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Abstract 

1. It is fundamentally important for many animal ecologists to quantify the costs of 

animal activities, although it is not straightforward to do so. The recording of triaxial 

acceleration by animal-attached devices has been proposed as a way forward for this, 

with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy 

for movement-based power. 

2. DBA has now been validated frequently, both in the laboratory and in the field, 

although the literature still shows that some aspects of DBA theory and practice are 

misunderstood. Here we examine the theory behind DBA and employ modelling 

approaches to assess factors that affect the link between DBA and energy expenditure, 

from the deployment of the tag, through to the calibration of DBA with energy use in 

laboratory and field settings. 

3. Using data from a range of species and movement modes, we illustrate that vectorial 

and additive DBA metrics are proportional to each-other. Either can be used as a 

proxy for energy, and summed to estimate total energy expended over a given period, 

or divided by time to give a proxy for movement-related metabolic power. 

Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines 

as the contribution of non-movement related factors, such as heat production, 

increases.  

4. Overall, DBA seems to be a substantive proxy for movement-based power but 

consideration of other movement-related metrics, such as the Static Body 

Acceleration and the rate of change of body pitch and roll, may enable researchers to 

refine movement-based metabolic costs, particularly in animals where movement is 

not characterized by marked changes in body acceleration. 
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1 Background 

 

No organism lives without expending energy. Energy is primarily used in supporting internal 

metabolism and heat production (resting metabolic rate [RMR] and specific dynamic action) 

and physical activity. Of these, physical activity can cause the greatest variation in the rate of 

energy expenditure. Extreme examples include cheetahs Acinonyx jubatus, which may 

expend up to 100 W/kg during a sprint (Wilson, Lowe, et al. 2013) or auks (Alcidae), which 

fly using 146 W/kg (Elliott, Ricklefs, et al. 2013), although even habitual costs of travel for 

animals are appreciable (cf. Alexander 2005). Given that animals must always engage in 

some behavior, even if this is inactivity, the associated variation in energy expenditure is a 

key link between behavior and overall fitness (Grémillet et al. 2018).  

 

Precise measurement of energy expenditure is, however, not trivial, even within the tightly 

controlled conditions of a laboratory (Elia & Livesey 1992) and although the doubly-labelled 

water method (Schoeller & Van Santen 1982; Speakman 1997) enables estimates of field 

metabolic rate of wild animals between two defined times (Nagy, Girard & Brown 1999), the 

idea that it might be possible to determine the metabolic costs of activities of wild animals is 

challenging (Butler et al. 2004). Nonetheless, a number of proxies for energy expenditure in 

free-living animals have been proposed, most notably heart rate and, more recently, 

acceleration-based metrics such as dynamic body acceleration (DBA). There is extensive 

literature detailing the pros and cons of the heart rate method (Green 2011) which was first 
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considered over a century ago (Henderson & Prince 1914) and used fairly extensively by the 

1950s and 60s on humans (LeBlanc 1957; Booyens & Hervey 1960) and animals (Webster 

1967). Similarly, decades ago, Meijer et al. (Meijer, Westerterp & Koper 1989) inter alia, 

considered that some aspects of acceleration might be useful as a proxy for energy 

expenditure in humans, although the concept was only formalized within the framework of 

DBA, and tested in Great cormorants Phalacrocorax carbo, in 2006 (Wilson et al. 2006). 

There has been a rapid uptake of this method by animal ecologists (Curry 2014) in the 12 

years since the first publication and early demonstrations that DBA could predict the costs of 

movement for terrestrial, aquatic and even aerial locomotion over fine scales and at the level 

of individual animals (Halsey et al. 2009; Elliott, Le Vaillant, et al. 2013). 

 

This study revisits the theoretical basis for DBA and the utility of these metrics for studying 

the energetics of wild animals, drawing, in part, upon an extensive new database of 

acceleration data. Specifically, we assess factors that affect the utility of DBA as a proxy for 

energy expenditure, from the logistics of device attachment, to the way that DBA is 

calibrated in laboratory and field settings, and the relevance with respect to specific life-

history traits. It is hoped that this will address some of the confusion surrounding the use of 

DBA, as is manifest in the literature, as well as catalyse work considering improvements for 

the future. 

 

 

2 Results and Discussion 

Linking animal-generated acceleration and energy expenditure 
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Central to the use of acceleration as a proxy for the rate of energy expenditure (or power; 

nominally measured in watts), is that the major part of energy expenditure by animals above 

resting metabolic rate is due to movement (King & Farner 1961). Processes such as specific 

dynamic action (McCue 2006) and thermoregulation (Karasov 1992) cannot be quantified 

using acceleration metrics unless at least some part of them changes the acceleration of the 

animal body (such as shivering - and even then, this may be a small fraction of the process’s 

whole power allocation). Simply put, as the fraction of non-movement-based power 

increases, so the predictive power for overall power use by an animal using acceleration 

decreases.  

 

The derivation of dynamic body acceleration and its link to energy expenditure is both 

precise and vague (Gleiss, Wilson & Shepard 2011). Precisely, vertebrates move by 

contracting muscles, causing limbs to move, accelerating and decelerating as they do so 

within their normal movement cycle. Newton’s second law tells us that the acceleration is 

equal to the force divided by the mass. In this case, the mass is constant and the force is 

provided by the muscles. Newton also tells us that the work done (J) is given by the force 

multiplied by the distance over which this force is applied and that the rate of doing work (or 

the rate of energy expenditure, in J/s or W) is given by the work done divided by the time 

over which it is done. This is relatively easy to apply for any pair of muscles performing 

opposite functions on a single limb extension and flexion. However, animals move by using a 

large suite of muscles, many of which act tangentially to others for limb stability (Zajac, 

Neptune & Kautz 2003) so the dynamic body acceleration to power link becomes generalised 

to a summation of the forces involved in movement, manifest by the acceleration of the trunk, 

the major body-mass part (see Gleiss, Wilson & Shepard 2011). In other words, the concept 

of DBA nominally (see below) relies on the summation of acceleration vectors (in all three 
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dimensional axes) with temporal integration, representing the forces acting on the animal’s 

body-mass, thereby linking it to work and power. 

 

How, therefore, should acceleration metrics be best treated to act as proxies for power use, 

given (a) the complexities of tangential muscle contraction, and (b) that the accelerations 

recorded by an accelerometer attached to an animal’s trunk are due to both the motion of the 

trunk and acceleration caused by the Earth’s force of gravitation? A triaxial sensor recording 

acceleration on the three orthogonal axes in a tag attached to an immobile animal’s body will 

only record gravitational acceleration which will be variously allocated to one of the three 

measurement axes according to tag orientation (cf. Shepard, Wilson, Quintana, et al. 2008). 

Since acceleration is a vectorial quantity, having direction as well as magnitude, the total 

gravitational acceleration (Agravitation) is given by the vectorial sum of the three axis 

components; 

 

Agravitation = (Ax2+Ay2+Az2)0.5       (1) 

 

where the A term denotes the acceleration and the x, y and z, refer to the three orthogonal 

axes. In an immobile tag, the total acceleration will always have a vectorial sum of 1 g (the 

value of the Earth’s gravitational field). When the animal moves, the acceleration recorded by 

the three axis accelerometers will be superimposed on the values given by the Earth’s 

gravitational field, resulting in higher or lower values at any one time in each of the three 

axes depending on the movement of the animal. It is specifically the difference between the 

recorded acceleration from each of the axes and the Earth’s gravitational acceleration that can 

be allocated to movement produced by the animal. The conventional method to access the 

Earth’s gravitational field component is to use a lowpass filter (Sato et al. 2003; Simon, 
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Johnson & Madsen 2012) or smoothing window (of about two seconds (Shepard, Wilson, 

Halsey, et al. 2008)). Subtraction of the smoothed (or filtered) data from the raw data in each 

axis provides an estimate of the acceleration perceived by the tag as it is produced by the 

movement of the animal (Gleiss, Wilson & Shepard 2011). Normally, the vectorial sum of 

the smoothed data (see equation 1) should equate to 1 g. During rapid turning, however, 

particularly where it occurs over extended periods, such as banking by a falcon or turning by 

a cheetah, the vectorial sum of smoothed data may exceed 1 g by some considerable amount 

(Wilson, Mills, et al. 2013). Similarly, an animal in freefall is expected to have a vectorial 

sum of the smoothed data of around 0 g. The significance of this will be discussed below. 

 

Derivation of DBA – VeDBA and ODBA 

 

Having removed the Earth’s gravitational field from each of the recorded acceleration axes, 

these should now be summed to provide a measure of DBA. Mathematically, this follows the 

approach given in equation 1 where the vectorial sum (Vectorial sum of the Dynamic Body 

Acceleration, VeDBA) is; 

 

VeDBA = (DAx2+DAy2+DAz2)0.5      (2) 

 

where the ‘D’ term refers to the dynamic acceleration stemming from the subtraction of the 

smoothed acceleration data from the raw. This expression for DBA has been tested against 

rate of oxygen consumption (V̇O2) on numerous occasions across taxa (e.g. Wright et al. 

2014; Bidder et al. 2017) and found to be a powerful predictor. However, its formulation is at 

odds with the first proposition for DBA, that of Overall Dynamic Body Acceleration (ODBA 
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– Wilson et al. 2006) which was simply based on the non-vectorial sum of the absolute 

dynamic acceleration values from the three acceleration axes following; 

 

ODBA = │DAx│+│DAy│+│DAz│     (3) 

 

Strictly speaking, this is mathematically incorrect, but its formulation recognises that limb-, 

and therefore body-, movement is brought about by multiple muscles, many of which act 

tangentially to each other for limb stability (see above). The object was to find the best 

possible predictor of oxygen consumption appreciating that in the F = ma formulation, if 

mass (m - e.g. animal or muscle mass) is constant, the force (F) directly equates to 

acceleration (a). As such, a good physiological starting point is to recognize that V̇O2 is 

proportional to the force exerted by the muscle (Taylor et al. 1980; Alexander 2003; 

Praagman et al. 2006) so that the forces developed by any two-muscle pair (denoted by 

subscripted m) acting together; Fm1 and Fm2 will be proportional to V̇O2 via;  

 

Fm1 = k1. V̇O2 m1         (4) 

 

and  

 

Fm2 = k2. V̇O2 m2         (5) 

 

where the numbers of the subscripts refer to the two muscles and k-values are constants of 

proportionality. It is now reasonable to try and find a force/acceleration metric that 

recognizes that the total oxygen being consumed by the two-muscle system described above 

(V̇O2 total) will be; 
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V̇O2 total = V̇O2 m1 + V̇O2 m2        (6) 

 

which is a scalar sum, not a vectorial solution (Qasem et al. 2012). However, reverting back 

to the force vectors for each muscle, we have; 

 

Fm1 = (Fxm1
2+Fym1

2+Fzm1
2)0.5       (7) 

 

where x, y and z refer to the orthogonal measurement axes, and 

 

Fm2 = (Fxm2
2+Fym2

2+Fzm2
2)0.5       (8) 

 

so that the force magnitude resulting from two muscles acting perpendicular (the situation 

would be more complex if the muscles were not perpendicular) at the same point would be; 

 

Fmagnitude = ([(Fxm1
2+Fym1

2+Fzm1
2)0.5]2 + [(Fxm2

2+Fym2
2+Fzm2

2)0.5]2)0.5  (9) 

 

while the oxygen consumption is expected to be given by eqn (6) or, substituting eqns (4) and 

(5); 

 

V̇O2 total = Fm1/k1 + Fm2/k2       (10) 

 

The fundamental difference between eqns (9) and (10) reflects either a vectorial or scalar sum 

expression, respectively, based on the resultant forces of the two muscles (cf. eqn 3), and 

represents the two different forms of DBA (eqns (2) and (3), respectively). Notably, 
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acceleration can effectively be substituted for force in eqns (9) and eqn (10) (see above) by 

removing the constants of proportionality. This then, in part, explains the discrepancy 

between ODBA and VeDBA and highlights why both terms have merit in their own way 

(Qasem et al. 2012). In fact, proper comparisons of one against the other for their predictive 

capacity for V̇O2 are rare. However, where they do occur, ODBA is statistically marginally 

better (Qasem et al. 2012; Bidder et al. 2017) although there are cases where there seems no 

significant difference between the two (Wright et al. 2014). There are also some curious 

findings regarding the difference between ODBA and VeDBA, such as ODBA varying 

statistically significantly with (human) movement over surface type while VeDBA does not 

(Bidder et al. 2017). Unsurprisingly, the two metrics are very closely linked. Qasem et al. 

(Qasem et al. 2012) noted, for running humans, a linear relationship between ODBA and 

VeDBA and a r2 of 0.987. In fact, a regression of VeDBA against ODBA across multiple 

disparate species engaged in a large variety of activities (Fig. 1) shows that the data 

essentially all fit along one tight line with a gradient of 1.42. 
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FIGURE 1 Mean ODBA versus mean VeDBA values for a variety of animals equipped with 

tri-axial accelerometers (dots show values from individuals) engaged in activities ranging 

from resting to walking, swimming, flying, and feeding (see supplementary information 1).  

 

This is extremely convenient since it means that workers wishing to compare data sets can 

convert between metrics. Given that there is little to choose between ODBA and VeDBA, we 

suggest that researchers use the term DBA generally, but be specific about its derivation at 

the outset. Those requiring the absolute best fit between DBA and V̇O2 may prefer to use 

ODBA while those seeking to describe animal motion without the energetic component may 

prefer VeDBA. We would however, suggest that workers standardize terminology to avoid 

confusion (cf. Duriez et al. 2014). 

 

Factors affecting DBA metrics 

 

Tag position 

 

What turn out to be niceties in differences between ODBA and VeDBA as predictive metrics 

of V̇O2, are, in fact, overshadowed by a number of other factors which profoundly affect 

DBA metrics and which are often not considered. Perhaps the most pertinent of these is tag 

position on the animal. It is generally possible to orientate a tag on an animal so that the tag’s 

orthogonal axes concur with the major body axes of the animal and thereby obviate any 

concerns about angular inadequacies of the ODBA metric (Qasem et al. 2012). This also 

dovetails with worker aims when using acceleration data to determine animal behaviour 

(Shepard, Wilson, Quintana, et al. 2008). But, just as a tag located at different positions along 

a limb produces different acceleration signals (Liu, Inoue & Shibata 2009), variation in 

within-body tag positionings produces substantial differences in DBA (Figure 2). This 
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therefore also changes the different relationship between V̇O2 and DBA (the example 

between back- and waist-mounted tags for 15 humans running at various speeds shows highly 

statistically significant differences in both intercept (supplementary information 2 (t = 5.04, 

df = 14, P < 0.001) and slope (t = 3.36, df = 14, P < 0.004)). Clearly therefore, the 

relationship between DBA and V̇O2 for one tag position cannot then be used to extrapolate to 

V̇O2 from another tag position (Fig. 2b). So where should the tag be placed? Actually, ideally 

at the centre of gravity, which is generally impossible for external tag attachments since it is 

in the centre of the animal’s trunk. However, as long as the accelerometer is placed on main 

mass of the animal, it probably does not matter much, provided that the position is held 

constant between individuals. 

 

 

FIGURE 2 The variation in VeDBA according to the logger position. (a) The best fit 

relationships between (mean) VeDBA and oxygen consumption for 15 humans moving on a 

treadmill at various speeds. DBA metrics were either calculated from an accelerometer 

mounted on the upper-back (blue lines) or waist (red lines). Each line shows fits from one 

individual derived from >10 speeds (see supplementary information 2). (b) The difference in 

smoothed VeDBA (over 0.5 s) for a pigeon taking flight equipped with two tri-axial 

accelerometers, one on the upper back (green line) and one on the lower back (brown line). 

The difference between the signals varies with the flight phase (see supplementary 

information 3). 
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Tag stability 

 

In a manner similar to physical positioning of a tag to an animal, tag stability on the body can 

also make a profound difference to the DBA signal. Thus, tags on collars that are not 

standardized to neck diameter can be expected to move differently to those that are fitted 

snugly, with looser collars tending to rotate more. This can be a problem if devices are 

attached for long periods and the target animal’s body mass also changes substantially 

(Hilderbrand et al. 1999). Nonetheless, this might be obviated through the use of glue as an 

alternative method of attaching tags, a practice that is often employed by pinniped researchers 

(e.g. Rosen, Gerlinsky & Trites 2018). Unsurprisingly, tags attached to birds using tape 

(Wilson & Wilson 1989) are also subject to wobble more if not fixed carefully. Indeed, even 

within a single deployment, birds may carry accelerometers that produce an increasingly 

dynamic signal under defined behaviours, if the study animal is prone to removing the tags, 

with consequences for DBA metrics. 

 

Environmental DBA. 

 

A central tenet behind the use of DBA is that the acceleration must be derived from the 

muscle-powered movement of the animal. Animal bodies can, however, be subject to 

substantive environmental acceleration, most notably caused by flow in fluid media, such as 

turbulence or variation in wind strength in air or wave action in water. For example, an 

Imperial cormorant Phalacrocorax atriceps resting on land has a mean ODBA of 0.075 g 

(Gómez-Laich et al. 2011), which equates to about 15 W/kg (Gómez-Laich et al. 2011), and 

this power use is expected to be similar to birds resting at the surface between dives. 
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However, sea state can profoundly change the DBA value so that, for example, an Imperial 

cormorant resting between dives during Beaufort sea states 3 and 5 has predicted mean 

ODBA values of 0.17 and 0.40 g (after conversion of VeDBA values of 0.12 and 0.28 g, 

respectively (see above)) (Fig. 3) which, using the power versus ODBA relationship in 

Gomez-Laich et al. (2011) translates to 19.1 and 28.6 W/kg.  

 

FIGURE 3 Environmental DBA, recorded by tags on Imperial Cormorants Phalacrocorax 

atriceps resting at sea in Patagonia. The upper two panes show the change in VeDBA over 

time for two different Beaufort sea states (ascertained by examining video footage from the 

birds (Gómez-Laich et al. 2015). The lower pane shows a box Whisker plot of the data (see 

supplementary information 4).  

 

The nature of the general relationship between mean DBA and V̇O2 

 

Regressions of DBA versus V̇O2 for humans walking and running are essentially linear (cf. 

Halsey et al. 2009; Wright et al. 2014; Bidder et al. 2017) and this general relationship of; 
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 V̇O2 = kDBA + c        (11) 

  

where c = RMR (where the DBA value is typically around zero) and k is the gradient of the 

line, also holds for all species tested thus far. This includes shellfish (Robson et al. 2012), 

fish (Wright et al. 2014), amphibia (Halsey & White 2010), reptiles (Halsey, Jones, et al. 

2011), mammals and birds (Halsey et al. 2009). The generality of this relationship means that 

it should be possible to couple activity-specific metabolic rate measured within one context 

(e.g. Allers & Culik 1997) to DBA-specific activities from another study (Graf et al. 2016) 

(see e.g. Fig. 4). Furthermore, determination of both the intercept and the gradient of the V̇O2 

versus DBA line, with error bars, should allow workers to approximate the metabolic costs of 

other activities using just DBA metrics. Although the method will not be perfect (e.g. see 

Gómez-Laich et al. (2011) and Elliot et al. (2013) for consideration of the effects of 

movement by different muscle groups and in variable media may affect the relationship), it 

will be more informed than having no measure to link DBA with metabolic rate, and will also 

capitalize on the extensive work undertaken by all relevant studies.  

 

0.05 0.10 0.15 0.20 0.25 0.30

1.0

1.5

2.0

2.5

3.0

V
O

2

ODBA (g)

V
O

2
(m

L/
s)

ODBA (g)

      

Resting



Page 17 of 33 

 

FIGURE 4 The relationship between DBA and V̇O2 (+ SD) in Eurasian beavers Castor fiber, 

estimated by combining data from different studies; two of which quantified DBA during 

swimming and resting (PMG & FR unpublished data, n = 7, and (Graf et al. 2015), n=12) and 

one which quantified V̇O2 for the same activities (Allers & Culik 1997, n = 6). Although 

imperfect, the points and the spread around them show the general expected relationship 

between ODBA and V̇O2, following the standardized y = mx + c linear model found to date 

across taxa (see text).  

 

Linking DBA and V̇O2 over variable timescales; (i) laboratory tests 

 

There is general acceptance that DBA is a powerful proxy for movement-based metabolic 

rate but little discussion of the shortest period of time over which this might be valid. A 

standard method used to calibrate DBA (as well as heart rate), is indirect respirometry, 

measuring oxygen consumption (and/or carbon dioxide production) for laboratory animals 

moving at a number of constant velocities (e.g. on a treadmill), each for at least 3 minutes of 

steady-state motion (Halsey, Shepard & Wilson 2011). The three minute time imposition 

allows oxygen deficits, incurred due to mechanical movement, to be translated out of the 

muscles, through the blood stream and into the inhaled air (Barstow, Casaburi & Wasserman 

1993). It also allows time for the respirometry system to move sampled air into the gas 

analyser (although this can be calibrated). However, there is no reason why this 3 minute 

resolution should be mandated on DBA metrics. As explained above, the link between 

movement-based DBA and energy expenditure should be precisely linked in time.  

 

How much, therefore, can be said about the costs of movement over periods of less than 3 

minutes? In the simplest case of an animal engaging in repetitive motion, such as striding at a 

constant frequency at gaseous equilibrium in a respirometry chamber, the mean DBA can be 

equated to the mean V̇O2 (Wilson et al. 2006). Theoretically, the mean DBA can also be 
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equated to the mean V̇O2 over one second, not least because when V̇O2 is converted to power 

(cf. Randall et al. 2002), it is expressed in joules per second. Indeed, given this, it is logical 

that the cost of single strides can also be calculated by dividing oxygen consumption over a 

defined period by the number of strides. Importantly though, within stride variation in DBA 

reflects a suite of processes that are not all based on muscular contraction forces directly, 

such as recovery of elastic energy stored temporarily within tendons (Alexander 2002) (Fig. 

5). This restricts the time scale over which DBA metrics can be used to derive V̇O2, as sub-

stride variation in DBA should not be translated linearly into a V̇O2 estimate (Fig. 5). 

Nonetheless, it should be possible to estimate the costs of movement above individual strides 

(and perhaps even single strides) following appropriate smoothing of the acceleration data, 

coupled with V̇O2 collected over an appropriate 3 minute steady-state calibration period.  

 

FIGURE 5 Upper pane; instantaneous DBA over 2 s for a human on a treadmill travelling at 

10 km/h (dark blue line) as well as the DBA smoothed over 1 s (light blue line). Note the 

peaks in the instantaneous signal showing the impact of the foot hitting the floor. The lower 

pane shows the direct conversion of both into oxygen consumption following standard (3 
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min) calibration (see text, cf. Fig. 2). Note how conversion of the instantaneous signal results 

in impossibly high V̇O2 values (circled), but how the smoothed signal eliminates this. 

 

Interestingly, detailed examination of the practice of determining V̇O2 and DBA of subjects 

on treadmills reveals variation that is problematic to explain, and rarely highlighted. A 

fundamental concept behind the use of treadmills is that they should allow perfectly steady-

state locomotion, particularly in humans, who can be instructed to adhere most to those 

conditions, so that both DBA and V̇O2 metrics should be constant at any given speed. This is 

not the case for either (Fig. 6). The variation in V̇O2 (Fig. 6b) may be partly due to variation 

in DBA (Fig. 6a), albeit with an unknown and presumably varying time-lag, but why DBA, 

even smoothed, should vary to the extent that it does, is unclear. Further work is needed to 

clarify this because the consequences for DBA metrics and their relation to V̇O2 are 

appreciable (Fig. 6). 

 

FIGURE 6 Variation in measured rate of oxygen consumption (upper panel) and VeDBA 

(smoothed over 2 s) (lower panel) for a human with a waist-mounted tag running on a 
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treadmill at a series of constant speeds that increased stepwise by 1 km/h between 3 and 11 

km/h (after an initial period at 0 km/h). V̇O2 was measured using mask respirometry on a 

breath-by-breath basis but averaged over 5 s (Oxygon Pro  [Jaeger Oxygon Manual Version 

4.5]). Note the lag in response of the oxygen consumption (see text) but also considerable 

variability in both this and the smoothed VeDBA, even within one speed (the large step in 

DBA corresponds to the gait changing from walking to jogging). 

 

Linking DBA and V̇O2 over variable timescales; (ii) Free-living options  

 

Conceptually, DBA can be likened to energy, where the acceleration metric is equivalent to 

joules (see eqns 4-10), and so can be summed over time to give overall energy expenditure. 

However, division of this summed energy equivalent (∑DBA) by time should also provide a 

power equivalent. Exactly this approach was adopted by Elliott et al. (2013), who used 

doubly labelled water and accelerometers on auks to find high correlation coefficients 

between daily energy expenditure (i.e. energy use per unit time) and mean DBA for birds that 

engaged in diving, swimming, flying and time on land, indicating the precise link between 

DBA and MR. To make this directly comparable to gas respirometry studies, the daily energy 

expenditure should be converted into a mean expenditure per second (power). This then 

makes it conform to the standard DBA versus MR equation (see eqn 11), which can be used 

for identified activities to derive movement-based energetic costs for highly specific 

activities.  

 

The use of time-corrected values for DBA and energy expenditure has been flagged up as 

important by Halsey (2017) because summed values of energy expended over time regressed 

against summed values for DBA will tend to produce a correlation anyway because the time 

is the same on both axes: an issue that was termed the “time trap”. Halsey’s work, based on 

simulations assuming no correlation between DBA and V̇O2, noted that r2 values between 
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summed DBA and summed energy could be as high as 0.4 due to the time correlation alone. 

In fact, in our own work, where we replicate Halsey’s approach, but additionally include 

varying genuine correlations between DBA and MR (supplementary information 6), we show 

rapidly increasing r2-values with increasing genuine correlations (well above 0.4). 

Regressions of summed values against each other therefore need not be dismissed out of 

hand. We also note that (i) the use of a single mean value for one metric against a cumulative 

value for the other dismisses the time issue and (ii) DBA does not scale linearly with time 

across activities. For example, the standard regression relating DBA to V̇O2 (eqn 11) has an 

intercept, where DBA is around 0, which generally corresponds to resting, which incurs no 

increment in DBA with time.  

 

When DBA metrics for MR fail 

 

DBA may not, however, be the prime driver of metabolic rate. For example, Ladds et al. 

(Ladds et al. 2017) found no correlation between mean DBA and mean V̇O2 in captive, 

swimming fur seals and sea lions (using gas respirometry), or indeed any correlation between 

V̇O2 and swimming stroke rate. Put simply, their protocol could not show that it was more 

costly to swim than to rest. Why? We can examine potential reasons for this by a simple 

modelling exercise. Here, individuals spend time in only two activities. Each individual has 

some (random) time spent in one activity (e.g. rest) and some (random) time spent in another 

activity (e.g. swimming), with specific values of DBA corresponding to each of those two 

activities, with specific V̇O2 costs. Both DBA and V̇O2 values are identical between the 

individuals for each activity. Regression of the mean V̇O2 against the mean DBA, as 

advocated above, leads to production of the standard DBA versus MR equation (see eqn 11) 

(Fig. 7). However, this situation does not account for any non-DBA-related metabolic costs. 
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If we remodel the situation, as above, introducing metabolic costs such as thermoregulation 

(which imposes a proportionately much greater metabolic rate on resting than on moving due 

to thermal substitution (cf. Lovvorn 2007)), we can immediately see the susceptibility of this 

protocol to non-DBA-linked perturbation (Fig. 7). Specifically, with increasing 

thermoregulatory costs, the regression of mean V̇O2 to mean DBA increasingly deviates from 

the simple mean V̇O2 to mean DBA without a thermoregulatory element (Fig. 7). Indeed, if 

thermoregulatory costs equaled swimming costs, there would be no gradient in the mean V̇O2 

to mean DBA regression at all. On top of this, by the time we substitute ideal model values 

with real values, which include inter-animal variation and errors in the methodology 

(including, for free-living animals) working close to the time limits of doubly labelled water 

usage of twice the half-life (Speakman 1997)), it is clear that this approach will have little 

capacity to resolve the relationship between V̇O2 and DBA. This will be particularly apparent 

if animals within the sample all adopt roughly similar distributions of activities, which will 

limit the spread of values in the DBA axis across a correlation gradient that is already 

reduced (Fig. 7).  

 

FIGURE 7 Theoretical calculations for relationships between mean power and mean DBA for 

a time period during which a study animal, here a beaver, can spend time spent engaged in 

either ‘inactivity’ or ‘activity’. Both have defined power costs (from Allers & Culik (1997) 

P = 4.11*DBA + 1.33

P = 1.28*DBA + 2.22

Resting DBA
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cf. Fig. 4) with randomly allocated lengths of times to both conditions. The blue line shows 

the situation where DBA is the only modulator of power, whereas the red line shows how the 

slope of the regression decreases dramatically if thermoregulation costs (also given in Allers 

& Culik 1997) are included. Since it is extremely unlikely that the study animals will have 

engaged in only one activity, the real spread of mean power and mean DBA values will be 

compromised accordingly (the inserted box shows the 95% CI for the grand mean of ODBA 

measurements on 14 wild beavers (data from Graf et al. 2016)), to which system errors and 

individual variation (cf. Fig. 2a) must be added. All this dramatically decreases the ability of 

the researcher to ascertain any relationship between DBA and power. 

 

A potential solution, in this case, is to have animals at rest in the water to determine 

RMRwater, before beginning swimming trials and correcting accordingly. Certainly, it is 

unlikely to be coincidence that the two notable studies that found no relationship between 

V̇O2 and DBA were conducted in cold water on homeotherms that operate both in the water 

and in air (Halsey, White, et al. 2011; Ladds et al. 2017), especially given that RMRwater of 

aquatic homeotherms that are active in both water and air is substantially more than RMRair, 

and approaches that of swimming (e.g. Luna-Jorquera & Culik 2000) but see Fahlman et al. 

(Fahlman et al. 2005). The process is simply that such homeotherms resting in cold water 

have to increase metabolic rate to counteract the increased heat loss over that in air (Hind & 

Gurney 1997). However, as they become more active, they can increasingly substitute the 

heat increment associated with this activity for this nominal heat loss until the metabolic costs 

more than compensate (Lovvorn 2007). This thermal substitution explains the non-linear 

nature of MR with activity in homeotherms exhibiting activities around resting (Ciancio et al. 

2016) and is an important consideration in DBA studies.  

 

This case highlights what was said at the outset, that DBA does not cover non-movement-

based metabolic rates, and workers need to be aware of other issues that may have a similar 

effect, including specific dynamic action, the costs of heating cold food (a factor important 
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when persuading lab animals to engage in protocols with food rewards) (Wilson & Culik 

1993), isometric muscle contraction and stress (McCue 2006). Indeed, if researchers are 

interested in comprehensive energy budgets, then any estimates of energy use derived from 

DBA need to be combined with model estimates of these other costs, which will vary in 

importance according to the animal and study system. Nonetheless, DBA remains the ideal 

method with which to examine the energetic implications of animal-decision making in a 

wide range of systems, and how this might be modulated by individual experience, state and 

the abiotic/ biotic environment.  

 

 

Beyond DBA 

 

The above makes it clear that DBA metrics are imperfect, most particularly when non-

movement related changes in metabolic rate are appreciable. But neither does DBA capture 

all of the animal-generated acceleration associated with movement. For example, animals can 

‘pull g’ in fast maneuvers such as cornering by cheetahs (Wilson, Mills, et al. 2013). Here, 

animal experience increased inertial acceleration in additional to the force of gravity, and the 

vectorial sum of the smoothed channels may not equal 1 (1 corresponds to the Earth’s 

gravitation field). Any difference between the recorded value and 1 is driven by forces 

generated by the animal that are not incorporated within DBA (ignoring free-fall-type 

maneuvers where the value tends towards 0). Therefore VeSBA (the vectorial sum of the 

static acceleration) should be most informative in these cases. To date, there has been no 

attempt to link this to power, although we should be doing so. 
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At the other end of the spectrum, slowly moving animals such as many invertebrates and 

some ectotherms may generate a negligible DBA signal. In such instances, movement may be 

better represented by rates of change of body pitch, roll or yaw which, although not 

accelerations, may code for metabolic rate since the animal is still exerting forces to move the 

body (Fig. 8).  

 

 

FIGURE 8 Five minutes of general activity of three different species (the Giant spider conch 

Lambis truncata, Loggerhead turtle Caretta caretta and Magellanic penguin Spheniscus 

magellanicus) manifest on ‘g-spheres’ (which show the extent to which the body pitches and 

rolls [if the whole sphere were covered, the animal would have adopted all pitch and roll 

combinations] (Wilson et al. 2016)). Lines are colour-coded by metrics which may be useful 

as a proxy for rate of energy expenditure. Note how the DBA signal (VeDBA smoothed over 

2 s) is most extensive in the penguin, as the animal that shows the most dynamism, but how 

body angular velocity is appreciable in all three species. 

 

The future 
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DBA metrics have been demonstrably good predictors for power use for an extraordinary 

wide spectrum of animals, and this has helped us to move out of the laboratory to allude to 

the costs of activities of free-ranging animals, particularly because the same acceleration-

based technology can be used to determine behaviour so effectively (Shepard, Wilson, 

Quintana, et al. 2008). But we can do better. Bead-string models (cf. Underhill & Doyle 

2006) of animals could provide an explicit calculation of the work done to move between any 

two configurations: Joints and limbs can be modelled with terms that consider extensive, 

rotary and torsion motions. Indeed, this, and cognisance of the potential in other movement-

based metrics (see above), together with new ideas such as thermal imaging to estimate heat 

flux (Willis & Horning 2005) and recognition of where acceleration is likely to be less sound, 

should make the future at once more informed and more exciting. DBA-based metrics 

themselves can also go further: A next-generation of implantable biosensor (Oliveira et al. 

2015) may inform other aspects of animal metabolism, complimentary to DBA, including the 

signalling mechanisms involved in response, as well as glucose respiration. When combined 

with mathematical models (Bisker et al. 2015; Lee et al. 2016) of animal physiology, such 

sensors may provide a connection between DBA and other physiological states, and a vital 

link between internal state and body action (Nathan et al. 2008). 

 

Acceleration based proxies for energy expenditure have already been used to provide new 

insight across a range of fields; from animal behavior e.g. in optimal foraging (Shepard et al. 

2009) and the age-related costs of migration (Rotics et al. 2016), to ecological and even 

evolutionary contexts. For instance, Grémillet et al. (2018) demonstrated a link between 

DBA and the relative breeding performance of individual seabirds. This concept of “energetic 

fitness” is likely to be a key area of future research, as it not only offers a means of 
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comparing individual differences, but also how different levels of organization, from 

individuals to populations, may respond to global change (Grémillet et al. 2018).  

 

Authors’ contributions 

RPW conceived and wrote the work, using data from ELCS, AG-L, FQ, FR, PMG, LH, RS, 

CD, and NG, benefitting from analysis from HW, AF and LB as well as conceptual input and 

help with the manuscript by all authors. 

 

Acknowledgements 

Part of this work was funded by KAUST via the Office for Sponsored Research (CAASE). 

ELCS has received funding from the European Research Council (ERC) under the European 

Union's Horizon 2020 research and innovation programme (grant 715874). Data provided by 

RS and CE were funded by a grant from The Future Ocean Cluster of Excellence 80: “The 

Future Ocean” (CP1217, “The Future Ocean” is funded within the framework of the 

Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the 

German federal and state governments) and a National Geographic grant (GEFNE69-13) to 

CE. We thank the Organismo Provincial de Turismo for permits to work at Punta León and 

the CCT CENPAT-CONICET for institutional support. Device deployments in Punta León 

were supported by a grant from the Agencia Nacional de Promoción Científica y Tecnológica 

(PICT 2013 – 1229). Data provided by LB and RW were funded by a College of Science 

Research Grant by Swansea University. We thank the Associação Mico-Leão-Dourado 

(AMLD), Carlos Ruiz-Miranda and the Reserva Biológica de Poço das Antas for fieldwork 

assistance and for permits to work at the site. 

 

Data accessibility 



Page 28 of 33 

 

Data are available through Figshare: DOI: 10.6084/m9.figshare.8090852 



Page 29 of 33 

 

References 

Alexander, R.M. (2002) Tendon elasticity and muscle function. Comparative 

Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133, 

1001-1011. 

Alexander, R.M. (2003) Principles of animal locomotion. Princeton University Press. 

Alexander, R.M. (2005) Models and the scaling of energy costs for locomotion. Journal of 

Experimental Biology, 208, 1645-1652. 

Allers, D. & Culik, B.M. (1997) Energy requirements of beavers (Castor canadensis) 

swimming underwater. Physiological zoology, 70, 456-463. 

Barstow, T.J., Casaburi, R. & Wasserman, K. (1993) O2 uptake kinetics and the O2 deficit 

as related to exercise intensity and blood lactate. Journal of applied physiology, 

75, 755-762. 

Bidder, O.R., Goulding, C., Toledo, A., van Walsum, T.A., Siebert, U. & Halsey, L.G. (2017) 

Does the treadmill support valid energetics estimates of field locomotion? 

Integrative and Comparative Biology, 57, 301-319. 

Bisker, G., Iverson, N.M., Ahn, J. & Strano, M.S. (2015) A pharmacokinetic model of a 

tissue implantable insulin sensor. Advanced healthcare materials, 4, 87-97. 

Booyens, J. & Hervey, G.R. (1960) The pulse rate as a means of measuring metabolic rate 

in man. Canadian Journal of Biochemistry and Physiology, 38, 1301-1309. 

Butler, P.J., Green, J.A., Boyd, I. & Speakman, J. (2004) Measuring metabolic rate in the 

field: the pros and cons of the doubly labelled water and heart rate methods. 

Functional Ecology, 18, 168-183. 

Ciancio, J.E., Quintana, F., Sala, J.E. & Wilson, R.P. (2016) Cold birds under pressure: Can 

thermal substitution ease heat loss in diving penguins? Marine Biology, 163, 43. 

Curry, A. (2014) Wildlife energy: survival of the fittest. Nature News, 513, 157. 

Duriez, O., Kato, A., Tromp, C., Dell'Omo, G., Vyssotski, A.L., Sarrazin, F. & Ropert-

Coudert, Y. (2014) How cheap is soaring flight in raptors? A preliminary 

investigation in freely-flying vultures. PLoS One, 9, e84887. 

Elia, M. & Livesey, G. (1992) Energy expenditure and fuel selection in biological systems: 

the theory and practice of calculations based on indirect calorimetry and tracer 

methods. Metabolic control of eating, energy expenditure and the bioenergetics of 

obesity, pp. 68-131. Karger Publishers. 

Elliott, K.H., Le Vaillant, M., Kato, A., Speakman, J.R. & Ropert-Coudert, Y. (2013) 

Accelerometry predicts daily energy expenditure in a bird with high activity 

levels. Biology letters, 9, 20120919. 

Elliott, K.H., Ricklefs, R.E., Gaston, A.J., Hatch, S.A., Speakman, J.R. & Davoren, G.K. (2013) 

High flight costs, but low dive costs, in auks support the biomechanical 

hypothesis for flightlessness in penguins. Proceedings of the National Academy of 

Sciences, 110, 9380-9384. 

Fahlman, A., Schmidt, A., Handrich, Y., Woakes, A. & Butler, P. (2005) Metabolism and 

thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in 

air and water. American Journal of Physiology-Regulatory, Integrative and 

Comparative Physiology, 289, R670-R679. 

Gleiss, A.C., Wilson, R.P. & Shepard, E.L. (2011) Making overall dynamic body 

acceleration work: on the theory of acceleration as a proxy for energy 

expenditure. Methods in Ecology and Evolution, 2, 23-33. 

Gómez-Laich, A., Wilson, R.P., Gleiss, A.C., Shepard, E.L. & Quintana, F. (2011) Use of 

overall dynamic body acceleration for estimating energy expenditure in 



Page 30 of 33 

 

cormorants: does locomotion in different media affect relationships? Journal of 

Experimental Marine Biology and Ecology, 399, 151-155. 

Gómez-Laich, A., Yoda, K., Zavalaga, C. & Quintana, F. (2015) Selfies of imperial 

cormorants (Phalacrocorax atriceps): what is happening underwater? PLoS One, 

10, e0136980. 

Graf, P., Hochreiter, J., Hackländer, K., Wilson, R. & Rosell, F. (2016) Short-term effects of 

tagging on activity and movement patterns of Eurasian beavers (Castor fiber). 

European journal of wildlife research, 62, 725-736. 

Graf, P.M., Wilson, R.P., Qasem, L., Hackländer, K. & Rosell, F. (2015) The use of 

acceleration to code for animal behaviours; a case study in free-ranging Eurasian 

beavers Castor fiber. PLoS One, 10, e0136751. 

Green, J.A. (2011) The heart rate method for estimating metabolic rate: review and 

recommendations. Comparative Biochemistry and Physiology Part A: Molecular & 

Integrative Physiology, 158, 287-304. 

Grémillet, D., Lescroël, A., Ballard, G., Dugger, K.M., Massaro, M., Porzig, E.L. & Ainley, 

D.G. (2018) Energetic fitness: Field metabolic rates assessed via 3D 

accelerometry complement conventional fitness metrics. Functional Ecology, 32, 

1203-1213. 

Halsey, L., Shepard, E., Quintana, F., Laich, A.G., Green, J. & Wilson, R. (2009) The 

relationship between oxygen consumption and body acceleration in a range of 

species. Comparative Biochemistry and Physiology Part A: Molecular & Integrative 

Physiology, 152, 197-202. 

Halsey, L., White, C., Enstipp, M., Wilson, R., Butler, P., Martin, G., Grémillet, D. & Jones, D. 

(2011) Assessing the validity of the accelerometry technique for estimating the 

energy expenditure of diving double-crested cormorants Phalacrocorax auritus. 

Physiological and Biochemical Zoology, 84, 230-237. 

Halsey, L.G. & White, C.R. (2010) Measuring energetics and behaviour using 

accelerometry in cane toads Bufo marinus. PLoS One, 5, e10170. 

Halsey, L.G., Jones, T.T., Jones, D.R., Liebsch, N. & Booth, D.T. (2011) Measuring energy 

expenditure in sub-adult and hatchling sea turtles via accelerometry. PLoS One, 

6, e22311. 

Halsey, L.G., Shepard, E.L. & Wilson, R.P. (2011) Assessing the development and 

application of the accelerometry technique for estimating energy expenditure. 

Comparative Biochemistry and Physiology Part A: Molecular & Integrative 

Physiology, 158, 305-314. 

Halsey, L.G. (2017) Relationships grow with time: a note of caution about energy 

expenditure‐proxy correlations, focussing on accelerometry as an example. 

Functional Ecology, 31, 1176-1183. 

Henderson, Y. & Prince, A.L. (1914) The oxygen pulse and the systolic discharge. 

American Journal of Physiology-Legacy Content, 35, 106-115. 

Hilderbrand, G.V., Jenkins, S., Schwartz, C., Hanley, T.A. & Robbins, C. (1999) Effect of 

seasonal differences in dietary meat intake on changes in body mass and 

composition in wild and captive brown bears. Canadian Journal of Zoology, 77, 

1623-1630. 

Hind, A. & Gurney, W. (1997) The metabolic cost of swimming in marine homeotherms. 

Journal of Experimental Biology, 200, 531-542. 

Karasov, W.H. (1992) Daily energy expenditure and the cost of activity in mammals. 

American Zoologist, 32, 238-248. 



Page 31 of 33 

 

King, J.R. & Farner, D.S. (1961) Energy metabolism, thermoregulation and body 

temperature. Biology and comparative physiology of birds, 2, 215-288. 

Ladds, M.A., Rosen, D.A., Slip, D.J. & Harcourt, R.G. (2017) Proxies of energy expenditure 

for marine mammals: an experimental test of “the time trap”. Scientific Reports, 

7, 11815. 

LeBlanc, J.A. (1957) Use of heart rate as an index of work output. Journal of applied 

physiology, 10, 275-280. 

Lee, M.A., Bakh, N., Bisker, G., Brown, E.N. & Strano, M.S. (2016) A Pharmacokinetic 

Model of a Tissue Implantable Cortisol Sensor. Advanced healthcare materials, 5, 

3004-3015. 

Liu, T., Inoue, Y. & Shibata, K. (2009) Development of a wearable sensor system for 

quantitative gait analysis. Measurement, 42, 978-988. 

Lovvorn, J.R. (2007) Thermal substitution and aerobic efficiency: measuring and 

predicting effects of heat balance on endotherm diving energetics. Philosophical 

Transactions of the Royal Society of London B: Biological Sciences, 362, 2079-

2093. 

Luna-Jorquera, G. & Culik, B.M. (2000) Metabolic rates of swimming Humboldt 

penguins. Marine Ecology Progress Series, 203, 301-309. 

McCue, M.D. (2006) Specific dynamic action: a century of investigation. Comparative 

Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 144, 381-

394. 

Meijer, G.A., Westerterp, K.R. & Koper, H. (1989) Assessment of energy expenditure by 

recording heart rate and body acceleration. Medicine and Science in Sports and 

Exercise, 21, 343-347. 

Nagy, K.A., Girard, I.A. & Brown, T.K. (1999) Energetics of free-ranging mammals, 

reptiles, and birds. Annual review of nutrition, 19, 247-277. 

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P.E. 

(2008) A movement ecology paradigm for unifying organismal movement 

research. Proceedings of the National Academy of Sciences, 105, 19052-19059. 

Oliveira, S.F., Bisker, G., Bakh, N.A., Gibbs, S.L., Landry, M.P. & Strano, M.S. (2015) Protein 

functionalized carbon nanomaterials for biomedical applications. Carbon, 95, 

767-779. 

Praagman, M., Chadwick, E.K.J., Van Der Helm, F.C.T. & Veeger, H.E.J. (2006) The 

relationship between two different mechanical cost functions and muscle oxygen 

consumption. Journal of biomechanics, 39, 758-765. 

Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey, L.G., Shepard, E.L.C., Gleiss, A.C. & 

Wilson, R. (2012) Tri-axial dynamic acceleration as a proxy for animal energy 

expenditure; should we be summing values or calculating the vector? PLoS One, 

7, e31187. 

Randall, D.J., Eckert, R., Burggren, W. & French, K. (2002) Tierphysiologie. Georg Thieme 

Verlag. 

Robson, A.A., Chauvaud, L., Wilson, R.P. & Halsey, L.G. (2012) Small actions, big costs: 

the behavioural energetics of a commercially important invertebrate. Journal of 

the Royal Society Interface, 9, 1486-1498. 

Rosen, D.A., Gerlinsky, C.G. & Trites, A.W. (2018) Telemetry tags increase the costs of 

swimming in northern fur seals, Callorhinus ursinus. Marine Mammal Science, 34, 

385-402. 

Rotics, S., Kaatz, M., Resheff, Y.S., Turjeman, S.F., Zurell, D., Sapir, N., Eggers, U., Flack, A., 

Fiedler, W. & Jeltsch, F. (2016) The challenges of the first migration: movement 



Page 32 of 33 

 

and behaviour of juvenile vs. adult white storks with insights regarding juvenile 

mortality. Journal of Animal Ecology, 85, 938-947. 

Sato, K., Mitani, Y., Cameron, M.F., Siniff, D.B. & Naito, Y. (2003) Factors affecting 

stroking patterns and body angle in diving Weddell seals under natural 

conditions. Journal of Experimental Biology, 206, 1461-1470. 

Schoeller, D.A. & Van Santen, E. (1982) Measurement of energy expenditure in humans 

by doubly labeled water method. Journal of applied physiology, 53, 955-959. 

Shepard, E.L.C., Wilson, R.P., Halsey, L.G., Quintana, F., Laich, A.G., Gleiss, A.C., Liebsch, N., 

Myers, A.E. & Norman, B. (2008) Derivation of body motion via appropriate 

smoothing of acceleration data. Aquatic Biology, 4, 235-241. 

Shepard, E.L.C., Wilson, R.P., Quintana, F., Laich, A.G., Liebsch, N., Albareda, D.A., Halsey, 

L.G., Gleiss, A., Morgan, D.T. & Myers, A.E. (2008) Identification of animal 

movement patterns using tri-axial accelerometry. Endangered Species Research, 

10, 47-60. 

Shepard, E.L.C., Wilson, R.P., Quintana, F., Gómez Laich, A. & Forman, D.W. (2009) 

Pushed for time or saving on fuel: fine-scale energy budgets shed light on 

currencies in a diving bird. Proceedings of the Royal Society B: Biological Sciences, 

276, 3149-3155. 

Simon, M., Johnson, M. & Madsen, P.T. (2012) Keeping momentum with a mouthful of 

water: behavior and kinematics of humpback whale lunge feeding. Journal of 

Experimental Biology, 215, 3786-3798. 

Speakman, J. (1997) Doubly labelled water: theory and practice. Springer Science & 

Business Media. 

Taylor, C.R., Heglund, N.C., McMahon, T.A. & Looney, T.R. (1980) Energetic cost of 

generating muscular force during running: a comparison of large and small 

animals. Journal of Experimental Biology, 86, 9-18. 

Underhill, P.T. & Doyle, P.S. (2006) Alternative spring force law for bead-spring chain 

models of the worm-like chain. Journal of Rheology, 50, 513-529. 

Webster, A.J.F. (1967) Continuous measurement of heart rate as an indicator of the 

energy expenditure of sheep. British Journal of Nutrition, 21, 769-785. 

Willis, K. & Horning, M. (2005) A novel approach to measuring heat flux in swimming 

animals. Journal of Experimental Marine Biology and |Ecology, 315, 147-162. 

Wilson, A.M., Lowe, J.C., Roskilly, K., Hudson, P.E., Golabek, K.A. & McNutt, J.W. (2013) 

Locomotion dynamics of hunting in wild cheetahs. Nature, 498, 185. 

Wilson, J.W., Mills, M.G.L., Wilson, R.P., Peters, G., Mills, M.E.J., Speakman, J.R., Durant, 

S.M., Bennett, N.C., Marks, N.J. & Scantlebury, M. (2013) Cheetahs, Acinonyx 

jubatus, balance turn capacity with pace when chasing prey. Biology letters, 9, 

20130620. 

Wilson, R.P. & Wilson, M.-P.T.J. (1989) Tape: a package-attachment technique for 

penguins. Wildlife Society Bulletin, 77-79. 

Wilson, R.P. & Culik, B.M. (1993) Activity‐Specific Metabolic Rates from Double 

Labeled Water Studies: Are Activity Costs Underestimated? Ecology, 74, 1285-

1287. 

Wilson, R.P., White, C.R., Quintana, F., Halsey, L.G., Liebsch, N., Martin, G.R. & Butler, P.J. 

(2006) Moving towards acceleration for estimates of activity‐specific metabolic 

rate in free‐living animals: the case of the cormorant. Journal of Animal Ecology, 

75, 1081-1090. 

Wilson, R.P., Holton, M.D., Walker, J.S., Shepard, E.L., Scantlebury, D.M., Wilson, V.L., 

Wilson, G.I., Tysse, B., Gravenor, M. & Ciancio, J. (2016) A spherical-plot solution 



Page 33 of 33 

 

to linking acceleration metrics with animal performance, state, behaviour and 

lifestyle. Movement ecology, 4, 22. 

Wright, S., Metcalfe, J.D., Hetherington, S. & Wilson, R. (2014) Estimating activity-specific 

energy expenditure in a teleost fish, using accelerometer loggers. Marine Ecology 

Progress Series, 496, 19-32. 

Zajac, F.E., Neptune, R.R. & Kautz, S.A. (2003) Biomechanics and muscle coordination of 

human walking: part II: lessons from dynamical simulations and clinical 

implications. Gait and Posture, 17, 1-17. 
 

 


