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The emergence and global spread of pandemic H1N1
influenza led the World Health Organization to
declare a pandemic on June 11, 2009. As the pan-

demic spreads, countries will need to make decisions about

strategies to mitigate and control disease in the face of
 uncertainty.

For novel infectious diseases, accurate estimates of epidemi-
ologic parameters can help guide decision-making. A key para-
meter for any new disease is the basic reproductive number (R0),
defined as the average number of new cases created by a single
primary case in a susceptible population. R0 affects the growth
rate of an epidemic and the final number of infected people. It
also informs the optimal choice of control strategies. Other key
parameters that affect use of resources, disease burden and soci-
etal costs during a pandemic are duration of illness, rate of hos-
pital admission and case-fatality rate. Early in an epidemic, the
case-fatality rate may be underestimated because of the tempo-
ral lag between onset of infection and death; the delay between
initial identification of a new case and death may lead to an
apparent increase in deaths several weeks into an epidemic that
is an artifact of the natural history of the  disease.

We used data from initial reports of laboratory- confirmed
pandemic H1N1 influenza to estimate epidemiologic parame-
ters for pandemic H1N1 influenza. The parameters included
R0, incubation period and duration of illness. We also esti-
mated risk of hospital admission and case-fatality rates, which
can be used to estimate the burden of illness likely to be asso-
ciated with this disease.

Methods

Data collection
We collected individual-level data on laboratory-confirmed
cases of pandemic H1N1 influenza in the province of Ontario,
Canada, with a reported date of symptom onset between
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Background: In the face of an influenza pandemic, accurate
estimates of epidemiologic parameters are required to help
guide decision-making. We sought to estimate epidemio-
logic parameters for pandemic H1N1 influenza using data
from initial reports of laboratory- confirmed cases.

Methods: We obtained data on laboratory- confirmed cases
of pandemic H1N1 influenza reported in the prov ince of
Ontario, Canada, with dates of symptom onset between Apr.
13 and June 20, 2009. Incubation periods and duration of
symptoms were estimated and fit to parametric distribu-
tions. We used competing-risk models to estimate risk of
hospital admission and case-fatality rates. We used a Markov
Chain Monte Carlo model to simulate disease  transmission.

Results: The median incubation period was 4 days and the
duration of symptoms was 7 days. Recovery was faster
among patients less than 18 years old than among older
patients (hazard ratio 1.23, 95% confidence interval 1.06–
1.44). The risk of hospital admission was 4.5% (95% CI
3.8%–5.2%) and the case-fatality rate was 0.3% (95% CI
0.1%–0.5%). The risk of hospital admission was highest
among patients less than 1 year old and those 65 years or
older. Adults more than 50 years old comprised 7% of
cases but accounted for 7 of 10 initial deaths (odds ratio
28.6, 95% confidence interval 7.3–111.2). From the simula-
tion models, we estimated the following values (and 95%
credible intervals): a mean basic reproductive number (R0,
the number of new cases created by a single primary case
in a susceptible population) of 1.31 (1.25–1.38), a mean
latent period of 2.62 (2.28–3.12) days and a mean duration
of infectiousness of 3.38 (2.06–4.69) days. From these val-
ues we estimated a serial interval (the average time from
onset of infectiousness in a case to the onset of infectious-
ness in a person infected by that case) of 4–5 days.

Interpretation: The low estimates for R0 indicate that
effective mitigation strategies may reduce the final epi-
demic impact of pandemic H1N1 influenza.

Abstract
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Apr. 13 and June 20, 2009. This cutoff was chosen because
individual-level reporting of cases of pandemic H1N1 in -
fluenza in Ontario was stopped after this date.

We obtained the data from the province’s Integrated Pub-
lic Health Information System. This system incorporates data
provided by public health units engaged in the investigation
of initial laboratory-confirmed cases of pandemic H1N1
influenza. For these cases, information was available on age,
date of symptom onset and, for patients admitted to hospital,
the date of admission and discharge and the outcome at dis-
charge. Records included source of exposure if known (e.g.,
travel to Mexico for early cases), earliest possible exposure
and, in a subset of cases, most recent possible exposure be -
fore onset of symptoms.

Estimation of incubation period
We restricted this analysis to case records with both an earli-
est and most recent date of exposure to an infectious case or
locale, as well as a recorded date of symptom onset. The most
likely date of exposure was estimated as the midpoint
between the earliest and most recent dates of exposure. We
assessed the goodness-of-fit of log-normal and Weibull distri-
butions to observed distributions of incubation periods, with
goodness-of-fit evaluated using graphic log–log plots.

Estimation of duration of symptoms, risk of hospital
admission and case-fatality rate
We estimated the duration of symptoms (the interval
between onset of illness and resolution of symptoms) using
methods similar to those used to evaluate the period of incu-
bation. We restricted our analysis to include cases with a
recorded date of symptom onset before June 21, 2009, and a
documented date of symptom resolution. We evaluated the
association between age and time to resolution of symptoms
using the log-rank test and through construction of Cox pro-
portional hazards models.

Because the absence of a documented date of symptom reso-
lution could signify either ongoing illness or missing data on
symptom resolution, we performed sensitivity analyses in which
missing dates of symptom resolution were randomly replaced
based on the log-normal probability distribution of available
durations of symptoms; we considered dates after June 21,
2009, as “censored” for the purposes of these  analyses.

To estimate the risk of hospital admission and case-fatality
rates, we used competing-risk survival models.1 Such models
can be used to estimate the predicted cumulative incidence of
a given outcome over time if other “competing” outcomes do
not occur. In the model evaluating risk of hospital admission,
the competing outcomes were admission to hospital, death
without admission to hospital (as occurred in a handful of
cases), recovery without admission to hospital and “censored”
(for cases in which none of the outcomes had occurred by the
final date of evaluation). We used a “ratio of hazards” approach
to account for temporal effects, allowing for the projection of
likely long-term hospital stays and case-fatality rate. For a
more detailed description of this approach and its derivation,
see Appendix 1 (available at www.cmaj.ca /cgi /content /full
/cmaj .091807 /DC1).

Simulation of disease transmission
We used a Markov Chain Monte Carlo model to simulate dis-
ease transmission under varying assumptions around duration
of infectiousness, latent period (infected, but noninfectious)
and likelihood of asymptomatic infection. We assumed that
people would become infected at a rate dependent on the num-
ber of infectious people in the Ontario population and the
duration of infectiousness. We used data on history of travel to
Mexico to classify imported cases. These cases were assumed
to contribute to the transmission of infection; we used dates of
symptom onset for these cases to model the initial introduction
of pandemic H1N1 influenza into the Ontario population. The
structure of the model is outlined in Appendix 2 (available at
www.cmaj.ca /cgi /content /full /cmaj .091807 /DC1).

We performed 1000 simulations in which daily reported
counts of imported and locally acquired cases were assumed
to Poisson-random variates. We generated best-fit values for
R0, latent period and infectious period for each simulation
using an optimization routine that minimized the sum-of-
squares difference between model projections and the
observed epidemic curve. From the simulations, we estimated
mean parameter values and 95% credible intervals.

Results

A total of 3152 laboratory-confirmed cases of pandemic
H1N1 influenza had reported dates of symptom onset be -
tween Apr. 13 and June 20, 2009. The mean age of the
patients was 21.9 years (standard deviation 15.7). The age
distribution is presented in Figure 1. From the total number of
cases, we selected those with sufficient information to esti-
mate incubation period, duration of symptoms, risk of hospi-
tal admission and case-fatality rate (Figure 2).

Incubation period
A total of 316 cases contained sufficient information on earli-
est exposure and disease onset to estimate incubation periods.
The median time from exposure to symptom onset was 4 days
(Figure 3). The distribution of estimated incubation periods
followed a log-normal distribution (mean incubation 4.3 days,
95% CI 2.6–6.6 days).

Duration of symptoms
Of the 712 reported cases with documented resolution of
symptoms, the median duration of symptoms was 7 days. The
median duration was significantly shorter among patients
aged less than 18 years (7 days) than among older patients
(8 days) (hazard ratio 1.23, 95% confidence interval 1.06–
1.44). Intervals between onset and resolution of symptoms
followed a log-normal distribution (mean duration 9.3 days,
95% CI 2.6–24.2 days) (Figure 4).

Risk of hospital admission and case-fatality rate
A total of 140 admissions to hospital and 10 deaths were
recorded during the 10 weeks of observation. The estimated
risk of hospital admission per case was 4.5% (95% CI 3.8%–
5.2%). The estimated case-fatality rate was 0.3% (95% CI
0.1%–0.5%). In the competing-risk models used to adjust for
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recovery and death without admission to hospital, the cumula-
tive risk of admission increased gradually during the first 5
days of illness, to about 3%. The risk was highest among
infants (age < 1 year) and among elderly patients (age ≥ 65
years); adolescents were at decreased risk (Table 1). Although
adults more than 50 years old comprised only 7% of cases, 7
of 10 deaths occurred in this age group (odds ratio 28.6, 95%
CI 7.3–111.2). Using methods described above for the estima-
tion of the case- fatality rate, we estimated an asymptomatic
case-fatality rate of 0.002 (95% CI 0.0008–0.0076).

Model-based estimates of transmission parameters
We estimated a mean basic reproductive number (R0) of 1.31
(95% credible interval 1.25–1.38) (Figure 5); a mean latent
period of 2.62 days (95% credible interval 2.28–3.12); and a
mean duration of infectiousness of 3.38 days (95% credible
interval 2.06–4.69). Using a commonly applied heuristic

algorithm to estimate the serial interval2 (the average time
from onset of infectiousness in a case to the onset of infec-
tiousness in a person infected by that case) based on the sum
of the latent periods plus half the duration of infectiousness,
we estimated the serial interval for pandemic H1N1 influenza
to be 4–5 days. The range of R0 values would correspond with
an overall attack rate (symptomatic and asymptomatic) of
20%–50% in the absence of intervention.3

Interpretation

We used initial reporting data on laboratory-confirmed cases
of pandemic H1N1 influenza in the province of Ontario to
estimate key epidemiologic parameters for pandemic H1N1
influenza. Because the 2009 influenza pandemic continues to
evolve, these values are critical for planning and can be used
to reduce some of the uncertainty around the health burden

likely to be associated with this dis-
ease in the coming months. Our low
estimate of 1.31 for the basic repro-
ductive number (R0) is consistent with
estimates from Mexico4,5 (1.2 to 1.6)
and the United States (1.7–1.8 after
adjustment for increasing ascertain-
ment of cases).6 Our R0 estimate is also
within a range where mitigation strate-
gies, including use of antiviral drugs,
social distancing and limited vaccina-
tion, might substantially reduce the
final size of the  epidemic.7–11

Our estimated R0 may be lower
than the true value for pandemic
H1N1 influenza. Public concern re -
lated to the emerging pandemic may
have changed population behaviour
or medical practices, thereby reduc-
ing observed reproductive numbers.
Furthermore, a striking feature of the
current pandemic has been a concen-
tration of cases in younger groups,
which suggests the presence of pre-
existing immunity in older adults.12,13
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Figure 1: Age distribution of 3152 laboratory-confirmed cases of pandemic H1N1
influenza in the province of Ontario with onset of symptoms between Apr. 13 and June
20, 2009.
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Figure 2: Breakdown of laboratory-confirmed cases of pandemic H1N1 influenza available for analysis.
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The effective reproductive number in a partially immune
population is lower than the basic reproductive number.14

Despite reduced susceptibility, we have estimated that older
people with pandemic H1N1 influenza are at increased risk
of hospital admission and death, which emphasizes the
need to characterize the relation between age and risk of
infection early in a pandemic.15 The discrepancy between
age groups in susceptibility to infection and severity of ill-
ness may be an important factor limiting the burden of hos-
pital admision and deaths in the current pandemic.

Our estimate of mean incubation period (time from infec-
tion to onset of symptoms) of 4.3 days is compatible with our
model’s upper bound for latent period (time from infection to

infectiousness) of 3.1 days, assuming a 1-day period of infec-
tiousness before onset of symptoms. Both of these estimates
are longer than is typical for seasonal influenza.16 By contrast,
our estimate of the duration of symptoms (median 7 days) is
longer than our model-based estimate (mean 3.4 days). This
difference could reflect effective isolation of cases or persis-
tent symptoms that outlast infectiousness. However, our esti-
mate of symptom duration is consistent with emerging data
on shedding of the pandemic H1N1 influenza virus.17 The
long latent and infectious periods we have described resulted
in longer estimated serial intervals for this disease than those
previously generated by Fraser and colleagues using indirect
 methods.4

The laboratory-confirmed cases we analyzed almost cer-
tainly represent a small subset of cases of pandemic H1N1
influenza during the period under study. We did not include
infected people without symptoms or those with symptoms
who did not undergo laboratory testing. Knowledge of the
proportion of infected people who are actually identified as
cases is needed to estimate the true risk of hospital admis-
sion or death among cases.18 Estimates derived early in the
current pandemic suggested that only 10% of people in
developed countries received laboratory confirmation of
pandemic H1N1 influenza.18 More recent estimates are as
low as 1.25%.19 Thus, it may be reasonable to reduce our
estimates of hospital admission and case-fatality rates by a
factor of 10 or more in order to approximate risks among all
people with pandemic H1N1 influenza. Serologic studies
will be essential in developing more refined estimates of the
true proportion of the population infected during the period
under study.

Limitations
Our study has several limitations. First, our projection of hos-
pital admissions and deaths among laboratory-confirmed
cases, and with a limited number of outcomes, introduced
wide confidence intervals in the risk estimates. As the pan-
demic progresses, we will be able to refine these values.
However, our initial estimates provide some upper and lower
bounds that may be useful for planning, if it is understood that
laboratory-confirmed cases represent only a subset of all
cases of pandemic H1N1 influenza in the community. Sec-
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able. Estimates were calculated as the time between exposure
date (midpoint of earliest and most recent exposure) and date
of symptom onset. The blue curve represents the best-fit log-
normal distribution of observed data.

Reported infectious 
periods
Fitted log-normal
estimates

0

25

50

75

100

Duration of symptoms, days

N
o

. 
o

f 
co

n
fi

rm
e
d

 c
a

se
s

0 3 6 9 12 15 18 21 24 27 30

Figure 4: Estimates of the duration of symptoms (time from
onset to resolution of symptoms) in 712 laboratory- confirmed
cases of pandemic H1N1 influenza for whom these data were
available. The blue curve represents the best-fit log-normal dis-
tribution of observed data.

Table 1: Risk of hospital admission among 3152 laboratory-
confirmed cases of pandemic H1N1 influenza, by age group 

Age group, yr No. of cases Odds ratio (95% CI)* 

< 1 48 5.86 (2.65–12.94) 

  1–11 863 1.46 (0.95–2.26) 

12–18 880 0.45 (0.26–0.81) 

19–49 (referent) 1117 1.00 

50–64 191 2.92 (1.66–5.12) 

≥ 65 53 6.16 (2.67–14.21) 

Note: CI = confidence interval. 
*Risk of hospital admission was estimated in a logistic regression model in 
which characteristics of 140 patients who were admitted to hospital were 
compared with those of 3012 patients who had no record of admission. 
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ond, our estimates of the duration of symptoms may have
been biased downward. Although we attempted to account for
missing dates of symptom resolution by using statistical
methods, some of the outcomes may have been censored
because the patients had prolonged illness. Finally, not all
hospital admissions or deaths attributable to influenza will be
captured in surveillance data. For seasonal influenza, about
30% of related deaths have been predicted to occur outside of
hospital,20 and the burden of influenza difficult to assess.21,22

Conclusion
On the basis of data from initial laboratory-confirmed cases
of pandemic H1N1 influenza, our estimates show that the
characteristics of this novel influenza virus do not differ sub-
stantially from those of seasonal influenza. However, when
combined with high attack rates in younger groups,13 there
may be greater absolute numbers of hospital admissions and
deaths than are observed in a typical influenza season.
Enhanced surveillance during an influenza pandemic, com-
pared with surveillance during seasonal influenza epidemics,
could also contribute to such an effect. Our relatively low
estimate of R0 (the number of new cases created by a single
primary case in a susceptible population) indicates that effec-
tive use of mitigation strategies may substantially reduce the
final size of the pandemic.
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