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ESTIMATES FOR ABSOLUTE VALUES OF MATRIX FUNCTIONS∗

MICHAEL I. GIL’ †

Abstract. Sharp estimates for the absolute values of entries of matrix valued functions of finite
and infinite matrices are derived. These estimates give us bounds for various norms of matrix valued
functions. Applications of the obtained estimates to differential equations are also discussed.
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1. Introduction and statement of the main result. In the book [5], I.M.
Gel’fand and G.E. Shilov have established an estimate for the norm of a regular
matrix valued function in connection with their investigations of partial differential
equations. However that estimate is not sharp, it is not attained for any matrix.
The problem of obtaining a precise estimate for the norm of a matrix function has
been repeatedly discussed in the literature, cf. [1]. In the paper [6] (see also [7]) the
author has derived a precise estimate for the Euclidean norm which is attained in
the case of normal matrices. But that estimate requires bounds for the eigenvalues.
In this paper we derive sharp estimates for the absolute values of entries of a matrix
valued function. They are attained in the case of diagonal matrices. Besides, bounds
for the eigenvalues are not required. These estimates give us bounds for various
norms of matrix valued functions. Our results supplement the very interesting recent
investigations of matrix valued functions [3, 4, 9, 11].

A few words about the contents. The paper consists of 4 sections. In this section
we consider finite matrices and formulate the main result of the paper-Theorem 1.1. It
is proved in Section 2. Section 3 deals with applications of Theorem 1.1 to differential
equations. In Section 4 we generalize Theorem 1.1 to some classes of infinite matrices.

Let C
n be a complex Euclidean space with the scalar product (., .) and the unit

matrix I. Let σ(A) be the spectrum of a linear operator (a matrix) A and

Rz(A) = (A− zI)−1 (z �∈ σ(A))
the resolvent of A. For a scalar valued function f(λ) holomorphic on the spectrum of
A, the matrix valued function f(A) is defined by

f(A) = − 1
2πi

∫
Γ

f(λ)Rλ(A)dλ (1.1)

where Γ is a closed contour surrounding σ(A).
Furthermore, let {ek}n

k=1 be a fixed orthonormal basis in a complex Euclidean
space Cn, and ajk (j, k = 1, ..., n) the entries of a matrix A in this basis. We put

∗ Received by the editors 5 September 2007. Accepted for publication on 5 December 2007.
Handling Editor: Harm Bart.

†Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-Sheva
84105, Israel (gilmi@cs.bgu.ac.il). Supported by the Kameah fund of the Israel.

444

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 444-450, December 2007



ELA

Estimates for Absolute Values of Matrix Functions 445

|A| = (|ajk|)nj,l=1, i.e. |A| is the matrix whose entries are absolute values of A in
{ek}n

k=1. The same sense has the symbol |h| for a vector h. We write C ≥ 0 if all the
entries of a matrix C in basis {ek} are nonnegative. If C and B are two real matrices,
then we write C ≥ B if C −B ≥ 0.

Clearly, A = D+V where D = diag [a11, ..., ann] is the diagonal and V := A−D
is the off diagonal parts of A, respectively. That is, the entries vjk of V are vjk = ajk

(j �= k) and vjj = 0 (j, k = 1, ..., n). Denote by rs(C) the spectral radius of an
operator C. Clearly,

rs(D) = max
j=1,....,n

|ajj |.

Thanks to the well known inequality for the spectral radius [8, Section 16.5], [10], we
have rs(A) ≤ r̃A where

r̃A := max
j=1,....,n

n∑
k=1

|ajk|. (1.2)

Denote by co(D) the closed convex hull of the diagonal entries a11, ..., ann. Now we
are in a position to formulate our main result.

Theorem 1.1. Let V be the off-diagonal part of an n× n-matrix A. Let f(λ) be
holomorphic on a neighborhood of the circle Ω(A) := {z ∈ C : |z| ≤ r̃A}. Then with
the notation

γk(A) := sup
z∈co (D)

|f (k)(z)|
k!

(k = 0, 1, 2, ...), (1.3)

the inequality

|f(A)| ≤
∞∑

k=0

γk|V |k (1.4)

holds, provided the series in (1.4) converges.
This theorem is proved in the next section.
Note that according to (1.2), we have the inequality

rs(|V |) ≤ max
j=1,...,n

n∑
k=1,k �=j

|ajk|.

A norm ‖.‖ in Cn is said to be ideal, if for all h, g ∈ Cn we have ‖h‖ ≤ ‖|h|‖ and
‖h‖ ≤ ‖g‖, provided |h| ≤ |g|. ¿From Theorem 1.1 it directly follows

Corollary 1.2. Let f(λ) be holomorphic on a neighborhood of Ω(A). Let ‖.‖
be an arbitrary ideal norm in Cn. Then

‖f(A)‖ ≤
∞∑

k=0

γk‖|V |k‖, (1.5)

provided the series in (1.5) converges.
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2. Proof of Theorem 1.1. By the equality A = D + V we get

Rλ(A) ≡ (A− Iλ)−1 = (D + V − λI)−1 = (I +Rλ(D)V )−1Rλ(D) =

Rλ(A) =
∞∑

k=0

(Rλ(D)V )k(−1)kRλ(D),

provided the spectral radius r0(λ) of Rλ(D)V is less than one. The entries of this
matrix are

ajk

λj − λ (λj = ajj , λ �= ajj , j �= k)

and the diagonal entries are zero. Thanks to the above mentioned inequality for the
spectral radius from [8], [10], we have

r0(λ) ≤ max
j

n∑
k=1,k �=j

|ajk|
|ajj − λ| .

So the inequality

|λ| > r̃A = max
j

n∑
k=1

|ajk|,

implies that r0(λ) < 1 and the series

∞∑
k=0

(Rλ(D)V )k(−1)k

converges. Thus

f(A) = − 1
2πi

∫
|λ|=r

f(λ)Rλ(A)dλ =
∞∑

k=0

Ck (r = r̃A + ε, ε > 0), (2.1)

where

Ck = (−1)k+1 1
2πi

∫
|λ|=r

f(λ)(Rλ(D)V )kRλ(D)dλ. (2.2)

Since D is a diagonal matrix with respect to basis {ek}, we can write out

Rλ(D) =
n∑

j=1

Qj

λj − λ,

where Qk = (., ek)ek. We thus have

Ck =
n∑

j1=1

Qj1V

n∑
j2=1

Qj2V . . . V

n∑
jk=1

Qjk
Ij1j2...jk+1 .
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Here

Ij1...jk+1 =
(−1)k+1

2πi

∫
|λ|=r

f(λ)dλ
(λj1 − λ) . . . (λjk+1 − λ)

.

Lemma 1.5.1 from [7] gives us the inequalities

|Ij1...jk+1 | ≤ γk (j1, j2, ..., jk+1 = 1, ..., n).

Hence, by (2.2)

|Ck| ≤ γk

n∑
j1=1

Qj1 |V |
n∑

j2=1

Qj2 |V | . . . |V |
n∑

jk=1

Qjk
.

But
n∑

j1=1

Qj1 |V |
n∑

j2=1

Qj2 |V | . . . |V |
n∑

jk=1

Qjk
= |V |k.

Thus

Ck ≤ γk|V |k.

Now (2.1) implies

|f(A)| ≤
∞∑

k=0

|Ck| ≤
∞∑

k=0

γk|V |k.

As claimed. �

3. Examples and applications of Theorem 1.1.
Example 3.1. Let f(A) = Am (m = 1, 2, ...). Then

f (k)(λ) =
m!

(m− k)!λ
m−k, γk =

m!
(m− k)!k!r

m−k
s (D).

So

|Am| ≤
m∑

k=0

m!
(m− k)!k!r

m−k
s (D)|V |k = (rs(D)I + |V |)m.

This inequality can be directly obtained from the equality A = D + V . It only
illustrates Theorem 1.1.

Example 3.2. Let f(A) = eAt (t ≥ 0). Then

f (k)(λ) = tkeλt; γk =
tk

k!
eα(D)t
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where α(D) = maxkRe akk. So

eAt ≤ eα(D)t
∞∑

k=0

tk

k!
|V |k = e(α(D)I+|V |)t (t ≥ 0).

Example 3.3. Let f(A) = sin (At) (t ≥ 0). Then

f (2k)(λ) = t2k(−1)ksin (λt); f (2k+1)(λ) = t2k(−1)kcos (λt).
Let the diagonal D be real, then γk ≤ 1

k! t
k. So

|sin (At)| ≤
∞∑

k=0

1
k!
tk|V |k = et|V |.

Consider the second order nonlinear differential equation

d2x

dt2
+A2x(t) = F (x(t)) (t > 0) (3.1)

dx(0)
dt

= x(0) = 0 (3.2)

where A is a real matrix, F : Rn → Rn is a continuous function, satisfying

‖F (h)‖ ≤ v + q‖h‖ (v, q = cons; h ∈ C
n) (3.3)

with some ideal norm. Problem (3.1), (3.2) is equivalent to the following equation:

x(t) =
∫ t

0

sin A(t− s)F (x(s))ds.

So

‖x(t)‖ ≤
∫ t

0

‖sin A(t− s)‖(q‖x(s)‖ + v)ds

with an arbitrary ideal norm. Put y(t) = ‖x(t)‖. Then by Example 3.3,

y(t) ≤ vf(t) + q
∫ t

0

e‖|V |‖(t−s)y(s)ds

where

f(t) =
∫ t

0

e‖|V |‖sds.

Hence taking into account that f monotonically increases, we get by the Gronwall
inequality,

y(t) ≤ vf(t)exp [qf(t)].
Such estimates are important, in particular, in the theory of oscillations, cf. [1].
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4. Infinite matrices. Let lp (p ≥ 1) be a complex Banach space of sequences
x = {xk ∈ C}∞k=1 with the norm

‖x‖p = (
∞∑

k=1

|xk|p)1/p (1 ≤ p <∞),

‖x‖∞ = sup
k

|xk|.

Let A = (ajk)∞k=1 be an infinite matrix, |A| = (|ajk|)∞j,k=1 and |x| = {|xk|} for an
x = {xk} ∈ lp. The sense of the symbols ≥,≤ for vectors and matrices is the same
as in the finite dimensional case. Again D = diag [a11, a22, ...] and V := A −D are
the diagonal and off diagonal parts of A, respectively. Matrix valued function f(A)
is defined as in (1.1) and co(D) is the closed convex hull of the infinite set of the
diagonal entries {ajj}.

Assume that

r̃A = sup
j=1,2,...

∞∑
k=1

|ajk| <∞, (4.1)

then as in the finite dimensional case, rs(A) ≤ r̃A, cf. [8]. Hence it follows that

rs(|V |) ≤ sup
j=1,2,...

∞∑
k=1,k �=j

|ajk|.

Moreover, it is not hard to check that under condition (4.1), matrix A = (ajk) gener-
ates a bounded linear operator in lp for any p ≥ 1.

Theorem 4.1. Let an infinite matrix A = (ajk) satisfy condition (4.1) and f(λ)
be holomorphic on a neighborhood of the circle Ω(A) := {z ∈ C : |z| ≤ r̃A}. Let
γk be defined as in (1.3). Then inequality (1.4) is valid, provided the series in (1.4)
converges in the norm of l∞.

Proof. Let Pn be the projection onto subspace generated by the first n elements
of the standard basis. Then the finite dimensional matrices An = PnAPn strongly
converge to A. Let Dn = PnD and Vn = PnV Pn be the diagonal and off-diagonal
parts of An, respectively. Then by Theorem 1.1,

|f(An)| ≤
∞∑

k=0

γk|Vn|k ≤
∞∑

k=0

γk|V |k.

But f(An)→ f(A) in the strong topology of l∞ [2]. So each entry of f(An) converges
to the corresponding entry of f(A). This proves the result. �

Corollary 4.2. Let condition (4.1) hold and f(λ) be holomorphic on a neigh-
borhood of Ω(A). Then for any p ≥ 1 we have

‖f(A)‖p ≤
∞∑

k=0

γk‖|V |k‖p, (4.2)
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provided the series in (4.2) converges.
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