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ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES
AND REVERSE JENSEN INEQUALITIES

STEPHEN M. BUCKLEY

Abstract. We examine the dependence on the Ap norm of w of the operator
norms of singular integrals, maximal functions, and other operators in LP(w).
We also examine connections between some fairly general reverse Jensen in-
equalities and the Ap and RHP weight conditions.

1. INTRODUCTION

A question of considerable interest in harmonic analysis is, "What types of
weights w have the property that T is bounded on V(w)T where 1 <p < oo ,
and T is an operator which is bounded on the (unweighted) space LP (typi-
cally T is the Hardy-Littlewood maximal operator, singular integral operators,
or various related operators of interest in harmonic analysis). This type of
question has been answered to a large extent by the work of Muckenhoupt,
Hunt, Wheeden, Coifman, C. Fefferman, and others. In particular, it is known
that Muckenhoupt's Ap condition is a necessary and sufficient condition for
boundedness in the case of the Hardy-Littlewood maximal operator or singu-
lar integral operators (see [15, 13, and 4]). However, the dependence of the
resulting operator norms on the "badness" of the Ap weight has never been
adequately examined. We carry out this investigation in §2, where we also give
a new proof of the boundedness of the Hardy-Littlewood maximal operator on
Lp(w), for w £ Ap .

Ap and RHP conditions are particular types of "reverse Jensen" inequalities
which hold uniformly for all cubes. In §3, we examine more general reverse
Jensen inequalities (which hold uniformly for all cubes) with respect to some
doubling measure p on R" , and show how they are related to the usual Ap(dp)
and RHp(dp) conditions. Let us now introduce some notation and give some
basic definitions.

For any set ScR", \S\ is the Lebesgue measure of S. We will use the
term "weight" to refer to any nonnegative locally integrable function which is

Received by the editors December 18, 1990 and, in revised form, May 10, 1991 and September
3, 1991.

1980 Mathematics Subject Classification (1985 Revision). Primary 42B20, 42B25.
Key words and phrases. Singular integral, maximal function, weights.
The material in this work was drawn mainly from the author's Ph.D. thesis which was done

under the supervision of Robert Fefferman at the University of Chicago.

©1993 American Mathematical Society
0002-9947/93 $1.00+ $.25 per page

253

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



254 S. M. BUCKLEY

not everywhere zero. For any measure p, we write

(if p is Lebesgue measure, we write g$ = js g). If w is a weight, we will write
w(S) = js w . By a "cube" in R" , we will mean an «-fold product of intervals
of equal length (i.e. every face of the cube is perpendicular to a coordinate axis).
If Q is a cube, rQ will denote the cube concentric with Q whose sidelength is
r times that of Q (the "r-fold dilate" of Q). w will always denote a weight on
R" and p is a real number in the range (1, oo), unless otherwise stated. For
any positive quantities X, 7, "X ~ 7" will mean "1/C < X/7 < C", where
C is independent of the weight w (but may depend on «, p , and the operator
T). For any exponent p, p' denotes the dual exponent p/(p - 1).

Definition. A singular integral operator is a principal value convolution operator
T: fi —> K * / in R" , where the real-valued kernel K satisfies the following
size and cancellation conditions:

||£||oc<C,     |*(x)| < C/|x|\
\K(x) - Kix - y)\ < C\y\/\x\n+x    for \y\ < \x\/2.

T* denotes the associated maximal singular integral operator which is defined
by

Tf(x) = sup K* - Xw\B(o.i)) * /Ml-

Definition. If p is a positive measure on R" , we say w is an APidp) weight
(we write w £ APidp)) if there is some K > 0 such that for all cubes Q £ R" ,

(1.1) (4 wdp) (-[ w-x'(p-Vdp\      <K.

We say w is an Axidp) weight if, for all cubes Q £R" ,

(1.2) -I- wdp < Kessinfw(x).
Jq xeQ

The smallest K for which (1.1) (or (1.2)) is true is referred to as the Ap(dp)-
norm of w and will be denoted Kwp;ß (resp. Kw>x-,f) or simply KWtß . We
also write o in place of w~x/ÍJ>~xí and refer to a as the dual weight of w . It
is easy to see that w £ Ap(dp) if and only if a £ Api(dp), and that Ka ,p<%>i =
Xw7p\ß- ft is a^s0 c^ear mat w e Ax(dp) if and only if Mßw < Kw (Mß
indicates the Hardy-Littlewood maximal operator with respect to the measure
H).
Definition. We say w is an A^dp) weight if, for all cubes Q, and all E c Q,
we have

(13) iffi<c(4£)Y
for some C, e > 0, where du = wdp.
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Until §3, we are interested only in p = Lebesgue measure, and so we suppress
references to p (i.e. we write Ap, Kw , etc.). Weights of the form wr(x) = \x\r,
the so-called power weights, provide the most basic examples of Ap weights;
in fact wr £ AP(W) if and only if -« < r < n(p - 1). We have the following
more precise estimates (the proof is straightforward and so we omit it).

Lemma 1.4. If 0 < Ô < 1, then u(x) = |x|-«(i-^ e ax and KUtP ~ I/o, for
any p>l ; also, v(x) = \x\»(p-W-*) £ Ap and Kv,p ~ l/ôp~x. '

It is easy to prove that the dual space of Lp(w) is Lp' (a). In addition, we
have the following useful lemma, whose easy proof we also omit.

Lemma 1.5. If a singular integral operator T is bounded on Lp(w) and on
LP (a) for some 1 < p < oo, then the two associated operator norms of T are
equal.

2. Bounds for operator norms

In this section, C will denote a generic positive constant independent of ev-
erything, except possibly the dimension «, exponent p, and operator T. Also,
for any weights given as examples, S will denote a positive quantity which tends
toO.

We now look at several important operators which are bounded on Lp(w)
spaces iff w £ Ap , and examine how the resulting operator norms depend on
Kw , the ^p-norm of w . Our first main goal will be to do this for the Hardy-
Littlewood maximal operator. We give a new proof of boundedness which gives
a best possible dependence estimate. First of all, we need a few preparatory
lemmas.

Lemma 2.1 [4]. If w £ Ap, then w £ Ap-E, where e ~ K}ffp , and KWtP-e <
CA.W ,p .

The next lemma, due to Besicovitch [1], is commonly referred to as the
Besicovitch covering lemma. A proof of it can be found in [11, pp. 2-5]. Note
that (ii) and (iii) just say that the sequence of cubes can be distributed into a
bounded number of disjoint families.

Lemma 2.2. Suppose that A cRn is bounded and that for each x £ A, Qx is a
cube centered at x. Then we can choose, from among {Qx : x £ A}, a (possibly
finite) sequence {Q¡} and an associated sequence of integers {m¡} suchthat

(i)   Ac\JtQi.
(ii)   1 < m, < N„ , where Nn depends only on « .

(iii)   Qi and Q¡ are disjoint if m¡ = m¡.
We say an operator is ofi weak-type p, with respect to the measure p, if

p({Tf>a})<(^MJ^mY
The smallest such C is referred to as weak-type Lp(dp)-noxm of T. We

can now state a precise version of the Marcinkiewicz interpolation theorem with
respect to a positive measure p (the statement of this result given here, for p
being Lebesgue measure, is a special case of the result as proved by Zygmund
[18]).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Lemma 2.3. Suppose 1 < Po < Px < oo and that T is a sublinear operator of
weak-type po and px, with respect to the measure p, with norms Rq and Rx
respectively, then T is actually bounded on Lp(dp) for all Po < p < Px ■ In fact,
for any 0 < t < 1,

\\Tf\\u>,{dß) < CtR0~'R\II/Ulp,^)
where

1      l-l + -L-   and   Cf> = 2-(-*-+    Po
Pt       Po       Px Pi  \Px-Pt     Pi-Po,

We shall only need to apply this lemma where po and px axe in some fixed
interval [1, S], t = \ and Rx, R2 < R. In this case, writing p = px/2, we
simply get the inequality

C R
\\Tf\\LP(dß) < (p, -pçyipWfWvm

where C depends only on S.

Lemma 2.4. If fi £ Lp(w) and fi~Qk > a > 0 for each of the disjoint cubes {Qk),
then

Proof. We can assume that f(x) > 0 and that H/Hl^i«) = 1, without loss of
generality. Now,

?•<*>*/?=$*>/*

- {^^]Qk¥°[Qk)) <

since o £ Api and so,

k

Using Lemma 2.4, our first main theorem is now easy to state and prove.

Theorem 2.5. If w £ Ap , then \\Mfi\\%{w) < CK¿\\ffu(w). The power K& is
best possible.
Proof. First, we show that for 1 < p < oo,

(2.6) w({Mfi>oZ})<CKw(\\f\\U(w)/a)p.
Without loss of generality, we assume that fi(x) > 0 and that ||/||lp(u;) = 1 .
Suppose that Mf(x) > a > 0 so that f~Qk > a for some cube Qx centered at
x . Let Ar = {x : \x\ < r, Mf(x) > a} . The Besicovich covering lemma tells us
that Ar can be covered by the union of N„ collections of disjoint cubes, on each
of which the mean value of / is at least a . Choose the collection {Qk} , whose
union has maximal iw-measure. Thus, w(Ar) < N„w(\JkQk) < CKw/aP, by
Lemma 2.4. Letting r —* oo , we get (2.6).
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OPERATOR NORMS 257

Suppose now that p > 1. By Lemma 2.1, w is also an Ap-e weight with
comparable norm, where e ~ Kfffp and, trivially, w is an Ap+e weight, with
norm no larger than Kw iP . Applying the Marcinkiewicz interpolation theorem
to the corresponding weak-type results at p-e and p+E , we get the strong-type
result we require with the indicated bound for the operator norm.

To see that the power K& is best possible, we give an example for R (a
similar example works in R" for any «). Let w(x) = |x|^_1"1_á', so that
Kw ~ l/ôp~x by Lemma 1.4. Now, f(x) = \x\~x+sX[o,x] e Lp(w). It is easy to
see that Mfi > fi/à and so, ||M/||^(u))/||/||^(w) > C8~p ~ K& .   D

Remark 2.7. The proof of Coifman and Fefferman [4], will also give the best
possible exponent K.%, , when the proof is examined closely, but some other
proofs of the boundedness of M, e.g. [14], will not do so. The dependence in
the weak- (p, p) inequality (2.6) was found and shown to be best possible by
Muckenhoupt [15].

Remark 2.8. It is easy to prove, using (2.6), that if w £ Aq for some q < p,
then ||M/||^,(u;) < CKWta\\fi\\plJ,(w), where C = Cp,a now depends on q as
well as p (and Cp>a gets very large when q is very close to p).

Theorem 2.5 neatly sews up the dependence for the Hardy-Littlewood maxi-
mal operator. The dependence for singular integral operators is not at all as easy
to handle and, in fact, we shall not be able to find the best power of Kw . The
best we can do is as follows, which actually takes care of the maximal singular
integral operator T*.

Theorem 2.9. If w £ Ap , then \\T*ffU{w) < C Kpw+P \\f \\Pmw). The best power
of Kw in this inequality must lie in the interval [max(/?, p'), p' + p].
Proof. The proof of the boundedness of T* on Lp(w) for w £ Ap given in
[4] will give the required exponent, as long as we sharpen one of the inequalities
used, namely the good- k inequality

\{x£Q:T*fi>2a,  Mfi < ya}\ < Cy\Q\,
which holds for any cube Q in the Whitney decomposition of {T*f > a}. We
replace it by the sharp good- k inequality

(2.10) \{x£Q:T*fi>2a,  Mf<ya}\<Ce-c'?\Q\,
for such cubes, which is proven in Lemma 2.13 below.

To see that the dependence is best possible, we give examples on R (similar
examples can be found in R" for « > 1). Choose w(x) = |x|(p_1)(1_,5) and
f(x) = |x|-1+^[0,i], so that jfpw = 1/0. For x > 2, H fix) ~ l/Sx and
so

/»OO

J2   \Hfi\pw~l/Sp+x~S-'>\\f\\Pmw).

Since ô~p ~ KlO, the best power must be at least p'. Since the operator
norm for T: LP(w) -+ Lp(w) can be at least CK^^, the operator norm for
T: Lp'io) -» LPfa) is also at least CKÍ,P = CKa . Thus, the best power in
our estimate must be at least max(/?, p') (an explicit example is provided by
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fix) = xôX[o,x]ix) and T = H ; it is easy to show that ||///||l/>(u;,[-i,o]) >
CKw\\fi\\u,(W).   D

We must now prove the sharp good-A inequality (2.10). The proof is a
modification, using standard good-A techniques, of Hunt's main result in [12]
which deals with the conjugate function on the unit circle. First we state an
elementary lemma which is needed.

Lemma 2.11. Suppose fi £ L°°iQ) and that T is an operator for which

H,: TW.) > .u * (Qük)'.
for all g £ LP and sufficiently large p and a, C being a constant independent
of p. Then,

\{x: Tfiix) > a}\ < Ce~a/e^^\Q\.
Proof. It suffices to prove this result for large a , since the result is trivial oth-
erwise. Let K = H/H«,. Since / £ L°°iQ), fi £ LpiQ) for all 1 < p < oo and
||/||p<|Ö|1/ptf,andso

l{x..Tm>a)l<(mfkj<QQli^)Z
Letting p = a/eK, we get the required result.   D

Remark 2.12. If T is the maximal operator, a singular integral operator, or a
maximal singular integral operator, then it satisfies the condition of the above
lemma (see [16, p. 48]).

Lemma 2.13. Let Q = (J Qj be the Whitney covering of {T* f > a) . Then

\{x £ Qj: T*f(x) > 2a,  Mf(x) < ya}\ < Ce~^\Qf\.
Proof. We can clearly assume that Mfi(xf) < y a for some Xn G Qj, and that
y is small. We write / = fi + fi , where fi = fxooQ, , and fi2 = /R»\iooe, • BY
standard estimation (as in the proof of Theorem III in [4]), we get that, for
x £ Qj , T* f2(x) <a + Cya < 3a/2, if y is small enough.

To handle / , we first let Q' = \JPk be the Whitney decomposition of
{Mfi > 2nya), where « is the dimension. Note that \\fi\\ < (101)"ya\Qj\,
and so Q' c 200Ô;. Let

«W-im'     TfI Ux)pk,       x £ rk,

and b = fix - g. Then g is supported in 200Qj, \\g\\oo < Cya and so, by
Lemma 2.11,

\{x£Qj:T*g>a/4}\<Ce-^\Qj\.
As for b , let us define Q" = \J2Pk. Since f^b = 0, we have, for x i Q" ,

T'bix) < £ / \b(t)\ \K(x - t) - Kix - tk)\,
t JPk
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where tk is the centre of Pk . It follows that

T*b(x) <Y [ \b(t)\ (—-.-^- ) dt'-yV   n\snk+l + (tk-x)»+i)

< CyaY-¡-^-= CyaA(x)
^ô»+x + (tk-xr+x

where ôk is the diameter of Pk .
Carleson's [2] exponential estimate of A tells us that

\{x£Qj:A(x)>c/y}\<Ce-^\Qj\,

and so, since Mfi(x) > y a if x £ Q," ,

\{x £ Qj: T*b(x) > a/4, Mfi(x) < ya}\ < Ce^Qf.

This, together with our estimates for f2 and g, is easily seen to imply the
desired result.   D

Let us now examine ^-dependence of operator norms for a particular class
of weights, namely power weights. In the case of the Hardy-Littlewood maximal
operator on power weighted spaces, we can clearly do no better than Theorem
2.5 (or Remark 2.8 for negative power weights, which are in Ax), since all our
examples so far have involved power weights. However, in contrast to the case
of general Ap weights, we can also give a best possible dependence result for
singular integral operators.

Theorem 2.14. If T is a singular integral operator on R" and 0 < <5 < 1, then
(i) w({T*fi>a})<(CKw/a)J\f\w,   ifw(x) = \x\-»«-*f
(ii) J\T*f\pw <CKpuJ\f\pw, ifw(x) = \x\-<x~sf
(iii) j\T*f\pw<CKÚ J\f\pw,  ifw(x) = \x\"(p-xXx-âK

The exponents in (i)-(iii) are best possible.

Proof. We first prove (i). By normalization, we can assume that H/Huí«,) = 1.
We write A¡ = {x £ R" : V < \x\ < V+x}, fi = fxAj ,fi,x= fiX{\x\<v^,, and
fi,2 = fi-fij,x- Clearly,

oo

w({T*fi>a})=   Jmr/>tt}n/lJ)
j=—oo

2 co

<EE w({T*fjii>a/2}nAj)
1=1   y'= — oo

2
= ^2 Si,    say.

i=x
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Now,

oo

Sx<   Yl 2-jn{l-ó)\{T*fij,x>a/2}nAj\
■■—oo

/  ~    2-Jn{x-V   f        \
[   2^  - / \fj,x\    •    by the unweighted theory
V=-oo J

= £ ¿ 2-Mi-fl  £  ||/fc|
j=—oo k<j+l

= ^£j\fk\(z2>-M1-S))
k=-ooJ \j>k-\ J

<- £ 2-»«x-v [\fn\<Ç.
a   ^—' y a

fc=—oo

As for 52, we note first that,

i = |/kü = W L/>>c ¿ 2-*»(1-«J) / i/i
*    ^ *=-oo Ja><

oo .

>C £  2fc"á-/   l/l

and so, if x £ Aj then

T*fi,2(x)<   Y T*fik(x)<C\Y   I     l/(y)l
k>j+X \k>j+X JAl<a, \x-y- v n

k>j+xJA^     J
<C\   Y  "+   l/l I <C2-^á.

But if 2"-"lá > ea, then

- log-, ca
]<—n-Ô—=J°-

It follows that

/J\x\<
s2< /     \xrniX-â)dx

|;r|<24>

2n<5^       1       Kw
ô aô       a

We next prove (iii). Here w(x) = |x|(i'~1)(l~'5). We define Aj as before, but
now we define /}, i = fX{\x\<2J-'} » an(i fj,2 = f—fj,\ • Now, as in the Sx case
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Of (i),
<^U n i_AJ a

E / \T*fi,2\pw<c E 2^-')(1-5)/ \rfj,i
i=-oojAJ ;—oo "^

oo ~

< C E 2^-'«1-á' / |/}>2|p
_/' = —OO

= c E /iaiÍe 2Mp_1)(1
k=-<x> \j<k+X

oo «

< C  £  2^-')(1-'5) / |/„
<:=—oo

<cj\f\"w.

-D(i-á)

As for the other terms, it is easy to see that if x £ Aj then T*/} < <
CMfijx < CMf(x). Now using Theorem 2.5, we get

E   / \T*fi,x\pw<C j\Mf\pw<CKpù j\f\pw.
j=—oo      i

Part (iii) now follows readily from the estimates of the last two paragraphs.
We next prove (ii). To see this, let w(x) = ^«(¿-'Hi-«*). By (iii), we have

\\T*f\\Lr(w) < CK¿,p\\f\\V{w), and so by Lemma 1.5,

||r*/ll^(CT)<C^'/p||/||^((7).

But Kfu^p = Ka p> and o(x) = |x|_"(1_<5), giving us our required result on
V'(<j).'

We are left with giving examples to show that the exponents in (i)-(iii) are
best possible. In (i), we let / = *[i,2j» T = H, the Hubert transform, and
a =1/3. Then \Hf(x)\ > 1/2 for x £ [0, 1] and /0' \x\-x+s dx = I/o ~ Kw .
In (ii) and (iii), the examples given in the proof of Theorem 2.9 suffice.   D

We now turn our attention to the Marcinkiewicz integral operator Jq , asso-
ciated with an open set Q of finite measure, which is defined for all /: Q —»
[0, oo) by the equation

wlw°/„/w»)»'^->r*'
where ô(y) = dist(v, Qc). This is the version of the Marcinkiewicz integral op-
erator used by Carleson in [2]. Ja is an important tool for controlling singular
integral operators (see [16]). The following result summarizes the dependence
of the resulting operator norm on the Ap norm of w .

Thoerem 2.15. // 1 < p < oo, then Ja is bounded on Lp(w) uniformly for all
open Q of finite measure if and only if w £ Ap . Furthermore, 11/0/11^(1«,^) <
CKW ||/ \\lp{w , a) ■ The dependence on Kw is best possible.

To prove Theorem 2.15, we first need the following lemma.
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Lemma 2.16. For any functions fi, g >0,

[ (Jaf)g <C f fiMg.
Jut* Ja

Proof. By Fubini's theorem,

Letting sfk = {u £ R": 2kS(y) < \u\ < 2*+1<5(v)} and making the change of
variable u = x - y , we get

g(x)L dx
R„rJ(y)"+' + |x-y|"+'

<   f gjy + u)du    y-, t  g(y + u)du
~J\u\<s(y)  s{y)n+l     hu    l"l

<

i\u\<S(y)    v\yy-        —j^k      \u\n+]

^lM(1 + £2-Â<«£M

The required result now follows easily.

Proof of Theorem 2.15. Suppose Jçi is bounded on Lp(w) uniformly for all
open Q of finite measure. Fix a cube Q, and let Q = 2Q. Then, for any
nonnegative function / supported on Q, J2Qf(x) ~ /g for all x £ Q. If
p > 1, let / = xqw~XI{-p~X) ■ Because J2q is bounded on Lp(w), it follows
that

.P r
-l/O-l)(/«)(/.-*- »)<c//q   / \^e / ^q

which clearly implies i/j € ^ .
For the case p = 1, let f = Xs f°r an arbitrary measurable subset 5 of Q.

The boundedness of J2Q on LP(w) now implies that

jH«>(e) ^ Cu;('s)-
If we take S = {iEß: w(x) < a} for any a > ao = essinfe«;, and then let
a -> (20 , we get ttig < Coo, i-e. w £ Ax .

In proving the converse, we may assume, without loss of generality, that /
is supported on Q and that ||/||lp(«j) = 1 • The case p = 1 follows by letting
g = w in Lemma 2.16, so we assume 1 < p < oo . If g is a function for which
II £ Hi/(<r) = 1 'tnen Lemma 2.16 tells us that,

/ (Jfi)g <C I fiMg
Jr" Jci

i/p /1 \ xip'
<c '

< CKa p, — CKW^P.
The required boundedness follows by duality. To see that this dependence is
best possible, we let w(x) = \x\~x+ô, f(x) = xsX[o,x](x), and Q = (0, 1).
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Now for 0 < x < 1, it is clear that
-1 (l-*á)

Jafi-x)>\j yâ~ldy 20
and so,

i     r°WlfW" > —— /   (\x\~x+s-D\x\~x+{p+x]ó)dxWJJ \\lp(w,[-xm > 2pôp I

1
ip + l)2PÔP+x

whereas ||/||^,(u;) = l/(p + 1)<?. Since Kw ~ I/o , it follows that

II^/HWH/Hzau)) ^ ckw,
as required.   D

Remark 2.17. Our three operator dependence results

\\Tf \\p       < CKp+p'\\ f\\pW1 J Wlp(w) — ^^w     \\J \\LP(w) '

\\Jf\\i,{w)<CKpw\\f\\Pmw)
tie together well intuitively because, if / is a function of bounded support B
then, roughly speaking, // can be as "nasty" as Tfi near B, but tends to be
smaller than it far from B , whereas M fi can control T fi far away from B ,
but not near B .

By way of contrast with the ^-dependence of the above operators, let us
finish by looking at simple averaging operators of the form TQ(f) = fi*Xç>/\Q\ ,
where Q is some cube. Tq is of course dominated by the maximal operator,
which proves that for any w e Ap , Tq is bounded on Lp(tv) (at least for 1 <
p < oo ) with norm-dependence on w of the form K%, . Intuitively, however,
Tq is so "close" to the identity operator that we expect to be able to get a better
exponent than p'. The following lemma shows that this is indeed the case
(simple examples show it is best possible).
Lemma 2.18. If I < p < oo, Tq is bounded on Lp(w) uniformly for all cubes Q
if and only if w £ Ap . Furthermore, for any cube Q centered at 0, WTQfWf,,^ <
CK lli/(to)
Proof. We may assume, without loss of generality, that / > 0. This allows us
to also assume Q is centered at 0, since otherwise we can bound Tq} by a
constant (dependent on Q) times TQlf where Q' is the smallest cube centered
at 0 containing Q.

Divide R" into the unique mesh M of cubes of equal sidelength and disjoint
interiors for which Q £ M. Suppose first that / is supported in some Qo £ M
and so T^/ is supported in 3Qo . If p > 1 then by Holder's inequality,

/    (ïni^Y'^^Jffip- í    if fipiy)wiy)dy)oiQo)p-lwix)dx

oiQo)p-
m        V3ß„

(Í   wix)dx) ffpw<CKw ffpw,
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IÔI ho0 [Je

as required. In the case p = 1 , we simply estimate

fi(y)dy\w(x)dx

fw) ( /    w(x)dx) /essinfw(y)
) \JiQo )    ytQo

<CKW[ I fiw

3(2o \JQ+x

For a general function /, we simply decompose / = ^2CeM fixe > and we get
the required result because of the limited amount of overlap among the supports
of the functions {xq/\Q\ * fXc)}c€M ■   □

3. Reverse Jensen inequalities

In this section, we examine some rather general reverse Jensen inequali-
ties and show their connection to the conditions Ap(dp) and RHp(dp). The
RHp(dp) condition (defined below) was first examined by Gehring [10] (in the
case p = Lebesgue measure), and it was Coifman and C. Fefferman [4] who
first showed the close relation between RHP and Ap conditions (they showed
that a weight is in some Ap space if and only if it is in some RHq space, but
there is no possible relationship between p and q).

Since then, the RHP condition has become important in its own right in the
theory of elliptic operators on Lipschitz spaces. Dahlberg [5] showed that the
Dirichlet problem for such operators is solvable with LP boundary values if
and only if harmonic measure is in RHp(do), where do is surface measure.
For further results in this direction, see [6, 7 and 8].

We say a positive Borel measure p is a doubling measure, p £ D, if p(2Q) <
CpiQ) for all cubes Q. We say w is a doubling weight if w dx is a doubling
measure. If Q is a cube we denote by l(Q) the sidelength of Q. We define
log+ x = log(2 + x).
Definition. If p £ D and 1 < p < oo, we say that w is a RHPidp) weight if

(3.1) (-lwpdp\      <K-lwdp

for all cubes Q. The smallest such K is referred to as the RHPidp)-noxm of
w.

Condition (3.1) is often called a "reverse Holder inequality," because it
is Holder's inequality with the direction of the inequality reversed (Holder's
inequality is of course true with K = 1). More generally, if || • ||i,e anQl
|| • ||2,Q are norms for functions defined on an arbitrary cube Q, and Jensen's
inequality implies that ||/||i,q < Ci||/||2,q, then we refer to the condition
ll^lb.Q < OINIIi.e as a reverse Jensen inequality (we will only be interested
in such inequalities when they hold uniformly for all cubes Q).

If px and p2 are positive doubling measures, we say that px is compara-
ble to p2 if there exist a, ß £ (0, 1) such that px(E)/px(Q) < ß whenever
p2(E)/p2(Q) < a for every E ç Q, and every cube Q. Let us now state a
result taken directly from [4], which is very useful for our purposes.
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Lemma 3.2. If px and p2 are positive doubling measures, the following are
equivalent :

(i) There exists C, ô > 0 such that for every E ç Q c R" ,

p2(E) (px(E)\S
PiiQ) -     \PxiQ))   "

(ii) p2 is comparable to px ■
(iii) px is comparable to p2.
(iv) dp2 = w(x)dpxix) and for every cube Q,

x

(-1 wx+âdpxY+S <C-[ wdp\.

Lemma 3.2 allows us to prove the following lemma, which generalizes to
Apidp) and RHPidp), results which are well known for p = Lebesgue measure.
For the rest of the section, p is an arbitrary but fixed doubling measure on R" ,
and dv = w dp .

Lemma 3.3. If w £ A^idp) then v £ D. Furthermore,

Aaoidp)=    U   RHPidp)=    U   Aqidp).
l<p<oo l<ff<oo

Proof. If we prove that v £ D, the rest of the lemma follows fairly easily
from Lemma 3.2 (alternatively, it is implied by Theorem 15 in Chapter 1 of
Strömberg and Torchinsky [17]), so we shall confine ourselves to proving that
v £D.

First note that the condition p £ D is equivalent to assuming there is some
Cx > 0 for which

(3.4) p(Q') < Cxp(Q)
for all cubes Q, Q' which are adjacent and of equal size.

We will now show, roughly speaking, that a very thin slice from a side of a
cube has very small p-measxixe compared with the full cube. For simplicity, we
will prove this for the cube Qo = {x: \x¡\ < 1} and the slice Se = {x: \x¡\ <
1, xx > 1 - e}

We divide Qo into 2" cubes of sidelength 1, half of which are in the slice
Sx . Applying the estimate (3.4) to each subcube in Sx and its adjacent subcube
in Qo\Sx, gives us the inequality p(Sx) < (Ci/(Ct -t- l))p(Q0). This process
can be continued to give /i(S2-<*+i>) < (Cj/(Ci + l))p(S2-k) (to see this, simply
divide S2-k into 2kn+n~k cubes of sidelength 2~(fe+1), half of which are in
S2-(k+\), and half in S2-k\S2-{k+i)). Thus

^(S2-0<(C,/(C, + l))*+V(Oo),
and so

(3.5) p(Se)/p(Q) - 0       (e - 0).
Clearly, the above argument will work equally well if we let Qo be an arbitrary

cube and Se be a slice of thickness l(Q)/2s and, in fact, the convergence in
(3.5) is uniform for all such cubes and slices.
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We are now ready to show that v £ D. Given a cube Q0, let us write
Qe = (1 + e)Qo for any e > 0. Since one can get Qq from Qc removing 2«
slices of thickness el(Q), it follows that

p(Qe)
uniformly for all cubes ßo • Using the fact that v £ Ax(dp) we conclude that
v(Qe\Qo)/v(QE) < 2 f°r some sufficiently small e > 0. Thus viQf) < 2uiQo)
which we can iterate to get the doubling condition i>(ßi) < 2ku(Qo) for any
fc>log1+e(2).    D

Given exponents 0<<7</?<oo,itis natural to consider the more general
reverse Holder's inequality

(3.6) (-fwpdp\     <K(iwidp\     .

Let us denote by RHp^idp) the class of weights satisfying (3.6) for all cubes
Q. In fact we have not introduced anything new: if p > 1 then RHPtqidp) =
RHpidp) for any 0 < q < p. This follows as a special case of the "self-
improving" nature of these weights: if w £ RHPt(¡idp), then w £ RHpridp)
for any 0 < r < q. To see this, we use both reverse and normal Holder
inequalities to get

(4wpdp)     <K(-lwidp

^(Uäf^U^äff
B=î

which clearly implies that w £ RHpr(dp).
It is reasonable to extend the definition of RHp(dp) so that it is defined for

all p > 0 by the equation RHp(dp) = RHpa(dp) for any q < p. The next
lemma, which links RHp(dp) with A^dp), is now easy to prove (this lemma
is also to be found in Strömberg and Torchinsky [17]).

Lemma 3.7. If 0 < p < oo, then w £ RHp(dp) if and only if wp £ A^dp).
Proof. If wp £ Aoo(dp) then, by Lemma 3.3, wp £ RHa(dp) for some q > 1.
Thus w £ RHpq(dp) c RHp(dp).

For the converse, we may assume p = 1. If w £ RH\ (dp) then, for any
0 < q < 1, wq £ RHx/q(dp) and so wq £ Ap(dp) for some 1 < p < oo by
Lemma 3.3. It follows that

l-l-wdp)   [4-wp^dp
IQ J     \JQ

! 4 w9dpU4 w>       u\

The inequality between the first and last terms is essentially the defining in-
equality for w £ A<j,_x+q)iq(dp), and so we A^dp).   D
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Remark 3.8. We showed at the beginning of this proof that if w £ RHp(dp),
then w £ RHp+e(dp) for some e > 0. This analog for RHP of Lemma 2.1
was first proved by Gehring [10] in the case p = Lebesgue measure.

The following lemma gives a couple of useful alternative characterizations
of Aoo(dp) (the first of which is a reverse Jensen inequality). Part (i), for
p = Lebesgue measure, is due to García-Cuerva and Rubio de Francia [9], and
part (ii) is due to Coifman and C. Fefferman [4].

Lemma 3.9. Each of the following is equivalent to w £ A^dp).
(i) For all cubes Q,

4 w dp < C exp I 4 log w dp
IQ \JQ

(ii) There are constants a and ß such that for all cubes Q,

(3.10) p({x £ Q: w(x) > ßv(Q)/p(Q))) > ap(Q).
Proof. We prove only (i), as the easy proof of (ii) for Lebesgue measure in [4]
can be readily modified to handle the more general case. To prove (i), suppose
that w £ Aao(dp). Then

4 wdp < C (4 w~£dp)       < Cexp I 4 logwdp j

where the first inequality is because w £ Aq(dp) for some 1 < q, and the
second inequality is by Jensen's lemma (since log*-1/6 is convex).

Conversely, if (i) is satisfied, then we can apply Jensen's inequality with
respect to the convex function ex¡2 to get

4 wdp< Cexp (4 logwdp) < C f 4 wx/2dp J
2

IQ \JQ

which implies w £ A0O(dp).   D

We shall now examine more general reverse Jensen inequalities, but first we
need to introduce some notation. Let F be the class of continuous increasing
functions mapping [0, oo) onto itself. If <f> £ F , we define

II/IUlo)(^) = inf {c > 0: j <p (^3) dp(x) < l}

if it exists. If 4> is convex, this is the usual Orlicz norm with respect to Q-
normalized Lebesgue measure. In other cases, this "norm" can still be defined
but it does not satisfy the triangle inequality.

If <j>x, <j>2 € F , <f>2°<f>x~l is convex, and tf>2(2x)/4>2(x) > 1+e2 , then it follows
from Jensen's inequality that, for all cubes Q, ||/||^|(¿Q)(^) < C||/||02(í,o)((ííí),
C being a constant that depends only on <p2o(f>~x(l) and e2 (the e2 condition
is unnecessary if (¡>2o(j)~x(l) > 1). We are interested in the connection between
conditions involving Ap(dp) or RHp(dp) and inequalities of reverse Jensen
type which hold uniformly for all cubes, i.e. inequalities of the form

(3.11) IHU(z.e)(aM) ̂ co\\w\\MLQ)(dß)   for all cubes Q,
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where w is some weight, Co is some constant and <j>2 o </>\x is convex (or
satisfies some related condition). For example, if <p2(x) = x2, and 4>\(x) = x,
then (3.11) is the defining condition for w e RH2(dp).

We are mainly interested in functions which "grow like powers of x" (as
opposed to exponentially, or logarithmically, or other such growth), so we will
make assumptions such as 4>f2x) < C¡tj)i(x) or <t>¡(2x) > (1 +e,-)$,(x) when-
ever they are useful for our purposes.

If there is some c > 0 for which

(3.12) (f)x(x) > fa(cx)   forallx>0,
then (3.11) is trivially true, so we confine our interest to the case where
(3.13) (j)x(x)/(t)2(cx)-^0(x^oo)   for all c> 0.
This is not a very restrictive assumption because, if <p2 o <j)~x is convex and if
( 1 +E2)(j)2(x) < <f>2(2x) < C2(j)2(x) (in which case (3.13) can be written simply as
4>x(x)/(f>2(x) —> 0 (x —* oo)), it is easily seen that (3.13) is true whenever (3.12)
is false. Interestingly, (3.13) makes superfluous the assumption that (¡>2o<pxx is
convex. In fact, our first result is the following.

Proposition 3.14. // tf>x is convex, and (3.13) and (3.11) are both satisfied, then
w £Aoo(dp).
Proof. Suppose that w $. A^dp). Let us fix 0 < e < 1/4 and let m be so
large that tpx(x)/(f>2(x/Co) < e whenever x > (/)~1(m/4). Then, by Lemma
3.9, there is a cube ß for which p(S) > (1 - l/m)p(Q), where

0r1(i/2)S= {x£Q: w(x) < ¿r(i) iwdß\

Letting w = w/WwW^^^^ , we see that -fQ w dp < 4>\~x ( 1 ) by Jensen's lemma.
Thus, if x £ S, <j)x(w(x)) < 1/2 and so JQ\S(px ° w > 1/2. Since p(Q\S) <
p(Q)/m , it follows that

1
<px o w dp >IL 4

where L = {x £ Q: </>x(w(x)) > m/4). From our definition of m , we get

Hi) dp > -r- > 1.iQ 4e
This contradicts (3.11), and so w £ Aoc(dp), as required.   G

As an example of this proposition, the case tpx (x) = x, faix) = x log+ x, p =
Lebesgue measure, is to be found in [7]. Proposition 3.14 says that weaker
conditions, such as that given by 4>xix) = x, <p2ix) = xlog+log+x are also
sufficient to guarantee x £ A^idp).

Ideally, we would like to generalize Lemma 3.7 by eliminating the hypothesis
that 0i is convex from the above theorem and proving that, assuming (3.13),
(f)2 o w £ Aooidp) if and only if (3.11) holds. Unfortunately, this is not true.
For example, let p = Lebesgue measure, wix) = min(l, x~xl2), <f>xix) = xx/2
and in

...     j x, x>10-10,
02(X) = \1O'V,       x< IQ-'«.
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Then (3.11) is true, but (p2(w(x)) behaves like j- for large x, and so it is not
an Am function.

Upon reflection, this counterexample reveals why we cannot prove such a
result. If (f>(x) is very small for x < Xq , the exact values of tf>(x) for x < xq
have very little effect on the (^(L^-norm of a function, whereas the Aoc(dp)
condition is very much dependent on the relative size of the weight at differ-
ent points, but independent of the average value of the weight in the interval.
Also, whatever result we can get should reflect the invariance of reverse Jensen
inequalities (involving a weight w) under the transformations w >-» bw (b > 0)
and the invariance of the condition tpow £ A0O(dp) under the transformations
4> h-> r<p (r > 0). The next theorem is fairly close to the result we want; it has
the advantage of being true, but the disadvantage of involving a whole family of
reverse Holder inequalities, and thus being a more difficult condition to verify.

Theorem 3.15. If </>x, (pi £ F, 4>x(x)/x —► 0 (x -+ oo), and (1 + E2)cj)2(x) <
<t>2(2x) < C2<f>2(x), then the following are equivalent:

(i) \\w\\rMLQ)(dß) < QIMUofr^HLeX^). for all r > 0, and all cubes Q.
(ii) (¡>2(bw) £ Aoo for every b > 0.

Proof. Suppose (i) is true, but, for some fixed b > 0, w2 = (j)2(bw) £ A^dp).
We may assume Co > 1 without loss of generality. Let us fix e > 0 and choose
m so large that tf>x(x)/x < e whenever x > tf>xx(m/4).

Since w2 $. Aoa , there is a cube ß for which p(S) > (1 - l/m)p(Q), where

S= \x£Q:w2(x)< ^ j^y2) Í w2dp

and K = c\0%l(Co)+l . We choose r so that jQ<j>x(rw2)dp = p(Q). It fol-
lows from our hypotheses that JQrw2dp < Kp(Q) and so, for all x £ S,
(j>x(rw2(x)) < 1/2. Arguing as in Proposition 3.14, we get

-fQrw2dp>¡-£,

which is a contradiction for e < \K .
Conversely, if (ii) is true, we show that (i) is true for fixed but arbitrary

r > 0. Since (ii) is true for all b > 0, we can assume ll^l^.or^Jtz-e)^) = 1 >
without loss of generality. But now, by Lemma 3.9, we get that

p({x £ Q: rtp2(w(x)) > ß(r<p2 o w)Q}) > ap(Q)

for some a and ß. It follows that jQrtj)2(w)dp< j¡(f)\~l(2/a) because, if this
were not so, then

p({x £ Q: tt>x(r<p2(w(x))) > 2/a}) > ap(Q),

which contradicts the assumption IMI^or^fi-eX^) = 1 • It now follows from
the "1 + 62" rate of growth assumption on <p2 that |M|r,/,2(z.G)(d/i) is bounded,
as required.   G

In the case <p2(x) = x, the parameters r and b in Theorem 3.15 become
superfluous, and so we get the following corollary.
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Corollary 3.16. If tf>x £ F, tf>x(x)/x -> 0 (x —► oo), then w £ A^ o \\w\\Li ((//i) <
Co\\w\\MLQ)(dß) ■

Let us now look at a class of inequalities that generalize the definitions of
Ap(dp) and RHp(dp). We will replace the function x ^ xp by a whole
class of similar functions, and associate a "norm" with each of these functions.
We then define a partial ordering on these functions which has the property
that if one function precedes another, its associated norm dominates the other;
furthermore, for a particular weight w, there is a reverse inequality between
these norms of w holding uniformly for all cubes if and only if a particular
power of w is in Ap(dp) for a particular p (1 < p < oo).

We first define the class of functions Gx c F. If <j> £ F then tf> £ Gx if
there are constants a, e > 0 for which:

(a) ax < (¡)(x),
(b) (p(x)/xr -» 0 (x -* oo) for all r > 1,
(c) tf>(2x) > (I + E)(J)(X) .

For example, the functions x i-> x(log+ x)r, and x h-> x(log+log+x)r are in
Gx for any r > 0. We then define

Gp = {x y^ (¡)(xp): 4> £ Gx),    forallp^O,
G« = {log},    G = U Gp.

peR
If 4> £ Gp, then tp has domain [0, oo) if p > 0, and tp has domain (0, oo)
if p < 0.

Suppose 4> £ Gp. If p f^ 0, and so 0(x) = <^i(xp) for some <px £ Gx, we
define ||iü||^,(l0)(^) tornean ||iup||^¿ ,,,,, where the latter norm is previously
defined because <px £ F. If <f> e F, then this definition of an tj)-noxm is
consistent with the previous definition. We define IMIiogz.e(^) in the obvious
way, namely

IMhogLe^) = exp ( 4 logu; <ty J .
We also define a partial ordering -< on 6. Let </>,- € C7P/ for / = 1, 2. Then

(i) For px, p2 > 0, (px <<p2 whenever <px(x)/<p2(x) —► 0 (x —» oo).
(ii) For pi, £>2 < 0 > 0i -< 4>2 whenever <p2(x)/(f)x(x) —> 0 (x —► 0).

(iii) For pi < 0 < p2, 4>x x log -< <pi.
In particular, it follows from the above and properties (a) and (b) of Gx that

if Px < Pi then tp\ -< tj>2. Also, x ^ xp is a minimal element in Gp for all
p > 0 and a maximal element in Cp for all p < 0. The next lemma shows
that this partial ordering is indeed very natural for our purposes.
Lemma 3.17. Ifi <Px, <pi £ G and ¡px -< <j>2 then

IMU(¿e)(rfn) < C\\w\\h{LQ)(dß).
Proof. Suppose 0, £ GPi for /' = 1, 2. If px > 0, then ¡fix, tj>2 £ F, and so
the 0,-norm is as defined for tp £ F.  Now, since tp\ -< <p2, it follows that
<px(x) < C<p2(x)  for all x > tf>~[x(l/2).   Letting w = w/\\w\\MLQ){dfl)  and
L = {x £ Q: <p\(w) > 1/2} , it follows that

4 (p2(w)dp > — 4 <px(w)dp > 2=;.
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Since property (c) of Gx clearly extends to Gp for all p > 0, the desired
conclusion follows easily.

If p2 < 0, we can reduce to the first case by letting 0,(x) = 0,(l/x), because
0,- £ G-Pi, <}>2 -< 0i, and

\MMLQ)(dß) = \\lM\^(LQ){dfty

If Px = 0 (so 0i = log), then we can choose p such that 0 < p < p2 , and
it follows from Jensen's inequality, and the previously handled "0 < Px < pf"
case, that

\\w\\\0i(LQ)(dß) < \\™\\L'Q(dß) ̂ C\\W\WLQ)(dß).

We can reduce the case p2 = 0 to the case p\ =0 by taking reciprocal functions
4>i(x), as before. Finally, the case px < 0 < p2 follows by combining the last
two cases.   G

We are now ready to state and prove the main theorem which classifies all
"reverse Jensen" inequalities involving functions in G.

Theorem 3.18. Suppose 0, £ Gp. for i = 1, 2, and 4>x ■< 02 • Then, the inequal-
ity
(3.19) \\wh2(LQ)(dß) < C\\w\\tí(Lg)m   fior all cubes Q
is equivalent to

(i)   wPl £ A^dp), if px > 0 (equivalently, w £ RHPl(dp)).
(ii)   w* £ Ar(dp) ,ifp2>0>px (where r = (px -p2)/px).

(iii)   wPx £ Aoc(dp), if p2 < 0 (equivalently, w~x £ RH-Pfdp)).

Proof. Let us first prove (i). It is sufficient to prove it in the case p2 = 1,
because of the way we defined \\w\\^LQ^dfl) for 0 £GP for p ± 0. Suppose w
satisfies (3.19). If p\ < 1, then by property (a) of Gx we see that

IMIll < C\\w\\ULQ)m < C\\w\\ML(2)m

and so property (b) of Gx and Corollary 3.16 together imply that w £ A^idp),
as required. If px = 1, then we can argue as in Proposition 3.14 that w £ A,*,
(in Proposition 3.14, we assumed 0i is convex, but we only used convexity to
prove that jQw < C, where w = w/Ww]]^^^^, a fact that follows easily
from property (a) of Gx).

Conversely, if w £ A^idp), then w £ RHPidp) for some p > 1, and so by
Lemmas 3.9 and 3.17,

\\wh2(LQ)(dß) < C\\w\\lpq < C\\w\\xog{LQ){dfl) < CIMI^^)^),

as required.
Next, we prove (ii). If (3.19) is true then, by property (a) of Gi,

WwWü¿m ^ C\\w\\MLQ){dß) < C\\w\\MLg)m < C||«;||L,,(</il)

and the inequality between the first and last norms implies that wPl £ Aridp),
where r = (px - p2)/px ■ Conversely, if wP2 £ Ar(dp), then wP2+£ £ Ar(dp),
and so

\\w\\MLe)(dll) < C\\w\\LPi+.m < C\\w\\Lyl+t/P2)m < C\\w\\MLQ)m.
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Finally, (iii) follows from (i) by taking reciprocal functions 0,, as in the proof
of Lemma 3.17.   G
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