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Abstract

Introduction Diverse microarray and sequencing technologies
have been widely used to characterise the molecular changes in
malignant epithelial cells in breast cancers. Such gene
expression studies to identify markers and targets in tumour
cells are, however, compromised by the cellular heterogeneity of
solid breast tumours and by the lack of appropriate counterparts
representing normal breast epithelial cells.

Methods Malignant neoplastic epithelial cells from primary
breast cancers and luminal and myoepithelial cells isolated from
normal human breast tissue were isolated by immunomagnetic
separation methods. Pools of RNA from highly enriched
preparations of these cell types were subjected to expression
profiling using massively parallel signature sequencing (MPSS)
and four different genome wide microarray platforms. Functional
related transcripts of the differential tumour epithelial
transcriptome were used for gene set enrichment analysis to
identify enrichment of luminal and myoepithelial type genes.
Clinical pathological validation of a small number of genes was
performed on tissue microarrays.

Results MPSS identified 6,553 differentially expressed genes
between the pool of normal luminal cells and that of primary
tumours substantially enriched for epithelial cells, of which 98%

were represented and 60% were confirmed by microarray
profiling. Significant expression level changes between these
two samples detected only by microarray technology were
shown by 4,149 transcripts, resulting in a combined differential
tumour epithelial transcriptome of 8,051 genes. Microarray
gene signatures identified a comprehensive list of 907 and 955
transcripts whose expression differed between luminal epithelial
cells and myoepithelial cells, respectively. Functional annotation
and gene set enrichment analysis highlighted a group of genes
related to skeletal development that were associated with the
myoepithelial/basal cells and upregulated in the tumour sample.
One of the most highly overexpressed genes in this category,
that encoding periostin, was analysed immunohistochemically
on breast cancer tissue microarrays and its expression in
neoplastic cells correlated with poor outcome in a cohort of
poor prognosis estrogen receptor-positive tumours.

Conclusion Using highly enriched cell populations in
combination with multiplatform gene expression profiling
studies, a comprehensive analysis of molecular changes
between the normal and malignant breast tissue was
established. This study provides a basis for the identification of
novel and potentially important targets for diagnosis, prognosis
and therapy in breast cancer.

COMP = cartilage oligomeric matrix protein; DTET = differential tumour epithelial transcriptome; ER = estrogen receptor; GO = Gene Ontology; 
GSEA = gene set enrichment analysis; HTR = human transcriptome database; IL = interleukin; MAPK = mitogen-activated protein kinases; MIAME 
= minimum information about a microarray experiment; MPSS = massively parallel signature sequencing; POSTN = periostin; PR = progesterone 
receptor; RT-PCR = reverse transcription PCR; SAGE = serial analysis of gene expression; TMA = tissue microarray; tpm = transcripts per million; 
VEGF = vascular endothelial growth factor; VEGFR = vascular endothelial growth factor receptor.
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Introduction
Breast cancer is a clinically heterogeneous disease and con-

sists of many different cell types, including normal and reactive

stromal components in addition to the malignant neoplastic

compartment. Moreover, it comprises a series of distinct

malignant tumours that present diverse cellular features with

varying differentiation status, distinct genetic changes,

responses to therapy and outcome [1]. Likewise, the normal

breast is also composed of different parenchymal and stromal

cell types, with the terminal ductal-lobular unit being the most

important feature with regard to neoplasia. The latter is com-

posed of two morphologically recognisable cell types, epithe-

lial cells on the luminal surface and basally located

myoepithelial cells. While typical breast cancers have been

traditionally regarded as exhibiting characteristics akin to lumi-

nal epithelial cells, recent data have shown that some also

exhibit, in part or whole, myoepithelial/basal features [2-4].

Based on the restricted expression of genes representing the

phenotypes of luminal epithelial and basal cells [4], major sub-

types of breast cancer have been defined and linked to both

long term survival [5] and their response to therapy [6]. There-

fore, detailed characterisation of the normal luminal and

myoepithelial/basal phenotypes is a prerequisite for under-

standing the genetic alterations that occur in breast cancers

and how they may impact on disease progression and

outcome.

The use of solid tissues, as in most previous breast cancer

gene expression analyses, results in greatly enhanced com-

plexity of data because of the widely varying degrees of stro-

mal responses (desmoplasia) and inflammatory infiltrates in

individual tumours. Laser capture microdissection partially

alleviates this problem in respect to tumour samples, but is

unsuited to the large-scale separation of the normal epithelial

cell types in breast because of the close contact between

these cells. Immunomagnetic separation of individual cell

types from normal human breast tissue [7,8] and primary

breast cancers [9] has enabled direct comparisons of normal

epithelial and malignant epithelial cells to be made. Previous

proteomic [9,10] and gene expression analyses of such sam-

ples [10-13] have established a partial molecular characterisa-

tion of the epithelial compartment in the normal breast and

breast cancer [2], but, due to the limitations of technology

available at the time of these studies, did not provide a com-

prehensive comparison of all proteins or transcripts.

Multiple large-scale analytical techniques now make it possi-

ble to capture entire transcriptomes of defined cell popula-

tions. Breast cancers have been extensively analysed with

both expression arrays [14] and with direct sequencing tech-

niques such as serial analysis of gene expression (SAGE)

[15]. Although several studies have correlated expression data

based on microarray and SAGE [16,17], a comprehensive

genome-wide expression profile using a combination of com-

plementary technologies has not yet been achieved for puri-

fied malignant epithelial breast cells in comparison with

purified normal breast epithelial cells. In this study, massively

parallel signature sequencing (MPSS) [18,19] and multiple

genome-wide microarrays have been used to analyse immu-

nomagnetically separated normal luminal epithelial cells and

primary breast cancers substantially enriched for the neoplas-

tic epithelial component. The aim of this study was to establish

a virtually complete coverage of transcripts deregulated in the

neoplastic cells of human breast cancer. In addition, expres-

sion profiles from normal luminal and myoepithelial cells have

been used to identify cell-type specific transcripts and onto-

logically related gene sets in the differentially expressed

tumour epithelial transcriptome. The use of highly enriched cell

preparations in combination with a multiplatform approach to

their expression analysis has revealed novel markers and

potential targets, the clinical significance of some of which has

also been examined, using tissue microarrays.

Materials and methods
Sample preparation

Ten primary cultures (approximately 107) of normal human

breast luminal and myoepithelial cells were prepared from

reduction mammoplasty samples by double immunomagnetic

sorting methods [7,8,10]. In brief, breast epithelial cells were

immunomagnetically purified using combined positive mag-

netic activated cell sorting (MACS; Miltenyi Biotec, Auburn,

CA) selection with antibodies against the luminal epithelial

marker EMA (rat monoclonal ICR-2, Seralab, Leicestershire,

UK) and the myoepithelial membrane antigen CD10 (mouse

monoclonal CALLA clone SS2/36, DAKO Corporation, Glos-

trup, Denmark), followed by negative Dynabead (Dynal, UK)

selection using mouse monoclonal antibodies against anti-β-

4-integrin clone A9, a myoepithelial cell-surface antigen

(Santa Cruz Biotechnology, CA, USA) and BerEp-4 Epithelial

Antigen, a luminal antigen (DAKO Corporation, Glostrup, Den-

mark). Immunostaining with myoepithelial and luminal-specific

lineage markers showed the final sort of epithelial cells used in

this study to be >95% pure. Full details of these procedures

are not only contained in previous publications [10,11], but are

also appended, as required, to the Minimum information about

a microarray experiment (MIAME) protocol that accompanies

submission E-TABM-66 [20].

Malignant breast epithelial cells of 50 freshly isolated primary

infiltrating ductal carcinomas of histological grade 2 and 3

were enriched from disaggregated tumour tissue as described

previously [9]. In brief, fresh tumour biopsies (1 to 2 g) were

comminuted to approximately 1 mm3, using scalpel blades,

and subjected to a controlled disaggregation using 0.25%

collagenase Type1 (Sigma-Aldrich, Dorset, UK) in L-15
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medium with 2% fetal calf serum for 4 to 6 h with intermittent

shaking. After brief settling, the supernatant was spun down,

and the pellet resuspended in L-15 medium and passed

through a 100 µm mesh filter to remove residual undisaggre-

gated tumour fragments, plus disaggregated 'normal' orga-

noids and ducts as well as lobules and ducts distended with

ductal carcinoma in situ, leaving only small clusters and single

cells. The latter were then reacted with the mouse monoclonal

antibody F19 to fibroblast activation protein bound to sheep

anti-mouse coated Dynabeads (Dynal, Paisley, UK) using the

manufacturer's protocols. Almost all desmoplastic fibroblasts

associated with breast cancers express this antigen strongly.

Cells attached to beads were removed with a Dynal MP40

magnet; F19-negative cells were then allowed to sediment

under unit gravity for 2 to 3 h (to remove most lymphocytes).

The resulting preparation was then screened by phase con-

trast microscopy to identify those preparations in which there

were few if any microvessels (the other main potential stromal

contaminant not removed by fibroblast activation protein sort-

ing), or normal tissue elements, such as ducts or acini's. Of the

50 samples, 15 were selected for this study, based on the cri-

teria of ≥80% malignant cell content as determined by phase-

contrast examination, ≥80% viability (as determined by trypan

blue exclusion) and the integrity of its total RNA. The purity of

both normal and malignant epithelial preparations is illustrated

in Additional file 1. Informed consent to use this material for

scientific research was obtained, and details of the pathology

of the individual tumours are given as Additional file 2. RNA

was prepared from individual samples by standard Trizol meth-

ods and pooled to give a luminal, a myoepithelial and a malig-

nant RNA sample of >1 mg for analysis.

MPSS analysis

MPSS was performed by Lynx Therapeutics, (CA, USA)

according to the Megaclone 'signature' protocol [18,19].

Briefly for each library synthesis, after DNase treatment of

approximately 300 µg total RNA from normal luminal and

malignant breast epithelial pools, cDNA was generated from

poly(A)+ RNA, and amplified copies of each cDNA clone were

attached to beads. The sequence adjacent to the poly(A) prox-

imal DpnII site was determined by cycles of ligations to fluo-

rescently tagged 'decoding' oligonucleotides and cleavages

by restriction enzymes. Each sequence signature comprises

the DpnII restriction recognition site (GATC) and 13 contigu-

ous nucleotides. The raw data resulted from four sequencing

runs, collected in two reading frames offset by two nucleotides

relative to the anchoring restriction enzyme site and generat-

ing approximately 2 to 3 × 106 sequences. Signatures that

were seen in at least two independent runs (reproducible) and

were present at a frequency of more than three transcripts per

million (tpm) in one sample (significant) were selected for fur-

ther analysis.

As a basis for the matching of signature sequences to tran-

scripts, we used our own reconstitution of the human tran-

scriptome database (HTR) [21-23] based on a comprehensive

set of cDNA to genome alignments that are merged into gene

models representing the detailed structure of human tran-

scribed regions. Each HTR contains a cluster of cDNA

sequences, similarly to the NCBI/UniGene database. The

annotation of the signature was then performed in two steps

as described previously [22], using the NCBI35 assembly of

the human genome. Firstly, a 'signature-centric' annotation

was performed, where sequence signatures were mapped to

either one or more transcribed regions of the genome, includ-

ing repetitive sequences, ribosomal, mitochondrial and non-

mapped transcripts. In the second step, only signatures from

the 'signature-centric' annotation that matched exactly or had

one nucleotide mismatch to known transcribed regions were

retained to form the 'gene-centric' version. When different

sequence signatures mapped to the same gene, counts were

combined. To identify genes with significant differences (P
value ≤ 0.05) in representation in the two RNA pools, the

absolute difference in abundance between the malignant and

the normal epithelial RNA sample was determined and log2

transformed, resulting in a relative expression measurement.

Table 1

Numerical analysis of massively parallel signature sequencing

Malignant breast epithelium Normal luminal epithelium

Sequence signatures 24,288 28,404

Uniquely mapped signatures 14,245 10,249

Unique HTR clusters 8,421 (3,191)a 6,477 (1,297)a

Dynamic range <9,808 tpm <35,847 tpm

Differentially expressed transcripts 4,311 T > L 2,242 L > T

Sequence signatures represent the total number of sequences obtained by massively parallel signature sequencing (MPSS). Uniquely mapped 
signatures correspond to the total number of human transcriptome clusters identified and retained in the 'gene-centric' annotation. Unique human 
transcriptome database (HTR) clusters are transcripts that mapped to a single human cluster and had an abundance of ≥3 transcripts per million 
(tpm) (approximately one transcript/cell). As described in Materials and methods, statistically significantly (P ≤ 0.05) differentially expressed 
transcripts were determined and separated into tumour (T) over normal luminal (L) or vice verse, depending on their fold change. aCorresponds to 
HTR clusters found in only one sample.
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Microarray analysis

The same total RNA pools were hybridised onto a 20 k cDNA

microarray (20 k brk, constructed at The Breakthrough Breast

Cancer Research Centre, Institute of Cancer Research, Lon-

don, UK containing 19,391 sequence-validated IMAGE

clones), Affymetrix Human Genome U133 Plus 2.0 GeneChip

(Affymetrix, Inc., Santa Clara, CA, USA), CodeLink™ Human

Whole Genome Bioarray (GE, Healthcare, formerly Amersham

Biosciences, Chandler, AZ, USA) and Agilent Whole Human

Genome Oligo Microarray 44 k cDNA array (Agilent Technol-

ogies, Palo Alto, CA, USA). Three technical replicates of each

RNA pool were amplified, labelled and hybridised according to

manufacturer's guidelines. Where necessary an RNA pool

consisting of breast cancer cell lines was used as a reference

sample [11] and dye-swap hybridisations were performed. All

primary array data are available through ArrayExpress [20];

they comply with MIAME standards, with the accession

number E-TABM-66. Overlay of each microarray platform with

MPSS was done by mapping the sequence information of

probes and probe sets to the same HTR database as used for

MPSS tag mapping (see above). Only those microarray fea-

tures that were unambiguously mapped to a single HTR clus-

ter were included for further studies. All preprocessing of each

microarray platform and further statistical analysis was per-

formed in the R 2.1.1 environment [24] by making extensive

usage of the limma package [25] in BioConductor 1.6 [26].

For the Affymetrix platform, probe-level data were normalised

and expression data were summarised by the robust multi-

array analysis [27]; cyclic lowess normalisation was applied to

the CodeLink™ expression data through the codelink 0.7.2

package in R 2.3; for the Agilent microarrays, global normali-

sation with no background correction was applied; and for the

20 k brk microarrays, raw expression data were print-tip

normalised and background corrected. Relative measure-

ments for each transcript were given as a log2 fold ratio, and

only genes with a false discovery prediction of P ≤ 0.05 were

regarded as significantly differentially expressed when using

Benjamini and Hochberg' s P values adjustment [28].

Gene Ontology

Genes were categorised with respect to their biological proc-

ess, cellular role, molecular function, using Onto-Express (OE)

[29,30]. The most significant perturbed biological processes

were determined with respect to the number of genes

expected for each Gene Ontology (GO) category based on

their representation on the Affymetrix U133 Plus 2.0 array.

Statistical significance was determined by using OE's hyper-

geometric probability distribution and Bonferroni correction

options, and annotations with P ≤ 0.05 were accepted as sig-

nificant. Gene set enrichment analysis (GSEA) comparing

luminal and myoepithelial gene signatures was done using

described methods [31]. Biological processes were ranked

according to their significance of enrichment, and the valida-

tion mode measure of significance was used to identify those

of greatest enrichment.

Semiquantitative RT-PCR

Total RNA (10 µg) from the normal luminal epithelial and the

malignant epithelial RNA pool was used for each 40 µl

reverse-transcription reaction, and 10 µl of 1/50 diluted cDNA

Figure 1

Comparison of massively parallel signature sequencing (MPSS) data with microarray analysisComparison of massively parallel signature sequencing (MPSS) data with microarray analysis. Differentially expressed gene profiles from MPSS 
(100%) were overlaid with each microarray platform individually. (a) Percentage of coverage (light grey) and concordance in differential expression 
between MPSS and individual arrays (dark grey) are shown together with the combined coverage and confirmation by at least one array (1 platform). 
(b) Enumeration of the differentially expressed transcripts detected by "MPSS-only", by "MPSS and array", and those transcripts reported as differ-
ential by at least two arrays, but not by MPSS ("Array only"). The results obtained by RT-PCR for these subgroups are shown below (see Additional 
file 6).
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was used per 30 µl PCR. RT-PCR was performed by using the

Applied Biosystems AmpliTaq Gold, Cheshire, UK, with either

25 or 30 cycles, each consisting of 30 s at 94°C, 30 s at

55°C, and 45 s at 72°C. PCR products were visualised on 2%

Invitrogen agarose E-Gels 96 Gels (Invitrogen Life Technolo-

gies, Carlsbad, CA, USA).

Immunohistochemistry and tissue microarray analysis

A cohort of invasive breast carcinomas from 245 patients

treated with surgery (wide local excision or mastectomy) and

adjuvant anthracycline-based chemotherapy was retrieved

from the Department of Histopathology files of the Royal

Marsden Hospital (London, UK) with appropriate local Ethical

Committee approval. Representative blocks were reviewed by

a pathologist (JSRF) and selected cores were incorporated in

two duplicate tissue microarray (TMA) blocks [32,33]. Full

details of the TMA are given as Additional file 3. TMA samples

were dewaxed in xylene, cleared in absolute ethanol and

blocked in methanol for 10 minutes. Antigen retrieval for carti-

lage oligomeric matrix protein (COMP) and IL8 was by boiling

slides in citrate buffer (pH 6) for 2 minutes in a pressure

cooker, after which they were blocked with normal horse

serum (2.5% for 20 minutes; Vector Laboratories VL, Burlin-

game, CA, USA) and endogenous biotin blocked by pre-incu-

bating with avidin (15 minutes) and biotin (15 minutes). They

were then incubated with anti-COMP antibody (1/50; Sero-

tec, Oxford, UK) or IL8 antibody (1/5; Serotec) for 1 h at room

temperature. For immunohistochemistry of Periostin (POSTN),

sections were pretreated by microwaving in Dakocytomation

(Glostrup, Denmark) pH 6 antigen retrieval buffer for 18 min-

utes, blocked, and anti-POSTN antibody (1/1500; Biovendor

Laboratory, Heidelberg, Germany) applied for 30 minutes at

room temperature. Antibody binding was detected using

Vectastain Universal ABC (VL), visualised with 3,3'-diami-

nobenzidine DAKO (Corporation, Glostrup, Denmark). Full

details on the distribution of ER, PR, HER2, EGFR, CK 14, CK

5/6, and CK 17, as well as P53 (DO7, 1/200; DAKO Corpo-

ration) are described elsewhere [33] and summarised in Addi-

tional file 3. To evaluate the proliferative activity of tumour cells,

immunohistochemical detection of MIB1 antibody to detect Ki-

67 nuclear antigen (1/300; DAKO Corporation), which is

associated with cell proliferation, was carried out under the

same conditions [33]. For these markers, only nuclear staining

was considered specific. Ki67 (MIB1) staining was scored low

if less than 10% of neoplastic cells were positive, intermediate

if 10% to 30% of neoplastic cells were positive and high if

more than 30% of neoplastic cells were positive [32].

Tumours were scored positive for P53 if >10% of the nuclei of

neoplastic cells displayed strong staining [32].

Cumulative survival probabilities were calculated using the

Kaplan-Meier method/log-rank test. Differences between dis-

ease-free interval and survival were tested with the log-rank

test (two-tailed, confidence interval 95%) using the statistical

software Statview 5.0., NC, USA. Multivariate analysis was

performed using the Cox multiple hazards model. A P value <

0.05 in the univariate survival analysis was used as the limit for

inclusion in the multivariate model.

Results
MPSS analysis of normal luminal and malignant breast 

cancer cells

The gene expression profiles that were obtained by MPSS

analysis yielded 24,288 and 28,404 signature sequences for

the malignant and the normal breast epithelium, respectively;

these were pared down to the 'signature-centric' version con-

taining 14,245 uniquely mapped and expressed transcripts for

the malignant sample and 10,249 transcripts for the normal

luminal epithelial sample (Table 1). Based on our HTR

(described in Materials and methods [21]), these transcripts

corresponded to 8,421 and 6,477 HTR clusters in the malig-

nant and the normal RNA samples, respectively (Table 1), of

which 3,191 genes were uniquely expressed in the malignant

sample, and 1,297 in the normal sample. To define differential

expression, a comparative Poisson test was applied [34] and

6,553 genes were identified that showed a differential expres-

sion measurement with P ≤ 0.05. (Raw and annotated MPSS

data are provided as Additional file 4) Expression levels of dif-

ferentially upregulated transcripts in the tumour sample

ranged from less than 10 tpm (ESR1, EGF, GPR150,

GADD45BGIP1), to over 1,000 tpm (COL1A1, SCGB2A2,

SELE, IL8).

Establishing a microarray validated transcriptome

The MPSS derived transcriptomes were compared with gene

expression profiles of the same RNA pools obtained using

three oligonucleotide genome-wide microarrays, Affymetrix

U133 Plus 2.0 GeneChip and CodeLink™ Human Whole

Genome Bioarray, Agilent Whole Human Genome Oligo

Microarray 44 k cDNA array and 20 k brk cDNA microarray.

These different microarray platforms were chosen to achieve

the highest possible coverage of known transcribed

sequences. Features from all platforms were mapped to HTR

clusters and our analysis was restricted to those that mapped

unambiguously to one HTR cluster. For the Affymetrix platform

41,322 of 54,613 (75.66%) features could be assigned to

unique HTR clusters; for CodeLink™ 28,949 of 54,841

(52.78%); for Agilent 32,402 of 44,290 (73.15%); and for the

20 k brk 12,055 of 19,959 (60.4%). Overlay of the transcript

coverage of each microarray demonstrated that each platform

contributed a set of unique genes as well as those common to

other platforms, justifying the use of more than one microarray

platform. (Full annotation of each microarray platform to HTR

clusters is available as Additional file 5) The microarray fea-

tures of all four platforms provided a total coverage of 26,103

HTRs, and 6,342 out of 6,553 (96.8%) of the differentially

expressed transcripts obtained by MPSS were represented

on one or more of these genome-wide platforms.
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Having established a common denominator in terms of gene

annotation, those genes reported as differential between the

normal and malignant tumour sample by microarrays were

defined and then compared with the MPSS data. The criteria

for differential expression used were that expression measure-

ments between the normal and the malignant sample reported

had to be both statistically significant (P ≤ 0.05) and in the

same direction (up or down). Out of the four microarray plat-

forms, the two single colour oligonucleotide platforms

(Affymetrix and CodeLink™) validated as differential 3,206

(48.9%) and 3,004 (45.8%) of all MPSS transcripts present

on their platforms, respectively, whereas the two-colour micro-

array technologies confirmed only 1,257 (19.1%) and 1,379

(21%), for Agilent and 20 k brk, respectively (Figure 1a). Over-

all, a total of 3,902 genes were obtained in which at least one

microarray confirmed the MPSS data without any other plat-

form reporting an opposite result (Figure 1a; 1 platform).

Expression measurements for 2,440 MPSS differential tran-

scripts could not be confirmed using any of these microarray

platforms (Figure 1b, "MPSS-only"). The microarray data were

also used to identify any genes reported as differential by at

least two platforms, but which did not appear as such in the

MPSS analysis. This comprised a total of 4,149 transcripts

(Figure 1b, "Array-only"). To establish which of those sets

could be most relied on to constitute the validated differential

tumour epithelial transcriptome (DTET), examples of each

group were analysed by semi-quantitative RT-PCR (Figure

1b). This showed that only 30% (6/20) of the "MPSS-only"

identified differentials could be validated, while 78% (78/100)

and 92% (37/40) of the "MPSS and array" and "Array-only"

differentially expressed transcripts were reported as differen-

tial by RT-PCR (Additional file 6). The comparison of RT-PCR

results was not given any statistical treatment and is simply

presented to illustrate that the array confirmed differentials

have a much lower false positive rate (20% to 70%). Conse-

quently, the latter two groups were combined and comprised

8,051 up- and down-regulated genes that constitute the DTET

and were subjected to further analysis (Additional file 7).

Functional classification of differentially expressed 

genes

GO classification of the 8,051 genes of the DTET revealed

that, as might be expected, multiple cellular processes, such

as transcription, signal transduction, cell adhesion, cell cycle,

metabolism, transport and development, are different in normal

luminal epithelium and their malignant counterparts (the full list

of perturbed biological processes is provided as Additional file

8). In terms of overall differences, the largest functional group

of up-regulated transcripts (Figure 2a) corresponded to genes

associated with transcription and regulation in transcription, in

agreement with several other profiling studies. The second

largest functional group comprised genes involved in signal

transduction. These consisted, amongst others, of genes

encoding proteins involved in mitogen-activated protein

kinases (MAPK) signalling (FGF4, -7, -13, IL1A, IL1B, NGFB,

TGFB1 and TGFB3) and the JAK-STAT signalling pathway

(IL6, IL10, OSM, SPRY2), as well as ligands and receptors

involved in cytokine-cytokine interaction, including members of

the CXC and CC chemokines, platelet-derived growth factor,

gp130, tumour necrosis factor and transforming growth fac-

tor-β subfamilies. Many of these genes have already been cor-

related with breast cancer growth and invasion, and their

epithelial expression has been demonstrated. In contrast to

previously published SAGE data, comparing purified normal

Figure 2

Functional classification of the differentially expressed epithelial tumour transcriptomeFunctional classification of the differentially expressed epithelial tumour transcriptome. The top 15 biological processes showing overall (a) up-regu-
lation and (b) down-regulation are shown. The biological processes are ranked from top to bottom according to their ascending P value as 
described in the Materials and methods. The numbers of genes within each process that are up-regulated or down-regulated for each category are 
also shown as black and grey bars, respectively.
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Figure 3

Heatmap of the top 50 genes from the luminal-specific and myoepithelial-specific transcriptomesHeatmap of the top 50 genes from the luminal-specific and myoepithelial-specific transcriptomes. Genes were ranked in order of fold change 
(myoepithelial over luminal) for each platform separately after which a median rank over all four platforms was determined. Genes are listed with their 
human transcriptome database (HTR) cluster, HUGO Name, description and UniGene and RefSeq identifiers. Green corresponds to luminal-type; 
red to myoepithelial-type; black indicates no corresponding microarray feature. Expression measurements obtained by: 1, Agilent; 2, 20 k brk; 3, 
CodeLink; 4, Affymetrix platform.
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breast epithelial tissue with solid tumour breast tissue [12,13]

in which reduced expression of cytokines such as IL6 and IL8

was observed, higher abundance of these genes was

detected in our malignant breast epithelial sample in compari-

son with the normal luminal sample. Ninety genes belonging to

the GO category of 'apoptosis', including members of the

BAG family (BAG1, BAG2, BAG3), as well as members of the

breast cancer 'proliferation signatures' (BUB1, PLK1,

CCNE1, CCND1 and CCNB1) were also identified as up-

regulated in our DTET [35,36].

The most significantly perturbed functional gene set identified

in the down-regulated tumour epithelial transcriptome (Figure

2b) was epidermis development, including members of the kal-

likrein family (KLK5, KLK7, KLK8, KLK10) and the keratin fam-

ily (CK10, CK14), as well as the family of extracellular matrix

glycoproteins, such as LAMC2, LAMB3 and LAMA3. The

second most perturbed subset of down-regulated genes

included several members of the RAS-related proteins,

RAP1A, RALB, RAB5B, RAB4A, RAB3B, RAB2 and RAB25
(protein transport; Figure 2b), some of which counteract the

mitogenic function of RAS-MAPK signalling pathways [37].

Differentially expressed transcripts in normal breast 

epithelial cells

Whether tumours exhibit a luminal or myoepithelial/basal phe-

notype has been correlated with prediction and prognosis in

breast cancer [2-4]. Global transcriptomes of normal myoepi-

thelial and luminal epithelial cells were, therefore, compared to

identify all transcripts that were differentially expressed in

these normal cell types. The purpose was to further define

breast epithelial specificity within the tumour transcriptome by

annotating the DTET with respect to their expression in these

normal epithelial cell types. Differential gene expression pro-

files of immunomagnetically purified luminal and myoepithelial

cell samples were established using the criterion of differential

detection by at least two of the four genome-wide microarray

platforms, as used previously when comparing the normal

luminal with the malignant sample. We identified 907 tran-

scripts with higher abundance in the normal luminal cells and

955 transcripts were higher in the normal myoepithelial cells.

These collectively comprised the differential normal epithelial

transcriptome. The top 50 discriminator genes over all four

microarray platforms are shown in Figure 3 (complete list is

given as Additional file 9). These genome-wide gene signa-

tures agreed with previous data from individual luminal and

myoepithelial sample analyses [11]. All the main classifiers for

the myoepithelial cell type, such as LGALS7, S100A2, SFN,

SPARC and CAV1 (and CD24, LCN2, CLDN4, MUC1 and

SEMA3B for the luminal epithelial cell type) were identified as

differential in the present study. However, as expected from

the enhanced coverage provided by the methods used here,

many other genes that may play an important role in the biol-

ogy of these two cell types were also identified (for example,

PADI2, TSPAN2, DACT1 for the luminal, and POSTN, DCN,

ADAMTS5 for the myoepithelial cell type).

Figure 4

Enrichment of luminal and myoepithelial transcripts in the differentially expressed epithelial tumour transcriptomeEnrichment of luminal and myoepithelial transcripts in the differentially expressed epithelial tumour transcriptome. (a) The top 20 deregulated biolog-
ical processes identified by gene set enrichment analysis that are enriched in luminal (green) and myoepithelial (red) expression are shown. The def-
inition of each Gene Ontology (GO) category is given in Additional file 8. (b) Heatmap of the skeletal developmental gene subset (GO:0001501) 
based on the Affymetrix expression data. L (luminal) and M (myoepithelial) show results from individual arrays. Genes are ranked according to their 
significance of enrichment as described in the Materials and methods.
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Enrichment of luminal and myoepithelial genes and 

gene sets in the differential tumour epithelial 

transcriptome

To identify functionally related gene sets of luminal or myoepi-

thelial phenotype within the DTET, GSEA was carried out on

the perturbed biological processes that were statistically sig-

nificant (P ≤ 0.05) and composed of at least 10 genes [31].

This resulted in a total of 72 gene sets, 53 and 19 for the up-

and down-regulated modules, respectively (Additional file 8).

In the top 20, four categories showed enrichment of genes

belonging to our luminal transcriptome, including protein mod-

ification (GO:0006464), cell motility (GO:0006928) and pro-

tein dephosphorylation (GO:0006470), as down-regulated

modules, as well as antimicrobial immune response

(GO:0019735) as an up-regulated one (Figure 4a). Overall,

GSEA analysis showed marked enrichment for the expression

of myoepithelial genes in the functional groups of the tumour

overexpressed transcripts compared to the luminal epithelial

transcriptome (Figure 4a). The gene set with the most statisti-

cally significant representation of myoepithelial type genes

consisted of members of the collagenase family

(GO:0006817), with COL3A1, COL6A1, COL1A1,

COL5A12, COL15A2, COL1A1 and COL12A1 representing

the discriminator genes. The second most statistically signifi-

cant enrichment of expression in myoepithelial type genes with

higher abundance in the malignant breast epithelium was

found in the functional category of skeletal development

(GO:0001501; Figure 4a,b). This set of bone related genes

included COL1A2, COL1A1, GHR, COL12A1, PAPSS2,

TBX3, FRZB, EXT1, MSX1, EN1, TWIST1 and AEBP1, with

POSTN being the most prominent discriminator of this gene

set (Figure 4b).

Clinical significance of POSTN using tissue microarray 

analysis

To evaluate whether the luminal and myoepithelial annotations

of our epithelial deregulated transcriptome identify genes with

any correlation with clinical outcome in breast cancer, we per-

formed immunohistochemical analysis POSTN on a tissue

microarray consisting of 245 primary breast tumours. POSTN,

usually expressed in mesenchymal cells, was chosen, not only

because it was one of the most highly differentially expressed

genes in normal myoepithelial cells over all microarray plat-

forms (Figure 3), but also because it belongs to the functional

group of skeletal development that showed overall myoepithe-

lial-specificity and up-regulation in the malignant breast epithe-

lium (Figure 4b). When POSTN expression was examined at

the protein level, no detectable expression was observed in

the normal breast epithelium, but only in the stroma, in

concordance with its known mesenchymal expression (not

shown). However, 42/224 (18.75%) invasive breast carcino-

mas clearly showed epithelial expression (Figure 5a), whereas

the remainder showed the expected expression pattern only in

the stroma (Figure 5b). POSTN expression in neoplastic cells

was significantly correlated with positivity for progesterone

receptor (PR) (P < 0.05) and low proliferation rates as defined

by Ki67 (MIB1) staining (P < 0.05) (Additional file 10). When

the whole cohort was analysed, POSTN-positive breast can-

cers showed a trend towards a poorer outcome, although this

did not reach statistical significance (Additional file 11a,b).

Since the estrogen receptor (ER) status is the most important

marker in defining the prognosis and treatment of breast can-

cer, the correlation of POSTN expression with overall survival

and disease free survival was analysed in ER-positive and ER-

negative subgroups. No significant correlation was observed

in the ER-negative cohort. However, within the ER-positive

subgroup, 20.8% (37/178) of breast tumours were positive

and there was a significant correlation with both overall sur-

vival (P = 0.0083) and disease-free survival (P = 0.0136) (Fig-

ure 6a,b, respectively). In this cohort, modified Bloom-

Richardson grade (P < 0.01), lymph node status at diagnosis

(P < 0.005) and POSTN expression (P < 0.05) were statisti-

cally significant predictors of disease-free survival in univariate

analysis, whereas only lymph node status at diagnosis (P <
0.001) and POSTN expression (P < 0.01) were associated

with overall survival in univariate analysis. By multivariate anal-

ysis of disease-free survival in the ER-positive cohort, POSTN

did not reach formal statistical significance as an independent

factor (P = 0.0833) (Table 2, italics), although it did constitute

an independent prognostic factor for overall survival (P =

0.0168) (Table 2, bold). Two other genes that showed up-reg-

ulation in the malignant breast epithelium were also analysed

on the protein level by tissue microarray, namely those encod-

ing COMP [38], a skeletal developmental protein that was not

Table 2

Multivariant proportional-hazard analysis

Parameter Hazard ratio (95% confidence interval) P (Cox)

Grade 2.6434 (1.3935–5.0144) 0.0029

LN status 3.6408 (1.5264–8.6840) 0.0036

POSTN 1.8099 (0.9247–3.5422) 0.0833

LN status 5.6924 (1.3331–24.3076) 0.0189

POSTN 2.8151 (1.2048–6.5775) 0.0168

The tissue microarray cohort was analysed using the Cox proportional hazards model for disease-free survival (italic) and overall survival (bold). 
Only those statistically significant independent prognostic factors as determined by the model are shown. LN, lymph node status at diagnosis.
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differentially expressed between luminal and myoepithelial

cells, and IL8, an inducer of bone resorption. Similarly to

POSTN, COMP and IL8 could be clearly detected in the epi-

thelial cells of 21% and 13.9% invasive breast carcinomas,

respectively (Figure 5c,d). In contrast to POSTN, however,

there was no correlation of COMP or IL8 tumour staining with

age, grade, stage, ER, PR, disease-free interval or overall sur-

vival, although epithelial expression of the mesenchymal mark-

ers POSTN and COMP correlated significantly with each

other (Additional file 10).

Discussion
Using highly enriched populations of malignant breast epithe-

lial cells and normal epithelial cells, obtained from immu-

nomagnetic cell sorting, we have established genome-wide

molecular signatures specific to the epithelial compartments

of both the normal and the malignant human breast. Combin-

ing gene profiles obtained from different expression platforms,

including direct high-throughput sequencing (MPSS) and mul-

tiple microarray platforms, yielded a validated transcriptome

comprising 8,051 differential transcripts. These data provide a

basis for the molecular changes that occur in the transition

from normal luminal to malignant epithelial cells, and also allow

further analysis of solid breast tumour (neoplastic plus stroma)

gene expression studies, enabling those genes of specific epi-

thelial origin to be identified in respect to progression, predic-

tion of outcome and metastasis. The expression data obtained

from the normal luminal and myoepithelial cells have extended

our previous analysis of these normal cell types [11], and

provide gene sets that can be used to comprehensively spec-

ify the epithelial phenotype expressed in breast tumours, as

well as defining new markers of each cell type.

The data presented here report for the first time the application

and validation of the MPSS sequencing technology to malig-

nant human breast epithelial cells and their normal counter-

parts. MPSS expression studies of different human cell lines

and normal tissues have already shown that this technology

represents the most comprehensive sequencing methodology

available at present, in terms of gene coverage and quantita-

tive assessment of gene expression [22,39]. With over 106

sequencing reactions per sample [18,19], it is comparable in

scope with the now commonly used genome-wide microarray

profiling methods, as also used in the present study. Compar-

ative studies of genome wide data sets are entirely dependent

on the choice of common denominator for annotation [40]. By

using our sequence based mapping, 97% of MPSS tags

could be aligned with individual features on genome-wide

microarrays, indicating that the vast majority of the expressed

sequence tags in the normal and malignant breast epithelium

MPSS libraries represent known transcripts, in agreement

with the recent data suggesting that MPSS identifies very few

truly novel genes [39]. Given the significant methodological

differences between microarray and MPSS analysis, the fact

that more than 65% of our MPSS differential data set showed

concordance with expression profiling obtained by several dif-

ferent microarray platforms, represents a good overlap

compared with other examples of sequence versus array data

[41]. However, a substantial number of differentially expressed

genes (4,149) measured on at least two microarray platforms

were not identified as such by MPSS, and a significant number

of MPSS differential transcripts (2,440) were not confirmed

on any array (Figure 1), implying a relatively high false positive

and false negative rate of the MPSS methodology. This prob-

ably reflects the known limitations of the MPSS technology

[39], particularly with regards to transcripts that were not

detected (zero counts) in one sample, as well as genes lacking

appropriate restriction enzyme sites required for this technol-

ogy. However, individual microarray platforms themselves dif-

fer substantially [42] and a multiplatform approach, as used

here, clearly defines a robust DTET seen by every technology.

Another important feature of our DTET is the use of purified

epithelial cells, derived by both positive and negative immu-

nomagnetic sorting in which the contamination of malignant

samples with stromal cells is reduced to a minimum, and nor-

mal luminal and myoepithelial cells are separated from short-

term primary cultures. Although the profiling techniques used

represent the global transcriptomes of purified normal and

neoplastic breast epithelial cells in highly enriched prepara-

tions, it is conceivable that even a small contamination of the

Figure 5

Immunohistochemical analysis of periostin (POSTN), IL8 and cartilage oligomeric matrix protein (COMP)Immunohistochemical analysis of periostin (POSTN), IL8 and cartilage 
oligomeric matrix protein (COMP). (a) POSTN-positive invasive ductal 
carcinoma (IDC; ×400), in which both epithelial and stromal cells show 
cytoplasmic expression. (b) POSTN-negative IDC in which only the 
spindle shaped stromal cells are stained (×400). (c) IL8 (×100), show-
ing positive staining only in the malignant breast epithelial cells. (d) 
COMP expression in the epithelial and stromal cells of an IDC, showing 
strong expression in both stromal and epithelial cells (×100).
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malignant samples by normal or reactive stromal cells, as well

as the induction of inflammatory genes due to in vitro manipu-

lation, could result in false positives. However, verification of

the probable epithelial origin of differentially expressed genes

can be obtained by comparing expression data from breast

epithelial cell lines [22], breast tumour cell lines or, as in the

present study, by immunohistochemistry, all of which show

that, for example, IL8, is a bona fide epithelial tumour-associ-

ated product [43,44]. One of the features of normal luminal

epithelial cultures is the loss of estrogen receptor expression

[45]. The microarray gene expression profiling currently used

to classify breast cancers supports the paradigm that ER sta-

tus is the most important phenotype in breast cancer and has

led to the classification of breast cancers into luminal A (ER-

positive good prognosis) and luminal B (ER-positive poor

prognosis), and ER-negative myoepithelial/basal and HER2

subtypes, each with distinct differences in prognosis and

response to therapy [4,5,46]. Genes identified in this study

representing the normal luminal epithelial phenotype are dis-

tinct from the subset of genes that are associated with ER

expression and are used to classify 'luminal' breast tumours.

Thus, we are able to define the luminal phenotype independ-

ently of ER status. In contrast, our myoepithelial signature con-

tains several members of the previously reported gene clusters

identifying basal-like breast cancers. Some of these have been

previously identified as myoepithelial genes in the normal

breast epithelium, for example, TIMP3, SPARC, JAG1,

PRSS11 and CAV-1 [11], and some of them, such as

S100A7, SPARC and CNN1, have previously been shown

individually to be correlated to poor outcome [5,11,47]. Since

our cell type specific gene signatures were derived from phe-

notypically well characterised cell types compared to empirical

stratification based on expression data, we were also able to

identify a range of myoepithelial type genes in ER-positive

tumours as well as those in basal-like breast cancers. Thus,

although the majority of the primary breast tumours within our

malignant pool were ER-positive 'luminal' tumours, a

significant number of up-regulated gene sets also showed

myoepithelial expression. The observation of myoepithelial

genes such as SFRP2, DCN, POSTN, LUM, COL1A2 and

COL11A1, which showed higher expression in ER-positive

compared to ER-negative breast tumours in two other breast

cancer tumour profiling studies [48,49], proved the value of

such an approach and demonstrated the heterogeneity of

breast tumours with respect to the levels of luminal epithelial

and myoepithelial gene expression. The potential clinical sig-

nificance of the expression of myoepithelial/basal genes in ER-

positive tumours has been highlighted by recent data showing

that the promoter DNA methylation of the classic myoepithelial

marker S100A2 is correlated with a poor prognosis in ER-pos-

itive tumours [50]. In contrast, increased levels of expression

of phosphoserine aminotransferase (encoded by PSAT1),

which was another gene also identified in our myoepithelial

transcriptome, was the strongest predictive marker for a poor

response to tamoxifen therapy in ER-positive tumours [50].

Our observation that the malignant epithelial expression of

POSTN, also a myoepithelial/basal gene, is associated with

poorer survival (P = 0.0083) in ER-positive tumours

demonstrates that the normal epithelial annotation of tumour

transcripts can identify many other types of myoepithelial/

basal genes, including those associated with a poor outcome.

An important question is whether the expression of myoepithe-

lial/basal genes in breast cancers are responsible for the prog-

nosis and poor response to therapy or are merely surrogate

markers thereof. There are several lines of evidence to suggest

that POSTN may play a role in the biology of breast cancer

[51,52]. POSTN is a ligand of αvβ3 integrins and promotes

adhesion and migration of epithelial cells [51]. Clinical studies

of periostin expression in human cancers have demonstrated

Figure 6

Cumulative Kaplan-Meier curves for epithelial expression of periostin (POSTN)Cumulative Kaplan-Meier curves for epithelial expression of periostin (POSTN). A cohort of poor-prognosis estrogen receptor (ER)-positive tumours 
was analysed showing: (a) a significantly shorter overall survival (P = 0.0083); (b) a shorter disease free survival (P = 0.0136).
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that increased expression of POSTN is correlated with tumour

angiogenesis and metastasis [52-54]. In primary breast

tumours, POSTN causes up-regulation of vascular endothelial

growth factor receptor (VEGFR)-2 in endothelial cells [52].

Elevated expression of VEGFs, the ligands for the VEGF

receptors, as observed in some breast carcinomas as well as

in our study, provides synergistic paracrine signalling through

VEGFR-2 on endothelial cells, potentially promoting angiogen-

esis and dissemination. Although the expression of POSTN

shows a weak correlation with Ki67 immunoreactivity, there is

no evidence to suggest that POSTN itself influences prolifera-

tion or is a surrogate marker of proliferation rate. Rather, it

seems more likely that that its prognostic significance may be

due to the altered therapeutic responses of POSTN positive

tumours to drugs like tamoxifen. The fact that tumour-specific

expression of VEGFR-2 has been associated with an impaired

response to tamoxifen therapy in ER-positive premenopausal

breast cancer [55] is in line with the poor prognosis of this

cohort of breast cancers. Therefore, further studies are

required to investigate if POSTN positivity is correlated with

VEGFR-2 expression, thereby providing a molecular mecha-

nism that links POSTN to endocrine resistance for ER-positive

breast tumours.

Metastasis to bone occurs frequently in advanced breast can-

cer and is accompanied by debilitating skeletal complications

[56]. Among the up-regulated gene sets in the malignant sam-

ple with enrichment in myoepithelial/basal type genes in this

study was a small family of genes involved in bone remodelling

and skeletal development. Their expression in the human

breast epithelial cells, including the normal myoepithelial cells,

indicates that they play a significant role in epithelial cell biol-

ogy, in addition to mesenchymal development. Many of these

mesenchymal-specific genes, associated with osteoblasts,

have previously been found overexpressed in other primary

breast tumours [57]. By acquiring the expression of such mes-

enchymal genes, the malignant epithelial breast cells may have

an advantage in growth in the bone environment correlating

with progression into a more aggressive cancer phenotype.

Targeting such genes and proteins might, therefore, be a

means of suppressing this phenomenon.

Conclusion
In the past decade, several different expression and proteom-

ics studies on purified cell populations of normal luminal and

myoepithelial, as well as tumour enriched cell populations,

have been carried out [11-13,58,59]. Genes characterising

these cell types have been identified, some of which showed

altered expression levels in the malignant compared to the nor-

mal breast epithelium. In this study, we have taken this profiling

forward by comprehensively defining the transcriptomes of

highly enriched normal and malignant breast epithelial cell

populations on a genome wide scale using multiple technolo-

gies. We present here, for the first time, co-regulated breast

tumour-associated gene sets enriched in either luminal or

myoepithelial-type genes. These data are important for evalu-

ating the breast cancer stratification systems based on estab-

lished expression profiling, in which luminal and basal

phenotypes have been shown to be prognostically significant.

Further analysis of these related gene subsets, including

expression studies in individual tumours, will assist in our

understanding of the mechanisms involved in the initiation and

progression of breast cancer, and the loss or acquisition of

luminal or myoepithelial phenotypes in breast tumours. This

will lead to the identification of additional luminal and basal

markers and targets, with importance in the biology of breast

cancer and its treatment.
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Additional files

The following Additional files are available online:

Additional file 1
A jpeg figure showing cell separation of normal and 
malignant breast epithelial cells. Purity of separated 
normal and malignant cells. (a) A short-term primary 
culture of breast epithelium stained with monoclonal 
antibodies specific for vimentin (green), CK 14 (red), CK 
18 (blue) and CK 19 (purple), as visualised with 
appropriate class and sub-class specific fluorescence 
conjugated secondary antibodies (×150). The middle 
and right columns show the double immunomagneticallly 
separated luminal and myoepithelial preparations stained 
in the same manner, illustrating their homogeneity in 
respect of cells expressing luminal (CK 18/CK 19) and 
myoepithelial markers (CK 14/vimentin). (b) The irregular 
clusters of cohesive malignant epithelial cells obtained 
when a disaggregated tumour is subject to filtration, 
sedimentation and negative selection for fibroblast 
activation protein-positive reactive stromal cells and 
visualised by phase-contrast microscopy to identify 
samples with minimal microvessel and lymphocytic 
contamination (×400).
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S1.jpeg

http://www.biomedcentral.com/content/supplementary/bcr1604-S1.jpeg
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Additional file 2
A Word document showing the pathology of primary 
breast tumours used for MPSS and microarray analysis. 
The pathological information of 15 primary breast 
tumours regarding grade, type, size of vascular invasion, 
lymph node status, estrogen (ER), progesteron (PR) and 
Her-2 status is provided.
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S2.doc

Additional file 3
A Word document providing a detailed description of the 
tissue microarray. Summary of clinicopathological 
features of patients included in the tissue microarrays. A 
cohort of 245 invasive breast carcinomas from 245 
patients treated with surgery (wide local excision or 
mastectomy) and adjuvant anthracycline-based 
chemotherapy was retrieved from the Department of 
Histopathology files of the Royal Marsden Hospital with 
appropriate local Ethical Committee approval (Royal 
Marsden Hospital, London, UK). Representative blocks 
from 245 invasive breast carcinomas were reviewed by a 
pathologist (JSRF) and included in duplicate in two 
tissue microarray (TMA) blocks as previously described. 
In brief, 0.6 mm core tissue specimens were taken from 
selected areas of donor blocks (original tumour blocks) 
and precisely arrayed into two new recipient paraffin 
blocks (20 × 35 mm) with a custom-built precision 
instrument (Beecher Instruments, Silver Spring, MD, 
USA). The presence of tumour tissue in the arrayed 
sample was verified on a haematoxylin and eosin stained 
section. ER, PR, p53, vascular invasion, Ki67 (MIB-1) 
labelling index and nodal status were known for all 
samples. Follow up was available for 244 patients, 
ranging from 0.5 to 135.3 months (median = 67.3 
months, mean = 67.3 months).
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S3.doc

Additional file 4
An Excel file listing raw and annotated MPSS data for 
malignant and normal breast epithelial samples. 
Sequence signatures with their corresponding 
annotation and their expression in tpm are shown. 
Transcripts uniquely expressed in the malignant breast 
epithelium and in the normal luminal epithelium are 
highlighted in yellow and red, respectively.
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S4.xls

Additional file 5

An Excel file containing a table showing an overlay of the 
multiple microarray platforms based on the HTR 
database. Microarray featuers of Affymetrix U133 Plus 
2.0 GeneChip and CodeLink™ Human Whole Genome 
Bioarray, Agilent Whole Human Genome Oligo 
Microarray 44 k cDNA array and 20 k brk cDNA 
microarray were mapped onto the HTR database.
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S5.xls

Additional file 6
An Excel file containing a table showing the semi-
quantitative RT-PCR of transcripts belonging to the three 
groups (MPSS-only, MPSS-array confirmed and Array-
only). Transcripts with their respective annotation, RT-
PCR primer sequence and level of expression detected 
by RT-PCR are shown.
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S6.xls

Additional file 7
An Excel file containing a table showing the differential 
tumour epithelial transcriptome. All 8,051 differentially 
expressed normal luminal versus tumour genes are listed 
with their HTR cluster_ID, microarray_ID and their 
respective fold change for each microarray platform, 
comprising the differentially expressed epithelial tumour 
transcriptome.
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S7.xls

Additional file 8
An Excel file containing a table showing the biological 
processes deregulated in the DTET. Biological 
processes of the up- and down-regulated transcripts are 
shown. Gene Ontology identifiers, description, total 
number of input genes, as well as P value are shown. The 
input genes for the most significant deregulated 
biological processes are provided by their gene names 
and their RefSeq accession numbers.
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S8.xls

Additional file 9
An Excel file containing a table showing the differential 
normal epithelial transcriptome. Luminal and 
myoepithelial transcriptomes based on multiple 
microarray analyses HTR cluster, microarray feature, fold 
change and P value are listed for each gene.
See http://www.biomedcentral.com/content/
supplementary/bcr1604-S9.xls

Additional file 10

http://www.biomedcentral.com/content/supplementary/bcr1604-S2.doc
http://www.biomedcentral.com/content/supplementary/bcr1604-S3.doc
http://www.biomedcentral.com/content/supplementary/bcr1604-S4.xls
http://www.biomedcentral.com/content/supplementary/bcr1604-S5.xls
http://www.biomedcentral.com/content/supplementary/bcr1604-S6.xls
http://www.biomedcentral.com/content/supplementary/bcr1604-S7.xls
http://www.biomedcentral.com/content/supplementary/bcr1604-S8.xls
http://www.biomedcentral.com/content/supplementary/bcr1604-S9.xls
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