
Estimated-Regression Planning for Interactions with Web Services∗

Drew McDermott
Yale University Computer Science Department

Abstract

“Web services” are agents on the web that provide services
to other agents. Interacting with a web service is essen-
tially a planning problem, provided the service exposes an
interface containing action definitions, which in fact is an el-
egant representation of how web services actually behave.
The question is what sort of planner is best suited for solv-
ing the resulting problems, given that dealing with web ser-
vices involves gathering information and then acting on it.
Estimated-regressionplanners use a backward analysis of the
difficulty of a goal to guide a forward search through situa-
tion space. They are well suited to the web-services domain
because it is easy to relax the assumption of complete knowl-
edge, and to formalize what it is they don’t know and could
find out by sending the relevant messages. Applying them
to this domain requires extending classical notations (e.g.,
PDDL) in various ways. A preliminary implementation of
these ideas has been constructed, and further tests are under-
way.

The Solution and the Problem
Estimated-regression planningis the name given to a family
of planners including Unpop (McDermott 1996; 1999) and
HSP (Bonet, Loerincs, & Geffner 1997; Bonet & Geffner
2001), in which situation-space search is guided by a heuris-
tic estimator obtained by backward chaining in a “relaxed”
problem space. Typically the relaxation neglects interac-
tions, both constructive and destructive, between actions
that achieve goals, and in particular neglects deletions com-
pletely. The resulting space is so much smaller than situation
space that a planner can build complete representation of it,
called aregression graph. The regression graph reveals, for
each conjunct of a goal, the minimal sequence of actions that
could achieve it.1

Estimated-regression planners have been applied to
classical-planning domains, those in which perfect informa-

∗This work was supported by DARPA/DAML under contract
number F30602-00-2-0600.
Copyright c© 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1I intend the term “regression graph” to cover the data structures
constructed by all the planners in this family; in my previous work
I have used the termregression-match graph,to emphasize that my
planner defers variable instantiation until the graph is constructed,
and I use this term below when the distinction is important.

tion is assumed, but one of the reasons why these planners
are interesting is that it seems they might be generalizable
to problems that violate classical assumptions. An exam-
ple is the domain of “web services,” a phrase that denotes
agents living on the World-Wide Web that provide services
of various sorts in response to the appropriate messages. A
typical web service might sell microprocessors in bulk to
computer manufacturers. Aclient agent might send its or-
der, plus some payment information, to theserviceagent,
which sends back either a confirmation number or a failure
message of some sort. More than one message exchange is
typically necessary; for instance, the client might need to get
a product-id number from the service in order to construct its
order.

For this scenario to work out, the client must know what
messages the service expects and what replies it produces.
Because services are detected dynamically, each service
must expose its interface information in a formal notation
so that agents can know what they expect. There are differ-
ing models of what it means to be “formal” in this context,
but one obvious idea is that what the service exposes is a set
of primitive actions and canned interaction plans, which the
client views as a planning domain. It constructs a plan for
interacting with the service, executes it, and then takes stock.
If the plan has failed, the client has at least gained some in-
formation, which it can use in the next cycle of planning and
execution.

The planning problems that will naturally occur are not
classical, for the obvious reason that classical-planning do-
mains assume complete information, and many of the ac-
tions an agent performs on the Web are for the purpose
of gaining information. However, in one respect the web-
service problem fits the classical Strips-style paradigm very
nicely: actions have preconditions and effects that are ex-
pressible as simple propositions. That means that it is easy
to compute the contribution an action would make toward a
goal, i.e., whether it would achieve or undo a piece of it, and
what prior condition would be necessary in order for it to
have that effect. This computation is what we mean by the
termregression.

To apply an estimated-regression planner to this problem
area, we have to deal with several issues: How can we model
gaining information? What does it mean to solve a planning
problem in circumstances where few plans are guaranteed to

204 AIPS 2002

succeed? Can canned plans and loops be incorporated into a
“quasi-classical” planner? In this paper, I address the first of
two of these issues, although I believe that progress can be
made on the third as well.

Related Work
One could write a large survey paper on all the work related
to the research reported here. The industrial community is
busily at work developing standards for describing web ser-
vices. The UDDI (“Universal Description, Discovery, and
Integration”) Consortium is developing standards for reg-
istering web services. (Seehttp://www.uddi.org .)
This includes systems for describing interactions with web
services such as WSDL (Christensenet al. 2001), and
XLANG (Thatte 2001). WSDL mainly describes the con-
tents of messages to and from agents at an abstract level,
plus information on how the contents are mapped to more
concrete protocols. XLANG is a language for writing scripts
with which to deal with web services. My focus in this pa-
per is in creating such scripts from more primitive action
descriptions, but where appropriate canned scripts could be
very helpful. Comparison of XLANG with the action lan-
guage of PDDL (McDermott 1998) would be an interesting
exercise.

There is a tremendous amount of research on agents
for gathering information on the Web. Some focuses
on extracting information from web pages of disparate
types (Knoblocket al. 2001; Kushmerick 2000). Much
of it focuses on efficient query planning (Ullman 1997;
Ambite et al. 2001; Friedman & Weld 1997). This work
is in a more specialized realm than I am considering here,
but would play a role in dealing with web services if large-
scale information gathering became an important part of the
web-service problem.

The work on information gathering ties in with methods
for relaxing the traditional closed-world assumptions of AI
systems (Levy 1996; Etzioni, Golden, & Weld 1997), by
stating “local closed-world assumptions,” and using them to
decide when to stop looking for information. I take the ap-
proach of explicitly reasoning about what an agent knows or
does not know, which is probably equivalent to local closed-
world assumptions in the end.

The work most closely related to mine is the work oncon-
tingent planning,in which planners try to take into account
the need to insert sensing and branching steps into plans.
The earliest work in this area is (Warren 1976). The area
was revived by the work of (Peot & Smith 1992) on con-
tingent partial-order planning. The work closest to mine in
spirit is (Pryor & Collins 1996; Pryor 1995), in which obser-
vations are supported specifically to support decisions. The
only work on contingent planning for estimated-regression
planners is (Geffner 1998; Bonet & Geffner 2000). It takes
a rather different approach in which the world is modeled
as a Markov process, totally or partially observable. That
model doesn’t fit the web-service domain too well.

Domain Formalization
The central issue in formalizing a web service is how to rep-
resent the transmission of information. Other actions can be

represented using standard techniques. For instance, if it is
necessary to log in to a service before proceeding, we could
express this in PDDL as

(:action login
:parameters (a - Agent pw - String)
:precondition (password pw a)
:effect (logged-in a))

We should pause here to point out that on the Web this
formalism must be encoded in XML, and that encoding
it in DAML/RDF would be even better, since it would
then become transparent to a wider variety of agents. For
details on how to do that encoding, see (McDermott &
Dou 2001). However, in this paper we will neglect the
XML/DAML/RDF layer of abstraction almost completely.

Plan-Step Values
PDDL lacks the ability to specify that performing an action
causes certain information to be created or learned. For ex-
ample, one might want the action of sending a message to an
agentA to generate amessage idthatA can use in a future
reply to indicate the message that it is responding to. The
existence of this id is not really an:effect in the PDDL
sense, and even if it were it would be awkward to state ex-
actly what kind of effect it was. Instead, it can be considered
to be thevalueof the action, a value that can be passed on
as an input to later steps of a plan.

The need to pass information from plan step to
plan step has been known for a long time (Mc-
Dermott 1978). Many researchers have used the
Prolog model, in which goal sequences have vari-
ables, some of which acquire values as execution pro-
gresses. In the sequence(look-for-people ?room
?people), (tell ?people (leave)) we might
suppose that?room has a value at the beginning, that
?people gets set by the first step, and then serves as an
input to the second. Sometimes the variables are flagged to
indicate when they get set (Etzioniet al. 1992; Levesqueet
al. 1997). For information-gathering agents the flags serve
to indicate which variables must be set in order for an infor-
mation server to be able to process a query.

The Prolog model makes sense for information-gathering
agents, but seems like a poor fit to regular planners. Pro-
log can be given a clean semantics in which all variables are
interpreted as universally quantified. During execution of a
Prolog program variables become steadily more constrained
by unification, but the concept of a variable being “set” is
meaningless (because the point where a variable’s value be-
comes variable-free has no particular significance). When a
failure occurs, the program backtracks, undoing some of the
constraints on variable values.Noneof these features ap-
ply to planning, where plan steps have actual effects on the
world, yield well-defined nuggets of information, and can-
not be undone just by backtracking.

Instead we opt for a model in which steps have an optional
:value field that describes the value it returns. In the sim-
plest case this description is a type. If the field is absent,
the type defaults to “no values.” So our message-id example
might look like this:

AIPS 2002 205

(:action send
:parameters

(?agt - Agent ?sent - Message)
:value Message-id
:precondition (web-agent ?agt)
:effect (rep

?agt (step-value this-step)
?sent))

We introduce two new symbols.(step-value s) is
the value returned by a step in a plan. For example, an
agent might send a message, then transmit the correspond-
ing “reply-to” id to another agent that will actually process
the reply:

(series (tag step-1
(send merrill-lynch

(buy ibm 100) logger))
(send logger (step-value step-1)))

wherelogger is the agent we want merrill-lynch to talk to
about this transaction from now on.

The symbolthis-step in action definitions is a place-
holder for the actual step id that will be inserted when the
action is instantiated.

Step values can have fairly complex types, such as “a tu-
ple consisting of a string and a list of street addresses.” For
that and other reasons, we must extend PDDL with a poly-
morphic type system (Cardelli & Wegner 1985). That would
allow us to declare that the:value of a step was of type
(Tup String (Lst Street-address)) . Then we
could refer to the second element of the value ofstep-3 by
writing (! <2> (step-value step-3)) . Because
this is fairly opaque, we supply some syntatic sugar. In the
definition of this hypothetical action we could write

(:action fetch-data
...
:value

(Tup label - String
addrs

- (Lst Street-address))
...)

and if step-3 is an instance of fetch-data ,
we can refer to its second component by writing
(! addrs (step-value step-3)) . Furthermore,
we can sayaddrs instead of(! addrs (step-value
this-step)) in the :effect field of fetch-data .
With these conventions, thesend action can be defined as

(:action send
:parameters

(?agt - Agent ?sent - Message)
:value (id - Message-id)
:precondition (web-agent agt)
:effect (reply-pending agt id sent))

In the enhanced language, which is called Opt, ques-
tion marks on bound variables are optional, and they
have been dropped in this example. It seems stylistically
clearer to reserve question marks for free variables. Here

the :parameters and :value fields serve as variable
binders.

A key point about the notation is that the:value field
of an action definition just specifies the type of the value the
action generates. Themeaningof the value is given by the
:effect field. Further examples will appear below.

Incomplete Knowledge

Most planners make a “closed-world assumption” at some
point, assuming that if an atomic formula is not explicitly
noted as true (or straightforwardly deducible) in a situa-
tion, it may be assumed to be false. In the context of web-
service planning, the planner typically knows what it doesn’t
know; if it is planning to buy something from a service, it
doesn’t know what the price is until it asks. We formalize
this idea with a predicate(know-val X) . Some care is
required in saying whatX is exactly. Consider the state-
ment (know-val (price bogotron)) . One might
suppose thatprice was a function from products to mone-
tary values, in which case from the knowledge that(price
bogotron) was an integer between $95 and $105, the
planner could infer

(or (know-val $95)
(know-val $96)
...

(know-val $105))

which makes no sense. It’s logically more accurate to
consider X to be a learnable term, an object of type
(Learnable Money) in this case. We also have a func-
tion (val X) which denotes the value of such a term.
The abbreviation(know-val-is X v) is synonymous
with (and (know-val X) (= (val X) v)) , but
is easier for the planning algorithm to cope with.

There is an action(compute term) which fails if term
contains learnable subexpressions whose values are not
known. Otherwise, it succeeds, and its value is the value
of term, with all learnable subexpressions replaced by their
values. In practice, the value of a learnable expression is a
purely computational entity such as an integer, a string, or a
tuple of purely computational entities. (But we don’t need
to take a position on what constitutes a purely computational
entity.)

Note that once we have theknow-val predicate, we can
reinstate the closed-world assumption. It may be that the
planner doesn’t know the value of(< (share-price
ibm) (dollar 100)) , but then it knows that it doesn’t
know, because(know-val (< (share-price ibm)
(dollar 100))) is not deducible.2

Finally, we have an action(test X PT PF) . It com-
putesX, a Boolean expression, in the sense described above.
If the result istrue , actionPT is executed, elsePF .

2Technically, we should replace< with a variant that oper-
ates on learnable numbers instead of numbers. However, it would
merely clutter this paper to do that. So I will pretend that Opt al-
lows overloading of functions, which it does not.

206 AIPS 2002

Planning Algorithm
I have extended the Unpop planner (McDermott 1996;
1999) to handle simple web-service problems. The resulting
planner is called Optop (“Opt-based total-order planner”).
Here is a brief review of how Unpop works: Given a goal
and an initial situation, it does a situation-space search for
a sequence of steps that achieve the goal. A search state is
a series of feasible steps starting in the initial situation and
culminating in a situation that is hopefully closer to satisfy-
ing the goal. We call this thecurrent situationof the state.
The search is guided by the following heuristic: For each
search state, build aregression-match graphfrom the goal
back to the current situation of that search state. The graph
is essentially an AND/OR tree in which AND nodes corre-
spond to the preconditions of an action (all of which must
be achieved), and an OR node corresponds to a set of ac-
tions (one of which is sufficient to achieve a condition). The
“tree” is actually a graph because there is just one occur-
rence of any given atomic formula, so that two AND nodes
may share an element, and there may be a cycle from an
AND nodeN to an atomic formulaA in N , to an OR node
that achievesA, and eventually toN again. The “leaves” of
the resulting deformed tree are conditions that are either true
in the current situation or are not in the add list of any action
and hence cannot be further reduced (and are not achievable
under any circumstances). An action isrecommendedif all
of its preconditions are true in the initial situation. The plan-
ner considers taking only recommended actions next, and
judges their cost by the total effort of the subtrees they occur
in. The(estimated) effortof a subtree to achieve goal literal
G is defined as 0 ifG is true in the current situation, else
the minimum over all actionsA that achieveG of the cost of
A + the sum of the efforts of the subgoals in the AND node
built from the preconditions ofA. (I apologize for the suc-
cinctness of this description; the gory details may be found
in (McDermott 1999).)

Variables

In constructing the regression-match graph, a key question is
how the preconditions of an action are turned into an AND
node. Even ifG does not contain variables, the precondi-
tions of an actionA that achievesG will in general contain
some. If the planner leaves them in, then the accuracy of
the graph is reduced, in two ways. First, when the precon-
ditions are regressed (reduced through another AND node),
more variables will appear, making the resulting literals less
and less distinctive. The estimate of the difficulty of a lit-
eral such as(at toyota-1 pittsburgh-station)
means more than the estimate of the difficulty of(at ?x
?y) . Second, if two preconditions share a variable, sum-
ming their efforts loses accuracy, because what we really
care about is the effort of achieving instances of both pre-
conditions in which shared variables have the same value.

This problem is finessed in (Bonet, Loerincs, & Geffner
1997) by finding all possible ground instances of every ac-
tion definition at the beginning of search for a plan. The
Unpop planner solve the problem by matching the precondi-
tions against the current situation, finding variable bindings

that make as many of the preconditions true in that situation
as possible, leaving behind a residue ofdifferences(Ernst &
Newell 1969). If a difference contains variables, then at that
point it is replaced by all instances obtained by substituting
constants of the appropriate types for those variables. This
process is calledmaximal matching.(For details, see (Mc-
Dermott 1999).)

Unfortunately, neither of these strategies will work in the
domain of web services, where many data types are infinite.
For instance, there is no way to substitute all possible objects
of typeMessage for a variable.

For this reason, we have to remove the assumption that
atomic formulas in the regression-match graph are variable-
free. The maximal matcher in Optop tries hard to eliminate
preconditions and variables by matching and substitution,
but sometimes it is left with differences containing unremov-
able variables.

It also simplifies the statement of complex domains if we
allow the planner to backchain through axioms. That is, if
there is a goalG, and an axiom(<- G′ A) , whereG and
G′ unify with substitutionθ, the maximal matcher will con-
sider replacingG with θ(A). This step may introduce new
variables, but they are treated the same as those obtained by
goal regression.

The main complication that variables introduce is a con-
sequence of the problem described above. To combine esti-
mates of the costs of achieving the preconditions of an ac-
tion into an estimate of the cost of achieving a conjunction of
them, the planner must find consistent combinations of pre-
conditions, that is, combinations that assign the same values
to shared variables.

Ignorance and Branching

Recall that Unpop and Optop both work by running an inner
loop of regression-graph construction inside an outer loop of
search through situations (or, more precisely, step sequences
leading to situations). The outer loop accepts the actions
recommended by the graph constructor, and tries projecting
each one to produce a new situation. Two things can happen:

• The new situation is identical to a previously encountered
situation. In this case, the new one is discarded.

• The new situation has not been seen before, and so be-
comes the current situation of a new step sequence, which
goes on the search queue for eventual further investiga-
tion.

In the process of creating the new situation, the pro-
jector must handle effects that mention(step-value
this-step) in a special way. The projector first cre-
ates a new step with a new step id, whose external form
is (tag id action) . Occurrences ofthis-step in ac-
tion are replaced byid. The projector must then decide
what to do about thestep-value . In some cases there
may be a “normal” value. For instance, if an agent sub-
mits a credit-card number for authorization, the normal re-
sponse it expects back is “ok.” In this case, it can replace
(step-value step-id) with the normal value, but add a
new step

AIPS 2002 207

(verify (= (step-value step-id)
normal-value))

All (verify P) does is computeP and see if it comes
out true . If so, plan execution continues; if not, the plan
fails. (See below.)

If a step’s value is just passed to another step, as in our
example of the logger agent, there is no need for the planner
to know the value at planning time. The planner does need
to know the value during the regression-graph construction
phase when a precondition occurs that contains a subterm
of the form (val X) , whereX is a learnable term. A
precondition is a proposition, such as

(< (val (price widgex bogotron))
(dollar 20))

Such a precondition cannot be satisfied without knowing the
price Widgex charges for bogotrons.3 So the graph builder
inserts an AND node with action

(verify (< (val (price widgex
bogotron))

(dollar 20)))

in the graph, with a single precondition(know-val
(price widgex bogotron)) . If this part of the graph
yields a promising direction for the planner to pursue, then
eventually theverify action will get added to the plan.

Verification actions can of course fail, and, except in the
case of relying on “normal step values,” often do. But Op-
top stays the course, and assumes that anyverify step will
succeed. This means that the outer loop of situation-space
search is essentially the same as in Unpop. The planner
lengthens plans until it finds one that achieves the goal it
was given, or until it exceeds some resource bound. In the
former case, if the plan contains noverify steps, then the
planner has found a viable plan. In the latter case, if the
planner never examined a plan containing averify step,
then the planner has failed to find a plan (which may be the
correct outcome, if no plan exists).

The interesting cases are where a successful plan is found,
but it containsverify steps; and where no plan is found,
but at least one partial plan was investigated that had a
verify step.The second case sounds like it would be very
difficult to deal with. The planner may have looked at hun-
dreds of partial plans, and if averify was inserted early,
many of them will containverify steps. However, I be-
lieve the planner can just give up at this point. As we will
discuss shortly, what we want to know about averify step
is, What would have happened if it had turned out other-
wise? Presumably the answer we hope for is, The planner
would have found another way to achieve its goal. For in-
stance, in an example discussed by (Pryor & Collins 1996),
if there are two roads to a destination, and one is blocked,

3I’m assuming that there is no way for the planning agent to
change the price Widgex charges. If it does, we would have to
make the price be a “fluent” as discussed in (McDermott 1998;
1999), and other options would open up. I’m also neglecting other
possibilities, such as finding out that the price is less than $20 by
finding out that it is less than $10.

the agent should try taking the other. But in an estimated-
regression planner, this second alternative is already being
entertained from the very beginning. It’s in the regression-
match graph, but just doesn’t look as attractive as taking the
first route. If the planner fails to find a solution assuming the
first route is open, then it will eventually consider taking the
second route, not because the first alternative is unavailable,
but because the first alternative didn’t lead to a competitive
plan. That is, it considers taking the second route without
even looking to see if the first is blocked. But we started
with the assumption that after all this activity the planner
never could solve the problem. In that case, it seems very
unlikely that it could solve it with the added assumption that
the first route is blocked.

Hence the only case we really need to consider is where
the planner has found a successful plan, but the plan re-
lies onverify ing things that aren’t necessarily true. Note
that the argument of the previous paragraph implies that this
plan is in a sense “optimistic.” The propositions the planner
chose to verify are the ones that would lead to a short ac-
tion sequence in the opinion of the regression-match graph
(an opinion that isn’t always reliable, of course). Now the
planner has to go back and consider what happens if opti-
mism doesn’t apply. It finds the firstverify in the “suc-
cessful” action sequence, and considers what it would mean
if that step failed. What it would mean is that the proposi-
tion being verified is false. Theverify step is reprojected,
yielding a new situation. Starting from this situation, Op-
top calls itself recursively with the original goal. The re-
sult is an alternative plan (we hope). The original plan, of
the form(series S1 (verify P) S2) , and the new
one,(series S3) , are combined into

(series S1

(test P
S2

S3))

If the recursive call fails to find a plan, thenS3 will just
be (fail) . This is not the show-stopper it would be in
the classical world. As previous researchers have pointed
out (Peot & Smith 1992; Pryor 1995), in the presence of
contingencies it’s hard to guarantee success, and not really
necessary.

So far the planner has dealt with just the first contingency
in the sequence. It could continue to find furtherverify
steps downstream and convert them as it did the first. How-
ever, beyond a certain point it is counterproductive to ex-
plore every contingency. Manyverify ’s should just be
left in, deferring planning until they actually fail.

Implementation
A preliminary implementation of Optop has been written.
Most of the work has gone into allowing variables into the
regression-match graph, allowing goal reduction through ax-
ioms, and getting right the detailed implications of having
step-value andthis-step in the language.

Figure 1 shows a domainwww-agents in which Optop
can find simple plans. There are just two actions,send and

208 AIPS 2002

(define (domain www-agents)
(:extends knowing regression-planning commerce)
(:requirements :existential-preconditions :conditional-effects)
(:types Message - Obj Message-id - String)

(:functions (price-quote ?m - Money)
(query-in-stock ?pid - Product-id)
(reply-in-stock ?b - Boolean)
- Message)

(:predicates (web-agent ?x - Agent)
(reply-pending a - Agent id - Message-id msg - Message)
(message-exchange ?interlocutor - Agent

?sent ?received - Message
?eff - Prop)

(expected-reply a - Agent sent expect-back - Message))

(:axiom
:vars (?agt - Agent ?msg-id - Message-id

?sent ?reply - Message)
:implies (normal-step-value (receive ?agt ?msg-id)

?reply)
:context (and (web-agent ?agt)

(reply-pending ?agt ?msg-id ?sent)
(expected-reply ?agt ?sent ?reply)))

(:action send
:parameters (?agt - Agent ?sent - Message)
:value (?sid - Message-id)
:precondition (web-agent ?agt)
:effect (reply-pending ?agt ?sid ?sent))

(:action receive
:parameters (?agt - Agent ?sid - Message-id)
:vars (?sent - Message ?eff - Prop)
:precondition (and (web-agent ?agt)

(reply-pending ?agt ?sid ?sent))
:value (?received - Message)
:effect (when (message-exchange ?agt ?sent ?received ?eff)

?eff)))

Figure 1: Thewww-agents domain

AIPS 2002 209

receive , and the effect ofreceive depends entirely on
an assertion of the form

(message-exchange sendee
message-sent
reply-received
effect)

For example:

(freevars (s - Merchant
pid - Product-id
b - Boolean)

(message-exchange
?s
(query-in-stock ?pid)
(reply-in-stock ?b)
(know-val-is (in-stock ?s ?pid)

?b)))

Given the problem shown in figure 2, Optop arrives at the
plan

(series
(tag step-13

(send amazin.com
(query-in-stock

(prodid "p001"))))
(tag step-14

(receive amazin.com
(step-value step-13)))

(verify (= (step-value step-14)
(reply-in-stock true))))

That is, to know that Amazin.com has a certain book in
stock, it suffices to ask them; they probably do.

This is not an earth-shaking result, nor is the fact that Op-
top had to do no search at all to arrive at it. However, the
ability to find long plans in tricky domains is not the main
focus of this paper. My purpose is to show that estimated-
regression planners are well suited to planning to deal with
web services.

Conclusions and Future Work
The conclusions I would like to draw from this work are
these:

• Web services are an interesting domain for planning re-
search, since they fit the classical model of discrete ac-
tions, but require eliminating closed-world assumptions
and allowing for branching plans.

• Representations such as PDDL must be extended some-
what to capture the information required for formalizing
web services. Because complex and diverse data struc-
tures must be sent across the internet, we need a more
robust type notation to express the content of messages.
Actions need a:value field to express the types of the
data they return. These notations can all be made to mesh
nicely.

• Estimated-regression planners seem well suited to work-
ing on the resulting class of problems. They main change

is to integrate the formalization of theknow-val predi-
cate into the regression-graph-building and projection ma-
chinery. The key idea is that for a computational agent to
know the value of something is for it to have a purely
computational term that denotes that value.

• A natural way to generate branching plans is to gener-
ate linear plans and then add branches where assumptions
might be false.

There is an enormous amount of work left to do, besides
bringing the implementation up to the point where it matches
the description above.

Dealing with web services inevitably requires loops. For
instance, to find the lowest price for a product requires send-
ing messages to all the known providers of that product.
Loops are radically unclassical. I believe the right approach
to this problem is to think about how to integrate the use of
canned plans into a classical planner. One way is allow the
planner to add a complex action to the end of an evolving
plan, not just a primitive action. The complex action then
becomes a resource for further plan growth, because it sug-
gests the next thing to do without any search at all. These
suggestions must, however, compete with actions suggested
by the regular regression-estimation process. Of course, this
idea will in the end produce only “unrolled” loops, unless it
is combined with a mechanism for deferring some planning
until after execution has revealed more information.

One problem that is not a problem at all in this framework
is the problem ofmultiagent composition, which arises be-
cause scripting approaches such as XLANG (Thatte 2001)
and DAML-S (Ankolenkaret al. 2001) focus entirely on an
interaction between two agents. From the point of view es-
poused here, all that is required is to merge the descriptions
of the agents your agent is considering talking to, then have
your planner solve the problem in the enlarged world. Talk-
ing to two or more agents has exactly the same logical status
as talking to one.4

References
Ambite, J. L.; Knoblock, C. A.; Muslea, I.; and Philpot,
A. 2001. Compiling source descriptions for efficient and
flexible information integration.J. Intelligent Information
Systems16(2):149–187.

Ankolenkar, A.; Burstein, M.; Hobbs, J.; Lassila, O.; Mar-
tin, D.; McIlraith, S.; Narayanan, S.; Paolucci, M.; Payne,
T.; Sycara, K.; and Zeng, H. 2001. Daml-s: A semantic
markup language for web services. InProc. Semantic Web
Working Symposium, 411–430.

Bonet, B., and Geffner, H. 2000. Planning with Incomplete
Information as Heuristic Search in Belief Space. InProc.
5th Int. Conf. on AI Planning and Scheduling (AIPS-00).
AAAI Press.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence 129(1-2).

4Of course there are issues that arise in reconciling ontologi-
cal differences between the agents. See (McDermott, Burstein, &
Smith 2001).

210 AIPS 2002

(define (problem bb-prob1)
(:domain www-agents)
(:objects amazin.com wabash.com - Merchant)
(:facts (web-agent amazin.com)

(web-agent wabash.com)
(freevars (pid - Product-id)

(expected-reply amazin.com
(query-in-stock ?pid)
(reply-in-stock true)))

(freevars (sid - Message-id pid - Product-id)
(expected-reply wabash.com

(query-in-stock ?pid)
(reply-in-stock false))))

(:goal (know-val-is (in-stock amazin.com (prodid "P001"))
true)))

Figure 2: Problem in thewww-agents domain

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A fast and
robust action selection mechanism for planning. InProc.
AAAI-97.

Cardelli, L., and Wegner, P. 1985. On understanding types,
data abstraction, and polymorphism.Computing Surveys
17(4):471–522.

Christensen, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. 2001. Web Services Definition Language
(Wsdl) 1.1. Technical report, W3C. , available at
http://www.w3c.org/TR/wsdl .

Ernst, G. W., and Newell, A. 1969.GPS: A Case Study in
Generality and Problem Solving. Academic Press.

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with in-
complete information. InProc. Third International Conf.
on Knowledge Representation and Reasoning, 115–125.
Morgan Kaufmann.

Etzioni, O.; Golden, K.; and Weld, D. 1997. Sound and
efficient closed-world reasoning for planning.Artificial In-
telligence 89(1–2):113–148.

Friedman, M., and Weld, D. S. 1997. Efficiently executing
information-gathering plans. InProc. Ijcai-97.

Geffner, H. 1998. Classical, probabilistic, and contin-
gent planning: three models, one algorithm. Workshop on
Planning as Combinatorial Search: Propositional, Graph-
Based, and Disjunctive Planning Methods.

Knoblock, C. A.; Minton, S.; Ambite, J. L.; Ashish, N.;
Muslea, I.; Philpot, A. G.; and Tejada, S. 2001. The Ari-
adne approach to web-based information integration.Int.
J. Cooperative Information Systems (IJCIS)10(1-2):145–
169. Special Issue on Intelligent Information Agents: The-
ory and Applications.

Kushmerick, N. 2000. Wrapper induction: efficiency and
expressiveness.Artificial Intelligence 118(12):15–68.

Levesque, H.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming language
for dynamic domains.J. Logic Programming31:59–84.

Levy, A. Y. 1996. Obtaining complete answers from in-
complete databases. InProc. 22nd Conference on Very
Large Databases.

McDermott, D., and Dou, D. 2001. Em-
bedding logic in daml/rdf. . Available at
http://www.cs.yale.edu/ d̃vm.

McDermott, D.; Burstein, M.; and Smith, D. 2001. Over-
coming ontology mismatches in transactions with self-
describing agents. InProc. Semantic Web Working Sym-
posium, 285–302.

McDermott, D. 1978. Planning and acting.Cognitive
Science2(2):71–109.

McDermott, D. 1996. A Heuristic Estimator for Means-
ends Analysis in Planning. InProc. International Confer-
ence on AI Planning Systems, 142–149.

McDermott, D. 1998. The Planning Domain Definition
Language Manual. Technical Report 1165, Yale Computer
Science. (CVC Report 98-003).

McDermott, D. 1999. Using Regression-match Graphs to
Control Search in Planning.Artificial Intelligence 109(1–
2):111–159.

Peot, M., and Smith, D. 1992. Conditional nonlinear plan-
ning. In Hendler, J., ed.,Proceedings of the First Interna-
tional Conf. on AI Planning Systems. 189–197.

Pryor, L., and Collins, G. 1996. Planning for contingen-
cies: A decision-based approach.J. of Artificial Intelli-
gence Research4:287–339.

Pryor, L. 1995. Decisions, decisions: knowledge goals
in planning. InHybrid problems, hybrid solutions (Proc.
AISB-95), 181–192. J. Hallam (ed) IOS Press.

Thatte, S. 2001. Xlang: Web ser-
vices for business process design. At http://www.gotdotnet.
com/team/xmlwsspecs/xlang-c/default.htm

Ullman, J. D. 1997. Information integration using logical
views. InProc. 6th Intl. Conf. on Database Theory (ICDT-
97), Lecture Notes in Computer Science, 19–40. Springer-
Verlag.
Warren, D. H. 1976. Generating conditional plans and
programs. InProc. AISB Summer Conf, 344–354.

AIPS 2002 211

