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Estimates and regularity results
for the DiPerna-Lions flow

By Gianluca Crippa at Pisa and Camillo De Lellis at Ziirich

Abstract. In this paper we derive new simple estimates for ordinary differential equa-
tions with Sobolev coefficients. These estimates not only allow to recover some old and re-
cent results in a simple direct way, but they also have some new interesting corollaries.

1. Introduction

When b:[0,7T] x R" — R" is a bounded smooth vector field, the flow of b is the
smooth map X : [0, 7] x R" — R” such that

(1) il_f(lvx):b(t,X(t,x)), 16[07 T]’

X(0,x) = x.

Out of the smooth context (1) has been studied by several authors. In particular, the follow-
ing is a common definition of generalized flow for vector fields which are merely integrable.

Definition 1.1 (Regular Lagrangian flow). Letbe L ([0, 7] x R"; R"). We say that
amap X : [0, 7] x R" — R" is a regular Lagrangian flow for the vector field b if

(i) fora.e. x € R" the map 7 — X (¢, x) is an absolutely continuous integral solution of
7(t) = b(t,7(1)) for t € [0, T], with p(0) = x;

(i1) there exists a constant L independent of ¢ such that
(2) @z (X(Z, ~)71(A)) < L¥%"(A) forevery Borel set 4 = R".
The constant L in (ii) will be called the compressibility constant of X .

Existence, uniqueness and stability of regular Lagrangian flows have been proved in
[9] by DiPerna and Lions for Sobolev vector fields with bounded divergence. In a recent
groundbreaking paper (see [1]) this result has been extended by Ambrosio to BV coefficients

with bounded divergence.
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16 Crippa and De Lellis, Estimates for the DiPerna-Lions flow

The arguments of the DiPerna-Lions theory are quite indirect and they exploit (via
the theory of characteristics) the connection between (1) and the Cauchy problem for the
transport equation

ou(t,x) + b(t,x) - Viu(t,x) =0,

(3) C

u(0,-) = a.

Assuming that the divergence of b is in L' we can define bounded distributional solutions
of (3) using the identity b - Viu = V, - (bu) — uVy - b. Following DiPerna and Lions we say
that a distributional solution u € L* ([0, T'] x R") of (3) is a renormalized solution if

) Oi[B(u(t,x))] + b(t,x) - Vi [B(u(t,x))] =0,
[B@))(0, ) = p(a)

holds in the sense of distributions for every test function f € C!(R; R). In their seminal pa-
per DiPerna and Lions showed that, if the vector field » has Sobolev regularity with respect
to the space variable, then every bounded solution is renormalized. Ambrosio [1] extended
this result to BV vector fields with divergence in L'. Under suitable compressibility assump-
tions (for instance V, - b € L™), the renormalization property gives uniqueness and stability
for (3) (the existence follows in a quite straightforward way from standard approximation
procedures).

In turn, this uniqueness and stability property for (3) can be used to show existence,
uniqueness and stability of regular Lagrangian flows (we refer to [9] for the original proofs
and to [1] for a different derivation of the same conclusions).

In this paper we show how many of the ODE results of the DiPerna-Lions theory
can be recovered from simple a priori estimates, directly in the Lagrangian formulation.
Though our approach works under various relaxed hypotheses, namely controlled growth
at infinity of the field b and L{ . and Llog L assumptions on Db, for simplicity let us con-
sider a vector field b in W7 A L*  p > 1. Assuming the existence of a regular Lagrangian
flow X, we give estimates of integral quantities depending on X (¢, x) — X (z, y). These esti-
mates depend only on |51, + ||b||,, and the compressibility constant L of Definition
1.1(i1). Moreover, a similar estimate can be derived for the difference X (¢, x) — X'(z, x) of
regular Lagrangian flows of different vector fields » and ', depending only on the compres-
sibility constant of b and on ||| 1, + ||b]|, + |16']], + ||6 — b'|| 1. As direct corollaries of
our estimates we then derive:

(a) Existence, uniqueness, stability, and compactness of regular Lagrangian flows.

(b) Some mild regularity properties, like the approximate differentiability proved in
[5], that we recover in a new quantitative fashion.

The regularity property in (b) has an effect on solutions to (3): we can prove that, for
be WP ~ L* with bounded divergence, solutions of (3) propagate the same mild regular-
ity of the corresponding regular Lagrangian flow (we refer to Section 5 for the precise

statements).
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Crippa and De Lellis, Estimates for the DiPerna-Lions flow 17

Our approach has been inspired by a recent result of Ambrosio, Lecumberry and
Maniglia [5], proving the almost everywhere approximate differentiability of regular La-
grangian flows. Indeed, some of the quantities we estimate in this paper are taken directly
from [5], whereas others are just suitable modifications. However, the way we derive our
estimates is different: our analysis relies all on the Lagrangian formulation, whereas that
of [5] relies on the Eulerian one.

Unfortunately we do not recover all the results of the theory of renormalized solu-
tions. The main problem is that our estimates do not cover the case Db e L'. Actually,
the extension to the case Db e L! of our (or of similar) estimates would answer positively
to the following conjecture of Bressan (see [6]):

Conjecture 1.2 (Bressan’s compactness conjecture). Let by : RT x R" — R”, ke N,
be smooth maps and denote by ®; the solutions of the ODEs:

(5) %@Dk(t, x) = by (1, Ok (1, %)),

@4 (0,x) = x.

Assume that ||by|| ., + ||Vbi|| .1 is uniformly bounded and that the fluxes @y are nearly incom-
pressible, i.e. that

(6) C™!' < det(V @i (t,x)) < C for some constant C > 0.

1
loc*

Then the sequence {®y} is strongly precompact in L

At the present stage, the theory of renormalized solutions cannot be extended to cover
this interesting case (we refer to [4] and to the survey article [8] for the results achieved so
far in the framework of renormalized solutions). In another paper, [7], Bressan raised a sec-
ond conjecture on mixing properties of flows of BV vector fields (see Conjecture 6.1 below),
which can be considered as a quantitative version of Conjecture 1.2. In Section 6 we show
how our estimates settle the W'? (p > 1) analog of Bressan’s mixing conjecture.

In order to keep the presentation simple, in Section 2 we give the estimates and the
various corollaries in the case b € W» n L* and in Section 3 we present the more general
estimates and their consequences. We thank Herbert Koch for suggesting us that the Lip-
schitz estimates hold under the assumption Db € Llog L (see Remark 2.4 and the discus-
sion at the beginning of Section 4). In Section 4 we show how to prove directly, via suitable
a priori estimates, the compactness conclusion of Conjecture 1.2 when Db is bounded in
L log L. It has been pointed out to us independently by Frangois Bouchut and by Pierre-
Emmanuel Jabin that a more careful analysis allows to extend this approach when the se-
quence { Dby} is equi-integrable. In Section 5 we discuss the regularity results for transport
equations mentioned above. Finally, in Section 6 we prove the W!? analog of Bressan’s
mixing conjecture.

1.1. Notation and preliminaries. Constants will be denoted by ¢ and Cay,....a,> where
we understand that in the first case the constant is universal and in the latter it depends only
on the quantities ay, ..., a,. Therefore, during several computations, we will use the same
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18 Crippa and De Lellis, Estimates for the DiPerna-Lions flow

symbol for constants which change from line to line. When A4 is a measurable subset of R”
we denote by |A| or by £"(A4) its Lebesgue measure. When f : R” > U — V is continuous,
we denote by Lip(f) the Lipschitz constant of f. When /" is measurable we define

Lip(f) := min{Lip(g): ¢ is continuous and g = f almost everywhere}.

When u is a measure on Q and f : Q — Q' a measurable map, fiu will denote the push-
forward of g, i.e. the measure v such that [pdv = [¢o fdu for every p € C.(Q).

2. A priori estimates for bounded vector fields and corollaries

In this section we show our estimates in the particular case of bounded vector fields.
This estimate and its consequences are just particular cases of the more general theorems
presented in the next sections. However, we decided to give independent proofs in this sim-
plified setting in order to illustrate better the basic ideas of our analysis.

2.1. Estimate of an integral quantity and Lipschitz estimates.

Theorem 2.1. Let b be a bounded vector field belonging to L' ([0, T); WP (R")) for
some p > 1 and let X be a regular Lagrangian flow associated to b. Let L be the compressi-
bility constant of X, as in Definition 1.1(ii). For every p > 1 define the following integral
quantity:

14 1/p
Ap(R,X):[ | < sup  sup %f)log<|X(t’x)_X(t’y)|+l> dy> dx] .

Bp(0) \ 07T 0<r<2R p, r

Then we have

(7) Ap(R, X) = C(R, L, | Dxb| 1 (1r))-

Remark 2.2. A small variant of the quantity 4, (R, X') was first introduced in [5] and
studied in an Eulerian setting in order to prove the approximate differentiability of regular
Lagrangian flows. One basic observation of [5] is that a control of 4;(R,X) implies the
Lipschitz regularity of X outside of a set of small measure. This elementary Lipschitz esti-
mate is shown in Proposition 2.3. The novelty of our point of view is that a direct Lagran-
gian approach allows to derive uniform estimates as in (7). These uniform estimates are
then exploited in the next subsections to show existence, uniqueness, stability and regularity
of the regular Lagrangian flow.

All the computations in the following proof can be justified using the definition of
regular Lagrangian flow: the differentiation of the flow with respect to the time gives the
vector field (computed along the flow itself), thanks to condition (i); condition (ii) implies
that all the changes of variable we are performing just give an L in front of the integral.

During the proof, we will use some tools borrowed from the theory of maximal func-
tions. We recall that, for a function f e L] (R"; R™), the local maximal function is defined

as
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Crippa and De Lellis, Estimates for the DiPerna-Lions flow 19

M;f(x)= sup f |f(y)ldy.

0<r<2 B,(x)

For more details about the maximal function and for the statements of the lemmas we are
going to use, we refer to Appendix A.

Proof of Theorem 2.1. For0 <t <T,0 < r < 2R and x € Bg(0) define

ot,x,r):== § log<|X(l7 X) : X%, )] + 1> dy.

B,(x)

From Definition 1.1(i) it follows that for a.e. x and for every r > 0 the map 7 +— Q(¢, x,r) is
Lipschitz and

B 2 ) = B (36 - X +0)

(tLxr)= f
Br(x)

_ |b(2, X (1,x)) — b(1, X(1,))]
B.(x) |X(Z,x)—X(l,y)|—|—r

We now set R = 4R + 2T||b|| .. Since we clearly have | X (¢, x) — X (¢, y)| < R, apply-
ing Lemma A.3 we can estimate

(9) Z—?(Z,x, r)<c, §f (MgDb(1,X(t,x))

B,(x)
| X(1,x) — X (1, y)| y
’X(va) _X(lvy)’ +r

< ¢, MDb(1, X (1,x)) + o %f‘)M #Db(1, X (1, y)) dy.

+ MzDb(1,X(1,)))

Integrating with respect to the time, passing to the supremum for 0 < r < 2R and exchang-
ing the supremums we obtain

T
(10) sup sup O(t,x,r) S c+c¢, [ MgDb(1, X (t,x)) dt
0=t=T0<r<2R 0

T
+c¢i [ sup f MgpDb(1,X(1,y))dyd:.
0 0<r<2R B.(x)

Taking the L” norm over Bg(0) we get

(11) AP(R7X) écp,R+Cn

fMRDb(t,X(t, x)) dt
0

L”(Bg(0))

T
| sup f MgDb(t,X(1,y))dydt
0 0<r<2RB.(x) L?(Bgr(0))
Bereitgestellt von | UZH Hauptbibliothek / Zentralbibliothek Zurich
Angemeldet
Heruntergeladen am | 28.08.18 19:15

(12) + Cn




20 Crippa and De Lellis, Estimates for the DiPerna-Lions flow

Recalling Definition 1.1(ii) and Lemma A.2, the integral in (11) can be estimated with

R+RAT|b]| o (0))

T T
(13) el [IMRDD( )iy, 0 S 0L [1DHE)

The integral in (12) can be estimated in a similar way with

T
(14) e || sup  f [(MRDb)o (t,X(z,-))](y) dy dt
0 Il 0<r<2R B,(x) L?(Bg(0))
T
= cné[HMZR[(MRDb) o (6, X(t,))](x)] L7 (B(®)) dt

= Cn-,pg” [(MzDb)o (1, X(1,))] (X)HL”(BgR(O)) dt

:%wJWAQDmO(QX@x» dt

HL”(BsR(O))

T
< Cn,le/p({HMzéDb(fa ) L2 (Byg 1y, (0) A1

T
= Cn,le/p j ”Db([, x)HL”(
0

Bspirp),+2(0))

Combining (11), (12), (13) and (14), we obtain the desired estimate for 4,(R,X). [

We now show how the estimate of the integral quantity gives a quantitative Lipschitz
estimate.

Proposition 2.3 (Lipschitz estimates). Let X : [0, T] x R" — R" be a map. Then, for
every ¢ > 0 and every R > 0, we can find a set K < Bg(0) such that |Br(0)\K| < ¢ and for
any 0 £t £ T we have

cndp(R, X)

Llp(X(t, )|K) = eXp el/p

Proof. Fix ¢ >0 and R > 0. We can suppose that the quantity 4,(R,X) is fi-
nite, otherwise the thesis is trivial; under this assumption, thanks to (34) we obtain a
constant

Ap(R,X)
M:M@n@mxnz%m—

and a set K < Bg(0) with |Bg(0)\K| < ¢ and
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Crippa and De Lellis, Estimates for the DiPerna-Lions flow 21

X0 =Xyl |

sup  sup flog( >dy§M VxeK.
(x)

0=t<T0<r<2R B,

This clearly means that

f 10g<’X([7 X) ; Xt )] + 1> dy <M foreveryxe K, te[0,T]and re]0,2R].
B,(x)

Now fix x, y € K. Clearly |x — y| < 2R. Set r = |x — y| and compute

op (K X0 )

r

— JE 1Og<|X(t7x);X(Zvy)|+1> dz

B,(x)nB,(y)

| X (1, x) — X(z,2)] X (1, y) — X(1,2)| :
f (y)log( p +1)+log< —l—l)d

B,(x)"B, r

e f log<’X(I’ X) ; X(t,2)] + 1) dz+c¢, § log(’X([7 y) = X(12)] + 1) dz

B, (x) B,(y) r

lIA

lIA

cndp(R, X)
gl/P ’

lIA

oM =

This implies that

cnAp(R, X)

|X(t,x)—X(t,y)|§exp< SUp >|x—y| for every x, y € K.

Therefore

. end,y (R, X)
Lip(X(t,")|g) < exp’;IT

Remark 2.4. The quantitative Lipschitz estimates also hold under the assumption
beL'([0,T); W-H(R™) nL*([0,T] x R") and M;Dbe L'([0,T};L'(R")) for every
A > 0. To see this we define

D(x) = fMRDb(z,X(z, x)) dt
0

and we go back to (10), which can be rewritten as

sup sup Q(t,x,r) < ¢+ ¢y ®(x) + ¢, Mar®(x).
0=t<T 0<r<2R

For ¢ < 1/(4c) we can estimate
Bereitgestellt von | UZH Hauptbibliothek / Zentralbibliothek Zurich
Angemeldet
Heruntergeladen am | 28.08.18 19:15



22 Crippa and De Lellis, Estimates for the DiPerna-Lions flow
1
x € Br(0) : ¢ + ¢, ®(x) + ¢, Mar®D(x) > A

< Hx € Br(0) : ¢,®(x) > i}' - Hx € Br(0) : ¢, Mr®(x) > %}‘

Sec, [ O(x)dx+ec, [ D(x)dx

Bg(0) B;r(0)
T

<ec, [ | MgDb(t,X(t,x)) dxdt
0 B;r(0)

T
< ganj j MRDb(I,X) dx dt,
0 Bsgyryp|., (0)

where in the third line we applied the Chebyshev inequality and the weak estimate (33) and
in the last line Definition 1.1(ii). This means that it is possible to find a set K < Bg(0) with
|Br(0)\K| < ¢ such that

X - X nL r
Jflog<| (1, x) (t,y)|+1> < ET [ MeDb(e ) dedr
Bi(x) r 0 Bsgi7jp|., (0)

for every x € K, t € [0, T] and r € ]0,2R|[. Arguing as in the final part of the proof of Pro-
position 2.3 we obtain the Lipschitz estimate also in this case.

2.2. Existence, regularity and compactness. In this subsection we collect three direct
corollaries of the estimates derived above, concerning approximate differentiability, exis-
tence and compactness of regular Lagrangian flows.

Corollary 2.5 (Approximate differentiability of the flow). Let b be a bounded vector
field belonging to L' ([0, T); W'-P(R")) for some p > 1, or belonging to L' ([0, T); W!(R"))
and satisfying M;Db e L'([0, T); L'(R")) for every 4 >0, and let X be a regular Lagran-
gian flow associated to b. Then X(t,-) is approximately differentiable a.e. in R", for every
tel0,T]

Proof. The proof is an immediate consequence of the Lusin type approximation of
the flow with Lipschitz maps given in Proposition 2.3 and Remark 2.4 and of Theorem
B.l. O

Corollary 2.6 (Compactness of the flow). Let {b,} be a sequence of vector fields equi-
bounded in L* ([0, T] x R") and in L'([0, T]; W'(R")) for some p > 1. For each h, let X},
be a regular Lagrangian flow associated to by, and let L;, be the compressibility constant of
Xi, as in Definition 1.1(i1). Suppose that the sequence {L;} is equi-bounded. Then the se-
quence { X} is strongly precompact in L} ([0, T] x R").

loc

Proof. Fix 6 >0 and R > 0. Since {b,} is equi-bounded in L*([0, T] x R"), we

deduce that {X;} is equi-bounded in L* ([0, T] x Bg(0)): let C|(R) be an upper bound
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Crippa and De Lellis, Estimates for the DiPerna-Lions flow 23

for these norms. Applying Proposition 2.3, for every / we find a Borel set Kj, 5 such that
|Br(0)\K}p,5| <0 and

. A,(R, X
Lip(X;(z, ')|KM) = eXp% for every ¢ € [0, T.

Recall first Theorem 2.1 implies that 4,(R, X)) is equi-bounded with respect to /, because
of the assumptions of the corollary. Moreover, using Definition 1.1(i) and thanks again to
the equi-boundedness of {b,} in L*([0, T] x R"), we deduce that there exists a constant
C3(R) such that

Lip(Xhho,T]XKh'a‘) é Cg(R)

If we now set B, s = [0, T'] X Kj 5 and M; = max{C(R), Cg(R)}, we are in the position to
apply Lemma C.1 with Q = [0, 7] x Bg(0). Then the sequence {X},} is precompact in mea-
sure in [0, T'] x Bg(0), and by equi-boundedness in L™ we deduce that it is also precompact
in L'([0, T] x Bg(0)). Using a standard diagonal argument it is possible to conclude that
{X;,} is locally precompact in L' ([0, T] x R"). [

Corollary 2.7 (Existence of the flow). Let b be a bounded vector field belonging
to L'([0, T); WP (R")) for some p > 1 and such that [divb]” € L' ([0, T]; L*(R")). Then
there exists a regular Lagrangian flow associated to b.

Proof- This is a simple consequence of the previous corollary. Choose a positive
convolution kernel in R"” and regularize b by convolution. It is simple to check that the se-
quence of smooth vector fields {b,} we have constructed satisfies the equi-bounds of the
previous corollary. Moreover, since every by, is smooth, for every /4 there is a unique regular
Lagrangian flow associated to b,, with compressibility constant L; given by

T
(15) Ly = exp F11aiv bu(6 ] o )
0

Thanks to the positivity of the chosen convolution kernel, the sequence {L;} is equi-
bounded, then we can apply Corollary 2.6. It is then easy to check that every limit point
of {X;} in L. ([0, T] x R") is a regular Lagrangian flow associated to 5. []

Remark 2.8. An analogous existence result could be obtained removing the hypo-
thesis on the divergence of b, and assuming that there is some approximation procedure
such that we can regularize » with equi-bounds on the compressibility constants of the
approximating flows. This remark also applies to Corollaries 3.7 and 4.3.

2.3. Stability estimates and uniqueness. In this subsection we show an estimate sim-
ilar in spirit to that of Theorem 2.1, but comparing flows for different vector fields. A direct
corollary of this estimate is the stability (and hence the uniqueness) of regular Lagrangian
flows.

Theorem 2.9 (Stability of the flow). Let b and b be bounded vector fields belonging to

L! ([O, T WI’P([R")) for some p > 1. Let X and X be regular Lagrangian flows associated
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24 Crippa and De Lellis, Estimates for the DiPerna-Lions flow
to b and b respectively and denote by L and L the compressibility constants of the flows

-1
o)l

Then, for every time t € [0, T'], we have
XBR(

1X (z,-) = X (2, )| s 0y = Clog(16 = bl o,
where R =r+ T|b||., and the constant C only depends on <, r, ||b|_., ||bll., L, L, and
Dbl 1 (1r)-

Proof. Setd:=||b—b| L1([0,]xBx(0)) and consider the function
X( X
0= [ top(BED=FEI, ),
( 5
Clearly ¢g(0) = 0 and after some standard computations we get
dX(t,x) dX(t,x . -1
(16) g = | Elt )— c(z’t ) (\X(t, x) — X (1, x)] +6) dx
B,(0)
|b(t, X (1,x)) — b(t, X’(t,x))|d
= RY
sy 1X(6x)— X(1,x)] +6
1 ~ -
< - [ |p(t,X(1,x)) = b(t,X(1,x))| dx
9 5,0)
b(t, X (t,x)) — b(t, X(t
[ Lol xex) b X)),
| X (¢,x) — X(t,x)| +0

We set R = 2r + T(||b||, + ||5]|,) and we apply Lemma A.3 to estimate the last integral as

follows:
dx < ¢, | MpDb(1, X (1,x)) + MzDb(1, X (1,x))

|b(t, X (2,x)) — b(t, X(t,x))] <
B0

i —
g0y |X(tx)—X(t,x)[+0
Inserting this estimate in (16), setting 7 = r + T max{||||.., ||#]|, }, changing variables in

the integrals and using Lemma A.2 we get
(t,9)dy + (L+L) | MgDb(t,y)d

/ Z‘ 7
SO [ bl y) b
B, 7161, (0) B;(0)
L h Fn=n/p(J
=5 |16t y) = b(t, p)ldy + e, P (L + L)| MgDb(t,-)]| 1»
B..1is, (0)
L n—n/p
=5 J ( |b(t, y) = b(t, y)| dy + ¢ pF" "7 (L + L)|| Db(t,-)|| 1r-
B, 16, (0)

For any 7 € [0, T}, integrating the last inequality between 0 and t we get
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R (A
(17) g(r) = Brj("o)log( 5 + 1> dx £ Cy,

where the constant C; depends on , r, ||b||., ||6]l.., L, L, and Dbl 11 (1)

Next we fix a second parameter # > 0 to be chosen later. Using the Chebyshev in-
equality we find a measurable set K — B,(0) such that |B,(0)\K| < # and

X —
log<| (r,x)éX(r,x)|+1)§% for x e K.

Therefore we can estimate

(18) | | X (7, x) — X (1, x)| dx
50)

<n(|X(z, M0 + 1 X (z, ')||Lw(B,(0))) + ]J;|X(r,x) — X (z,x)|dx
<Gy + c,r"d(exp(Ci/n)) < C3(n +dexp(Ci/n)),

with Cy, C, and C; which depend only on T, r, ||b||., ||b|l.., L, L, and Db 11 (1r)-

Without loss of generality we can assume 6 < 1. Setting # = 2C| |log5|_1 = 2C1(—10g5)_1,
we have exp(Cj /5) = 0~ '/2. Thus we conclude

(19) [ 1X(z,x) = X(z,x)| dx < C3(2Cy|logd| " +6'/) < Cllogs| ™",
B,(0)

where C depends only on z, r, ||b||., ||b|.., L, L, and [Dxb||11(z7)- This completes the
proof. []

Corollary 2.10 (Uniqueness of the flow). Let b be a bounded vector field belonging to
L'([0, T); WP (R")) for some p > 1. Then the regular Lagrangian flow associated to b, if
it exists, is unique.

Proof. 1t follows immediately from the stability proved in Theorem 2.9. []

Remark 2.11 (Stability with weak convergence in time). Theorem 2.9 allows to show
the stability when the convergence of the vector fields is just weak with respect to the time.
This setting is in fact very natural in view of the applications to the theory of fluid mechan-
ics (see [9], Theorem II.7, and [11], in particular Theorem 2.5). In particular, under suitable
bounds on the sequence {b,}, the following form of weak convergence with respect to the
time is sufficient to get the thesis:

T T
[ bu(t,x)n(t)dt — [ b(t,x)n(t)dt in L} (R") for every n e C*(0,T).
0 0

Indeed, fix a parameter ¢ > 0 and regularize with respect to the spatial variables only using

a standard convolution kernel p,. We can rewrite the difference Xj(z, x) — X (¢, x) as
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26 Crippa and De Lellis, Estimates for the DiPerna-Lions flow
Xi(t,x) — X(t,x) = (Xu(t,x) — X;(2,x)) + (X (t,x) — X°(t,x)) + (X°(t,x) — X(1,x)),

where X* and X/ are the flows relative to the regularized vector fields 5* and b} respec-
tively. Now, it is simple to check that

e the last term goes to zero with ¢, by the classical stability theorem (the quantitative
version is not needed at this point);

e the first term goes to zero with &, uniformly with respect to /: this is due to the fact
that the difference b — b, goes to zero in L} ([0, 7] x R") uniformly with respect to 4, if
we assume a uniform control in W'? on the vector fields {;}, hence we can apply Theo-

rem 2.9, and we get the desired convergence;

¢ the second term goes to zero for 7 — oo when ¢ is kept fixed, because we are dealing
with flows relative to vector fields which are smooth with respect to the space variable, uni-
formly in time, and weak convergence with respect to the time is enough to get the stability.

In order to conclude, we fix an arbitrary 6 > 0 and we first find ¢ > 0 such that the norm of
the third term is smaller than ¢ and such that the norm of the first term is smaller than J for
every h. For this fixed ¢, we find / such that the norm of the second term is smaller than J.
With this choice of /# we have estimated the norm of X}, (¢, x) — X (¢, x) with 36, hence we
get the desired convergence.

Remark 2.12 (Another way to show compactness). If we apply Theorem 2.9 to
the flows X(z,x) and X(z,x) = X(t,x +h) — h relative to the vector fields b(z,x) and
b(t,x) = b(t,x + h), where h € R" is fixed, we get for every 7 € [0, T

-1
1X(7,-) = X (- + h) = Dl 11 g 0y) < Cllog(16(2, %) = (2, X+ 1)l 11 10, 0 Baoy)) |

C
llog(h)]

Hence we have a uniform control on the translations in the space, and we can deduce a
compactness result applying the Riesz-Fréchet-Kolmogorov compactness criterion (Lemma
C.2).

3. Estimates for more general vector fields and corollaries

In this section we extend the previous results to more general vector fields, in partic-
ular we drop the boundedness condition on . More precisely, we will consider vector fields
b:[0,T] x R" — R" satisfying the following regularity assumptions:

(R1) be L'([0, T]; W57 (R")) for some p > 1.

loc

(R2) We can write

b(t, x)

1+ |x]
with by (z,x) € L' ([0, T]; L'(R")) and bs(¢,x) € L' ([0, T]; L™ (R")).
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Since we are now considering vector fields which are no more bounded, we have to
take care of the fact that the flow will be no more locally bounded in R”. However, we
can give an estimate of the measure of the set of the initial data such that the corresponding
trajectories exit from a fixed ball at some time.

Definition 3.1 (Sublevels). Fix 4 > 0 and let X : [0, 7] x R" — R” be a locally sum-
mable map. We set

(20) G, ={xeR":|X(t,x)| S AVte[0,T]}.

Proposition 3.2 (Uniform estimate of the superlevels). Let b be a vector field satisfy-
ing assumption (R2) and let X be a regular Lagrangian flow associated to b, with compressi-
bility constant L. Then we have

[Br(O\G:| = g(R, 2),

where the function g only depends on ||b; 21z HBZHLI(L@) and L; moreover g(R, 1) | 0 for R
fixed and A T +o0.

Proof.  Let ¢, be the density of X (z,-)(1p,(0)£") with respect to £" and notice that,
by the definition of push-forward and by Definition 1.1(ii), we have ||¢,||, = @,R" and
||, = L. Thanks to Definition 1.1(i) we can compute

dX( )
1+|X(t,x)|> T\ dt
su 10 _— S dtdx
B.0) 0SI2T g< [+R = IJ1+|X< 5]

T |b(1, X (2,x))|

dx dt
0 B0y 11X (2, x)]

|b(t, x)|
[T o o

Using the Holder inequality, for every decomposition of b(z,x)/(1 + |x|) as in assumption
(R2) we get

sup log
Bg(0) 0=t=<T

(1 + | X (2, x)|

1—|—R >dxéLHbIHLl(LI)'i‘wan‘bZHLl(LV»)-

From this estimate we easily obtain

+i . 7
310061 = () bl + Rl

and the right-hand side clearly has the properties of the function g(R, 1) stated in the
proposition. []
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28 Crippa and De Lellis, Estimates for the DiPerna-Lions flow

3.1. Estimate of an integral quantity and Lipschitz estimates. We start with the defi-
nition of an integral quantity which is a generalization of the quantity 4,(R, X) of Theo-
rem 2.1. In this new setting we will need a third variable (the truncation parameter A),
hence we set

(21) A, (R, i, X)

1

::{ [ (Sup wp 10g<|X(t,x):X(t,y)lJrl)dy) dxr

BR(O)K\G;_ 0§t§T0<r<2R B,-(x)r‘\G;_
where the set G; is the sublevel relative to the map X, defined as in Definition 3.1.

In the following proposition, we show a bound on the quantity 4,(R, 4, X') which cor-
responds to the bound on 4,(R, X') in Theorem 2.1.

Theorem 3.3. Let b be a vector field satisfying assumptions (R1) and (R2) and let
X be a regular Lagrangian flow associated to b, with compressibility constant L. Then we

have

Ap(R, 2, X) = C(R, L, | Dxbl| 110, 71, 17 (s 0)))-

Proof. We start as in the proof of Theorem 2.1, obtaining the validity of inequality
(8) for every x € G,. Since | X (¢, x) — X(z, y)| < 24, applying Lemma A.3 we deduce

cii—?(l’ x,1) £ nMyDb(t, X(1,x)) + ¢ §  MyDb(1,X(t,y)) dy.
B,(x)nG,

Then, arguing exactly as in the proof of Theorem 2.1, we get the estimate

(22> Ap(R? /17 X) é Cp,R + Cn

T
| My, Db(1, X (t,x)) dt
0

L7 (Br(0)nG;)

T
[ sup f MyDb(1,X(t,y))dydt
0 0<r<2R B,(x)nG;

(23) + ¢y

Lp(BR(O)ﬁG;.)

Recalling Definition 1.1(ii) and Lemma A.2, the integral in (22) can be estimated with
Up [ Up [
C”L /pg‘”sz.Db(l, x)HL”(B;‘(O)) d[ é Cn,pL /P OIHDb(t, X)HL‘D(BM(O)) d[

Define the characteristic function 14 of a subset 4 of R” as

1 ifxed
1 = ’
a(x) {0 if x ¢ A.

The integral in (23) can be estimated in a similar way with
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T

e | dt

sup J[‘ [(MZA"Db)O (th(tv'))](y) dy

0 11 0<r<2R B,(x)nG, L’ (Br(0)nG;)
T
< || sup  f [(M2Db)o (1, X(1,)](»)1c,(»)dy dt
0 Il 0<r<2R B(x) L (Br(0)nG;)

dt

= & || M [(M2:08) o (X (1) 16,019 13 010

T

= Cn,p Oj || [(M%Db) © (tv X([a ))IG/()] (X)HL”(ng(O)) dt
T

=Cup J | (M2,Db) o (1, X (1, x)) Hywmmm a4t
! T

= el /”JHMMDb(t, %)l 2 (8,09 4t

T
=< Cn,le/p 6[ ”Db(tv x)HL”(By,(O)) dr.

Then we obtain the desired estimate for 4,(R,4,X). O

Proposition 3.4 (Lipschitz estimates). Let X and b be as in Theorem 3.3. Then,
for every ¢ >0 and every R >0, we can find . >0 and a set K <= Br(0) such that
|BR(0O\K| =< ¢ and for any 0 <t < T we have

. cnAy, (R A X
Lip(X(t,")|x) < ex %

Proof. The proof is exactly the proof of Proposition 2.3, with some minor modifica-
tions due to the necessity of a truncation on the sublevels of the flow. This can be done as
follows. For ¢ > 0 and R > 0 fixed, we apply Proposition 3.2 to get a 4 large enough such
that |Br(0)\G,| < /2. Next, using equation (34) and the finiteness of 4,(R, 4, X'), we ob-
tain a constant

Ay(R, 4, X)

M:M(ﬁ,p,Ap(R7/I7X)) = (8/2)1/17

and a set K = Bg(0) N G, with |(Bgr(0) N G;)\K| < ¢/2 and

X(1) = X(1,0)]

1>a’y§M Vx e K.
B

sup sup Jf log(
0=t<T 0<r<2R B,(x)nG,

Hence the set K satisfies |Br(0)\K| < ¢ and

f 1og<|X(” X) =Xyl 1) dy <M VxeK,Viel0,T], vrelo,2R]
Br(x)mG/l r
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30 Crippa and De Lellis, Estimates for the DiPerna-Lions flow

The proof can be concluded as the proof of Proposition 2.3, where now the integrals are
performed on the sublevels G;. []

3.2. Existence, regularity and compactness.

Corollary 3.5 (Approximate differentiability of the flow). Let b be a vector field sat-
isfying assumptions (R1) and (R2) and let X be a regular Lagrangian flow associated to b.
Then X (t,-) is approximately differentiable a.e. in R", for every t € [0, T).

Proof. The proof is an immediate consequence of the Lusin type approximation of
the flow with Lipschitz maps given in Proposition 3.4 and of Theorem B.1. []

Corollary 3.6 (Compactness of the flow). Let {b,} be a sequence of vector fields sat-
isfying assumptions (R1) and (R2). For every h, let Xj, be a regular Lagrangian flow associ-
ated to by, and let Ly, be the compressibility constant associated to Xy, as in Definition 1.1(ii).
Suppose that for every R > 0 the uniform estimate

(24)  IDs<bull o, 13 £ 8aoy)) + 11 gy + Bn2ll 1oy + Ln < C(R) < o0

is satisfied, for some decomposition b, /(1 + |x|) = 5/1,1 + Bh,z as in assumption (R2). Then
the sequence { Xy} is locally precompact in measure in [0, T] x R".

Proof. The proof is essentially identical to the proof of Corollary 2.6. Fix R > 0 and
0 > 0. Applying Proposition 3.2 and thanks to the uniform bound given by (24), we first
find 1 > 0 big enough such that

|BR(O\G]| £9/3,

with Gf as in Definition 3.1. Thanks again to (24), we can apply Theorem 3.3 to deduce
that the quantities 4,(R, 4, Xj;) are uniformly bounded with respect to #. Now we apply
Proposition 3.4 with ¢ = /3 to find, for every s, a measurable set K, = Bg(0) N G? such
that

|(Br(0) n G})\Ky| <6/3
and

Lip(X(1,-)|g,) is uniformly bounded w.r.t. A.

Now we are going to show a similar Lipschitz estimate with respect to the time. Since the
maps

[0, T x Ky 3 (t,x) — by(t, Xu(t,x))

are uniformly bounded in L'([0, 7] x K,) (this is easily deduced recalling assumption (R2),
the bound (24) and the fact that K;, = Bg(0)), for every &, applying the Chebyshev inequal-
ity, we can find a measurable set H;, < [0, 7] x K}, such that
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([0, T] x Ky)\Ha| <6/3
and
4 (6, X3t ) < €15,

where the constant C only depends on the constant C(R) given by (24). Then we deduce
that

is uniformly bounded w.r.t. A.

Ha’Xh
LI(H,,)

W(tax)

Hence we have found, for every A, a measurable set H;, < [0, T] x Bg(0) such that
([0, T] x Br(0))\Hx| <6
and
| Xnll = a1,y + LiPy, »(Xalpy,) uniformly bounded w.r.t. /.

Then we apply Lemma C.1 to obtain that the sequence {X}} is precompact in measure in
[0, T] x Bgr(0). A standard diagonal argument gives the local precompactness in measure of
the sequence in the whole [0, 7] x R". [

Corollary 3.7 (Existence of the flow). Let b be a vector field satisfying assumptions
(R1) and (R2) and such that [divb]~ € L'([0, T]; L*(R")). Then there exists a regular La-
grangian flow associated to b.

Proof. 1t is sufficient to regularize b with a positive convolution kernel in R” and
apply Corollary 3.6. It is simple to check that the regularized vector fields satisfy the equi-
bounds needed for the compactness result. []

3.3. Stability estimates and uniqueness.

Theorem 3.8 (Stability estimate). Let b and b be vector fields satisfying assumptions
(R1) and (R2). Let X and X be regular Lagrangian flows associated to b and b respectively
and denote by L and L the compressibility constants of the flows. Then for every A > 1 and
every t € [0, T'| the following estimate holds:

- C -
25 IA|X(7,x) — X(o,x)|dx £ ——+C)||b—b 5B (0)))
35) 1IN = Xl S s Gl =Bl neno

where the constant C only depends on L, L and on the L' (LYY + L'(L*) norm of some de-
composition of b and b as in assumption (R2), while the constant C, depends on 4, r, L, L and

1DbI| L1 (o0, 7 (84,(0)))-

Proof. For any given /A > 1 define the sets G; and G, relatively to X and X, as in
(20). Set
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0 =03(4) = Ilb = bl 11 0.1x8,(0))-

Define

g(t) := | 10g<|X(t ) = X ()| + 1) dx.

B,(O)F\G;L('NGN;L 5

Clearly we have ¢(0) = 0 and we can estimate

dx

Jgn=s

}b(l, X(t,x)) —~l5(t, X(1, x)) ’
B.(0)nG;nG;, ’X(Z7 X) - X(

4,x)|+0

< |b(t, X (t,x)) i];(t’y(l’ x))| N [b(r, X (1,x)) = (s, X(1, x))’dx
BO)nGnG, 1 X(6X) =X (t,x)]+0 | X (t,x) — X(t,x)| + 6
1 . - |b(1, X (2,x)) — b(1,X(t,x))|
< (o>m£;,mé 3 |b(t, X (1,x)) — b(1, X(1,x))| + X () () dx
< % I |p(t, X(t,x)) — b(t, X(£,x)) | dx

B,-(O)(NG;,(WG,’,

+en [ (MyuDb(t,X(1,x)) + My Db(t, X (1,x))) dx

B.(0)nG;nG,
L . N
< < [ |b(t,x) = b(t,x)|dx + ca(L+ L) [ Mo, Db(t,x)dx
53&(0) B;(0)
i A ¥\ n—n
= 5 ] Ib(t,x) = b(t, x)  dx + ¢ p (L + L)2 IP\DB(t, | 2,00

Integrating with respect to ¢ between 0 and 7 we obtain

X ) g,

g(xy= | log

B,(O)mGAmG}

(IX(T,X)

< L+cup(L+ i)in_n/pHDb”Ll([o,f];LP(BM(O))) = (),

where the constant C; depends on /4 but also on the other parameters relative to b and
b. Now fix a value # > 0 which will be specified later. We can find a measurable set
K = B,(0) n G; n G, such that |(B,(0) n G; 0 G;)\K| < n and

log(|X(T’x) g Xz %)] + 1> < % Vxe K.

Then we deduce that
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[ 1A1X(7,x) — X(z,x)| dx

B,(0)
< [BO)\(G; A Gy)| + | (B.(0) mG;mG;)\K|+f|th — X(t,x)| dx
< C L sexp(Cin) < —S 4 Cillb— B
=10g(/1) ’7 p 2 ]7 1 () A Ll [O‘L'XB())

choosing 7 = 1/log(/) in the last line. []

Corollary 3.9 (Stability of the flow). Let {b,} be a sequence of vector fields satisfying
assumptions (R1) and (R2), converging in Ll ([0, T] x R") to a vector field b which satisfies
assumptions (R1) and (R2). Denote by X and Xj, the regular Lagrangian flows associated to b
and by, respectively, and denote by L and Ly, the compressibility constants of the flows. Sup-
pose that, for some decomposition by /(1 + |x|) = by,1 + by,» as in assumption (R2), we have

th’]HLl(Ll) + Hl5h72HL1(Lm) equi-bounded in h

and that the sequence {L;} is equi-bounded. Then the sequence { Xy} converges to X locally
in measure in [0, T| x R".

Proof. Notice that, under the hypothesis of this corollary, the constants C”* and
C ;{” in (25) can be chosen uniformly with respect to 7z € [0, 7] and /4 € N. Hence we find
universal constants C and C;, depending only on the assumed equi-bounds, such that

h,t

(26) | 1A1X (7, x) — Xi(7,x) ] dx <

b —b
B,(0) ’ = fog(h) 16— Ball 20,1000

C
= fog() + Callb = ball 110, 7)x B, (0))-
Now fix ¢ > 0. We first choose 4 big enough such that

c
log(4)

IA
N1

where C is the first constant in (26). Since now 4 is fixed, we find N such that for every
h = N we have

e
16— b/1||L1([O,T]ng(0)) = 2—/1,

thanks to the convergence of the sequence {b} to b in L{ ([0, T] x R"). Notice that N de-
pends on 4 and on the equi-bounds, but in turn 4 only depends on ¢ and on the equi-
bounds. Hence we get

| 1A|X(1,x) — Xu(z,x)|dx <& foreveryh = N = N(e).
B,(0)
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This means that {Xj(z,-)} converges to X (z,-) locally in measure in R”, uniformly with re-
spect to 7 € [0, T]. In particular we get the thesis. []

Corollary 3.10 (Uniqueness of the flow). Let b be a vector field satisfying assump-
tions (R1) and (R2). Then the regular Lagrangian flow associated to b, if it exists, is unique.

Proof. 1t follows immediately from Corollary 3.9. [

4. A direct proof of compactness

In this section we propose an alternative proof of the compactness result of Theorem
2.6, which works under an assumption of summability of the maximal function of Db. The
strategy of this proof is slightly different from the previous one: we are not going to use
the Lipschitz estimates of Proposition 2.3 and Remark 2.4, but instead we prove an esti-
mate of an integral quantity which turns out to be sufficient to get compactness, via the
Riesz-Fréchet-Kolmogorov compactness criterion.

We will assume the following regularity assumption on the vector field:

(R3) For every 4 > 0 we have M;Db e L' ([0, T]; L{.(R")).

loc
Notice that, by Lemma A.2, this assumption is equivalent to the condition

T
| |Dxb(t,x)|log(2 + |Dib(t,x)|) dxdt < oo for every p > 0.
0 B,(0)

This means that Db e L'([0, T]; Llog Lioc(R")), ie. a slightly stronger bound than
Db e L'([0, T], LL (R")).

We define a new integral quantity, which corresponds to the one defined in Theorem
2.1 for p =1, but without the supremum with respect to ». For R >0 and 0 <r < R/2
fixed we set

X -X
a(r,R,X)= [ sup f log<| (4, %) (4, 7) + 1> dy dx.
Br(0) 0=(=T B,(x) r

We first give a quantitative estimate for the quantity a(r, R, X'), similar to the one for
A,(R, X).

Theorem 4.1. Let b be a bounded vector field satisfying assumption (R3) and let X
be a regular Lagrangian flow associated to b, with compressibility constant L. Then we
have

a(r, R, X) = C(R, L, || MgD.bl| 1o, 71, 1 (By(0))))»

where R = 3R/2 4+ 2T)||b|| .
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Proof.  We start as in the proof of Theorem 2.1, obtaining inequality (9) (but this
time it is sufficient to set R = 3R/2 +2T||b||,,). Integrating with respect to the time and
then with respect to x over Bg(0), we obtain

T
a(r,R,X) < cp+c¢y | [ MgDb(1,X(1,x)) dt dx
Bx(0)0

T
+cen [ [ f MgDb(1,X(t,y)) dydtdx.
Br(0)0 B,(x)

As in the previous computations, the first integral can be estimated with

nL| MDD L1 10, 71, L1 (B 1y, 0)))2

but this time we cannot bound the norm of the maximal function with the norm of the de-
rivative. To estimate the last integral we compute

T
e [ | § MgDb(t,X(t,y))dydtdx
BA(0)0 B,(x)

T
<o f[L | M Db(t,w) dw dt dx
B,(0)0  Birpairys|,, (0)

= L[| MDD 11 (10, 7 L1 By sy, 0))°

Hence the thesis follows, by definition of R. []

Next, we show how this estimate implies compactness for the flow.

Corollary 4.2 (Compactness of the flow). Let {b,} be a sequence of vector fields equi-
bounded in L* ([0, T] x R") and suppose that the sequence {M;Db,} is equi-bounded in
L'([0, T); Li,o(R")) for every A > 0. For each h, let X, be a regular Lagrangian flow associ-
ated to by, and let Ly, be the compressibility constant associated to X, as in Definition 1.1(ii).
Suppose that the sequence {Ly} is equi-bounded. Then the sequence {Xp} is strongly precom-
pact in L} ([0, T] x R").

Proof. We apply Theorem 4.1 to obtain that, under the assumptions of the corol-
lary, the quantities a(r, R, X},) are uniformly bounded with respect to 4. Now observe that,
for 0 <z < R (with R =3R/2 +2T||b||, as in Theorem 4.1), thanks to the concavity of
the logarithm we have

Bereitgestellt von | UZH Hauptbibliothek / Zentralbibliothek Zurich

Angemeldet
Heruntergeladen am | 28.08.18 19:15



36 Crippa and De Lellis, Estimates for the DiPerna-Lions flow

R
; log <——|— 1>
log(—+ 1) > riz.
r
Since | X (1, x) — X, (¢, ¥)| £ R this implies that

Josup  f Xi(tx) = Xu(2, v)| dy dx
Br(0) 0=t=T B.(x)

R
= C(R, L, | MgDbu|| 110, 73: 11 (B4 0)))) = 9(r),

é - @
log<§+ 1)
r

where the function ¢(r) does not depend on / and satisfies g(r) | 0 for | 0. Changing the
integration order this implies

f [ | Xu(t,x) — Xu(t,x + z)| dx dz < g(r),
B,(0) Br(0)

uniformly with respect to ¢ and /.

Now notice the following elementary fact. There exists a dimensional constant o, > 0
with the following property: if 4 < B;(0) is a measurable set with |B;(0)\4| < o, then
A+ A > By»(0). Indeed, if the thesis were false, we could find x € B;/>(0) such that
x¢ A+ A. This would imply in particular that x ¢ (A N BI/Z(O)) + (A M Bl/Z(O)), SO
that

(27) [x = (41 By (0))] N [4NBy(0)] =0.
Now notice that there exists a dimensional constant y, such that
|B1/2(0) 0 (x = B12(0)) | = 7,
since we are supposing x € By/»(0). But since |B;(0)\4| < o,, we also have
|B12(0)\(4 " By12(0))| < ot
and
| (x = Bi2(0)\(x = (4 0 B112(0))) | = |B12(0)\ (4 1 B12(0))] = o0
But this is clearly in contradiction with (27) if we choose a, < y,/2.

Then fix «, as above and apply the Chebyshev inequality for every % to obtain, for
every 0 < r < R/2, a measurable set K, , = B,(0) with |B,(0)\K, »| < «,|B,(0)| and

r
|1 Xn(t,x + 2) — X5 (2, x)| dx < 9tr) for every z € K, .
Br(0) on
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For such a set K ;, thanks to the previous remark, we have that K, ;, + K, , © B,/>(0). Now
let v € B, /2(0) be arbitrary. For every & we can write v = z1 j, + 22, With z 4,22 5 € K, . We
can estimate the increment in the spatial directions as follows:

|1 Xu(t, x 4+ v) — Xi(2,x)| dx
Bg/2(0)

= [ [ Xu(t,x+z1h+ z2.0) — Xi(t,x)| dx
Br/2(0)

< [ Xt x+zin+zon) — Xa(t,x + z1n) | + [ Xn(t, x + 215) — Xa(2, X)| dx
Bg/2(0)

2¢g(r
< [ Xt y 4+ zo0) — Xa(t, ) dy + [ | Xu(t,x + z1,0) — Xu(t,x)] dx < 29(r) )
B(0) Bx(0) %n

Now notice that, by Definition 1.1(i), for a.e. x € R"” we have

dXp,

T (t,x) = by(1, X3(t,x)) forevery t€ [0, T].

Then we can estimate the increment in the time direction in the following way:

| Xn(t + 7, x) — X(2, )] éf ds
0

(t+s,x)

O%»\

]b/,(t—l-s Xh(t+S X )’ds < T”bth

Combining these two informations, for (#,#) == [0,T], R>0, ve B,/»(0) and
7 > 0 sufficently small we can estimate

h
[ | 1Xu(t+7,x+v) — Xi(t,x)| dx dt
10 Bry2(0)

4
<[ [ |X(t+7,x+0) = Xp(t+7,x)| + | Xn(t + 7, x) — Xp(t,x)| dx dt

10 Bg/»(0)
2 g 2
<200 f b, o bl
%n 10 Bry2(0)

The thesis follows applying the Riesz-Fréchet-Kolmogorov compactness criterion (see
Lemma C.2), recalling that {b,} is uniformly bounded in L* ([0, 7] x R"). [

Corollary 4.3 (Existence of the flow). Let b be a bounded vector field satisfying
assumption (R3) and such that [divb]” e L'([0, T]; L*(R")). Then there exists a regular
Lagrangian flow associated to b.

Proof. 1t is sufficient to regularize b with a positive convolution kernel in R” and
apply Corollary 4.2. It is simple to check that the regularized vector fields satisfy the equi-
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bounds needed for the compactness result, due to the convexity of the map z — zlog(2 + z)
forz=0. O

S. Lipexp,-regularity for transport equations with W2 coefficients

In this section we show that solutions to transport equations with Sobolev coefficients
propagate a very mild regularity property of the initial data.

Definition 5.1 (The space Lipexp,). We say that a function f : E c< R" — R¥ be-
longs to Lipexp,(E) if for every ¢ > 0 there exists a measurable set K < E such that

(i) [E\K| =&
(ii) Lip(f|g) < exp(Ce~'/?) for some constant C < co independent on .

Moreover we denote by |f| g (g the smallest constant C such that the conditions above
hold.

Remark 5.2. Note that:

e Lipexp,, is the space of functions which coincide with a Lipschitz function almost
everywhere.

o |f ‘LE,,( p) 1s not homogeneous, and then it is not a norm, and can be explicitely de-
fined as

Ik, ) = Sug{e”f’ log min{Lip(fg) : [E\K| < e}}.
&>

® One can compare this definition with a similar result for Sobolev functions: if
f e Whr(E; RF), then for every ¢ > 0 there exists a set K = E such that |E\K| < ¢ and

Lip(fx) £ 1D/ | g7

Theorem 5.3. Let b be a vector field satisfying assumptions (R1) and (R2) and
such that divb e L'([0, T}; L*(R")). Let ie L*(R") such that i € Lipexp,(Q) for every
Q cc R". Let u be the solution of the Cauchy problem

(28) {Otu(t, X) —I: b(t,x) - Vyu(t, x) =0,

u(0,-) = .

Then for every Q —c R" we have that

sup [u(t, )| g, @) < ©-
0<I<T

Remark 5.4. Since ue C([0,T], L} (R") —w), we can define u(z,") for every
te|0,T].

Proof of Theorem 5.3. Let X be the regular Lagrangian flow generated by b. Then:
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(a) There exists a constant C > 0 such that C~!|Q| < |X(¢,Q)| £ C|Q| for every

t€0,T] and for every Q < R”; therefore, for every 7 € [0, T|, we can define W(¢,x) via
the identity X (7, ¥(7,x)) = ¥ (¢, X (t,x)) = x for a.e. x e R".

(b) For every ¢ we have u(z, x) = i(W(z, x)) for almost every x.

Note that if for every ¢ we consider the regular Lagrangian flow ®(z,-,-) of

dd
T (t,7,x) = —b(l —17,D(1, 7, x)),

®(1,0,x) = x,
then W(¢,x) = ®(¢, ¢, x). Therefore, thanks to Proposition 3.4 we conclude that

sup [¥(#,)[Lg, @ = C1(Q)
0<I<T
for every Q cc R”.
Letz€[0,7], R > 0 and ¢ > 0 be given. Choose K; = Bg(0) such that
* [Br(0)\Ki| =¢/3;
* Lip(¥(1,)lx,) < exp(I (1, )L, sy0 (/3) 7).

Applying Proposition 3.2 we can find R > 0 such that

€
_ <
where C is the constant in (a). Now, select K> < By(0) such that
* [BR(0)\Ka| = &/3C;

* Lip(ilg,) = eXp(’mLEp(BC(R)(O))(8/3C)_1/p),

where again C is as in (a). Next consider K := Kj N (‘P(z,))*l(Kz) =K n X(t,K3).
Since

Br(0)\K = (Br(0)\K1) U (Br(0)\X (1, K>))
< (Br(0)\K1) U X (¢, (2, Br(0))\Bz(0)) U X (¢, Bx(0)\K>),
we have

|Br(O)\K| < |Br(0)\Ki| + | X (¢, ¥ (¢, Br(0))\Bz(0))| + |X (1, Bz(0)\K>) | < e.

Given x, y € K we have W(¢,x),¥Y(t, ) € K, and hence we can estimate
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lu(t, x) — u(t, y)| = |u(¥(t,x)) —a(Y(1, y))| < Lip(it] . ) ¥ (2, x) — ¥(1, )]
< Lip(il,) Lip(¥(1, )|, ) Ix = ¥l

1/p)~ _
=[x — y|exp{[(3C) /p‘u’LE,,(BR;(O)) + 379 (1, ’)’LE,,(BR(O))]S l/p}-

Therefore ¢'/? log(Lip(u(z,-)|x)) is bounded by a constant independent of ¢ and ¢ (but
which depends on R). Taking the supremum over ¢ and ¢, we conclude that

sup_ (2, -)|LE, (Br(0)) = C(R),

0=

and this concludes the proof. []

6. An application to a conjecture on mixing flows

In [7] the author considers a problem on mixing vector fields on the two-dimensional
torus K = R?/Z>. In this section, we are going to show that the Lipschitz estimate of Pro-
position 3.4 gives an answer to this problem, although in the L” setting (p > 1) instead of
the L' setting considered in [7].

Fix coordinates x = (x1,x3) € [0, 1] x [0, 1] on K and consider the set
A= {(xl,X2) :0 § X2 é 1/2} c K.

Ifb: [0,1] x K — R?is a smooth time-dependent vector field, we denote as usual by X (7, x)
the flow of b and by ®@ : K — K the value of the flow at time # = 1. We assume that the
flow is nearly incompressibile, so that for some k' > 0 we have

1

!

(29) QI S 1X(1,Q) £ Q)

K

forallQ < K and all 7 € [0, 1]. For a fixed 0 < x < 1/2, we say that ® mixes the set A up to
scale ¢ if for every ball B,(x) we have

K|By(x)| = [Bo(x) n®(4)] = (1 = x)|By(x)].
Then in [7] the following conjecture is proposed:

Conjecture 6.1 (Bressan’s mixing conjecture). Under these assumptions, there exists a
constant C depending only on k and x' such that, if ® mixes the set A up to scale ¢, then

1
| [1Dxb|dxdt = Clloge| for every 0 <& < 1/4.
0k

In this section, we show the following result:
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Theorem 6.2. Let p > 1. Under the previous assumptions, there exists a constant C
depending only on k, i’ and p such that, if ® mixes the set A up to scale ¢, then

1
JIIDxb| k) dt = Clloge|  for every 0 < & < 1/4.
0

Proof. We set M = ||Dybl| 1o 1).17(x)) and 4" = K\A. Applying Proposition 3.4,
and noticing that the flow is bounded since we are on the torus, for every constant # > 0
we can find a set B with |B| < 5 such that

(30) Lip(®~'|x\5) < exp(fM),

where the constant f depends only on x’, # and p. Since ® mixes the set 4 up to scale ¢, for
every x € A we have

(31) |B,(D(x)) n®(A")| = x|B,(P(x))].
We define
A={xeA:B,(D(x)) n[®(A)\B] = 0}.
From this definition and from (31) we get that for every x € 4
(32) |B,(®(x)) N B| = |B;(®(x))].

From (32) and the Besicovitch covering theorem we deduce that for an absolute constant ¢
we have

(4) < 5B < .
K K

From the compressibility condition (29) we deduce

4] < L.
~ kK'
Since, using again (29), we know that
-1 |B| n
oB) =2 < T

we can choose # > 0, depending on x and x’ only, in such a way that

4] + |07 (B)| = —.

AN =

This implies the existence of a point X e A\[A U ®"'(B)] with dist(%,4") > 1/6. Let
y=®(x). Since x¢ A, we can find a point Z € B,(y) n[®(A")\B]. Clearly we have
|7 — Z| < e and (since ®'(z) € 4’) we also have | — ® ()| = 1/6.
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Since 7,z ¢ B, we can apply (30) to deduce

L < s Lip(@ ) S coxp(BM),
where now f depends only on k, x’ and p, since # has been fixed. This implies that
M = [[Dbl| 1o, 1); 7 (x)) 2 %log(é).
&
Hence we can find g > 0 such that

1
M = Z_ﬂ lloge| forevery 0 < ¢ < &.

We are now going to show the thesis for every 0 < ¢ < 1/4. Indeed, suppose that the
thesis is false. Then, we could find a sequence {b;} of vector fields and a sequence {¢;,} with
& < & < 1/4 in such a way that

< —|logel

S =

I Dxball 110,13 17 (k)
and the corresponding map ®;, mixes the set 4 up to scale ¢,. This implies that

< —|logey| < —|loge| — 0 ash — oo.

IDxbill 10,13, 27 ) %
Up to an extraction of a subsequence, we can assume that ¢, — & and that &, — ®
strongly in L'(K). For this, we apply the compactness result in Theorem 3.6, noticing
that (29) gives a uniform control on the compressibility constants of the flows and that we
do not need any assumption on the growth of the vector fields, since we are on the torus
and then the flow is automatically uniformly bounded. Now, notice that the mixing prop-
erty is stable with respect to strong convergence: this means that ® has to mix up to scale
&€ = 1/4. But since || Dxbpl| 10,1, 17(k)) — 0, we deduce that @ is indeed a translation on K,
hence it cannot mix the set 4 up to a scale which is smaller than 1/4. From this contradic-
tion we get the thesis. [

Remark 6.3. We notice that the constant 1/4 in Theorem 6.2 depends on the shape
of the set A4: this bound comes from the fact that a translation does not mix up to a scale
& < 1/4. Our proof can be easily extended to the case of a measurable set 4 with any shape,
giving a different upper bound for the values of ¢ such that the result is true.

Appendix A. Maximal functions

In this first appendix, we recall the definition of the local maximal function of a locally
finite measure and of a locally summable function and we recollect some well-known prop-
erties which are used throughout all this paper.
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Definition A.1 (Local maximal function). Let x4 be a (vector-valued) locally finite
measure. For every 4 > 0, we define the local maximal function of u as

M, u(x) = sup W(B9) _ sup | dlul(y), xeR"
0<r<i ‘B,(X)‘ 0<r<i B,(x)

When u = f¥", where f is a function in L}
for M.

(R"; R™), we will often use the notation M f

loc

The proof of the following two lemmas can be found in [12].

Lemma A.2. Let 2> 0. The local maximal function of u is finite for a.e. x € R" and
we have

| Myf(y)dy S cap+en [ 1S (0)]log(24 |/ (»)]) dy
B,(0) B, 0)

For p > 1 and p > 0 we have

[ Mf) dy S cup [ IfO)I dy,
Bﬂ(o) B/J+/l (0)

but this is false for p = 1. For p = 1 we have the weak estimate
Cn
(33) {reB,(0): Myf(y) >atl= — | 1/ (y)ldy,
B,14(0)

for every o > 0.

Lemma A.3. [fue BV(R") then there exists a negligible set N = R" such that
Ju(x) = u(y)| < eulx = y|(M;Du(x) + M;Du(y))
for x,y € R"\N with |x — y| £ A

We also recall the Chebyshev inequality:

g 1/q
WA B )0

!{|f|>t}\§% [ 1f(x)]dx £
{1f1>1}

which implies

(34) /] > ' < —2 I/ ”L

Appendix B. Convergence in measure and approximate differentiability

We recall that a sequence of Borel maps {f;} is said to be locally convergent in mea-
sure to f if
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llim {x € Br(0) : |fu(x) — f(x)| >0} =0 forevery R>0andd > 0.
1— 00

This convergence is equivalent to the fact that

IAlfi—f]—0 inL}

loc

(R").

If the sequence { f; } is locally equi-bounded in L*, then the local convergence in measure is

equivalent to the strong convergence in L] .

We say that a Borel map f : R" — R* is approximately differentiable at x € R" if
there exists a linear map L : R” — R¥ such that the difference quotients

St — ()

&

locally converge in measure as ¢ | 0 to Ly. This is clearly a local property. Equivalently, the
approximative differentiability condition can be stated in the following way: there exists a
map f, differentiable in the classical sense at x, such that f(x) = f(x) and the coincidence
set {y: f(¥) = f(»)} has density 1 at x. This characterization, together with Rademacher
theorem and some extension arguments, shows that if /| is a Lipschitz map for some set
K < R” then f is approximately differentiable at almost every point of K. In the following
theorem we show a kind of converse of this statement: an approximately differentiable map
can be approximated, in the Lusin sense, with Lipschitz maps.

Theorem B.1. Let f: Q — RX. Assume that there exist A, such that =0

Q\LhJAh

and f|,, is Lipschitz for any h. Then f is approximately differentiable at a.e. x € Q. Con-
versely, if f is approximately differentiable at all points of Q' = Q, we can write Q' as a
countable union of sets Ay such that f|, is Lipschitz for any h (up to a redefinition on a neg-
ligible set).

For the proof, see [10], Theorem 3.1.16.

Appendix C. Compactness

In this appendix we give some “abstract” results which have been used in the previous
sections to prove compactness for the regular Lagrangian flows.

Lemma C.1. Let Q = R" be a bounded Borel set and let {f,} be a sequence of maps
into R™. Suppose that for every 6 > 0 we can find a positive constant My < oo and, for every
fixed h, a Borel set By s = Q with |Q\By, 5| <0 in such a way that

4l B, ) = Ms

and

Then the sequence {f} is precompact in measure in Q.
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Proof. For every j e N we find the value M;,; and the sets By, 1, as in the assump-
tion of the lemma, with 6 = 1/j. Now, arguing component by component, we can extend

every map fj| B,,, o a map jh] defined on Q in such a way that the equi-bounds are pre-
served, up to a dimensional constant: we have

||fhj||L%(Q> < M,,; foreveryh
and
Lip(fhj) < ¢, My forevery h.
Then we apply the Ascoli-Arzela theorem (notice that by uniform continuity all the maps

/;] can be extended to the compact set Q) and using a diagonal procedure we find a sub-
sequence (in /) such that for every j the sequence {f;/}, converges uniformly in Q to a

map 1.

Now we fix ¢ > 0. We choose j = 3 /¢ and we find N = N(;) such that

[1ff = f/|dx <e/3 foreveryik > N.
Q
Keeping j and N(;) fixed we estimate, for i,k > N,

[UALfi = fildx < [UALfi— fldx+ [IALf = flldx+ [1ALf] = fildx
Q Q Q Q

lIA

Q\B; 15| + grf/ — fl|dx + |Q\By 1]

1 ¢ 1
—t+5+-=e
J 3

lIA

It follows that the given sequence has a subsequence which is Cauchy with respect to the
convergence in measure in Q. This implies the thesis. []

We also recall the following classical criterion for strong compactness in L”, since we
used it during the proof of Corollary 4.2.

Lemma C.2 (Riesz-Fréchet-Kolmogorov compactness criterion). Let # be a
bounded subset of L”(R") for some 1 < p < co. Suppose that

Vli‘mOHf(o —h) = fl,=0 wuniformlyin [ € F.

Then F is relatively compact in L, (RN).
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