of meaningful morphological
changes tedious, and the resulting output is not usually quanti-
tative, consequently hampering further functional characteriza-
tion. To facilitate morphological and functional studies at a
cellular resolution, recent studies have highlighted the need for
3D segmentation of cellular surfaces in addition to nuclei19,20,
which considerably reduce the difficulty in analyzing large-scale
4D images. Compared with manual annotation, automatic seg-
mentation can provide objective quantification and improve
consistency, reproducibility, and efficiency in defining cell mor-
phology. However, crowded cells and long imaging durations
combined with modest image quality due to constraints such as
embryo viability, phototoxicity, and photobleaching present a
significant challenge for cell segmentation. Unlike nuclei, which
are localized and well-separated ellipsoid components, cell
membranes are thin planar structures, forming complicated
networks. This partially explains why cell-membrane-based seg-
mentation methods are rare, whereas nucleus segmentation and
tracing tools, such as StarryNite and AceTree21,22, are well
developed. Additionally, as shown in Supplementary Fig. 1, laser
attenuation makes segmentation more challenging for deeper
slices. Such problems are aggravated when the membrane is
parallel to the focal plane. In theory, a longer exposure duration
or a higher laser power may improve the image quality in these
cases. However, a careful tradeoff between image quality and
phototoxicity has to be made during 4D imaging.

In the past decade, several attempts have been made to boost
the performance of membrane surface segmentation. Classical
techniques are based on predefined models and image intensity
features. Among these, active contour and level set are the two
most convincing methods for segmenting images. Active contour
methods treat segmentation as an energy minimization process
whereby the external image forces push the contours toward
object boundaries, whereas internal forces resist the deformation.
To mediate the internal and external forces, different evolution
equations are utilized to control the deformation process

precisely23–26. The level set is designed to diminish the difficulty
in finding a desirable representation force by embedding the
boundary curve as a real-valued solution to an equation
describing the topological features, such as splits and holes. Using
coupling constraints in level set evolution, Nath et al.27 proposed
a computationally efficient method to segment hundreds of cells
simultaneously. Kiss et al.28 used level sets to segment plant tis-
sues at multiple scales, effectively reducing the error margin at
blurry regions. In practice, however, the implementation of level
sets requires considerable computational resources and may fail
at incomplete cell boundaries. Xing et al.29 provided a compre-
hensive review of classical cell segmentation techniques. For such
classical methods, a data-dependent, parameterized preprocessing
stage is always required, otherwise the system would be prone to
under- or over-segmentation errors.

Recently, deep-learning-based methods have been identified as
promising tools for recognition tasks, such as denoising30–33 and
image synthesis34–37. Compared with classical methods, con-
volutional neural network (CNN) shows remarkable performance
in biological image analysis by mining subtle texture and shape
changes. Since the U-Net was proposed by Ronneberger et al.38,
such type of encoder-and-decoder structure has greatly enhanced
learning-based segmentation of medical images for diagnostic
purposes39. For fluorescence images, the ability of deep learning
to assist data filtering and classification has also been
demonstrated37,40. To mitigate the complexity of cellular net-
works, the segmentation process is usually carried out as multiple
intermediate tasks, such as nucleus detection and membrane
segmentation41,42. For example, to harness the full power of
watershed transformation, regression networks are utilized to
predict a distance map, followed by different seeding
procedures43,44. However, an integrated framework is needed to
simultaneously segment membranes, trace nuclei, and identify
global cell morphologies with defined cell identities over
development.

Here we report an integrated pipeline, CShaper, for analyzing
cell shape and constructing a 4D morphological atlas during C.
elegans embryogenesis (Fig. 1). First, we generate a C. elegans
transgenic strain that ubiquitously expresses both a GFP (green)
and an mCherry (red) fluorescence marker in the cell nuclei and
membranes, respectively, throughout embryonic development.
Second, we develop a deep-learning-based method, DMapNet, to
segment membranes of 17 embryos. Instead of segmenting cells
as a binary classification task directly, DMapNet generates a
discrete distance map from the membrane image stack. In total, it
takes ~30 min for CShaper to process 3D stacks of an embryo
from the 4- to 350-cell stages with an imaging interval of ~1.5
min. Outputs from nucleus-tracing tools, StarryNite and AceTree,
are integrated to name the segmented regions and identify inner
cavities in DMapNet (Supplementary Fig. 2). Third, we trace
nuclei in another 29 embryos also with StarryNite and AceTree to
allow normalization of nuclei positions and identities over time.
Finally, we establish a spatiotemporal morphological atlas for C.
elegans development from the 4- to 350-cell stages using the data
of nuclei positions, cell identities, and cell boundaries, including
the morphological dynamics of 656 unique cells and 479 repro-
ducible, effective cell–cell contacts that are defined by sufficient
contact area over two continuous time points. We generate such
an atlas by minimizing the intrinsic and extrinsic positional
variations among them through linear normalization9. It should
be noted that 49 C. elegans wild-type embryos are used for three
different purposes (Supplementary Data 1). While 4 of the 49
embryos (Samples 01–04) are used for network training and
evaluation, 46 embryos (Samples 04–49) are used for automated
lineaging by StarryNite and AceTree, which provide nuclei
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positions and identities to facilitate spatial and temporal nor-
malization and establish a standardized atlas of the C. elegans
embryo. Furthermore, 17 of the 46 embryos (Samples 04–20) are
simultaneously labeled for both nuclei and membranes and used
to generate morphological information using CShaper (see
“Methods”). Evaluation of segmentation results (e.g., cell-wise
overlap ratio and surface deviation) and cell morphologies
established in previous experimental data (e.g., cell–cell contacts)
demonstrate a robust performance of CShaper. This morpholo-
gical atlas will not only facilitate the investigation of unanswered
questions such as developmental variability of cell size between
individual embryos, but also help revisit and reevaluate previously
reported phenomena, such as active deformation of cells45

and intercellular signaling transduction2,14,15,46 with a higher
confidence.

Results
Comparison of performance with existing methods. Based on
manual annotations (see “Methods”), we compared CShaper with
other methods in cell segmentation, including 3DUNet42, Sin-
gleCellDetector43, FusionNet47, RACE48, and CellProfiler49. To
allow a fair comparison, watershed algorithms were appended as
a postprocessing procedure for 3DUNet and FusionNet where
only binary membrane segmentation is available. However, in
contrast to CShaper, the seeds were derived from the results of
AceTree directly. By only replacing the last layer of DMapNet
(see “Methods”) with two channel filters, a variant of CShaper,
termed B-CShaper, was also tested to examine the superiority of
the distance-constrained learning used by CShaper to the binary
classification in B-CShaper. Parameter settings and implementa-
tions for all methods are detailed in Supplementary Note 1 and
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Fig. 1 CShaper pipeline. a 3D projections of image stacks of GFP-labeled nuclei (green) and mCherry-labeled membranes (red) at the selected time points

between 2–4-cell stages (top) and 4–350-cell stages (middle). Nuclei positions determined by automated lineaging tools from the 4- to 350-cell stages are

shown at the bottom. Scale bar, 10 μm. b Framework of CShaper. Membrane images are transformed into discrete distance maps by a distance-aware

neural network, DMapNet, after which minima clustering serves as a seeding procedure for the watershed segmentation. Based on the nucleus lineage

from automated lineaging tools, membrane-wrapped compartments in the segmentations with or without a nucleus are denoted as cell or cavity,

respectively. Finally, time-lapse 3D cell shapes across development with defined cell identity are generated (right). Cells that do not exist during the

imaging period are indicated with a red cross.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19863-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6254 | https://doi.org/10.1038/s41467-020-19863-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Supplementary Table 1. Note that for each segmented region,
labels were unified according to the ground truth based on two
principles, maximizing overlapped regions and assigning a unique
label to each pixel.

The dice ratio, as a pixel-level score, is widely used to measure
the similarity between computational segmentation results and
the ground truth. Given two areas, the dice ratio is defined as the
ratio between the overlapping region and the overall area19. After
testing embryos at different cell stages, CShaper obtained a score
of 95.95 ± 2.36%, outperforming other methods, in most cases by
a significant margin (Fig. 2a, p ≤ 0.05, one-sided Wilcoxon rank-
sum test). Therefore, in terms of the overlapped volume criteria,
CShaper segmentation results were highly consistent with manual

annotations. Nevertheless, considering that the dice coefficient is
limited when quantifying the surface misalignment in the
segmentation, we simultaneously adopted the Hausdorff distance
to evaluate how close the predicted surface shape approximates
the reference annotation. While the Hausdorff distance represents
the largest one of all distances from a voxel in one set to the
closest voxel in the other set, the bidirectional Hausdorff distance
was defined as:
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Fig. 2 Benchmarking of segmentation results. a–c Evaluations based on manual annotations of cells in three independent wild-type samples (02–04) with

seven time points per embryo. a The dice ratio of the segmentations generated by 3DUNet, CellProfiler, FusionNet, RACE, SingleCellDetector, B-CShaper,

and CShaper. Cell numbers are averaged at corresponding time points for each of the three embryos. Significance level is derived by one-sided Wilcoxon

rank-sum test over n= 3 independent embryos (n.s. non significant, p > 0.10; *p≤ 0.10; **p≤ 0.05); error bar represents standard deviation (SD). b The

average Hausdorff distance between the segmentation results produced by these methods and the ground truth for each sample. Significance level is

derived by one-sided Wilcoxon rank-sum test over n= 353, 261, and 470 independent cells for Samples 02–04, respectively (***p≤ 0.01); error bar

represents standard deviation (SD). c Object-level F1 scores based on 1084 independent cells at different IoU thresholds. d, e Statistics describing

additional 17 samples (04–20) imaged and segmented spanning the 4– to 350-cell stages. The embryos’ time scales are proportionally normalized to their

average. d Distribution of cell volume inconsistency coefficient (ρc) over time (tc). e The number and ratio of lost cells over developmental time, where the

last time point of the four-cell stage is set as the starting time point (indicated with a black point). Each color represents an individual embryo. Solid and

dashed lines denote the total number of cells that were identified by nucleus tracing (total) and unsuccessfully segmented (lost), respectively. Source data

are provided as a Source Data file.
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where Vp and VGT are the voxel sets of segmentation and
annotation for each cell, respectively. The smaller the Hausdorff
distance, the better the surface approximation. As shown in
Fig. 2b, CShaper had a surface deviation of 0.81 ± 1.59 μm, which
was significantly smaller than that of any other methods (p ≤ 0.01,
one-sided Wilcoxon rank-sum test). The average cellular
diameter was 49.70 ± 21.94 μm in our evaluated samples.

The previously mentioned pixel-level scores cannot profile
object-level errors, such as cell merging and splitting within an
image. Therefore, we employed the segmentation F1 score,
proposed by Caicedo et al.50, to benchmark the object-level
performance of CShaper. First, like the dice ratio, the
Intersection-over-Union (IoU) ratio ðVP \VGTÞ=ðVP ∪ VGTÞ
was defined for each pair of cells. A threshold, t, for the IoU
can divide segmentation results into three groups, TP (correctly
identified cells), FN (missed cells), and FP (wrongly identified
cells). With t ranging from 0.50 to 0.95 by a step size Δt= 0.05,
each method was evaluated repeatedly by the function
F1 ¼ 2TP

2TPþFNþFP
. This F1 score similarly showed that CShaper is

more accurate and generates robust cell boundaries compared to
previous methods (Fig. 2c). Based on the segmentation results at
0.7 IoU, we also reported the other object-level criteria, such as
split, merge, precision, and recall scores, in Supplementary
Table 2.

To deliver a perceptual understanding of the differences of
these methods in processing the C. elegans images, we listed
segmentation examples in Supplementary Fig. 3, corresponding
to time point 84 of Sample 04 in Fig. 2a. Notably, FusionNet
exhibited a severe leakage at the top of the embryo, where the
single-layer membrane was too weak to be recognized due to laser
power attenuation. Similarly, a loss of cells and unrecognizable
boundaries were common in the segmentations produced by
3DUNet, CellProfiler, and B-CShaper. RACE and SingleCellDe-
tector reduced the leakage to some extent by stacking slices
segmented separately. However, the lack of inter-slice informa-
tion introduced a distorted shape that tended to be flat at the
cellular boundary. The superiority of CShaper can be ascribed to
the following improvements:

(1) CShaper can restore lost membranes. In a microscopic
image, cell membranes perpendicular to the focal axis are
often blurry or not imaged at all. This problem is
aggravated at the outer surface where only one membrane
layer is available for detection. By predicting a distance
map, CShaper provides an implicit shape representation in
the learning process. A small local error in the distance map
will affect the value of multiple points globally and further
compensate for regions in low-contrast images. Essentially,
the distance map can be treated as the prediction
probability distribution of the voxel being the membrane,
thereby making CShaper more effective for segmenting
membranes with weak signal compared to the hard binary
classification.

(2) The powerful seeding strategy reduces over-segmentation
errors. Although watershed transformation is outstanding
in instance segmentation43,44, classical seeding methods,
such as H-maximum and Mask-CNN detection, are prone
to either over-segmentation or considerable computation
resource. In CShaper, the weighted seeds graph allows
CShaper to be easily adapted to cellular size and shape
changes, permitting identification of potential cavities that
are not associated with any nucleus.

Volume inconsistency and cell loss ratio. In order to evaluate
the performance of CShaper on additional datasets when

annotations are available, we quantitatively measured the volume
inconsistencies and lost cells in time-lapse segmentations of 17
wild-type embryos, which were imaged from the 4- to 350-cell
stages (Supplementary Data 1, Samples 04–20). CShaper seg-
ments each frame independently, without capturing typical
temporal patterns; however, successively imaged cells were
assumed to have temporally consistent size, although limited
variance may exist when we consider specific biological dynamics
such as apoptosis1. Therefore, we can profile the performance of
CShaper by checking the inconsistency of cell volumes across
many consecutive time-lapse images.

Given the cell lineages output by StarryNite and AceTree, the
lifespan of each nucleus is precisely specified. Such time intervals
can be used to infer the lifespans of specific cells directly except
the frames at the beginning and end of each cell division, where
the daughters of a dividing cell were labeled as the mother cell
instead of independent cells because the two newborn nuclei still
shared a membrane system. For a given cell c, the volume
inconsistency ρc was defined as the ratio between the standard
deviation and the mean of the cell volume across its lifespan. A
smaller ρc means that the segmentation of cell c has a better
temporal consistency in volume, thus yielding higher segmenta-
tion performance. To differentiate errors at different develop-
mental stages, the middle of a cell’s lifespan was denoted as tc,
which was normalized globally and proportionally relative to the
average of all cell lifespans in each of the 17 samples. The
distribution of inconsistency coefficient (tc, ρc) indicated that
most segmented cells have relatively small volume variation
throughout development (Fig. 2d). Although the temporal
information is not incorporated in CShaper, the resultant
volumes are consistent between consecutive time points. As the
increasing number of cells and the low signal-to-noise ratio
impose challenges in precisely segmenting a crowd of cells, the
inconsistency increases dramatically after an embryo develops up
to the 200-cell stage (i.e., the start of collective divisions of AB128
cells). The ρc may fail to capture errors when a cell is lost in too
many time points within its lifespan, but such case only accounts
for a small fraction in the 17 embryo samples (Supplementary
Table 3). Over 80% of cells are successfully segmented with <10%
of their lifespans missed. An example of the segmentation results
from the 4- to 350-cell stages is provided for the visual inspection
of performance (Supplementary Movie 1).

As the cell nucleus is not involved at the segmentation stage,
we can also evaluate the ratio of lost cells according to pairing
errors (Supplementary Note 2). It shows that prior to the 200-cell
stage, the cell loss ratio is below 5% for each time point in each
embryo (Fig. 2e). As the number of cells increases, the cell loss
ratio increases at a much higher rate as most embryonic cells
enter their ninth round of division, producing around 350 cells.
However, the lost cells across the entire embryos account for only
a small proportion of the total cells. During the 200–350-cell
stages, the cell loss ratio is below 18% for each time point in each
embryo (Fig. 2e). The data quality and reproducibility are
described in detail below.

Normalization and standardization. Based on quality-control
standards established before (see “Methods”)6,9, 46 wild-type
embryos (29 with nucleus tracing alone and 17 with both nucleus
tracing and membrane segmentation) imaged from the 4- to 350-
cell stages were normalized and used to construct a morpholo-
gical atlas of early C. elegans development (Supplementary
Data 1). First, both cell nuclei (hereafter referred to as cell posi-
tions) and cell membranes were quantified and placed in a rec-
tangular coordinate system, where the axes x, y, and z denote
anterior–posterior, left–right (L–R), and dorsal–ventral (D–V)
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axes, respectively. Second, based on the known, conserved
developmental landmarks during C. elegans embryogenesis, i.e.,
the collective synchronous divisions and founder cell generations,
54 specific moments were selected to illustrate the developmental
stages (Supplementary Data 2). Third, cell positions of all 46
embryos were linearly normalized to minimize their positional
variation, according to a proposed computational pipeline con-
sisting of consecutive rounds of rotation, translation, and scaling9.
Note that the 29 samples with only nuclei positions were used to
increase the sample size and help minimize the global positional
variation between individual embryos. These 29 samples also
provided information regarding nuclear distribution and
dynamics. Finally, all embryo samples were merged and

normalized into the same framework, producing a standard
dataset describing cell morphology, variation-minimized cell
position and reproducible, effective cell–cell contact (Fig. 3a–c;
see “Methods”). All 17 embryos with segmented cell morpholo-
gies were embodied by a unified cylindroid, approximately with a
height of 18 μm, a semimajor axis of 27 μm and a semiminor axis
of 18 μm (Supplementary Figs. 4–6).

Data quality and reproducibility in successfully segmented
cells. All 17 wild-type embryos with mCherry-labeled cell mem-
branes were processed using CShaper. To achieve high data
quality and reproducibility for the atlas, we demanded that a total
of 656 unique cells from different lineages, which have a complete
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Fig. 3 A morphological atlas during C. elegans embryogenesis. a–c Different dimensions of a standardized spatiotemporal reference, illustrated using the

12-cell stage as an example. The x, y, and z axes represent the anterior–posterior (A–P), left–right (L–R), and dorsal–ventral (D–V) axes, respectively, and

each color denotes one specific blast cell as indicated. a 3D representations of four wild-type embryos reconstructed with membrane label (Samples

04–07). b Spatial distribution of cell position (nuclei) of 46 embryos (Samples 04–49). c Cellular spatial deviation and reproducible cell–cell contact

mapping. The sphere radius represents spatial deviation Δr defined by the root-mean-square deviation (RMSD, Δr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
PN

i¼1jri � rjÞ=N
q

, where N denotes

the total number of embryos and ri denotes the cell position in the ith embryo). Each gray line represents reproducible and effective contact between cells

under specific filter criteria: scontact/Ssurface≥ 1/48, Tcontact≥ 3min, Nreplicate= Nembryo (see “Methods”). d, e Reproducibility and variability of cell volume

and cell surface area, tested using proportionally normalized data from all 322 cells with a complete lifespan (Supplementary Data 3). Each color represents

an individual embryo. Top-left insets: data graphed using original data prior to normalization. Bottom-right insets: variation coefficients of each cell among

the 17 embryos using the normalized data. f Criteria for defining effective cell–cell contact (red). The whole pool of cell–cell contacts detected and the ones

filtered out through different criteria are symbolized by circles with different areas and colors. Source data are provided as a Source Data file.
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or partial cell-cycle length recorded, be consistently present and
identified in all 17 embryos subjected to segmentation, including
AB2–AB256, EMS, P2–P4, Z2 and Z3, MS1–MS32, E1–E16,
C1–C16, and D1–D8 (Supplementary Data 3). Notably, 322 of
these 656 cells had a complete lifespan and were successfully
segmented without any frames (time points) lost in at least three
embryos, while 171 of these 322 cells were successfully segmented
in all 17 embryos throughout their lifespans (Supplementary
Data 4 and Supplementary Note 2). The remaining 334 cells with
an incomplete lifespan were segmented for their known time
points. The successfully segmented cells provide quantitative
information about cell morphologies, including cell shapes,
volumes, surface areas, migrations, nuclei positions, and cell–cell
contacts, with resolved cell identities at about 1.5-min intervals
during embryogenesis.

Cell size. During C. elegans embryogenesis, cell size has been
shown to be implicated in cell-cycle control, spindle formation,
and differentiation11–13. One fascinating question in develop-
mental biology is how an embryo maintains accuracy both spa-
tially and temporally throughout its development. In C. elegans,
cell-level precision has been reported for many parameters,
including division timing, division orientation, gene expression,
position, and migration1,6–10,51. However, little is known about
the regulatory control of cell size and its variability over devel-
opment. To this end, for both cell volume and cell surface area,
we analyzed the 322 cells with a complete lifespan and normal-
ized the data across all 17 embryos relative to their averages
(Fig. 3d, e). Strikingly, the goodness of fit for both cell volume and
cell surface area in each embryo is larger than 0.99, indicating a
high accuracy and reproducibility in cell-size control during
embryogenesis. Besides, there is an intrinsic variability of ±10% in
the total embryo size (Supplementary Table 4). For each of the
322 cells, the variation coefficients of cell size among individual
embryos range between around 0 and 0.2, indicating that a
considerable level of variability is tolerated for both cell volume
and cell surface area (Fig. 3d, e and Supplementary Table 5).
Despite the relatively high variation coefficients, the size ratio
between sister cells (161 pairs in total) is less variable than the
overall cell size, suggesting a more precise control over the size
ratio between sister daughter cells during cytokinesis than over
the absolute size of each daughter. This is the case for both cell
volume and cell surface area, under all the four measurements
tested (i.e., average, minimum, maximum, and maximum of 99%
data). For example, 99% of the individual cells have a variation
coefficient of ≤0.1999 in cell volume, while 99% of the sister cell
pairs have a variation coefficient of ≤0.1670 in volume ratio
(Fig. 3d, e, Supplementary Fig. 7a, b, d, e, and Supplementary
Table 5). Moreover, there is no significant or strong correlation
between the ratio of cell volume or cell surface area and their
variations for the 322 cells (161 cell pairs) among 17 embryos
(Supplementary Fig. 7c, f). Availability of this standardized
morphological atlas is expected to catalyze functional character-
ization of cellular behaviors, especially when combined with gene
perturbation experiments.

Cell–cell contact. During metazoan development, fate induction
(e.g., by Wnt14 and Notch signaling2,52) and spindle
formation15,53,54 often demand direct and continuous contact
between specific cells to achieve a functional interaction. For
example, binding of a receptor by a ligand to achieve consequent
signaling transduction2,14,15,46,52. Digitized embryos with detailed
morphological information permit the inference of such inter-
actions using parameters, such as contact area and duration.
Given the significance of cell–cell interactions for inducing cell

fate transitions and spindle formation, we defined effective con-
tacts between specific cells by applying three empirical criteria
(see “Methods”):

(1) A contact area no <1/48 (≈2.08%) of a specific cell’s
surface area.

(2) A consecutive contact duration no shorter than two
imaging time points (roughly 3 min).

(3) Reproducible satisfaction of the above two criteria in all 17
embryo samples.

Among the 656 cells indexed from the 4- to 350-cell stages, we
selected the cells that were successfully segmented for all their
time points in all 17 embryos (222 cells) for cell–cell contact
identification. We detected 3011 independent pairs of cell–cell
contacts, i.e., with a contact area larger than zero for at least one
time point in at least one embryo, and 479 of these 3011 contact
pairs were defined as effective contacts using the three above
criteria (Fig. 3f and Supplementary Data 5). As these effective
contacts were reproducibly observed in all embryos, it is possible
that they have a function in regulating embryonic development
and warrant further investigation. Several intercellular signaling
events based on physical cell–cell contact have been identified
experimentally as playing an important role in spindle formation,
cell-fate induction, and asymmetric segregation of cytoplasmic
components2,14,15,46,52. Here, we compared 10 well-established
signaling pairs with our 479 pairs of effective cell–cell contacts
(Supplementary Data 6). Most of the known contact pairs satisfy
our filtering criteria, with the exception of MSapp→ABplpapp,
C→ABar, and MSappp→ABplpppp. It is found that the contact
between MSapp and ABplpapp was lost in 2 of the 17 embryos
due to segmentation failure. In contrast, the contact between C
and ABar, which is critical for Wnt signaling from the former to
the latter to coordinate division orientation, was reproducibly
observed in all of the 17 wild-type embryos for at least two
consecutive time points (≈3 min). However, the relative contact
area was smaller than the contact area cutoff in 2 out of the 17
embryos (i.e., scontact/Ssurface < 1/48; Samples 04 and 17), revealing
that this threshold for identifying valid cell–cell contact is
expected to produce some false negatives of biologically relevant
contacts. Notably, our criterion for effective contact is less
stringent than that used previously (≈6.5%), which was estimated
based on the contact areas of the second Notch interactions
during C. elegans embryogenesis2. The contact duration between
MSappp and ABplpppp lasted for only one time point (≈1.5 min)
in embryo Sample 13, suggesting that the requirement of contact
duration for certain cell–cell signaling may be shorter than our
cutoff (two time points ≈3.0 min), which again may lead to some
false negatives. This could also be due to some other redundant
signaling events which compensate this interaction. Alternatively,
this physical interaction may be mediated by diffusible ligands in
proximity as proposed previously55. The false negative may be
unavoidable using these specific requirements, because the actual
sensitivity of intercellular signaling including both contact area
and contact duration is still poorly understood. Nevertheless,
these arbitrary thresholds can be readjusted in certain circum-
stance when the contact area and contact duration for more
experimentally validated signaling events become available. For
example, when a signaling event can be permitted under a less
stringent physical state (i.e., relative contact area < 1/48 and
contact duration < 3 min), our method and data may uncover
more functional contacts in vivo.

Cell shape. Changes in cell shape over time reveal the dynamics
of cellular mechanical properties, including, but not limited to,
the passive force due to the surrounding environment, stiffness,
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and adhesion16,18. In addition, the changing shapes of cells
during development may suggest ongoing cell signal transduc-
tion, division, or migration, which are processes specifically
associated with cell identity and cell fate45,54,56. Our membrane
segmentation allows accurate delineation of cell shape dynamics
throughout development with a resolution of ~1.5 min. To
characterize shape changes quantitatively, we evaluated the irre-
gularity of cell shape. For a 3D object, the surface-to-volume ratio
S/V is positively correlated with its irregularity. To quantify a
cell’s shape irregularity, we transformed both cell surface area, S,
and cell volume, V, into the length dimension and calculated their
ratio η as follows:

η ¼
ffiffi

S
p
ffiffiffi

V3
p ; ð2Þ

where the irregularity score η only depends on the shape of an
object but not on its volume or surface area, and will reach its

minimal value, 2
1
3 ´ 3

1
3 ´ π

1
6 � 2:1991, in an ideal sphere, as cal-

culated by the well-known formulae of sphere volume
(V ¼ 4

3
πR3) and surface area (S= 4πR2). The ratio η increases

with the number of tiny spikes on the surface as shown by the five
Platonic polyhedra in Fig. 4a57. We calculated the dynamics of η
for all 322 cells with a complete lifespan (Fig. 4b). The irregularity
η ranges from 2.3479 to 2.8060 in the cells examined across their
lifespans, while their temporal averages range from 2.4011 to
2.5934, suggesting that the cells are mostly deformed in a severe
level similar to those in octahedron, cube, and tetrahedron, and
are not as round as a perfect sphere, icosahedron, or dodecahe-
dron (Fig. 4a, b and Supplementary Data 7). As with the division
timing, the progenies of the P1 cell are less regularly shaped than
those of the AB cell until roughly the 200-cell stage (Fig. 4b and
Supplementary Fig. 8). Regarding the irregularity scores averaged
over the cells’ lifespan, the top 10% cells with the most irregular
shapes consist of 11 AB progenies and 22 P1 progenies, though
the total number of AB progeny is about twice of that of P1
(Supplementary Data 7). In terms of the last generation of cells
examined, the AB128 cells have an irregularity score of 2.4437 ±
0.0174, while the E8 cells reach a higher score of 2.5206 ± 0.0228,
indicating more irregularity in the shape of E8 cells compared to
AB128 cells. The exceptionally high score seen for E8 cells seems
to be due to numerous spikes or wrinkles on the cells’ surfaces
(Supplementary Fig. 9).

Further characterization of the correlation between shape
irregularity and cell fate sheds light on how cell shape is coupled
with fate differentiation during morphogenesis and organogen-
esis. For example, some highly irregular cells seem to play a
leading role in driving morphogenesis. The two most irregular
cells, MS (η ≈ 2.5934) and ABpl (η ≈ 2.5913), are among the first
eight cells generated in the zygote after the third round of
divisions, and contact each other continuously (Fig. 4b). Both
cells show a severe deformation with multiple sharp humps on
the edges, particularly in the middle of their lifespans, while other
cells from the same generation resemble an ellipsoid, with a much
smoother surface (e.g., ABal and P3, Fig. 4c). Consistent with this,
previous studies have also noted dramatic shape changes in ABpl
and MS, which are proposed to promote L–R patterning during
early C. elegans morphogenesis45. The ABpl cell is in the center of
embryo and actively drives cell rearrangement. ABpl also
migrates in an anterior-ventral direction, with the longest
migration distance recorded over early C. elegans development9,
suggesting a mechanistic link between cell migration and cell
shape (Fig. 5a).

To investigate the reproducibility and variability of cell
morphology across development, we compared the changes in
ABp, ABpl, and ABpr morphology throughout their lifespans in a
subset of six embryos (Samples 08, 10, 12, 14, 15, and 19)

(Fig. 5a). According to our 4D morphological data, the division
angle of ABp deviated from the D–V axis varies among
individuals. In the embryo Samples 08, 12, 14, and 15, the sister
cells ABpl and ABpr are oriented roughly parallel to the AP–LR
plane, without apparent bias toward the D–V axis. However, the
orientation of ABp division in the embryo Samples 10 and 19 is
tilted toward the D–V axis, possibly affected by the upcoming
division of the EMS cell. Nevertheless, in all embryos, ABpl
moves in the anteroventral direction away from its sister cell once
it becomes an independent cell. These observations suggest that
ABpl’s migration in the ventral direction is independent of its
mother cell’s division orientation, despite the cell division
orientation being strictly controlled by both genetic and
mechanical mechanisms to establish the L–R axis in the
embryo9,45,54. Notably, although ABpl and ABpr show repro-
ducible contact between each other during early stage of their cell
cycle, their contact becomes dispensable during later stage
(Fig. 5a). For example, only 8 of 17 embryos show a considerable
contact between ABpl and ABpr (Fig. 5b). These results
demonstrate that although C. elegans embryogenesis is well
known for its accurate spatiotemporal regulation of cell behavior
during development, substantial variability of cellular morphol-
ogy and behavior is tolerated. Through systematic quantification
of cell shape, volume, surface, and contact variability, it may be
possible to predict essential regulatory activities that manifest as
stereotyped morphological dynamics during development. For
example, unlike the ABpr cell, ABpl appears as a severely
deformed polyhedron with rough surface patches and sharp
humps. These humps, consistent with morphological features of
cellular membranes including lamellipodia, protrusion, and
filopodia, may play a pivotal role in ABpl’s active migration
toward the anteroventral direction45. However, the shapes of both
ABpl and ABpr eventually become isotropic polyhedrons with
smooth surfaces prior to their divisions, suggesting that
biophysical properties such as stiffness, surface tension, and
active motility cease to significantly influence cell shape
immediately prior to cell division. In principle, cell morphology
in 3D space can be projected onto spherical coordinates to form a
2D distribution. This strategy can allow a more quantitative and
systematic profiling of our data, rather than characterizing cell
shape with 1D data. These observations, based on ABp, ABpl, and
ABpr, can be readily applied to any other cells across the
4– to 350-cell stages in C. elegans, with complete and
reproducible segmented data.

Discussion
Cell morphology plays an important role in various biological
processes. Here we established a pipeline, CShaper, for analyzing
spatiotemporal morphological features of the C. elegans embryo
at cellular resolution with ~1.5-min intervals and resolved cell
identities during embryogenesis. CShaper benefits from a well-
defined distance learning model DMapNet. By learning to capture
multiple discrete distances, DMapNet extracts the membrane
contour while considering shape information, rather than just
intensity features. The performance of CShaper was examined at
both pixel and object levels. Based on the segmentation results, we
integrated the data from 46 embryos and generated a quantitative
morphological atlas of the developing C. elegans embryo from the
4- to 350-cell stages, including cell shape, volume, surface area,
migration, cell nucleus position and identity, and effective
cell–cell contact throughout development. We presented repro-
ducible morphological dynamics for 322 cells throughout their
lifespans, and additional 334 cells for their partial lifespans.
Furthermore, based on contact area and duration, we generated
479 effective contacts between specific cell pairs, which may
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functionally inform cell–cell interactions such as intercellular
signaling and tethering.

The robust performance of CShaper is further supported by
existing reports based on experimental data gathered during C.
elegans embryogenesis. For example, using manually curated cell
surfaces, Arata et al.11 reported a power law relationship between

cell-cycle duration and cell volume in early C. elegans develop-
ment, in which AB and MS cells adopt the same power exponent
(≈−0.27), while C and P cells share a smaller value (≈−0.41).
Using a log–log scale coordinate system, we performed linear
fitting of our data for cell-cycle duration and cell volume sys-
tematically, demonstrating that the power exponent of AB and
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octahedron, cube, and tetrahedron. b Distribution of cell shape irregularity over development shown in a cell lineage tree, with the two most irregular cells,
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timings (mean ± standard deviation) indicated at the top (Supplementary Data 2).
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MS progeny reliably recapitulates what was proposed before
(−0.293) (Supplementary Fig. 10). The power exponent of C and
P progeny is substantially smaller than that in AB and MS pro-
geny (−0.363). This allows us to classify these four lineages into
two groups based on cell-cycle control, i.e., as being either highly
or moderately coupled with cell volume, as proposed pre-
viously11. It is worth noting that in contrast to manual annota-
tions or theoretical approximations, our membrane-calibrated

data set was generated automatically with defined cell identity,
which is expected to be more accurate and systematic, allowing
upscaling to both wild-type and mutant samples.

The extracellular cavity that cannot be assigned to any nucleus
or cell may have specific biological meaning (Supplementary
Fig. 2). Prior to gastrulation at the 26-cell stage, a blastocoel is
gradually formed at the center of embryos through cooperation of
cell polarization and cell adhesion58. This blastocoel is composed
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of a set of subtle inner cavities and provides a space for the
upcoming ingression of the intestine precursors, Ea and Ep (i.e.,
gastrulation). However, systematic characterization of such cav-
ities is still lacking. Based on our segmentation results, a blas-
tocoel consisting of three discrete cavities is shown in
Supplementary Fig. 11. As these cavities can be systematically
captured by CShaper, at least partially, our segmentation pipeline
enables quantitative study of such intercellular spaces and their
underlying mechanisms and functions.

To explore the capability of CShaper in segmenting images
from species other than C. elegans, we applied CShaper to plant
tissue images generated previously59. Willis et al. segmented
Arabidopsis thaliana stem cells with MARS60, which enabled a
satisfactory discrimination of the inner parts of the tissue by
fusing multi-angle acquisitions. Unlike MARS, CShaper processes
the stem cells in a more technically challenging manner, i.e.,
segmenting membrane stacks from a single imaging direction,
without a fusion stage. Due to the substantial morphological
differences existing between animal and plant cells, we retrained
DMapNet with two segmentation results from MARS. Similar to
CShaper’s framework except the final cell identification stage, the
retrained model was then utilized to process test images. A seg-
mented region was filtered out when its size deviated from the
average volume too much (by ≥80%). Finally, we compared our
cell-level segmentation results with those from MARS (Supple-
mentary Fig. 12). When the image quality was high, in the
shallow layers, both MARS and CShaper rendered comparable
partitions. CShaper achieves a superior performance over MARS
in the inner parts of the tissue, where the light intensity degrades
significantly. Despite being trained with defective references
(Supplementary Fig. 12b, d), learning shape features enables
CShaper to discriminate blurred membranes. These results show
that CShaper is readily adapted to analyze image data from
samples other than those of C. elegans.

Although CShaper performs relatively well across the
4– to 350-cell stages of C. elegans embryogenesis, the accuracy of
segmentation deteriorates at a much faster pace during later
developmental stages. First, as the cell shape changes con-
tinuously over time, the temporal features between consecutive
frames can be integrated to improve the segmentation perfor-
mance. Long short-term memory (LSTM), originally designed for
the natural language process, is an obvious candidate to capture
temporal features across time20. However, CShaper does not
adopt an LSTM-based model, such as ConvLSTM61, due to the
considerable computational resources involved in 3D convolu-
tion. We also observed that the segmentation errors of CShaper
are concentrated at the top of the imaged stack, where the
membrane signal intensity decreases significantly due to laser
attenuation along the imaging direction during image acquisition.
Within the framework of CShaper, potential strategies could be
used to normalize the image quality of the top half of the embryo
based on the bottom half. For example, Generative Adversarial
Networks can be used to transform low-quality images into those
with a higher resolution31,34. Furthermore, improved image
quality or a novel segmentation algorithm may allow a better
performance especially at later stages when cellular size sub-
stantially decreases and cells become more crowded.

Based on CShaper, 17 wild-type embryos with segmented cell
membranes are provided as a resource for further studies. However, a
user-friendly visualization tool is still lacking, which is critical, espe-
cially for biologists, to deliver perceptual cellular morphological fea-
tures in both longitudinal and transversal directions. MorphoNet62

may serve as an alternative tool for displaying our morphological
data, though it requires considerable adaptions. A well-designed
platform that allows interactive navigation of cell morphologies and
contacts over development is required in the future.

Methods
C. elegans strain. All animals were maintained on NGM plates seeded with OP50
at room temperature. Using Gibson Assembly, the construct Phis-72::PH
(PLC1delta1)::mCherry::pie-1-3′UTR was made and cloned into a miniMos vec-
tor63 for transgenesis. The His-72 promoter and pie-1 UTR were used to achieve
broad expression in both the soma and germline. A membrane labeling strain,
ZZY0637, carrying a single copy of this transgene, was generated using the mini-
Mos technique63. It was crossed with the nucleus labeling strain, RW10029, which
ubiquitously expresses a fusion between histone (HIS-72) and GFP, enabling
automated tracing and identification of nuclei64. Both the nucleus and membrane
markers were rendered homozygous in the resulting strain, ZZY0655, before
automated lineaging and membrane segmentation. The genotypes of the strains
used in this study are listed in Supplementary Data 8.

Image acquisition. The imaging method of the strains expressing nucleus label
only (RW10112 and RW10348) was the same as Ho et al.6. A similar method for
the imaging of the strain expressing both nucleus and membrane labels (ZZY0655)
was modified in this study as follows. One- to four-celled embryos were dissected
from the adult worms. They were mounted for imaging using 1% methylcellulose
in Boyd’s buffer with 20 μm Polybead® microspheres (Polysciences, Inc.)6,21,65.
Imaging was performed with an inverted Leica SP5 and SP8 confocal microscope
equipped with two hybrid detectors at a constant ambient temperature of 21 °C.
Images were consecutively collected for both GFP and mCherry channels using a
water immersion objective. By using a resonance scanner, both channels were
imaged with scanning speed of 8000 Hz with a frame size of 712 × 512 pixels per
channel. The excitation laser beams used for GFP and mCherry are 488 nm (SP5
and SP8) and 594 nm (SP5) or 552 nm (SP8), respectively. Histone::GFP was used
as a lineaging marker for cell tracing later, whereas PH2::mCherry was used as a
membrane marker. Fluorescence images from 68 (SP5) or 70 (SP8) Z-steps were
collected consecutively for three embryos per imaging session with a Z-resolution
of 0.42 μm (SP5) or 0.43 μm (SP8) from top to bottom of the embryo for every time
point, which was at ~1.5-min interval. Images were continuously collected for at
least 130 time points during which the cell count would reach over 350 in a wild-
type embryo, except the ones only used for training or evaluation (Supplementary
Data 1). The entire imaging duration was divided into four time blocks by time
point, that is, 1–60, 61–130, 131–200, and 201–240. Z axis compensation was
0.4–4% for the 488 nm laser and 19–95% for the 594 nm laser in SP5, whereas
0.1–0.3% for the 488 nm laser (SP8) and 2–10% for the 552 nm laser (SP8). The
pinhole sizes for the four blocks were 2.3, 2, 1.6, and 1.3 AU, respectively. Prior to
image analysis, all images were subjected to deconvolution followed by resizing into
isotropic volume images with a resolution of either 0.22 μm (for training or eva-
luation) or 0.25 μm (for morphological atlas generation).

Nucleus tracing and lineaging. The nuclei images were segmented and identified
using StarryNite and visualized using AceTree21,22,64. The lineaging errors were
manually corrected up to the 350-cell stage. The data quality was confirmed using
the quality-control standards designed by Guan et al.9. First, all the embryos must
start to be imaged before AB2 divisions so that information of the four-cell stage
can be obtained (i.e., ABa, ABp, EMS, and P2), which is essential for spatial
normalization of different embryos. Second, the full lifespans of AB4–AB128,
MS1–MS16, E1–E8, C1–C8, D1–D4, P3, and P4 cells have to be recorded. Third,
their descendants, namely AB256, MS32, E16, C16, D8, Z2, and Z3 cells, have to be
present for at least one time point (Supplementary Data 3). Finally, the nucleus
information, including position and name, was output in a separate file to be used
for cell-membrane segmentation.

Manual annotation of cell. Here a new data set was annotated and used to train
the DMapNet and benchmark CShaper against existing methods. As only 2D slices
can be shown on a computer screen, it is nontrivial to fully annotate volumetric
data. Therefore, a gold standard data set was generated in a semiautomatic manner,
in which segmentation errors from software were manually corrected by experts.
The membrane stack was first pre-segmented by a traditional method for 3D
membrane morphological segmentation (3DMMS)66, and then the output was
checked by two experts with an interactive tool for semiautomatic segmentation of
multi-modality biomedical images (ITK-SNAP)67 slice-by-slice. To aid manual
examination of cavities formed among the neighboring cells, nuclei images were
incorporated alongside the membrane-based images. Most annotated embryos had
fewer than 100 cells to prevent the deterioration of annotation accuracy with image
quality and subsequent segmentation errors introduced by 3DMMS. The annota-
tions are composed of cell-wise regions, which can be easily transformed into
membrane masks through morphological operations. For training, 54 volumetric
stacks with an average of 65 cells in each were annotated. Another 21 stacks with
an average of 52 cells in each were also annotated in parallel for independent
evaluation. A full summary of annotation data sets is provided in Supplementary
Table 6.

Distance-constrained learning. During long-duration time-lapse imaging, it is
desirable to collect each pixel with a sufficient number of photons, but the imaging
frequency has to be limited to keep the embryo alive. Segmenting the embryo with
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low image quality is a challenging task. To solve this problem, a distance-aware
network, DMapNet, is proposed to learn the cell shapes implicitly. DMapNet is
able to discriminate weak membranes, especially in the periphery where only a
single layer of membrane exists.

Although the distance map was previously discussed in similar works43,44,
different strategies are used in CShaper to facilitate the learning and postprocessing
stages (Supplementary Figs. 13 and 14). Given the input image I, we define Φi(I) as
the corresponding ground truth of the binary membrane at pixel i, where
foreground membrane and background pixels have values 1 and 0, respectively.
With the membrane mask forming a single-pixel surface, the distance mapM is
formulated as:

Mi ¼
min

Φj¼1 x � x0ð Þ2þ y � y0ð Þ2þ z � z0ð Þ2
� �

; Φi ¼ 0

0; Φi ¼ 1

(

; ð3Þ

M ¼ τ max Mf g �M; dð Þ ; ð4Þ
where x, y, z and x0, y0, z0 represent the coordinates of pixels i and j, respectively. In
Eq. (4), we reverse the distance map to keep it monotonically decreasing from the
membrane to the background. The background here includes both cell interiors
and external embryo background. Subsequently, a truncation function τ(*, d) sets
values above d to d or otherwise retains the value. Due to the lack of distinctive
features among far-away voxels, d is chosen such that it constitutes a smooth
transformation from the foreground membrane to the background. By predicting
M, DMapNet outputs the unnormalized probability of the voxel being the
membrane. As emphasized by Peter et al.68,M is further nonlinearly discretized

intoMd � f0; 1; ¼ ;Kg3 , the learning target, with smaller intervals around the
membrane mask. The cross-entropy loss used to evaluate the learning progress is
defined as:

l ¼
P

N

i¼1

P

K

k¼1

ξkωi;k M
d
i;k logPi;k þ 1�Md

i;k

� �

log 1� Pi;k

� �� �

; ð5Þ

whereMd
i;k is the kth element of the one-hot target vector at pixel i, and Pi,k is the

counterpart in the output of DMapNet. N and K are the numbers of pixels and
distance intervals, respectively. The importance of different classes is adjusted by
the fixed weighting term ξk, which inclines to classes near the membrane. We also
incorporate interclass relationships into the loss through an interclass weighting
term, ωi,k. Compared with ξk, ωi,k dynamically changes depending on different
predicted classes. This strategy is derived from the assumption that in ordered class
prediction, one class closer to the ground truth is supposed to have a larger
predicted probability. For example, for class k= 1, a higher penalty should be
imposed to a predicted class k′= 15 than that of k′= 2. Therefore, if the Kth
interval denotes the center mask of the membrane, interclass weight ωi,k is
calculated with:

ωi;k ¼ exp
k�Md

ij j
K

� �

; ð6Þ

whereMd
i is the ground truth class at pixel i.

Network structure. Although a 3D deep network has the advantage of capturing
holistic features, the lack of computational resources and training data may limit
the application of such model. Consequently, a pseudo-3D data flow is utilized
throughout the network of DMapNet. In confocal imaging, a 3D stack is acquired
by optical sectioning of embryos in the depth direction. Considering the thickness
of the membrane, as well as the elongated light volume emitted by a single
fluorescent molecule, only 24 consecutive slices are cropped as the input to
DMapNet. It follows the structure of the U-Net with high-level abstraction
information extracted by a down-sampling path and low-level features assembled
by an up-sampling path. To ensure efficient gradient propagation, multiple residual
blocks are leveraged at different down-sampling levels. While a 3 × 3 × 3 kernel can
be decomposed into 3 × 3 × 1 and 1 × 1 × 3 kernels, the residual block only includes
the 3 × 3 × 1 kernel in addition to the group normalization and Parametric Rec-
tified Linear Unit layers. Before the max pooling, the 1 × 1 × 3 kernel is used to fuse
the features of multiple channels. Dilation convolution is added to enlarge the
receptive field. To aid the higher layers retain the raw image information, the input
is scaled down and concatenated with corresponding high-level feature maps,
which also boosts the performance in segmenting cells of different sizes40. In the
up-sampling stage, all linearly up-sampled features are convoluted with the 3 × 3 ×
1 kernel before being concatenated together. The class-wise probability P :

D ´W ´H ´K � ½0; 1� is obtained by another convolution of the assembled fea-
tures. Thereby, the distance map Ψ : D ´W ´H � f0; 1; ¼ ;Kg can be easily
derived from Ψi= arg maxk Pi,k.

An overview of the DMapNet architecture is shown in Supplementary Fig. 15.
Because eight boundary slices at the apex and base are excluded in the loss
function, the dimensions of input and output are 24 × 128 × 128 and 16 × 128 ×
128, respectively. DMapNet was implemented with TensorFlow and Python. Inputs
were randomly cropped from 54 volumetric stacks of the size of 134 × 205 × 285.
Adam optimization with an initial learning rate of 5 × 10−4 was used to update
parameters. By setting the batch size to 2, we trained the model for 5000 epochs on
one NVIDIA 2080Ti GPU. Both the data set and source code are available publicly.

Watershed segmentation with automatic seeding. Watershed segmentation is
well suited for separating individual cells based on the distance map Ψ. Although
promising, the application of watershed transformation to the map suffers from
over-segmentation, where a single cell is split into multiple regions. Here, we
propose an automatic seeding procedure to facilitate the cellular segmentation by
detecting appropriate seeds from the membrane mask.

The Kth class in Ψ is regarded as the membrane mask Φp. By selecting the
background as the target voxel, Euclidean distance transformation is applied to Φp,
yieldingMp . All local H-minima inMp are denoted as S ¼ fsigi¼1;::;L , where L is

the number of local minima. A weighted graph G is constructed to cluster si’s that
belong to one cell or background. Edges E= {E1, E2} in G come from two sources:
one is the Delaunay triangulation on S, noted as E1, and the other is the edges, E2,
among all local minima locate on the boundary of the volume. The weight of edge
eij is defined as:

W eij

� �

¼

P

x;y;zð Þ2eij
M

p x; y; zð Þ; eij 2 E1

0; eij 2 E2

8

<

:

; ð7Þ

where (x, y, z)∊ eij represents all points on the edge eij. One edge is removed from E
if the corresponding weight is greater than the OTSU69 threshold on W.
Consequently, vertexes S were clustered based on their connectivity. As opposed to
inspecting each minimum, we treated each cluster, possibly including multiple
minima, as one seed. This group-seeded watershed transformation onMp reduces
under- or over-segmentation errors. A schematic description is also provided
(Supplementary Fig. 16).

Cell tracing and identification. StarryNite and AceTree were used to auto-
matically trace and assign identity of each nucleus by outputting nuclei positions
and names. In CShaper, we leveraged these tools to name the segmentations
described above. Generally, if one partition was associated with only a single
nucleus, then the cell was named after the nucleus directly. However, at the
beginning of cell division, two nuclei may coexist within one cell (enwrapped in the
same membrane) during anaphase. In this case, the segmented region was named
after the mother cell rather than the daughter cells. CShaper also defined a cavity
inside an embryo when a partition was empty with no nucleus inside. As the
nucleus was not involved in the membrane segmentation directly, we can not only
identify lost cells based on the mismatch between nucleus and partition regions
(Supplementary Note 2) but also evaluate the segmentation performance at object
level (see “Results”).

Standardization of embryo samples. After linear normalization of the 46
embryos (Samples 04–49) as per the previously proposed pipeline, which consists
of consecutive rounds of rotation (60 cycles), translation (60 cycles), and scaling
(30 cycles) in x, y, and z axes to minimize the global positional variation between
embryo samples9, four operations were subsequently carried out to establish a
standard morphological atlas with normalized embryo size and orientation. First, a
translation in the yz plane and rotation around the x axis was performed
sequentially on the 17 embryos that expressed the membrane marker (Samples
04–20), which ensured that the focal planes of the first and last confocal images
were parallel to the xz plane and distributed symmetrically on both sides of the xz
plane (Supplementary Fig. 4). Second, a translation in the xz plane and rotation
around the y axis were performed sequentially on the same embryos to keep their
projection on the xz plane embedded by a centralized ellipse with the minimum
area (Supplementary Fig. 5). Third, all 17 embryos were rescaled to their average
size in the three orthogonal directions (Supplementary Fig. 6). Finally, the
remaining 29 embryos labeled with only the nucleus marker (Samples 21–49) were
linearly normalized to the average cell positions of the 17 embryos using the same
loop algorithm composed of rotation, translation, and scaling (Fig. 3b)9.

Definition of effective cell–cell contact. The following empirical criteria were
used to establish effective contact between specific cells with potential biological
relevance:

1. Contact area: a contact area is no <1/48 of a cell’s surface area. This area
threshold is expected to be large enough for functional intercellular
communication based on theoretical modeling. It is well known that each
sphere is surrounded by 12 neighbors in a close-packed structure of equal-
sized spheres, which in theory has the highest space occupancy and system
stability70. In the C. elegans embryo, the radius ratio between neighbor cells
can reach up to 3:1 (Supplementary Fig. 17a). Thus, based on the hexagonal
close-packed structure, we estimated the cell–cell contact area threshold by
simulating how many cells with a radius ratio of up to 1/3 can be
accommodated within space formed by a unit cell with a radius of 1
(Supplementary Fig. 17b–d). As a uniform neighbor cell can be replaced by,
at most, four smaller cells with a radius ratio of 1/3 (Supplementary
Fig. 17e), the relative contact threshold was set as 1/12 × 1/4= 1/48
(Supplementary Note 3).

2. Contact duration: a contact duration is no shorter than 3 min, i.e., two
consecutive time points. This threshold was previously found to be satisfied
by all the cell pairs with known Notch signaling in C. elegans2.
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3. Reproducibility: a contact is reproducible in all 17 embryos. As we focused
on cell–cell contact necessary for normal development, reproducible
contacts found in all samples were assumed to have the highest possibility
of being functional. This requirement (100%) is higher than that used by
Chen et al.2 (95%) because the contact relationship obtained based on the
membrane morphology is expected to be more reliable than that inferred
from the nucleus position.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within

the article and its Supplementary information files or from the corresponding author

upon reasonable request. Source data are provided with this paper. The raw confocal

micrographs of embryos expressing membrane marker, and the segmentation results and

standardized morphological atlas generated in this study are available in the figshare

repository: https://doi.org/10.6084/m9.figshare.12839315.

Code availability
The deconvolution procedure on the raw confocal microscopies is implemented with

commercial software Scientific Volume Imaging (SVI) Huygens Suite (https://svi.nl/

HomePage). Codes for C. elegans embryo segmentation and subsequent systematic

analsysis are available in the github repository (https://github.com/cao13jf/CShaper.git).
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