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Abstract. In this paper we derive new simple estimates for ordinary di¤erential equa-
tions with Sobolev coe‰cients. These estimates not only allow to recover some old and re-
cent results in a simple direct way, but they also have some new interesting corollaries.

1. Introduction

When b : ½0;T � � R
n ! R

n is a bounded smooth vector field, the flow of b is the
smooth map X : ½0;T � � R

n ! R
n such that

dX

dt
ðt; xÞ ¼ b

�

t;Xðt; xÞ
�

; t A ½0;T �;

X ð0; xÞ ¼ x:

8

<

:

ð1Þ

Out of the smooth context (1) has been studied by several authors. In particular, the follow-
ing is a common definition of generalized flow for vector fields which are merely integrable.

Definition 1.1 (Regular Lagrangian flow). Let b A L1
locð½0;T � � R

n;RnÞ. We say that
a map X : ½0;T � � R

n ! R
n is a regular Lagrangian flow for the vector field b if

(i) for a.e. x A R
n the map t 7! X ðt; xÞ is an absolutely continuous integral solution of

_ggðtÞ ¼ b
�

t; gðtÞ
�

for t A ½0;T �, with gð0Þ ¼ x;

(ii) there exists a constant L independent of t such that

L
n
�

X ðt; �Þ�1ðAÞ
�

eLLnðAÞ for every Borel set ALR
n:ð2Þ

The constant L in (ii) will be called the compressibility constant of X .

Existence, uniqueness and stability of regular Lagrangian flows have been proved in
[9] by DiPerna and Lions for Sobolev vector fields with bounded divergence. In a recent
groundbreaking paper (see [1]) this result has been extended by Ambrosio to BV coe‰cients
with bounded divergence.
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The arguments of the DiPerna-Lions theory are quite indirect and they exploit (via
the theory of characteristics) the connection between (1) and the Cauchy problem for the
transport equation

qtuðt; xÞ þ bðt; xÞ � ‘xuðt; xÞ ¼ 0;

uð0; �Þ ¼ u:

�

ð3Þ

Assuming that the divergence of b is in L1 we can define bounded distributional solutions
of (3) using the identity b � ‘xu ¼ ‘x � ðbuÞ � u‘x � b. Following DiPerna and Lions we say
that a distributional solution u A Lyð½0;T � � R

nÞ of (3) is a renormalized solution if

qt
�

b
�

uðt; xÞ
��

þ bðt; xÞ � ‘x

�

b
�

uðt; xÞ
��

¼ 0;

½bðuÞ�ð0; �Þ ¼ bðuÞ

(

ð4Þ

holds in the sense of distributions for every test function b A C1ðR;RÞ. In their seminal pa-
per DiPerna and Lions showed that, if the vector field b has Sobolev regularity with respect
to the space variable, then every bounded solution is renormalized. Ambrosio [1] extended
this result to BV vector fields with divergence in L1. Under suitable compressibility assump-
tions (for instance ‘x � b A Ly), the renormalization property gives uniqueness and stability

for (3) (the existence follows in a quite straightforward way from standard approximation
procedures).

In turn, this uniqueness and stability property for (3) can be used to show existence,
uniqueness and stability of regular Lagrangian flows (we refer to [9] for the original proofs
and to [1] for a di¤erent derivation of the same conclusions).

In this paper we show how many of the ODE results of the DiPerna-Lions theory
can be recovered from simple a priori estimates, directly in the Lagrangian formulation.
Though our approach works under various relaxed hypotheses, namely controlled growth
at infinity of the field b and L

p
loc and L logL assumptions on Dxb, for simplicity let us con-

sider a vector field b in W 1;p XLy, p > 1. Assuming the existence of a regular Lagrangian
flow X , we give estimates of integral quantities depending on Xðt; xÞ � X ðt; yÞ. These esti-
mates depend only on kbkW 1; p þ kbky and the compressibility constant L of Definition
1.1(ii). Moreover, a similar estimate can be derived for the di¤erence Xðt; xÞ � X 0ðt; xÞ of
regular Lagrangian flows of di¤erent vector fields b and b 0, depending only on the compres-
sibility constant of b and on kbkW 1; p þ kbky þ kb 0ky þ kb� b 0kL1 . As direct corollaries of
our estimates we then derive:

(a) Existence, uniqueness, stability, and compactness of regular Lagrangian flows.

(b) Some mild regularity properties, like the approximate di¤erentiability proved in
[5], that we recover in a new quantitative fashion.

The regularity property in (b) has an e¤ect on solutions to (3): we can prove that, for
b A W 1;p XLy with bounded divergence, solutions of (3) propagate the same mild regular-
ity of the corresponding regular Lagrangian flow (we refer to Section 5 for the precise
statements).

16 Crippa and De Lellis, Estimates for the DiPerna-Lions flow
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Our approach has been inspired by a recent result of Ambrosio, Lecumberry and
Maniglia [5], proving the almost everywhere approximate di¤erentiability of regular La-
grangian flows. Indeed, some of the quantities we estimate in this paper are taken directly
from [5], whereas others are just suitable modifications. However, the way we derive our
estimates is di¤erent: our analysis relies all on the Lagrangian formulation, whereas that
of [5] relies on the Eulerian one.

Unfortunately we do not recover all the results of the theory of renormalized solu-
tions. The main problem is that our estimates do not cover the case Db A L1. Actually,
the extension to the case Db A L1 of our (or of similar) estimates would answer positively
to the following conjecture of Bressan (see [6]):

Conjecture 1.2 (Bressan’s compactness conjecture). Let bk : Rþ � R
n ! R

n, k A N,
be smooth maps and denote by Fk the solutions of the ODEs:

d

dt
Fkðt; xÞ ¼ bk

�

t;Fkðt; xÞ
�

;

Fkð0; xÞ ¼ x:

8

<

:

ð5Þ

Assume that kbkky þ k‘bkkL1 is uniformly bounded and that the fluxes Fk are nearly incom-

pressible, i.e. that

C�1e det
�

‘xFkðt; xÞ
�

eC for some constant C > 0:ð6Þ

Then the sequence fFkg is strongly precompact in L1
loc.

At the present stage, the theory of renormalized solutions cannot be extended to cover
this interesting case (we refer to [4] and to the survey article [8] for the results achieved so
far in the framework of renormalized solutions). In another paper, [7], Bressan raised a sec-
ond conjecture on mixing properties of flows of BV vector fields (see Conjecture 6.1 below),
which can be considered as a quantitative version of Conjecture 1.2. In Section 6 we show
how our estimates settle the W 1;p ðp > 1Þ analog of Bressan’s mixing conjecture.

In order to keep the presentation simple, in Section 2 we give the estimates and the
various corollaries in the case b A W 1;p XLy and in Section 3 we present the more general
estimates and their consequences. We thank Herbert Koch for suggesting us that the Lip-
schitz estimates hold under the assumption Db A L logL (see Remark 2.4 and the discus-
sion at the beginning of Section 4). In Section 4 we show how to prove directly, via suitable
a priori estimates, the compactness conclusion of Conjecture 1.2 when Dbk is bounded in
L log L. It has been pointed out to us independently by François Bouchut and by Pierre-
Emmanuel Jabin that a more careful analysis allows to extend this approach when the se-
quence fDbkg is equi-integrable. In Section 5 we discuss the regularity results for transport
equations mentioned above. Finally, in Section 6 we prove the W 1;p analog of Bressan’s
mixing conjecture.

1.1. Notation and preliminaries. Constants will be denoted by c and ca1;...;aq , where
we understand that in the first case the constant is universal and in the latter it depends only
on the quantities a1; . . . ; aq. Therefore, during several computations, we will use the same

17Crippa and De Lellis, Estimates for the DiPerna-Lions flow

Bereitgestellt von | UZH Hauptbibliothek / Zentralbibliothek Zürich

Angemeldet

Heruntergeladen am | 28.08.18 19:15



symbol for constants which change from line to line. When A is a measurable subset of Rn

we denote by jAj or by L
nðAÞ its Lebesgue measure. When f : Rn

IU ! V is continuous,
we denote by Lipð f Þ the Lipschitz constant of f . When f is measurable we define

Lipð f Þ :¼ minfLipðgÞ: g is continuous and g ¼ f almost everywhereg:

When m is a measure on W and f : W ! W
0 a measurable map, fKm will denote the push-

forward of m, i.e. the measure n such that
Ð

j dn ¼
Ð

j � f dm for every j A CcðW
0Þ.

2. A priori estimates for bounded vector fields and corollaries

In this section we show our estimates in the particular case of bounded vector fields.
This estimate and its consequences are just particular cases of the more general theorems
presented in the next sections. However, we decided to give independent proofs in this sim-
plified setting in order to illustrate better the basic ideas of our analysis.

2.1. Estimate of an integral quantity and Lipschitz estimates.

Theorem 2.1. Let b be a bounded vector field belonging to L1
�

½0;T �;W 1;pðRnÞ
�

for

some p > 1 and let X be a regular Lagrangian flow associated to b. Let L be the compressi-

bility constant of X , as in Definition 1.1(ii). For every p > 1 define the following integral

quantity:

ApðR;XÞ ¼

"

Ð

BRð0Þ

 

sup
0eteT

sup
0<r<2R

Ð

BrðxÞ

log

�

jXðt; xÞ � Xðt; yÞj

r
þ 1

�

dy

!p

dx

#1=p

:

Then we have

ApðR;X ÞeCðR;L; kDxbkL1ðLpÞÞ:ð7Þ

Remark 2.2. A small variant of the quantity A1ðR;XÞ was first introduced in [5] and
studied in an Eulerian setting in order to prove the approximate di¤erentiability of regular
Lagrangian flows. One basic observation of [5] is that a control of A1ðR;XÞ implies the
Lipschitz regularity of X outside of a set of small measure. This elementary Lipschitz esti-
mate is shown in Proposition 2.3. The novelty of our point of view is that a direct Lagran-
gian approach allows to derive uniform estimates as in (7). These uniform estimates are
then exploited in the next subsections to show existence, uniqueness, stability and regularity
of the regular Lagrangian flow.

All the computations in the following proof can be justified using the definition of
regular Lagrangian flow: the di¤erentiation of the flow with respect to the time gives the
vector field (computed along the flow itself), thanks to condition (i); condition (ii) implies
that all the changes of variable we are performing just give an L in front of the integral.

During the proof, we will use some tools borrowed from the theory of maximal func-
tions. We recall that, for a function f A L1

locðR
n;RmÞ, the local maximal function is defined

as

18 Crippa and De Lellis, Estimates for the DiPerna-Lions flow
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Ml f ðxÞ ¼ sup
0<r<l

Ð

BrðxÞ

j f ðyÞj dy:

For more details about the maximal function and for the statements of the lemmas we are
going to use, we refer to Appendix A.

Proof of Theorem 2.1. For 0e teT , 0 < r < 2R and x A BRð0Þ define

Qðt; x; rÞ :¼
Ð

BrðxÞ

log
jXðt; xÞ � Xðt; yÞj

r
þ 1

� �

dy:

From Definition 1.1(i) it follows that for a.e. x and for every r > 0 the map t 7! Qðt; x; rÞ is
Lipschitz and

dQ

dt
ðt; x; rÞe

Ð

BrðxÞ

dX

dt
ðt; xÞ �

dX

dt
ðt; yÞ

�

�

�

�

�

�

�

�

�

jXðt; xÞ � Xðt; yÞj þ r
��1

dyð8Þ

¼
Ð

BrðxÞ

�

�b
�

t;Xðt; xÞ
�

� b
�

t;X ðt; yÞ
�
�

�

jX ðt; xÞ � X ðt; yÞj þ r
dy:

We now set ~RR ¼ 4Rþ 2Tkbky. Since we clearly have jXðt; xÞ � Xðt; yÞje ~RR, apply-
ing Lemma A.3 we can estimate

dQ

dt
ðt; x; rÞe cn

Ð

BrðxÞ

�

M ~RRDb
�

t;Xðt; xÞ
�

ð9Þ

þM ~RRDb
�

t;Xðt; yÞ
�� jXðt; xÞ � Xðt; yÞj

jX ðt; xÞ � X ðt; yÞj þ r
dy

e cnM ~RRDb
�

t;X ðt; xÞ
�

þ cn
Ð

BrðxÞ

M ~RRDb
�

t;Xðt; yÞ
�

dy:

Integrating with respect to the time, passing to the supremum for 0 < r < 2R and exchang-
ing the supremums we obtain

sup
0eteT

sup
0<r<2R

Qðt; x; rÞe cþ cn
Ð

T

0

M ~RRDb
�

t;Xðt; xÞ
�

dtð10Þ

þ cn
Ð

T

0

sup
0<r<2R

Ð

BrðxÞ

M ~RRDb
�

t;Xðt; yÞ
�

dy dt:

Taking the L
p
norm over BRð0Þ we get

ApðR;XÞe cp;R þ cn

	

	

	

	

Ð

T

0

M ~RRDb
�

t;X ðt; xÞ
�

dt

	

	

	

	

L
pðBRð0ÞÞ

ð11Þ

þ cn

	

	

	

	

Ð

T

0

sup
0<r<2R

Ð

BrðxÞ

M ~RRDb
�

t;Xðt; yÞ
�

dy dt

	

	

	

	

L
pðBRð0ÞÞ

:ð12Þ

19Crippa and De Lellis, Estimates for the DiPerna-Lions flow
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Recalling Definition 1.1(ii) and Lemma A.2, the integral in (11) can be estimated with

cnL
1=p
Ð

T

0

kM ~RRDbðt; xÞkLpðBRþTkbky
ð0ÞÞ dte cn;pL

1=p
Ð

T

0

kDbðt; xÞkLpðBRþ ~RRþTkbky
ð0ÞÞ dt:ð13Þ

The integral in (12) can be estimated in a similar way with

cn
Ð

T

0

	

	

	

	

sup
0<r<2R

Ð

BrðxÞ

�

ðM ~RRDbÞ �
�

t;Xðt; �Þ
��

ðyÞ dy

	

	

	

	

L
pðBRð0ÞÞ

dtð14Þ

¼ cn
Ð

T

0

	

	M2R

�

ðM ~RRDbÞ �
�

t;Xðt; �Þ
��

ðxÞ
	

	

L
pðBRð0ÞÞ

dt

e cn;p
Ð

T

0

	

	

�

ðM ~RRDbÞ �
�

t;X ðt; �Þ
��

ðxÞ
	

	

L
pðB3Rð0ÞÞ

dt

¼ cn;p
Ð

T

0

	

	ðM ~RRDbÞ �
�

t;Xðt; xÞ
�
	

	

L
pðB3Rð0ÞÞ

dt

e cn;pL
1=p
Ð

T

0

kM ~RRDbðt; xÞkLpðB3RþTkbky
ð0ÞÞ dt

e cn;pL
1=p
Ð

T

0

kDbðt; xÞkLpðB3RþTkbkyþ ~RRð0ÞÞ
dt:

Combining (11), (12), (13) and (14), we obtain the desired estimate for ApðR;X Þ. r

We now show how the estimate of the integral quantity gives a quantitative Lipschitz
estimate.

Proposition 2.3 (Lipschitz estimates). Let X : ½0;T � � R
n ! R

n be a map. Then, for
every e > 0 and every R > 0, we can find a set KHBRð0Þ such that jBRð0ÞnK je e and for

any 0e teT we have

Lip
�

X ðt; �ÞjK
�

e exp
cnApðR;XÞ

e1=p
:

Proof. Fix e > 0 and R > 0. We can suppose that the quantity ApðR;X Þ is fi-
nite, otherwise the thesis is trivial; under this assumption, thanks to (34) we obtain a
constant

M ¼ M
�

e; p;ApðR;XÞ
�

¼
ApðR;XÞ

e1=p

and a set KHBRð0Þ with jBRð0ÞnK je e and

20 Crippa and De Lellis, Estimates for the DiPerna-Lions flow
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sup
0eteT

sup
0<r<2R

Ð

BrðxÞ

log
jX ðt; xÞ � Xðt; yÞj

r
þ 1

� �

dyeM Ex A K:

This clearly means that

Ð

BrðxÞ

log
jXðt; xÞ � X ðt; yÞj

r
þ 1

� �

dyeM for every x A K ; t A ½0;T � and r A �0; 2R½:

Now fix x; y A K . Clearly jx� yj < 2R. Set r ¼ jx� yj and compute

log
jX ðt; xÞ � X ðt; yÞj

r
þ 1

� �

¼
Ð

BrðxÞXBrðyÞ

log
jXðt; xÞ � X ðt; yÞj

r
þ 1

� �

dz

e
Ð

BrðxÞXBrðyÞ

log
jXðt; xÞ � Xðt; zÞj

r
þ 1

� �

þ log
jXðt; yÞ � X ðt; zÞj

r
þ 1

� �

dz

e cn
Ð

BrðxÞ

log
jX ðt; xÞ � Xðt; zÞj

r
þ 1

� �

dzþ cn
Ð

BrðyÞ

log
jX ðt; yÞ � Xðt; zÞj

r
þ 1

� �

dz

e cnM ¼
cnApðR;X Þ

e1=p
:

This implies that

jX ðt; xÞ � Xðt; yÞje exp
cnApðR;XÞ

e1=p

� �

jx� yj for every x; y A K:

Therefore

Lip
�

Xðt; �ÞjK
�

e exp
cnApðR;XÞ

e1=p
: r

Remark 2.4. The quantitative Lipschitz estimates also hold under the assumption
b A L1

�

½0;T �;W 1;1ðRnÞ
�

XLyð½0;T � � R
nÞ and MlDb A L1

�

½0;T �;L1ðRnÞ
�

for every
l > 0. To see this we define

FðxÞ ¼
Ð

T

0

M ~RRDb
�

t;Xðt; xÞ
�

dt

and we go back to (10), which can be rewritten as

sup
0eteT

sup
0<r<2R

Qðt; x; rÞe cþ cnFðxÞ þ cnM2RFðxÞ:

For e < 1=ð4cÞ we can estimate

21Crippa and De Lellis, Estimates for the DiPerna-Lions flow
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x A BRð0Þ : cþ cnFðxÞ þ cnM2RFðxÞ >
1

e

� 
�

�

�

�

�

�

�

�

e x A BRð0Þ : cnFðxÞ >
1

4e

� 
�

�

�

�

�

�

�

�

þ x A BRð0Þ : cnM2RFðxÞ >
1

2e

� 
�

�

�

�

�

�

�

�

e ecn
Ð

BRð0Þ

FðxÞ dxþ ecn
Ð

B3Rð0Þ

FðxÞ dx

e ecn
Ð

T

0

Ð

B3Rð0Þ

M ~RRDb
�

t;Xðt; xÞ
�

dx dt

e ecnL
Ð

T

0

Ð

B3RþTkbky
ð0Þ

M ~RRDbðt; xÞ dx dt;

where in the third line we applied the Chebyshev inequality and the weak estimate (33) and
in the last line Definition 1.1(ii). This means that it is possible to find a set KHBRð0Þ with
jBRð0ÞnK je e such that

Ð

BrðxÞ

log
jX ðt; xÞ � Xðt; yÞj

r
þ 1

� �

dye
cnL

e

Ð

T

0

Ð

B3RþTkbky
ð0Þ

M ~RRDbðt; xÞ dx dt

for every x A K , t A ½0;T � and r A �0; 2R½. Arguing as in the final part of the proof of Pro-
position 2.3 we obtain the Lipschitz estimate also in this case.

2.2. Existence, regularity and compactness. In this subsection we collect three direct
corollaries of the estimates derived above, concerning approximate di¤erentiability, exis-
tence and compactness of regular Lagrangian flows.

Corollary 2.5 (Approximate di¤erentiability of the flow). Let b be a bounded vector

field belonging to L1
�

½0;T �;W 1;pðRnÞ
�

for some p > 1, or belonging to L1
�

½0;T �;W 1;1ðRnÞ
�

and satisfying MlDb A L1
�

½0;T �;L1ðRnÞ
�

for every l > 0, and let X be a regular Lagran-

gian flow associated to b. Then X ðt; �Þ is approximately di¤erentiable a.e. in R
n, for every

t A ½0;T �.

Proof. The proof is an immediate consequence of the Lusin type approximation of
the flow with Lipschitz maps given in Proposition 2.3 and Remark 2.4 and of Theorem
B.1. r

Corollary 2.6 (Compactness of the flow). Let fbhg be a sequence of vector fields equi-

bounded in Lyð½0;T � � R
nÞ and in L1

�

½0;T �;W 1;pðRnÞ
�

for some p > 1. For each h, let Xh

be a regular Lagrangian flow associated to bh and let Lh be the compressibility constant of

Xh, as in Definition 1.1(ii). Suppose that the sequence fLhg is equi-bounded. Then the se-

quence fXhg is strongly precompact in L1
locð½0;T � � R

nÞ.

Proof. Fix d > 0 and R > 0. Since fbhg is equi-bounded in Lyð½0;T � � R
nÞ, we

deduce that fXhg is equi-bounded in Ly
�

½0;T � � BRð0Þ
�

: let C1ðRÞ be an upper bound
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for these norms. Applying Proposition 2.3, for every h we find a Borel set Kh; d such that
jBRð0ÞnKh; dje d and

Lip
�

Xhðt; �ÞjKh; d

�

e exp
cnApðR;XhÞ

d1=p
for every t A ½0;T �:

Recall first Theorem 2.1 implies that ApðR;XhÞ is equi-bounded with respect to h, because
of the assumptions of the corollary. Moreover, using Definition 1.1(i) and thanks again to
the equi-boundedness of fbhg in Lyð½0;T � � R

nÞ, we deduce that there exists a constant
C d

2 ðRÞ such that

LipðXhj½0;T ��Kh; d
ÞeC d

2 ðRÞ:

If we now set Bh; d ¼ ½0;T � � Kh; d and Md ¼ maxfC1ðRÞ;C
d
2 ðRÞg, we are in the position to

apply Lemma C.1 with W ¼ ½0;T � � BRð0Þ. Then the sequence fXhg is precompact in mea-
sure in ½0;T � � BRð0Þ, and by equi-boundedness in Ly we deduce that it is also precompact
in L1

�

½0;T � � BRð0Þ
�

. Using a standard diagonal argument it is possible to conclude that
fXhg is locally precompact in L1ð½0;T � � R

nÞ. r

Corollary 2.7 (Existence of the flow). Let b be a bounded vector field belonging

to L1
�

½0;T �;W 1;pðRnÞ
�

for some p > 1 and such that ½div b�� A L1
�

½0;T �;LyðRnÞ
�

. Then

there exists a regular Lagrangian flow associated to b.

Proof. This is a simple consequence of the previous corollary. Choose a positive
convolution kernel in R

n and regularize b by convolution. It is simple to check that the se-
quence of smooth vector fields fbhg we have constructed satisfies the equi-bounds of the
previous corollary. Moreover, since every bh is smooth, for every h there is a unique regular
Lagrangian flow associated to bh, with compressibility constant Lh given by

Lh ¼ exp

�

Ð

T

0

k½div bhðt; �Þ�
�kLyðRnÞ dt

�

:ð15Þ

Thanks to the positivity of the chosen convolution kernel, the sequence fLhg is equi-
bounded, then we can apply Corollary 2.6. It is then easy to check that every limit point
of fXhg in L1

locð½0;T � � R
nÞ is a regular Lagrangian flow associated to b. r

Remark 2.8. An analogous existence result could be obtained removing the hypo-
thesis on the divergence of b, and assuming that there is some approximation procedure
such that we can regularize b with equi-bounds on the compressibility constants of the
approximating flows. This remark also applies to Corollaries 3.7 and 4.3.

2.3. Stability estimates and uniqueness. In this subsection we show an estimate sim-
ilar in spirit to that of Theorem 2.1, but comparing flows for di¤erent vector fields. A direct
corollary of this estimate is the stability (and hence the uniqueness) of regular Lagrangian
flows.

Theorem 2.9 (Stability of the flow). Let b and ~bb be bounded vector fields belonging to

L1
�

½0;T �;W 1;pðRnÞ
�

for some p > 1. Let X and ~XX be regular Lagrangian flows associated
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to b and ~bb respectively and denote by L and ~LL the compressibility constants of the flows.

Then, for every time t A ½0;T �, we have

kX ðt; �Þ � ~XXðt; �ÞkL1ðBrð0ÞÞ
eCjlogðkb� ~bbkL1ð½0; t��BRð0ÞÞ

Þj�1;

where R ¼ rþ Tkbky and the constant C only depends on t, r, kbky, k~bbky, L, ~LL, and
kDxbkL1ðLpÞ.

Proof. Set d :¼ kb� ~bbkL1ð½0; t��BRð0ÞÞ
and consider the function

gðtÞ :¼
Ð

Brð0Þ

log
jX ðt; xÞ � ~XX ðt; xÞj

d
þ 1

� �

dx:

Clearly gð0Þ ¼ 0 and after some standard computations we get

g 0ðtÞe
Ð

Brð0Þ

dXðt; xÞ

dt
�
d ~XXðt; xÞ

dt

�

�

�

�

�

�

�

�

�

jXðt; xÞ � ~XXðt; xÞj þ d
��1

dxð16Þ

¼
Ð

Brð0Þ

�

�b
�

t;X ðt; xÞ
�

� ~bb
�

t; ~XX ðt; xÞ
�
�

�

jX ðt; xÞ � ~XX ðt; xÞj þ d
dx

e
1

d

Ð

Brð0Þ

�

�b
�

t; ~XXðt; xÞ
�

� ~bb
�

t; ~XXðt; xÞ
�
�

� dx

þ
Ð

Brð0Þ

�

�b
�

t;Xðt; xÞ
�

� b
�

t; ~XXðt; xÞ
�
�

�

jXðt; xÞ � ~XXðt; xÞj þ d
dx:

We set ~RR ¼ 2rþ Tðkbky þ k~bbkyÞ and we apply Lemma A.3 to estimate the last integral as
follows:

Ð

Brð0Þ

�

�b
�

t;Xðt; xÞ
�

� b
�

t; ~XXðt; xÞ
�
�

�

jXðt; xÞ � ~XXðt; xÞj þ d
dxe cn

Ð

Brð0Þ

M ~RRDb
�

t;Xðt; xÞ
�

þM ~RRDb
�

t; ~XXðt; xÞ
�

dx:

Inserting this estimate in (16), setting ~rr ¼ rþ T maxfkbky; k~bbkyg, changing variables in
the integrals and using Lemma A.2 we get

g 0ðtÞe
~LL

d

Ð

BrþTk~bbky
ð0Þ

jbðt; yÞ � ~bbðt; yÞj dyþ ð~LLþ LÞ
Ð

B~rrð0Þ

M ~RRDbðt; yÞ dy

e
~LL

d

Ð

BrþTk~bbky
ð0Þ

jbðt; yÞ � ~bbðt; yÞj dyþ cn~rr
n�n=pð~LLþ LÞkM ~RRDbðt; �ÞkLp

e
~LL

d

Ð

BrþTk~bbky
ð0Þ

jbðt; yÞ � ~bbðt; yÞj dyþ cn;p~rr
n�n=pð~LLþ LÞkDbðt; �ÞkLp :

For any t A ½0;T �, integrating the last inequality between 0 and t we get
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gðtÞ ¼
Ð

Brð0Þ

log
jX ðt; xÞ � ~XXðt; xÞj

d
þ 1

� �

dxeC1;ð17Þ

where the constant C1 depends on t, r, kbky, k~bbky, L, ~LL, and kDxbkL1ðLpÞ.

Next we fix a second parameter h > 0 to be chosen later. Using the Chebyshev in-
equality we find a measurable set KHBrð0Þ such that jBrð0ÞnKje h and

log
jX ðt; xÞ � ~XXðt; xÞj

d
þ 1

� �

e
C1

h
for x A K:

Therefore we can estimate

Ð

Brð0Þ

jX ðt; xÞ � ~XXðt; xÞj dxð18Þ

e h
�

kXðt; �ÞkLyðBrð0ÞÞ
þ k ~XXðt; �ÞkLyðBrð0ÞÞ

�

þ
Ð

K

jXðt; xÞ � ~XX ðt; xÞj dx

e hC2 þ cnr
nd
�

expðC1=hÞ
�

eC3

�

hþ d expðC1=hÞ
�

;

with C1, C2 and C3 which depend only on T , r, kbky, k~bbky, L, ~LL, and kDxbkL1ðLpÞ.

Without loss of generality we can assume d < 1. Setting h ¼ 2C1jlog dj
�1 ¼ 2C1ð�log dÞ�1,

we have expðC1=hÞ ¼ d�1=2. Thus we conclude

Ð

Brð0Þ

jX ðt; xÞ � ~XXðt; xÞj dxeC3ð2C1jlog dj
�1 þ d1=2ÞeCjlog dj�1;ð19Þ

where C depends only on t, r, kbky, k~bbky, L, ~LL, and kDxbkL1ðLpÞ. This completes the
proof. r

Corollary 2.10 (Uniqueness of the flow). Let b be a bounded vector field belonging to

L1
�

½0;T �;W 1;pðRnÞ
�

for some p > 1. Then the regular Lagrangian flow associated to b, if
it exists, is unique.

Proof. It follows immediately from the stability proved in Theorem 2.9. r

Remark 2.11 (Stability with weak convergence in time). Theorem 2.9 allows to show
the stability when the convergence of the vector fields is just weak with respect to the time.
This setting is in fact very natural in view of the applications to the theory of fluid mechan-
ics (see [9], Theorem II.7, and [11], in particular Theorem 2.5). In particular, under suitable
bounds on the sequence fbhg, the following form of weak convergence with respect to the
time is su‰cient to get the thesis:

Ð

T

0

bhðt; xÞhðtÞ dt !
Ð

T

0

bðt; xÞhðtÞ dt in L1
locðR

nÞ for every h A Cy
c ð0;TÞ:

Indeed, fix a parameter e > 0 and regularize with respect to the spatial variables only using
a standard convolution kernel re. We can rewrite the di¤erence Xhðt; xÞ � X ðt; xÞ as
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Xhðt; xÞ � X ðt; xÞ ¼
�

Xhðt; xÞ � X e
h ðt; xÞ

�

þ
�

X e
h ðt; xÞ � X eðt; xÞ

�

þ
�

X eðt; xÞ � Xðt; xÞ
�

;

where X e and X e
h are the flows relative to the regularized vector fields be and be

h respec-
tively. Now, it is simple to check that

� the last term goes to zero with e, by the classical stability theorem (the quantitative
version is not needed at this point);

� the first term goes to zero with e, uniformly with respect to h: this is due to the fact
that the di¤erence be

h � bh goes to zero in L1
locð½0;T � � R

nÞ uniformly with respect to h, if
we assume a uniform control in W 1;p on the vector fields fbhg, hence we can apply Theo-
rem 2.9, and we get the desired convergence;

� the second term goes to zero for h ! y when e is kept fixed, because we are dealing
with flows relative to vector fields which are smooth with respect to the space variable, uni-
formly in time, and weak convergence with respect to the time is enough to get the stability.

In order to conclude, we fix an arbitrary d > 0 and we first find e > 0 such that the norm of
the third term is smaller than d and such that the norm of the first term is smaller than d for
every h. For this fixed e, we find h such that the norm of the second term is smaller than d.
With this choice of h we have estimated the norm of Xhðt; xÞ � Xðt; xÞ with 3d, hence we
get the desired convergence.

Remark 2.12 (Another way to show compactness). If we apply Theorem 2.9 to
the flows X ðt; xÞ and ~XXðt; xÞ ¼ Xðt; xþ hÞ � h relative to the vector fields bðt; xÞ and
~bbðt; xÞ ¼ bðt; xþ hÞ, where h A R

n is fixed, we get for every t A ½0;T �

kXðt; �Þ � X ðt; � þ hÞ � hkL1ðBrð0ÞÞ
eC

�

�log
�

kbðt; xÞ � bðt; xþ hÞkL1ð½0; t��BRð0ÞÞ

�
�

�

�1

e
C

jlogðhÞj
:

Hence we have a uniform control on the translations in the space, and we can deduce a
compactness result applying the Riesz-Fréchet-Kolmogorov compactness criterion (Lemma
C.2).

3. Estimates for more general vector fields and corollaries

In this section we extend the previous results to more general vector fields, in partic-
ular we drop the boundedness condition on b. More precisely, we will consider vector fields
b : ½0;T � � R

n ! R
n satisfying the following regularity assumptions:

(R1) b A L1
�

½0;T �;W 1;p
loc ðR

nÞ
�

for some p > 1.

(R2) We can write

bðt; xÞ

1þ jxj
¼ ~bb1ðt; xÞ þ ~bb2ðt; xÞ

with ~bb1ðt; xÞ A L1
�

½0;T �;L1ðRnÞ
�

and ~bb2ðt; xÞ A L1
�

½0;T �;LyðRnÞ
�

:
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Since we are now considering vector fields which are no more bounded, we have to
take care of the fact that the flow will be no more locally bounded in R

n. However, we
can give an estimate of the measure of the set of the initial data such that the corresponding
trajectories exit from a fixed ball at some time.

Definition 3.1 (Sublevels). Fix l > 0 and let X : ½0;T � � R
n ! R

n be a locally sum-
mable map. We set

Gl :¼ fx A R
n : jX ðt; xÞje l Et A ½0;T �g:ð20Þ

Proposition 3.2 (Uniform estimate of the superlevels). Let b be a vector field satisfy-

ing assumption (R2) and let X be a regular Lagrangian flow associated to b, with compressi-

bility constant L. Then we have

jBRð0ÞnGlje gðR; lÞ;

where the function g only depends on k~bb1kL1ðL1Þ, k
~bb2kL1ðLyÞ and L; moreover gðR; lÞ # 0 for R

fixed and l " þy.

Proof. Let ft be the density of X ðt; �Þð1BRð0ÞL
nÞ with respect to L

n and notice that,
by the definition of push-forward and by Definition 1.1(ii), we have kftk1 ¼ onR

n and
kftkyeL. Thanks to Definition 1.1(i) we can compute

Ð

BRð0Þ

sup
0eteT

log
1þ jX ðt; xÞj

1þ R

� �

dxe
Ð

BRð0Þ

Ð

T

0

dX

dt
ðt; xÞ

�

�

�

�

�

�

�

�

1þ jX ðt; xÞj
dt dx

¼
Ð

T

0

Ð

BRð0Þ

�

�b
�

t;X ðt; xÞ
��

�

1þ jX ðt; xÞj
dx dt

e
Ð

T

0

Ð

R
n

jbðt; xÞj

1þ jxj
ft dx dt:

Using the Hölder inequality, for every decomposition of bðt; xÞ=ð1þ jxjÞ as in assumption
(R2) we get

Ð

BRð0Þ

sup
0eteT

log
1þ jX ðt; xÞj

1þ R

� �

dxeLk~bb1kL1ðL1Þ þ onR
nk~bb2kL1ðLyÞ:

From this estimate we easily obtain

jBRð0ÞnGlje log
1þ l

1þ R

� �� ��1

ðLk~bb1kL1ðL1Þ þ onR
nk~bb2kL1ðLyÞÞ;

and the right-hand side clearly has the properties of the function gðR; lÞ stated in the
proposition. r
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3.1. Estimate of an integral quantity and Lipschitz estimates. We start with the defi-
nition of an integral quantity which is a generalization of the quantity ApðR;X Þ of Theo-
rem 2.1. In this new setting we will need a third variable (the truncation parameter l),
hence we set

ApðR; l;XÞð21Þ

:¼

"

Ð

BRð0ÞXGl

 

sup
0eteT

sup
0<r<2R

Ð

BrðxÞXGl

log

�

jXðt; xÞ � Xðt; yÞj

r
þ 1

�

dy

!p

dx

#
1
p

where the set Gl is the sublevel relative to the map X , defined as in Definition 3.1.

In the following proposition, we show a bound on the quantity ApðR; l;XÞ which cor-
responds to the bound on ApðR;XÞ in Theorem 2.1.

Theorem 3.3. Let b be a vector field satisfying assumptions (R1) and (R2) and let

X be a regular Lagrangian flow associated to b, with compressibility constant L. Then we

have

ApðR; l;X ÞeCðR;L; kDxbkL1ð½0;T �;LpðB3lð0ÞÞÞ
Þ:

Proof. We start as in the proof of Theorem 2.1, obtaining the validity of inequality
(8) for every x A Gl. Since jX ðt; xÞ � Xðt; yÞje 2l, applying Lemma A.3 we deduce

dQ

dt
ðt; x; rÞe cnM2lDb

�

t;Xðt; xÞ
�

þ cn
Ð

BrðxÞXGl

M2lDb
�

t;X ðt; yÞ
�

dy:

Then, arguing exactly as in the proof of Theorem 2.1, we get the estimate

ApðR; l;X Þe cp;R þ cn

	

	

	

	

Ð

T

0

M2lDb
�

t;Xðt; xÞ
�

dt

	

	

	

	

L
pðBRð0ÞXGlÞ

ð22Þ

þ cn

	

	

	

	

Ð

T

0

sup
0<r<2R

Ð

BrðxÞXGl

M2lDb
�

t;Xðt; yÞ
�

dy dt

	

	

	

	

L
pðBRð0ÞXGlÞ

:ð23Þ

Recalling Definition 1.1(ii) and Lemma A.2, the integral in (22) can be estimated with

cnL
1=p
Ð

T

0

kM2lDbðt; xÞkLpðBlð0ÞÞ
dte cn;pL

1=p
Ð

T

0

kDbðt; xÞkLpðB3lð0ÞÞ
dt:

Define the characteristic function 1A of a subset A of Rn as

1AðxÞ :¼
1 if x A A;

0 if x B A:

�

The integral in (23) can be estimated in a similar way with
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cn
Ð

T

0

	

	

	

	

sup
0<r<2R

Ð

BrðxÞXGl

�

ðM2lDbÞ �
�

t;Xðt; �Þ
��

ðyÞ dy

	

	

	

	

L
pðBRð0ÞXGlÞ

dt

e cn
Ð

T

0

	

	

	

	

sup
0<r<2R

Ð

BrðxÞ

�

ðM2lDbÞ �
�

t;Xðt; �Þ
��

ðyÞ1Gl
ðyÞ dy

	

	

	

	

L
pðBRð0ÞXGlÞ

dt

¼ cn
Ð

T

0

	

	M2R

�

ðM2lDbÞ �
�

t;X ðt; �Þ
�

1Gl
ð�Þ
�

ðxÞ
	

	

L
pðBRð0ÞXGlÞ

dt

e cn;p
Ð

T

0

	

	

�

ðM2lDbÞ �
�

t;Xðt; �Þ
�

1Gl
ð�Þ
�

ðxÞ
	

	

L
pðB3Rð0ÞÞ

dt

¼ cn;p
Ð

T

0

	

	ðM2lDbÞ �
�

t;Xðt; xÞ
�
	

	

L
pðB3Rð0ÞXGlÞ

dt

e cn;pL
1=p
Ð

T

0

kM2lDbðt; xÞkLpðBlð0ÞÞ
dt

e cn;pL
1=p
Ð

T

0

kDbðt; xÞkLpðB3lð0ÞÞ
dt:

Then we obtain the desired estimate for ApðR; l;XÞ. r

Proposition 3.4 (Lipschitz estimates). Let X and b be as in Theorem 3.3. Then,
for every e > 0 and every R > 0, we can find l > 0 and a set KHBRð0Þ such that

jBRð0ÞnK je e and for any 0e teT we have

Lip
�

X ðt; �ÞjK
�

e exp
cnApðR; l;XÞ

e1=p
:

Proof. The proof is exactly the proof of Proposition 2.3, with some minor modifica-
tions due to the necessity of a truncation on the sublevels of the flow. This can be done as
follows. For e > 0 and R > 0 fixed, we apply Proposition 3.2 to get a l large enough such
that jBRð0ÞnGlje e=2. Next, using equation (34) and the finiteness of ApðR; l;X Þ, we ob-
tain a constant

M ¼ M
�

e; p;ApðR; l;XÞ
�

¼
ApðR; l;XÞ

ðe=2Þ1=p

and a set KHBRð0ÞXGl with
�

�

�

BRð0ÞXGl

�

nK
�

�e e=2 and

sup
0eteT

sup
0<r<2R

Ð

BrðxÞXGl

log
jX ðt; xÞ � X ðt; yÞj

r
þ 1

� �

dyeM Ex A K:

Hence the set K satisfies jBRð0ÞnK je e and

Ð

BrðxÞXGl

log
jXðt; xÞ � Xðt; yÞj

r
þ 1

� �

dyeM Ex A K; Et A ½0;T �; Er A �0; 2R½:
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The proof can be concluded as the proof of Proposition 2.3, where now the integrals are
performed on the sublevels Gl. r

3.2. Existence, regularity and compactness.

Corollary 3.5 (Approximate di¤erentiability of the flow). Let b be a vector field sat-

isfying assumptions (R1) and (R2) and let X be a regular Lagrangian flow associated to b.

Then Xðt; �Þ is approximately di¤erentiable a.e. in R
n, for every t A ½0;T �.

Proof. The proof is an immediate consequence of the Lusin type approximation of
the flow with Lipschitz maps given in Proposition 3.4 and of Theorem B.1. r

Corollary 3.6 (Compactness of the flow). Let fbhg be a sequence of vector fields sat-

isfying assumptions (R1) and (R2). For every h, let Xh be a regular Lagrangian flow associ-

ated to bh and let Lh be the compressibility constant associated to Xh, as in Definition 1.1(ii).
Suppose that for every R > 0 the uniform estimate

kDxbhkL1ð½0;T �;LpðBRð0ÞÞÞ
þ k~bbh;1kL1ðL1Þ þ k~bbh;2kL1ðLyÞ þ LheCðRÞ < yð24Þ

is satisfied, for some decomposition bh=ð1þ jxjÞ ¼ ~bbh;1 þ ~bbh;2 as in assumption (R2). Then
the sequence fXhg is locally precompact in measure in ½0;T � � R

n.

Proof. The proof is essentially identical to the proof of Corollary 2.6. Fix R > 0 and
d > 0. Applying Proposition 3.2 and thanks to the uniform bound given by (24), we first
find l > 0 big enough such that

jBRð0ÞnG
h
l je d=3;

with Gh
l as in Definition 3.1. Thanks again to (24), we can apply Theorem 3.3 to deduce

that the quantities ApðR; l;XhÞ are uniformly bounded with respect to h. Now we apply
Proposition 3.4 with e ¼ d=3 to find, for every h, a measurable set Kh HBRð0ÞXGh

l such
that

�

�

�

BRð0ÞXGh
l

�

nKh

�

�e d=3

and

Lip
�

Xhðt; �ÞjKh

�

is uniformly bounded w:r:t: h:

Now we are going to show a similar Lipschitz estimate with respect to the time. Since the
maps

½0;T � � Kh C ðt; xÞ 7! bh
�

t;Xhðt; xÞ
�

are uniformly bounded in L1ð½0;T � � KhÞ (this is easily deduced recalling assumption (R2),
the bound (24) and the fact that Kh HBRð0Þ), for every h, applying the Chebyshev inequal-
ity, we can find a measurable set Hh H ½0;T � � Kh such that
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jð½0;T � � KhÞnHhje d=3

and

	

	bh
�

t;Xhðt; xÞ
�
	

	

LyðHhÞ
eC=d;

where the constant C only depends on the constant CðRÞ given by (24). Then we deduce
that

dXh

dt
ðt; xÞ

	

	

	

	

	

	

	

	

LyðHhÞ

is uniformly bounded w:r:t: h:

Hence we have found, for every h, a measurable set Hh H ½0;T � � BRð0Þ such that

�

�

�

½0;T � � BRð0Þ
�

nHh

�

�e d

and

kXhkLyðHhÞ
þ Lipt;xðXhjHh

Þ uniformly bounded w:r:t: h:

Then we apply Lemma C.1 to obtain that the sequence fXhg is precompact in measure in
½0;T � � BRð0Þ. A standard diagonal argument gives the local precompactness in measure of
the sequence in the whole ½0;T � � R

n. r

Corollary 3.7 (Existence of the flow). Let b be a vector field satisfying assumptions

(R1) and (R2) and such that ½div b�� A L1
�

½0;T �;LyðRnÞ
�

. Then there exists a regular La-

grangian flow associated to b.

Proof. It is su‰cient to regularize b with a positive convolution kernel in R
n and

apply Corollary 3.6. It is simple to check that the regularized vector fields satisfy the equi-
bounds needed for the compactness result. r

3.3. Stability estimates and uniqueness.

Theorem 3.8 (Stability estimate). Let b and ~bb be vector fields satisfying assumptions

(R1) and (R2). Let X and ~XX be regular Lagrangian flows associated to b and ~bb respectively

and denote by L and ~LL the compressibility constants of the flows. Then for every l > 1 and

every t A ½0;T � the following estimate holds:

Ð

Brð0Þ

15jXðt; xÞ � ~XX ðt; xÞj dxe
C

logðlÞ
þ Clkb� ~bbkL1ð½0; t��Blð0ÞÞ

;ð25Þ

where the constant C only depends on L, ~LL and on the L1ðL1Þ þ L1ðLyÞ norm of some de-

composition of b and ~bb as in assumption (R2), while the constant Cl depends on l, r, L, ~LL and

kDbkL1ð½0; t�;LpðB3lð0ÞÞÞ
.

Proof. For any given l > 1 define the sets Gl and ~GGl, relatively to X and ~XX , as in
(20). Set
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d ¼ dðlÞ :¼ kb� ~bbkL1ð½0; t��Blð0ÞÞ
:

Define

gðtÞ :¼
Ð

Brð0ÞXGlX ~GGl

log
jXðt; xÞ � ~XXðt; xÞj

d
þ 1

� �

dx:

Clearly we have gð0Þ ¼ 0 and we can estimate

g 0ðtÞe
Ð

Brð0ÞXGlX ~GGl

�

�b
�

t;Xðt; xÞ
�

� ~bb
�

t; ~XX ðt; xÞ
�
�

�

jXðt; xÞ � ~XX ðt; xÞj þ d
dx

e
Ð

Brð0ÞXGlX ~GGl

�

�b
�

t; ~XXðt; xÞ
�

� ~bb
�

t; ~XX ðt; xÞ
�
�

�

jXðt; xÞ � ~XX ðt; xÞj þ d
þ

�

�b
�

t;X ðt; xÞ
�

� b
�

t; ~XXðt; xÞ
�
�

�

jX ðt; xÞ � ~XXðt; xÞj þ d
dx

e
Ð

Brð0ÞXGlX ~GGl

1

d

�

�b
�

t; ~XXðt; xÞ
�

� ~bb
�

t; ~XXðt; xÞ
�
�

�þ

�

�b
�

t;X ðt; xÞ
�

� b
�

t; ~XX ðt; xÞ
�
�

�

jXðt; xÞ � ~XX ðt; xÞj
dx

e
1

d

Ð

Brð0ÞXGlX ~GGl

�

�b
�

t; ~XXðt; xÞ
�

� ~bb
�

t; ~XXðt; xÞ
�
�

� dx

þ cn
Ð

Brð0ÞXGlX ~GGl

�

M2lDb
�

t;X ðt; xÞ
�

þM2lDb
�

t; ~XXðt; xÞ
��

dx

e
~LL

d

Ð

Blð0Þ

jbðt; xÞ � ~bbðt; xÞj dxþ cnðLþ ~LLÞ
Ð

Blð0Þ

M2lDbðt; xÞ dx

e
~LL

d

Ð

Blð0Þ

jbðt; xÞ � ~bbðt; xÞj dxþ cn;pðLþ ~LLÞln�n=pkDbðt; �ÞkLpðB3lð0ÞÞ
:

Integrating with respect to t between 0 and t we obtain

gðtÞ ¼
Ð

Brð0ÞXGlX ~GGl

log
jXðt; xÞ � ~XXðt; xÞj

d
þ 1

� �

dx

e ~LLþ cn;pðLþ ~LLÞln�n=pkDbkL1ð½0; t�;LpðB3lð0ÞÞÞ
¼ Cl;

where the constant Cl depends on l but also on the other parameters relative to b and
~bb. Now fix a value h > 0 which will be specified later. We can find a measurable set
KHBrð0ÞXGl X ~GGl such that

�

�

�

Brð0ÞXGl X ~GGl

�

nK
�

� < h and

log
jX ðt; xÞ � ~XXðt; xÞj

d
þ 1

� �

e
Cl

h
Ex A K:

Then we deduce that
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Ð

Brð0Þ

15jX ðt; xÞ � ~XXðt; xÞj dx

e jBrð0ÞnðGl X ~GGlÞj þ
�

�

�

Brð0ÞXGl X ~GGl

�

nK
�

�þ
Ð

K

jX ðt; xÞ � ~XX ðt; xÞj dx

e
C

logðlÞ
þ hþ Cd expðCl=hÞe

C

logðlÞ
þ Clkb� ~bbkL1ð½0; t��Blð0ÞÞ

;

choosing h ¼ 1=logðlÞ in the last line. r

Corollary 3.9 (Stability of the flow). Let fbhg be a sequence of vector fields satisfying

assumptions (R1) and (R2), converging in L1
locð½0;T � � R

nÞ to a vector field b which satisfies

assumptions (R1) and (R2). Denote by X and Xh the regular Lagrangian flows associated to b

and bh respectively, and denote by L and Lh the compressibility constants of the flows. Sup-

pose that, for some decomposition bh=ð1þ jxjÞ ¼ ~bbh;1 þ ~bbh;2 as in assumption (R2), we have

k~bbh;1kL1ðL1Þ þ k~bbh;2kL1ðLyÞ equi-bounded in h

and that the sequence fLhg is equi-bounded. Then the sequence fXhg converges to X locally

in measure in ½0;T � � R
n.

Proof. Notice that, under the hypothesis of this corollary, the constants C h; t and
C

h; t
l in (25) can be chosen uniformly with respect to t A ½0;T � and h A N. Hence we find

universal constants C and Cl, depending only on the assumed equi-bounds, such that

Ð

Brð0Þ

15jXðt; xÞ � Xhðt; xÞj dxe
C h; t

logðlÞ
þ C

h; t
l kb� bhkL1ð½0; t��Blð0ÞÞ

ð26Þ

e
C

logðlÞ
þ Clkb� bhkL1ð½0;T ��Blð0ÞÞ

:

Now fix e > 0. We first choose l big enough such that

C

logðlÞ
e

e

2
;

where C is the first constant in (26). Since now l is fixed, we find N such that for every
hfN we have

kb� bhkL1ð½0;T ��Blð0ÞÞ
e

e

2Cl

;

thanks to the convergence of the sequence fbhg to b in L1
locð½0;T � � R

nÞ. Notice that N de-
pends on l and on the equi-bounds, but in turn l only depends on e and on the equi-
bounds. Hence we get

Ð

Brð0Þ

15jX ðt; xÞ � Xhðt; xÞj dxe e for every hfN ¼ NðeÞ:
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This means that fXhðt; �Þg converges to Xðt; �Þ locally in measure in R
n, uniformly with re-

spect to t A ½0;T �. In particular we get the thesis. r

Corollary 3.10 (Uniqueness of the flow). Let b be a vector field satisfying assump-

tions (R1) and (R2). Then the regular Lagrangian flow associated to b, if it exists, is unique.

Proof. It follows immediately from Corollary 3.9. r

4. A direct proof of compactness

In this section we propose an alternative proof of the compactness result of Theorem
2.6, which works under an assumption of summability of the maximal function of Db. The
strategy of this proof is slightly di¤erent from the previous one: we are not going to use
the Lipschitz estimates of Proposition 2.3 and Remark 2.4, but instead we prove an esti-
mate of an integral quantity which turns out to be su‰cient to get compactness, via the
Riesz-Fréchet-Kolmogorov compactness criterion.

We will assume the following regularity assumption on the vector field:

(R3) For every l > 0 we have MlDb A L1
�

½0;T �;L1
locðR

nÞ
�

.

Notice that, by Lemma A.2, this assumption is equivalent to the condition

Ð

T

0

Ð

Brð0Þ

jDxbðt; xÞj log
�

2þ jDxbðt; xÞj
�

dx dt < y for every r > 0:

This means that Dxb A L1
�

½0;T �;L logLlocðR
nÞ
�

, i.e. a slightly stronger bound than
Dxb A L1

�

½0;T �;L1
locðR

nÞ
�

.

We define a new integral quantity, which corresponds to the one defined in Theorem
2.1 for p ¼ 1, but without the supremum with respect to r. For R > 0 and 0 < r < R=2
fixed we set

aðr;R;X Þ ¼
Ð

BRð0Þ

sup
0eteT

Ð

BrðxÞ

log
jXðt; xÞ � Xðt; yÞj

r
þ 1

� �

dy dx:

We first give a quantitative estimate for the quantity aðr;R;XÞ, similar to the one for
ApðR;X Þ.

Theorem 4.1. Let b be a bounded vector field satisfying assumption (R3) and let X

be a regular Lagrangian flow associated to b, with compressibility constant L. Then we

have

aðr;R;XÞeCðR;L; kM ~RRDxbkL1ð½0;T �;L1ðB ~RRð0ÞÞÞ
Þ;

where ~RR ¼ 3R=2þ 2Tkbky.
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Proof. We start as in the proof of Theorem 2.1, obtaining inequality (9) (but this
time it is su‰cient to set ~RR ¼ 3R=2þ 2Tkbky). Integrating with respect to the time and
then with respect to x over BRð0Þ, we obtain

aðr;R;XÞe cR þ cn
Ð

BRð0Þ

Ð

T

0

M ~RRDb
�

t;X ðt; xÞ
�

dt dx

þ cn
Ð

BRð0Þ

Ð

T

0

Ð

BrðxÞ

M ~RRDb
�

t;X ðt; yÞ
�

dy dt dx:

As in the previous computations, the first integral can be estimated with

cnLkM ~RRDbkL1ð½0;T �;L1ðBRþTkbky
ð0ÞÞÞ;

but this time we cannot bound the norm of the maximal function with the norm of the de-
rivative. To estimate the last integral we compute

cn
Ð

BRð0Þ

Ð

T

0

Ð

BrðxÞ

M ~RRDb
�

t;X ðt; yÞ
�

dy dt dx

¼ cn
Ð

BRð0Þ

Ð

T

0

Ð

Brð0Þ

M ~RRDb
�

t;Xðt; xþ zÞ
�

dz dt dx

e cn
Ð

Brð0Þ

Ð

T

0

Ð

BRð0Þ

M ~RRDb
�

t;Xðt; xþ zÞ
�

dx dt dz

e cn
Ð

Brð0Þ

Ð

T

0

L
Ð

B3R=2þTkbky
ð0Þ

M ~RRDbðt;wÞ dw dt dx

¼ cnLkM ~RRDbkL1ð½0;T �;L1ðB3R=2þTkbky
ð0ÞÞÞ:

Hence the thesis follows, by definition of ~RR. r

Next, we show how this estimate implies compactness for the flow.

Corollary 4.2 (Compactness of the flow). Let fbhg be a sequence of vector fields equi-

bounded in Lyð½0;T � � R
nÞ and suppose that the sequence fMlDbhg is equi-bounded in

L1
�

½0;T �;L1
locðR

nÞ
�

for every l > 0. For each h, let Xh be a regular Lagrangian flow associ-

ated to bh and let Lh be the compressibility constant associated to Xh, as in Definition 1.1(ii).
Suppose that the sequence fLhg is equi-bounded. Then the sequence fXhg is strongly precom-

pact in L1
locð½0;T � � R

nÞ.

Proof. We apply Theorem 4.1 to obtain that, under the assumptions of the corol-
lary, the quantities aðr;R;XhÞ are uniformly bounded with respect to h. Now observe that,
for 0e ze ~RR (with ~RR ¼ 3R=2þ 2Tkbky as in Theorem 4.1), thanks to the concavity of
the logarithm we have
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log
z

r
þ 1

� �

f

log
~RR

r
þ 1

� �

~RR
z:

Since jXhðt; xÞ � Xhðt; yÞje ~RR this implies that

Ð

BRð0Þ

sup
0eteT

Ð

BrðxÞ

jXhðt; xÞ � Xnðt; yÞj dy dx

e
~RR

log
~RR

r
þ 1

� �
CðR;Lh; kM ~RRDbhkL1ð½0;T �;L1ðB ~RRð0ÞÞÞ

Þe gðrÞ;

where the function gðrÞ does not depend on h and satisfies gðrÞ # 0 for r # 0. Changing the
integration order this implies

Ð

Brð0Þ

Ð

BRð0Þ

jXhðt; xÞ � Xhðt; xþ zÞj dx dze gðrÞ;

uniformly with respect to t and h.

Now notice the following elementary fact. There exists a dimensional constant an > 0
with the following property: if AHB1ð0Þ is a measurable set with jB1ð0ÞnAje an, then
Aþ AIB1=2ð0Þ. Indeed, if the thesis were false, we could find x A B1=2ð0Þ such that
x B Aþ A. This would imply in particular that x B

�

AXB1=2ð0Þ
�

þ
�

AXB1=2ð0Þ
�

, so
that

�

x�
�

AXB1=2ð0Þ
��

X ½AXB1=2ð0Þ� ¼ j:ð27Þ

Now notice that there exists a dimensional constant gn such that

�

�B1=2ð0ÞX
�

x� B1=2ð0Þ
�
�

�f gn;

since we are supposing x A B1=2ð0Þ. But since jB1ð0ÞnAje an, we also have

�

�B1=2ð0Þn
�

AXB1=2ð0Þ
�
�

�e an

and

�

�

�

x� B1=2ð0Þ
�

n
�

x�
�

AXB1=2ð0Þ
��
�

� ¼
�

�B1=2ð0Þn
�

AXB1=2ð0Þ
�
�

�e an:

But this is clearly in contradiction with (27) if we choose an < gn=2.

Then fix an as above and apply the Chebyshev inequality for every h to obtain, for
every 0 < r < R=2, a measurable set Kr;hHBrð0Þ with jBrð0ÞnKr;hje anjBrð0Þj and

Ð

BRð0Þ

jXhðt; xþ zÞ � Xhðt; xÞj dxe
gðrÞ

an
for every z A Kr;h:

36 Crippa and De Lellis, Estimates for the DiPerna-Lions flow

Bereitgestellt von | UZH Hauptbibliothek / Zentralbibliothek Zürich

Angemeldet

Heruntergeladen am | 28.08.18 19:15



For such a set Kr;h, thanks to the previous remark, we have that Kr;h þ Kr;h IBr=2ð0Þ. Now
let v A Br=2ð0Þ be arbitrary. For every h we can write v ¼ z1;h þ z2;h with z1;h; z2;h A Kr;h. We
can estimate the increment in the spatial directions as follows:

Ð

BR=2ð0Þ

jXhðt; xþ vÞ � Xhðt; xÞj dx

¼
Ð

BR=2ð0Þ

jXhðt; xþ z1;h þ z2;hÞ � Xhðt; xÞj dx

e
Ð

BR=2ð0Þ

jXhðt; xþ z1;h þ z2;hÞ � Xhðt; xþ z1;hÞj þ jXhðt; xþ z1;hÞ � Xhðt; xÞj dx

e
Ð

BRð0Þ

jXhðt; yþ z2;hÞ � Xhðt; yÞj dyþ
Ð

BRð0Þ

jXhðt; xþ z1;hÞ � Xhðt; xÞj dxe
2gðrÞ

an
:

Now notice that, by Definition 1.1(i), for a.e. x A R
n we have

dXh

dt
ðt; xÞ ¼ bh

�

t;Xhðt; xÞ
�

for every t A ½0;T �:

Then we can estimate the increment in the time direction in the following way:

jXhðtþ t; xÞ � Xhðt; xÞje
Ð

t

0

dXh

dt
ðtþ s; xÞ

�

�

�

�

�

�

�

�

ds

¼
Ð

t

0

�

�bh
�

tþ s;Xhðtþ s; xÞ
�
�

� dse tkbhky:

Combining these two informations, for ðt0; t1ÞHH ½0;T �, R > 0, v A Br=2ð0Þ and
t > 0 su‰cently small we can estimate

Ð

t1

t0

Ð

BR=2ð0Þ

jXhðtþ t; xþ vÞ � Xhðt; xÞj dx dt

e
Ð

t1

t0

Ð

BR=2ð0Þ

jXhðtþ t; xþ vÞ � Xhðtþ t; xÞj þ jXhðtþ t; xÞ � Xhðt; xÞj dx dt

eT
2gðrÞ

an
þ
Ð

t1

t0

Ð

BR=2ð0Þ

tkbhky dx dteT
2gðrÞ

an
þ cnTR

ntkbhky:

The thesis follows applying the Riesz-Fréchet-Kolmogorov compactness criterion (see
Lemma C.2), recalling that fbhg is uniformly bounded in Lyð½0;T � � R

nÞ. r

Corollary 4.3 (Existence of the flow). Let b be a bounded vector field satisfying

assumption (R3) and such that ½div b�� A L1
�

½0;T �;LyðRnÞ
�

. Then there exists a regular

Lagrangian flow associated to b.

Proof. It is su‰cient to regularize b with a positive convolution kernel in R
n and

apply Corollary 4.2. It is simple to check that the regularized vector fields satisfy the equi-
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bounds needed for the compactness result, due to the convexity of the map z 7! z logð2þ zÞ
for zf 0. r

5. Lipexpp-regularity for transport equations with W1,p coe‰cients

In this section we show that solutions to transport equations with Sobolev coe‰cients
propagate a very mild regularity property of the initial data.

Definition 5.1 (The space Lipexpp). We say that a function f : EHHR
n ! R

k be-
longs to LipexppðEÞ if for every e > 0 there exists a measurable set KHE such that

(i) jEnK je e;

(ii) Lipð f jKÞe expðCe�1=pÞ for some constant C < y independent on e.

Moreover we denote by j f jLEpðEÞ
the smallest constant C such that the conditions above

hold.

Remark 5.2. Note that:

� Lipexpy is the space of functions which coincide with a Lipschitz function almost
everywhere.

� j f jLEpðEÞ
is not homogeneous, and then it is not a norm, and can be explicitely de-

fined as

j f jLEpðEÞ
:¼ sup

e>0
fe1=p logminfLipð f jKÞ : jEnK je egg:

� One can compare this definition with a similar result for Sobolev functions: if
f A W 1;pðE;RkÞ, then for every e > 0 there exists a set KHE such that jEnKje e and
Lipð f jKÞe kDf kLpðEÞe

�1=p.

Theorem 5.3. Let b be a vector field satisfying assumptions (R1) and (R2) and

such that div b A L1
�

½0;T �;LyðRnÞ
�

. Let u A LyðRnÞ such that u A LipexppðWÞ for every

WHHR
n. Let u be the solution of the Cauchy problem

qtuðt; xÞ þ bðt; xÞ � ‘xuðt; xÞ ¼ 0;

uð0; �Þ ¼ u:

�

ð28Þ

Then for every WHHR
n we have that

sup
0eteT

juðt; �ÞjLEpðWÞ < y:

Remark 5.4. Since u A C
�

½0;T �;L1
locðR

nÞ � w
�

, we can define uðt; �Þ for every
t A ½0;T �.

Proof of Theorem 5.3. Let X be the regular Lagrangian flow generated by b. Then:
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(a) There exists a constant C > 0 such that C�1jWje jX ðt;WÞjeCjWj for every
t A ½0;T � and for every WHR

n; therefore, for every t A ½0;T �, we can define Cðt; xÞ via
the identity X

�

t;Cðt; xÞ
�

¼ C
�

t;X ðt; xÞ
�

¼ x for a.e. x A R
n.

(b) For every t we have uðt; xÞ ¼ u
�

Cðt; xÞ
�

for almost every x.

Note that if for every t we consider the regular Lagrangian flow Fðt; � ; �Þ of

dF

dt
ðt; t; xÞ ¼ �b

�

t� t;Fðt; t; xÞ
�

;

Fðt; 0; xÞ ¼ x;

8

<

:

then Cðt; xÞ ¼ Fðt; t; xÞ. Therefore, thanks to Proposition 3.4 we conclude that

sup
0eteT

jCðt; �ÞjLEpðWÞeC1ðWÞ

for every WHHR
n.

Let t A ½0;T �, R > 0 and e > 0 be given. Choose K1HBRð0Þ such that

� jBRð0ÞnK1je e=3;

� Lip
�

Cðt; �ÞjK1

�

e exp
�

jCðt; �ÞjLEpðBRð0ÞÞ
ðe=3Þ�1=p�.

Applying Proposition 3.2 we can find R > 0 such that

�

�C
�

t;BRð0Þ
�

nBRð0Þ
�

�e
e

3C
;

where C is the constant in (a). Now, select K2 HBRð0Þ such that

� jBRð0ÞnK2je e=3C;

� LipðujK2
Þe exp

�

jujLEpðBCðRÞð0ÞÞ
ðe=3CÞ�1=p�,

where again C is as in (a). Next consider K :¼ K1X
�

Cðt; �Þ
��1

ðK2Þ ¼ K1 XXðt;K2Þ.
Since

BRð0ÞnKH
�

BRð0ÞnK1

�

W
�

BRð0ÞnXðt;K2Þ
�

H
�

BRð0ÞnK1

�

WX
�

t;C
�

t;BRð0Þ
�

nBRð0Þ
�

WX
�

t;BRð0ÞnK2

�

;

we have

jBRð0ÞnKje jBRð0ÞnK1j þ
�

�X
�

t;C
�

t;BRð0Þ
�

nBRð0Þ
�
�

�þ
�

�X
�

t;BRð0ÞnK2

�
�

�e e:

Given x; y A K we have Cðt; xÞ;Cðt; yÞ A K2 and hence we can estimate
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juðt; xÞ � uðt; yÞj ¼
�

�u
�

Cðt; xÞ
�

� u
�

Cðt; yÞ
�
�

�eLipðujK2
ÞjCðt; xÞ �Cðt; yÞj

eLipðujK2
ÞLip

�

Cðt; �ÞjK1

�

jx� yj

¼ jx� yj expf½ð3CÞ1=pjujLEpðBR
ð0ÞÞ þ 31=pjCðt; �ÞjLEpðBRð0ÞÞ

�e�1=pg:

Therefore e1=p log
�

Lip
�

uðt; �ÞjK
��

is bounded by a constant independent of e and t (but
which depends on R). Taking the supremum over t and e, we conclude that

sup
0eteT

juðt; �ÞjLEpðBRð0ÞÞ
eCðRÞ;

and this concludes the proof. r

6. An application to a conjecture on mixing flows

In [7] the author considers a problem on mixing vector fields on the two-dimensional
torus K ¼ R

2=Z2. In this section, we are going to show that the Lipschitz estimate of Pro-
position 3.4 gives an answer to this problem, although in the L

p
setting ðp > 1Þ instead of

the L1 setting considered in [7].

Fix coordinates x ¼ ðx1; x2Þ A ½0; 1½ � ½0; 1½ on K and consider the set

A ¼ fðx1; x2Þ : 0e x2e 1=2gHK :

If b : ½0; 1� � K ! R
2 is a smooth time-dependent vector field, we denote as usual by X ðt; xÞ

the flow of b and by F : K ! K the value of the flow at time t ¼ 1. We assume that the
flow is nearly incompressibile, so that for some k 0 > 0 we have

k 0jWje jXðt;WÞje
1

k 0
jWjð29Þ

for all WHK and all t A ½0; 1�. For a fixed 0 < k < 1=2, we say that F mixes the set A up to

scale e if for every ball BeðxÞ we have

kjBeðxÞje jBeðxÞXFðAÞje ð1� kÞjBeðxÞj:

Then in [7] the following conjecture is proposed:

Conjecture 6.1 (Bressan’s mixing conjecture). Under these assumptions, there exists a
constant C depending only on k and k 0 such that, if F mixes the set A up to scale e, then

Ð

1

0

Ð

K

jDxbj dx dtfCjlog ej for every 0 < e < 1=4:

In this section, we show the following result:
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Theorem 6.2. Let p > 1. Under the previous assumptions, there exists a constant C

depending only on k, k 0 and p such that, if F mixes the set A up to scale e, then

Ð

1

0

kDxbkLpðKÞ dtfCjlog ej for every 0 < e < 1=4:

Proof. We set M ¼ kDxbkL1ð½0;1�;LpðKÞÞ and A 0 ¼ KnA. Applying Proposition 3.4,
and noticing that the flow is bounded since we are on the torus, for every constant h > 0
we can find a set B with jBje h such that

LipðF�1jKnBÞe expðbMÞ;ð30Þ

where the constant b depends only on k 0, h and p. Since F mixes the set A up to scale e, for
every x A A we have

�

�Be

�

FðxÞ
�

XFðA 0Þ
�

�f k
�

�Be

�

FðxÞ
�
�

�:ð31Þ

We define

~AA ¼



x A A : Be

�

FðxÞ
�

X ½FðA 0ÞnB� ¼ j
�

:

From this definition and from (31) we get that for every x A ~AA

�

�Be

�

FðxÞ
�

XB
�

�f k
�

�Be

�

FðxÞ
��

�:ð32Þ

From (32) and the Besicovitch covering theorem we deduce that for an absolute constant c
we have

jFð ~AAÞje
c

k
jBje

ch

k
:

From the compressibility condition (29) we deduce

j ~AAje
ch

kk 0
:

Since, using again (29), we know that

jF�1ðBÞje
jBj

k 0
e

h

k 0
;

we can choose h > 0, depending on k and k 0 only, in such a way that

j ~AAj þ jF�1ðBÞje
1

6
:

This implies the existence of a point x A An½ ~AAWF
�1ðBÞ� with distðx;A 0Þf 1=6. Let

y ¼ FðxÞ. Since x B ~AA, we can find a point z A BeðyÞX ½FðA 0ÞnB�. Clearly we have
jy� zje e and (since F�1ðzÞ A A 0) we also have jx�F

�1ðzÞjf 1=6.
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Since y; z B B, we can apply (30) to deduce

1

6
e eLipðF�1jKnBÞe e expðbMÞ;

where now b depends only on k, k 0 and p, since h has been fixed. This implies that

M ¼ kDxbkL1ð½0;1�;LpðKÞÞf
1

b
log

1

6e

� �

:

Hence we can find e0 > 0 such that

Mf
1

2b
jlog ej for every 0 < e < e0:

We are now going to show the thesis for every 0 < e < 1=4. Indeed, suppose that the
thesis is false. Then, we could find a sequence fbhg of vector fields and a sequence fehg with
e0 < eh < 1=4 in such a way that

kDxbhkL1ð½0;1�;LpðKÞÞe
1

h
jlog ehj

and the corresponding map Fh mixes the set A up to scale eh. This implies that

kDxbhkL1ð½0;1�;LpðKÞÞe
1

h
jlog ehje

1

h
jlog e0j ! 0 as h ! y:

Up to an extraction of a subsequence, we can assume that eh ! e and that Fh ! F

strongly in L1ðKÞ. For this, we apply the compactness result in Theorem 3.6, noticing
that (29) gives a uniform control on the compressibility constants of the flows and that we
do not need any assumption on the growth of the vector fields, since we are on the torus
and then the flow is automatically uniformly bounded. Now, notice that the mixing prop-
erty is stable with respect to strong convergence: this means that F has to mix up to scale
ee 1=4. But since kDxbhkL1ð½0;1�;LpðKÞÞ ! 0, we deduce that F is indeed a translation on K,
hence it cannot mix the set A up to a scale which is smaller than 1=4. From this contradic-
tion we get the thesis. r

Remark 6.3. We notice that the constant 1=4 in Theorem 6.2 depends on the shape
of the set A: this bound comes from the fact that a translation does not mix up to a scale
e < 1=4. Our proof can be easily extended to the case of a measurable set A with any shape,
giving a di¤erent upper bound for the values of e such that the result is true.

Appendix A. Maximal functions

In this first appendix, we recall the definition of the local maximal function of a locally
finite measure and of a locally summable function and we recollect some well-known prop-
erties which are used throughout all this paper.
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Definition A.1 (Local maximal function). Let m be a (vector-valued) locally finite
measure. For every l > 0, we define the local maximal function of m as

MlmðxÞ ¼ sup
0<r<l

jmj
�

BrðxÞ
�

jBrðxÞj
¼ sup

0<r<l

Ð

BrðxÞ

djmjðyÞ; x A R
n:

When m ¼ fLn, where f is a function in L1
locðR

n;RmÞ, we will often use the notation Ml f

for Mlm.

The proof of the following two lemmas can be found in [12].

Lemma A.2. Let l > 0. The local maximal function of m is finite for a.e. x A R
n and

we have

Ð

Brð0Þ

Ml f ðyÞ dye cn;r þ cn
Ð

Brþlð0Þ

j f ðyÞj log
�

2þ j f ðyÞj
�

dy:

For p > 1 and r > 0 we have

Ð

Brð0Þ

�

Ml f ðyÞ
�p

dye cn;p
Ð

Brþlð0Þ

j f ðyÞjp dy;

but this is false for p ¼ 1. For p ¼ 1 we have the weak estimate

jfy A Brð0Þ : Ml f ðyÞ > agje
cn

a

Ð

Brþlð0Þ

j f ðyÞj dy;ð33Þ

for every a > 0.

Lemma A.3. If u A BVðRnÞ then there exists a negligible set NHR
n such that

juðxÞ � uðyÞje cnjx� yj
�

MlDuðxÞ þMlDuðyÞ
�

for x; y A R
nnN with jx� yje l.

We also recall the Chebyshev inequality:

jfj f j > tgje
1

t

Ð

fj f j>tg

j f ðxÞj dxe
jfj f j > tgj1=q

t
k f kLpðWÞ;

which implies

jfj f j > tgj1=pe
k f kLpðWÞ

t
:ð34Þ

Appendix B. Convergence in measure and approximate di¤erentiability

We recall that a sequence of Borel maps f fhg is said to be locally convergent in mea-

sure to f if
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lim
h!y

jfx A BRð0Þ : j fhðxÞ � f ðxÞj > dgj ¼ 0 for every R > 0 and d > 0:

This convergence is equivalent to the fact that

15j fh � f j ! 0 in L1
locðR

nÞ:

If the sequence f fhg is locally equi-bounded in Ly, then the local convergence in measure is
equivalent to the strong convergence in L1

loc.

We say that a Borel map f : Rn ! R
k is approximately di¤erentiable at x A R

n if
there exists a linear map L : Rn ! R

k such that the di¤erence quotients

y 7!
f ðxþ eyÞ � f ðxÞ

e

locally converge in measure as e # 0 to Ly. This is clearly a local property. Equivalently, the
approximative di¤erentiability condition can be stated in the following way: there exists a
map ~ff , di¤erentiable in the classical sense at x, such that ~ff ðxÞ ¼ f ðxÞ and the coincidence
set fy : ~ff ðyÞ ¼ f ðyÞg has density 1 at x. This characterization, together with Rademacher
theorem and some extension arguments, shows that if f jK is a Lipschitz map for some set
KHR

n, then f is approximately di¤erentiable at almost every point of K. In the following
theorem we show a kind of converse of this statement: an approximately di¤erentiable map
can be approximated, in the Lusin sense, with Lipschitz maps.

Theorem B.1. Let f : W ! R
k. Assume that there exist Ah such that

�

�

�

�

Wn
S

h

Ah

�

�

�

�

¼ 0

and f jAh
is Lipschitz for any h. Then f is approximately di¤erentiable at a.e. x A W. Con-

versely, if f is approximately di¤erentiable at all points of W 0
HW, we can write W

0 as a

countable union of sets Ah such that f jAh
is Lipschitz for any h (up to a redefinition on a neg-

ligible set).

For the proof, see [10], Theorem 3.1.16.

Appendix C. Compactness

In this appendix we give some ‘‘abstract’’ results which have been used in the previous
sections to prove compactness for the regular Lagrangian flows.

Lemma C.1. Let WHR
n be a bounded Borel set and let f fhg be a sequence of maps

into R
m. Suppose that for every d > 0 we can find a positive constant Md < y and, for every

fixed h, a Borel set Bh; dHW with jWnBh; dje d in such a way that

k fhkLyðBh; dÞ
eMd

and

Lipð fhjBh; d
ÞeMd:

Then the sequence f fhg is precompact in measure in W.
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Proof. For every j A N we find the value M1=j and the sets Bh;1=j as in the assump-
tion of the lemma, with d ¼ 1=j. Now, arguing component by component, we can extend

every map fhjBh; 1=j
to a map f

j
h defined on W in such a way that the equi-bounds are pre-

served, up to a dimensional constant: we have

k f j
h kLyðWÞeM1=j for every h

and

Lipð f j
h Þe cnM1=j for every h:

Then we apply the Ascoli-Arzelà theorem (notice that by uniform continuity all the maps
f
j
h can be extended to the compact set W) and using a diagonal procedure we find a sub-
sequence (in h) such that for every j the sequence f f j

h gh converges uniformly in W to a
map f

j
y.

Now we fix e > 0. We choose jf 3=e and we find N ¼ Nð jÞ such that

Ð

W

j f j
i � f

j
k j dxe e=3 for every i; k > N:

Keeping j and Nð jÞ fixed we estimate, for i; k > N,

Ð

W

15j fi � fkj dxe
Ð

W

15j fi � f
j
i j dxþ

Ð

W

15j f j
i � f

j
k j dxþ

Ð

W

15j f j
k � fkj dx

e jWnBi;1=jj þ
Ð

W

j f j
i � f

j
k j dxþ jWnBk;1=jj

e
1

j
þ

e

3
þ
1

j
e e:

It follows that the given sequence has a subsequence which is Cauchy with respect to the
convergence in measure in W. This implies the thesis. r

We also recall the following classical criterion for strong compactness in L
p
, since we

used it during the proof of Corollary 4.2.

Lemma C.2 (Riesz-Fréchet-Kolmogorov compactness criterion). Let F be a

bounded subset of L
p
ðRNÞ for some 1e p < y. Suppose that

lim
jhj!0

k f ð� � hÞ � f kp ¼ 0 uniformly in f A F:

Then F is relatively compact in L
p
locðR

NÞ.
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