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ESTIMATES FOR SOLUTIONS OF DIRAC EQUATIONS AND AN APPLICATION
TO A GEOMETRIC ELLIPTIC-PARABOLIC PROBLEM

QUN CHEN, JÜRGEN JOST, LINLIN SUN, AND MIAOMIAO ZHU

Abstract. We develop estimates for the solutions and derive existence and uniqueness results of
various local boundary value problems for Dirac equations that improve all relevant results known
in the literature. With these estimates at hand, we derive a general existence, uniqueness and
regularity theorem for solutions of Dirac equations with such boundary conditions. We also apply
these estimates to a new nonlinear elliptic-parabolic problem, the Dirac-harmonic heat flow on
Riemannian spin manifolds. This problem is motivated by the supersymmetric nonlinear σ-model
and combines a harmonic heat flow type equation with a Dirac equation that depends nonlinearly
on the flow.

Keywords and phrases: Dirac equation, existence, uniqueness, chiral boundary condition,
Dirac-harmonic map flow.

1. Introduction

The Dirac equation is one of the mathematically most important and fruitful structures from
physics. As the name indicates, it was first introduced by Dirac [25]. Dirac’s original equation
is hyperbolic, but the elliptic version, which this paper is concerned with, appears naturally
in geometry. Both solutions on closed manifolds and on manifolds with boundary have found
important applications. In this paper, we shall systematically investigate the boundary value
problem and derive results that are sharper and stronger than all relevant results known prior to
our work. We shall then provide a new application which depends on our regularity, existence
and uniqueness results and which could not have been derived with the results known in the
literature.

The mathematical history of boundary value problems for Dirac equations started with the
work of Atiyah, Patodi and Singer. In their seminal papers [4;5;6], they introduced a nonlocal
boundary condition for first order elliptic differential operators and established an index theorem
on compact manifolds with boundary. This constitutes a cornerstone of the theory of first order
elliptic boundary value problems.

In recent years, important progress has been achieved on various extensions, generalizations
and simplifications of the Atiyah-Patodi-Singer theory and their applications. In particular,
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in the works of Bismut and Cheeger [12], Booß-Bavnbek and Wojciechowski [14], Brüning and
Lesch [16;17], Bartnik and Chrusciel [10], Ballmann, Brüning and Carron [7], Bär and Ballmann [9],
etc., regularity theorems, index theorems and Fredholm theorems for such kind of elliptic bound-
ary value problems have been established.

Although the index theorems and Fredholm theorems give us information or criteria for the
existence of solutions, in many cases (for instance the proof of the positive energy theorem
e.g. [26;28;38;43] and Dirac-harmonic maps, see below), for an elliptic boundary problem and given
boundary data, one needs more precise results about the existence and uniqueness of solutions,
and usually this is based on appropriate global elliptic estimates for the solutions. This is our
motivation for studying the boundary values problems for Dirac equations.

In this paper, we first consider the existence and uniqueness for Dirac equations under a class
of local elliptic boundary value conditions B (including chiral boundary conditions, MIT bag
boundary conditions and J-boundary conditions, see the definitions in section 2, c.f. [9;29]). A
Dirac bundle E over a Riemannian manifold Mm (m ≥ 2) is a Hermitian metric vector bundle of
left Clifford modules over Cl(M), such that the multiplication by unit vectors in T M is orthogonal
and the covariant derivative is a module derivation. Let ∇0 be a smooth Dirac connection on E
and consider another Dirac connection of the form ∇ = ∇0 +Γ, that is, Γ ∈ Ω1(Ad(E)) commutes
with the Clifford multiplication. We shall work with the Dirac connection spaces Dp(E) defined
by the norm

∥Γ∥p B ∥Γ∥L2p(M) + ∥dΓ∥Lp(M) .

In particular, Γ need not be smooth.
The Dirac operator associated with the Dirac connection ∇ is defined by

/D B ei · ∇ei ,

where ei· denotes the Clifford multiplication, and {ei} is a local orthonormal frame on M. Here
and in the sequel, we use the usual summation convention. We will establish the existence and
uniqueness of solutions of the following Dirac equations:

(1.1)

 /Dψ = φ, M;
Bψ = Bψ0, ∂M,

where φ ∈ Lp(E),Bψ0 ∈ W1−1/p,p(E|∂M). Here and in the sequel, all of the Sobolev spaces of
sections of E are associated with the fixed smooth Dirac connection ∇0. Setting

p∗ > 1, if m = 2, p∗ ≥ (3m − 2)/4, if m > 2.

We have the following

Theorem 1.1. Let E be a Dirac bundle over a compact m-dimensional (m ≥ 2) Riemannian
manifold Mm with boundary. Suppose that Γ ∈ Dp∗(E), then for any 1 < p < p∗, (1.1) admits a
unique solution ψ ∈ W1,p(E). Moreover, ψ satisfies the following estimate

(1.2) ∥ψ∥W1,p(E) ≤ c
(
∥φ∥Lp(E) + ∥Bψ0∥W1−1/p,p(E|∂M)

)
,

where c = c
(
p, ∥Γ∥p∗

)
> 0.

This estimate is optimal in dimension 2 in the sense that the exponents cannot be improved. It
also improves the known estimates in higher dimensions. (The condition p∗ ≥ (3m−2)/4 for m >
2 arises from the unique continuation of Jerison [31] that we shall need in the proof.) For instance,
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in the fundamental work of Bartnik and Chruściel [10], only L2-estimates were developed. While
that was sufficient for their Fredholm theory of the Dirac operator, for the nonlinear setting
that we shall treat later in this paper, the finer Lp-estimates that we obtain here are necessary.
In [10], when applying the Fredholm criteria to get the existence of solutions, one needs additional
conditions (the mean curvature) on the boundary. Essentially, these conditions imply the triviality
of the kernel of the elliptic operators. In our case, this extra condition is unnecessary.

One key observation in our proof of the above theorem is that for a harmonic spinor ψ ∈
W1,p(E), the homogeneous boundary condition Bψ|∂M = 0 is equivalent to the zero Dirichlet
condition ψ|∂M = 0 (see Proposition 3.1 and Remark 3.4), which is not the case for general
spinors. Thus, the uniqueness problem for (1.1) can be reduced to the triviality of harmonic
spinor with zero Dirichlet boundary value for Dirac operators with a non-smooth connection
∇0 + Γ, Γ ∈ Dp∗ . To derive this uniqueness, in dimension m = 2, inspired by the approach of
Hörmander [30], we establish an L2 estimate with some suitable weight for our Dirac operators (see
Theorem 3.6); in dimension m > 2, we apply the weak unique continuation property (WUCP)
of Dirac type operators D + V , where D is a Dirac operator with a smooth connection and V
is a potential (see [18] for V continuous, [13] for V bounded, and [31] for V ∈ L(3m−2)/2) and use
some extension argument for Dirac operators on manifolds with boundary as in [14]. Finally, by
using the uniqueness result of our boundary value problem ( /D,B), we can improve the standard
elliptic boundary estimate for Dirac operators to our main Lp estimate (1.2) (see Theorem 3.11
and Remark 3.7), which is uniform in the sense that the constant c = c

(
p, ∥Γ∥p∗

)
> 0 depends

on the ∥·∥p∗ norm of Γ but not on Γ itself - a property playing an important role in our later
application to some elliptic-parabolic problem.

We can also apply the above result to derive the existence and uniqueness for boundary value
problems for Dirac operators along a map. This will also be needed for the Dirac-harmonic map
heat flow introduced below. Let M be a compact Riemannian spin manifold with boundary ∂M,
N be a compact Riemannian manifold and Φ a smooth map from M to N. Given a fixed spin
structure on M, let ΣM be the spin bundle of M. On the twisted bundle ΣM ⊗ Φ−1T N , one can
define the Dirac operator /D along the map Φ, i.e.,

/DΨ B /∂ψα ⊗ θα + ei · ψα ⊗ ∇T N
Φ∗(ei)θα.

Here Ψ = ψα ⊗ θα, {θα} are local cross-sections of Φ−1T N, {ei} is a local orthonormal frame of
T M, /∂ = ei · ∇ei is the usual Dirac operator on the spin bundle over M and X· stands for the
Clifford multiplication by the vector field X on M. We say that Ψ is a harmonic spinor along the
map Φ if /DΨ = 0.

Theorem 1.2. Let Mm (m ≥ 2) be a compact Riemannian spin manifold with boundary ∂M,
N be a compact Riemannian manifold. Let Φ ∈ W1,2p∗(M; N). Then for every 1 < p < p∗,
η ∈ Lp

(
M;ΣM ⊗ Φ−1T N

)
and Bψ ∈ W1−1/p,p(∂M;ΣM ⊗ Φ−1T N), the following boundary value

problem for the Dirac equation  /DΨ = η, M;
BΨ = Bψ, ∂M
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admits a unique solution Ψ ∈ W1,p(M;ΣM ⊗ Φ−1T N), where /D is the Dirac operator along the
map Φ. Moreover, there exists a constant c = c

(
p, ∥Φ∥W1,2p∗ (M)

)
> 0 such that

∥Ψ∥W1,p(M) ≤ c
(
∥η∥Lp(M) + ∥Bψ∥W1−1/p,p(∂M)

)
.

We shall then apply these estimates and existence results to a new elliptic-parabolic problem in
geometry that involves Dirac equations. The novelty of this problem consists in the combination
of a second order semilinear parabolic equation with a first order elliptic side condition of Dirac
type. We see this as a model problem for a heat flow approach to various other first order elliptic
problems in geometric analysis. In any case, this is a nonlinear system coupling a Dirac equation
with another prototype of a geometric variational problem, that of harmonic maps. The problem
is also motivated by the supersymmetric nonlinear σ-model of QFT, see e.g. [24;32] where the
fermionic part is a Dirac spinor. In fact, this is one of the most prominent roles that Dirac
equations play in contemporary theoretical physics, as this leads to the action functional of super
string theory.

In order to set up that problem, we first have to recall the notion of Dirac-harmonic maps.
Consider the following functional

L(Φ,Ψ) =
1
2

∫
M

(
∥dΦ∥2 + (

Ψ, /DΨ
))
,

where (, ) = Re ⟨, ⟩ is the real part of the induced Hermitian inner product ⟨, ⟩ on ΣM ⊗ Φ−1T N.
A Dirac-harmonic map (see [20;21]) then is defined to be a critical point (Φ,Ψ) of L. The Euler-

Lagrange equations are

τ(Φ) =
1
2

(
ψα, ei · ψβ

)
RN(θα, θβ)Φ∗(ei) C R(Φ,Ψ),(1.3)

/DΨ = 0,(1.4)

where RN(X,Y) B [∇N
X ,∇N

Y ] − ∇N
[X,Y],∀X,Y ∈ Γ(T N) stands for the curvature operator of N and

τ(Φ) B (∇eidΦ)(ei) is the tension field of Φ.
The general regularity and existence problems for Dirac-harmonic maps have been considered

in [20;21;22;23;40;42;45]. The existence of uncoupled Dirac-harmonic maps (in the sense that the map
part is harmonic) via the index theory method was obtained in [3]. For the construction of exam-
ples of coupled Dirac-harmonic maps (in the sense that the map part is not harmonic), we refer
to [2;35].

Here, we want to propose and develop an alternative approach to the existence of Dirac-
harmonic maps. This will be the parabolic or heat flow approach. (1.3) is a second-order elliptic
system, and so, we can turn it into a parabolic one by letting the solution depend on time t and
putting a time derivative on the left hand side. In contrast, (1.4) is first order, and so, we cannot
convert it into a parabolic equation, but need to carry it as a constraint along the flow. Thus,
we introduce the following flow for Dirac-harmonic maps: For Φ ∈ C2,1,α(M × (0,T ]; N) and
Ψ ∈ C1,0,α(M × [0,T ];ΣM ⊗ Φ−1T N)

(1.5)

∂tΦ = τ(Φ) − R(Φ,Ψ), M × (0,T ];
/DΨ = 0, M × [0,T ],
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with the boundary-initial data

(1.6)

Φ = ϕ, M × {0} ∪ ∂M × [0,T ];
BΨ = Bψ, ∂M × [0,T ],

where ϕ ∈ C2,1,α(M × {0} ∪ ∂M × [0,T ]; N) and ψ ∈ C1,0,α(∂M × [0,T ];ΣM × ϕ−1T N), and
f ∈ Ck,l,α means that f (x, ·) ∈ Cl+α/2 and f (·, t) ∈ Ck+α. We call this system (1.5) the heat flow for
Dirac-harmonic map.

We consider this problem as a model for a parabolic approach to other problems in geometric
analysis that involve first order side conditions. Also, we shall use this problem to demonstrate
the power of our estimates for Dirac equations.

We shall apply our elliptic estimates for Dirac equations with boundary conditions to obtain
the local existence and uniqueness of the heat flow for Dirac-harmonic map. The long time
existence will be considered elsewhere, as it involves problems of a different nature.

Theorem 1.3. Let Mm (m ≥ 2) be a compact Riemannian spin manifold with boundary ∂M, N
be a compact Riemannian manifold. Suppose that

ϕ ∈ ∩T>0C2,1,α(M̄ × [0,T ]; N),

and

Bψ ∈ ∩T>0C1,0,α(∂M × [0,T ];ΣM ⊗ ϕ−1T N)

for some 0 < α < 1, then the problem consisting of (1.5) and (1.6) admits a unique solution

Φ ∈ ∩0<t<τ<T1C
2,1,α(M̄ × [t, τ]) ∩C0(M̄ × [0,T1]; N),

and

Ψ ∈ ∩0<t<τ<T1C
1,0,α(M̄ × [t, τ]) ∩C2,0,α(M × (0,T1)) ∩C1,0,0(M̄ × [0,T1];ΣM ⊗ Φ−1T N)

for some time T1 > 0. The maximum time T1 is characterized by the condition

lim sup
t<T1,t→T1

∥dΦ(·, t)∥C0(M̄) = ∞.

Remark 1.1. All our results Theorem 1.1, Theorem 1.2 and Theorem 1.3 hold for the chiral
boundary operatorsB± B 1

2 (Id±n ·G) , the MIT bag boundary operatorsB±MIT B
1
2

(
1 ±
√
−1n

)
,

and the J-boundary operators B±J B 1
2 (Id±n · J). We will only give the proofs for the case of

the chiral boundary conditions. The proofs for the other cases are similar and hence we will omit
them.

We would like to mention that Branding [15] considered regularized Dirac-harmonic maps from
closed Riemannian surfaces and studied the corresponding evolution problem.

The paper is organized as follows. In section 2, we provide the definitions of Dirac bundle
etc. and Dirac-harmonic maps. We also derive the Euler-Lagrange equation for Dirac-harmonic
maps. In section 3, we derive some elliptic estimates and the existence and uniqueness of so-
lutions of Dirac equations with chiral boundary value conditions. In section 4, we will prove
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Theorem 1.2. In section 5 we give a proof of the short time existence for the flow of Dirac-
harmonic maps, Theorem 1.3. Finally, in section 6 we discuss a special case of the Dirac equa-
tion along a map between Riemannian disks. In this special case, the solution can be given
through Cauchy integrals.

Notations:

The lower case letter c will designate a generic constant possibly depending on M,N and other
parameters, but independent of a particular solution of (5.1) and (5.2), while the capital letter C
will designate a constant possibly depending on the solutions.

We list some notations in the following:
ΣM the spin bundle on M.
hom E the homomorphism bundle of E.
Ck(M; N) the space of all Ck-maps from M to N.
Ck(E) = Ck(M; E) the space of all Ck-cross sections of E where E is a vector bundle
on M.
Ck(∂M; E) the space of all Ck-cross sections of E restricted to the boundary ∂M.
Ck,l,α(M × I; E) the space of all cross sections ψ(·, t) of E such that ψ ∈ Ck,l,α(M × I).
W s,p(E) = W s,p(M; E).
End E the endomorphism bundle of E.
Ωp(E) = Γ (ΛpT ∗M ⊗ E) the space of all E-valued p-forms on M.
Ωp(son) = Ωp(M) ⊗ son.
Ad(E) a sub-bundle of End(E) such that for all A ∈ Ad(E), we have that A = −A∗.
A(D) the space of all holomorphic functions on D.
∥·∥ the inner norm, i.e., ∥ψ∥2 = ⟨ψ, ψ⟩. We also use the same notation for some special
norms in the sequel, as will be specified in the appropriate places.

2. Preliminaries

2.1. Dirac bundles.

Definition 2.1 (See [36].). Let E be a Hermitian bundle on a Riemannian manifold Mm of left
Clifford modules over Cl(M). Denote the Clifford multiplication, the metric and the connection
by ·, ⟨, ⟩ ,∇ respectively. We say that E is a Dirac bundle, if the following properties hold:
D1 The Clifford multiplication is parallel, i.e., the covariant derivative on E is a module deriva-

tion, i.e.,

∇X (Y · ψ) = ∇XY · ψ + Y · ∇Xψ, ∀X,Y ∈ Γ(T M), ψ ∈ Γ(E).

D2 The Clifford multiplication by unit vectors in T M is orthogonal, i.e.,

⟨X · ψ, φ⟩ = − ⟨ψ, X · φ⟩ , ∀X ∈ T M, ψ, φ ∈ E.

D3 The connection is a metric connection, i.e.,

X ⟨ψ, φ⟩ = ⟨∇Xψ, φ⟩ + ⟨ψ,∇Xφ⟩ , ∀X ∈ T M, ψ, φ ∈ Γ(E).

We call such a connection a Dirac connection.
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Then one can define the Dirac operator associated to a Dirac bundle by

/D B γE ◦ ∇,
where γE stands for the Clifford multiplication on E. In local coordinates, /D is given by

/D = γE(ei)∇ei = ei · ∇ei

where {ei} is a local orthogonal frame of T M. One can check that /D is self-adjoint, i.e., we have
the following Green formula∫

M

⟨
/Dψ, φ

⟩
=

∫
M

⟨
ψ, /Dφ

⟩
+

∫
∂M
⟨n · ψ, φ⟩ , ∀ψ, φ ∈ Γ(E).

Suppose E is a Dirac bundle on M and F = E|∂M is the restriction of E to the boundary ∂M.
Then F is a Dirac bundle in a natural way as follows.
F1 The metric on F is just the restriction of E on ∂M.
F2 The Clifford multiplication of F, denoted by γ, is defined as

γ(X)ψ B n · X · ψ, ∀X ∈ T∂M, ψ ∈ F.

F3 The connection ∇̄ of F is defined as

∇̄Xψ B ∇Xψ +
1
2
γ(A(X))ψ, ∀X ∈ Γ(T∂M), ψ ∈ Γ(F),

where A is the shape operator of ∂M with respect to the unit outward normal field n along
∂M.

Lemma 2.1. This construction gives a Dirac bundle F on ∂M.

Proof. (1) It is obvious that γ ◦ A ∈ Ω1(Ad(F)). As a consequence, ∇̄ is a metric connection
on F. Moreover, γ(X) ∈ Γ(Ad(F)).

(2) Let B be the second fundamental form of ∂M in M. For every X,Y ∈ Γ(T∂M) with
∇̄XY = 0 at the considered point,

∇̄X(γ(Y)ψ) =∇X(n · Y · ψ) +
1
2

A(X) · Y · ψ

= − A(X) · Y · ψ + n · B(X, Y) · ψ + n · Y · ∇Xψ +
1
2

A(X) · Y · ψ

= − A(X) · Y · ψ − ⟨A(X), Y⟩ψ + n · Y · ∇Xψ +
1
2

A(X) · Y · ψ

= − A(X) · Y · ψ + 1
2

A(X) · Y · ψ + 1
2

Y · A(X) · ψ + n · Y · ∇Xψ +
1
2

A(X) · Y · ψ

=n · Y · ∇Xψ +
1
2

Y · A(X) · ψ = γ(Y)∇̄Xψ.

This identity means that γ is parallel.
Therefore, F is a Dirac bundle on ∂M. □

The Dirac operator /̄D of F, defined by

/̄D B γ(ei)∇̄ei ,
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where {ei} is a local orthogonal frame of T∂M, according to the definition, satisfies the following
relationship

/̄D = n · /D + ∇n −
m − 1

2
h

where h is the mean curvature of ∂M with respect to n. If M is a surface, −h is just the geodesic
curvature of ∂M (as a curve) in M.

2.2. Chiral and MIT bag boundary value conditions. In this subsection, we introduce the
chiral and MIT bag boundary conditions (c.f. [9;29]). We say that G is a chiral operator if G ∈
Γ(End(E)) satisfies

G2 = Id, G∗ = G, ∇G = 0, GX· = −X ·G
for every X ∈ T M. It is easy to check that

γ(X)G = Gγ(X), ∇̄G = 0, /̄DG = G /̄D, /̄Dn· = −n · /̄D
hold on the boundary ∂M for all X ∈ T∂M. The chiral boundary operator B± is defined by

B± B 1
2

(Id±n ·G) .

It is obvious that (B±)∗ = B∓ and /̄DB± = B∓ /̄D. The chiral boundary operator is elliptic [9] since

n · X · B± = B∓ · n · X, ∀X ∈ T∂M.

The MIT bag boundary operator is defined by

B±MIT B
1
2

(
Id±
√
−1n

)
.

More generally, when J ∈ Γ(End(E)) satisfies

J2 = − Id, J∗ = −J, ∇J = 0, JX· = X · J
for every X ∈ T M, we can define a boundary operator, called the J-boundary operator, by

B±J B
1
2

(Id±n · J) .

If J =
√
−1, then it is easy to see that the MIT bag boundary operator is just the

√
−1-boundary

operator. Another example is J =
√
−1G1G2 where [G1,G2] = 0 with G1,G2 being chiral

operators. In fact, in our setting, the J-operator is just a multiplication of the chiral operator G
by e1 · e2· and vise versa. One can check that B±J is elliptic since

B±J · n · X = n · X · B∓J , ∀X ∈ T∂M.

For simplicity, we shall denote by B one of B±, B±MIT and B±J . For the sake of convenience, in
the sequel, we will mainly consider the case of chiral boundary conditions and omit the detailed
discussions of the other cases of boundary conditions.

The following theorem is well known, see [9;22;39;40].

Theorem 2.2 (See [39], p.55, Theorem 1.6.2). The operator

( /D,B) : W s,p(E) −→ W s−1,p(E) ×W s−1/p,p(E|∂M)
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is Fredholm for all s ≥ 1 and 1 < p < ∞. Moreover the kernel and co-kernel are independent of
the choice of s and p. Therefore, we have the following elliptic a-priori estimate

∥ψ∥W s,p(E) ≤ c
(∥∥∥ /Dψ∥∥∥

W s−1,p(E)
+ ∥Bψ∥W s−1/p,p(E|∂M) + ∥ψ∥Lp(E)

)
,

where c = c(p, s,M, ∂M, /D,B) > 0.

Proof. It is a consequence of the fact that ( /D,B) is an elliptic operator for s ≥ 1 and 1 < p <
∞. □

2.3. Dirac connection spaces. Let E be a Dirac bundle. We consider the affine space of those
connection ∇ for which E is again a Dirac bundle. Choose a connection ∇0, then for any other
connection ∇ on E,

∇ = ∇0 + Γ.

Here Γ ∈ Ω1(End(E)).

Lemma 2.3. Suppose ∇0 is a Dirac connection, then ∇ B ∇0 + Γ is a Dirac connection if and
only if

Γ ∈ Ω1(Ad(E)), [Γ, γE] = 0,
where γE denotes the Clifford multiplication of E.

Proof. We only need to check that γE is parallel. For every X,Y ∈ Γ(T M) with ∇XY = 0 at the
considered point, we have

∇X(γE(Y)ψ) = ∇0X(γE(Y)ψ) + Γ(X)γE(Y)ψ = γE(Y)∇0Xψ + γ
E(Y)Γ(X)ψ = γE(Y)∇Xψ.

□

Introduce /Γ B γE ◦ Γ = γE(ei)Γ(ei), then

/D = /D0 + /Γ,

where /D, /D0 are the Dirac operators associated to the connection ∇,∇0 respectively. From now
on, we will consider the modified non-smooth connection ∇0 + Γ, denoted by ∇. All of the
Sobolev spaces are associated with some fixed smooth connection ∇0. It is well known that this
definition of Sobolev spaces is independent of the choice of ∇0 if M is compact. However, the
connection ∇ need not be smooth, i.e., we only assume that Γ belongs to some special function
space. For example,

dΓ ∈ Lp∗(M), Γ ∈ L2p∗(M),
where

p∗ > 1, if m = 2, p∗ ≥ 3m − 2
4

, if m > 2.

Definition 2.2. For p ≥ 1, define Dp(E) to be the completion of the subspace of Ω1 (Ad(E))
defined by

D(E) =
{
Γ ∈ Ω1 (Ad(E)) : [Γ, γE] = 0

}
,

with respect to the norm

∥Γ∥p B ∥Γ∥L2p(M) + ∥dΓ∥Lp(M) .

We call these spaces the Dirac connection spaces.
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2.4. Dirac-harmonic maps. Let (Mm, g) be a compact Riemannian spin manifold with (pos-
sibly empty) boundary ∂M, and (Nn, h) be a compact Riemannian manifold. Concerning the
definition and properties of Riemannian spin manifolds, we refer the reader to [36] for more back-
ground material. For any (Φ,Ψ) ∈ C1(M,N) × Γ(ΣM ⊗ Φ−1T N), we consider the following
functional [20]

L(Φ,Ψ) =
1
2

∫
M

(
∥dΦ∥2 + (

Ψ, /DΨ
))
,

where (, ) = Re ⟨, ⟩ is the real part of the Hermitian inner product ⟨, ⟩.
A Dirac-harmonic map (see [20;21]) then is defined to be a critical point (Φ,Ψ) of L. The Euler-

Lagrange equations areτ(Φ) =
1
2

(
ψα, ei · ψβ

)
RN(θα, θβ)Φ∗(ei) C R(Φ,Ψ),

/DΨ = 0,

where RN(X,Y) B [∇N
X ,∇N

Y ] − ∇N
[X,Y], X, Y ∈ Γ(T N) stands for the curvature operator of N and

τ(Φ) B (∇eidΦ)(ei) is the tension field of Φ.
Embed N into Rq isometrically for some integer q. We may assume there is a bounded tubular

neighborhood Ñ of N in Rq. Let π : Ñ −→ N be the nearest point projection. We may assume π
can be extended smoothly to the whole Rq with compact support. Now we can derive the Euler-
Lagrange equation for L. Let Φ : M −→ N with Φ = (ΦA), and a spinor Ψ = ΨA ⊗ ∂A ◦ Φ along
the map Φ with Ψ = (ΨA) where ΨA are spinors over M,and ∂A = ∂/∂zA. Notice that dπ|N is an
orthogonal projection and dπ(T⊥N) = 0. In fact,

dπ(X) = X, ∀X ∈ T N,

and

dπ(ξ) = 0, ∀ξ ∈ T⊥N

where T⊥N is the normal bundle of N in Rq. Hence, restricted to N, we have

πA
Bπ

B
C = π

A
C, πA

B = π
B
A.

It is easy to check that
νA

B(Φ)∇ΦB = 0, νA
B(Φ)ΨB = 0,

where νA
B B δA

B − πA
B.

For any smooth map η ∈ C∞0 (M,Rq) and any smooth spinor field ξ ∈ C∞0 (ΣM⊗Rq), we consider
the variation

Φt = π(Φ + tη), ΨA
t = π

A
B(Φt)(ΨB + tξB).

It is easy to check that

Φ0 = Φ, Ψ0 = Ψ

and

∂ΦA
t

∂t

∣∣∣∣∣∣
t=0

= πA
B(Φ)ηB,

∂ΨA
t

∂t

∣∣∣∣∣∣
t=0

= πA
B(Φ)ξB + πA

BC(Φ)πC
D(Φ)ΨBηD,
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where

πA
B =

∂πA

∂zB , πA
BC =

∂2πA

∂zB∂zC , . . . .

Moreover,

(2.1) πA
BC(Φ)πC

D(Φ) = πB
AC(Φ)πC

D(Φ), πA
BC = π

A
CB.

Then we have

Proposition 2.4. The Euler-Lagrange equations for L are

∆ΦA = πA
BC(Φ)

⟨
∇ΦB,∇ΦC

⟩
+ πA

B(Φ)πC
BD(Φ)πC

EF(Φ)
(
ΨD,∇ΦE · ΨF

)
,

and

/∂ΨA = πA
BC(Φ)∇ΦB · ΨC.

Remark 2.1. Denote

ΩA
B B νA

C(Φ)dνC
B(Φ) − dνA

C(Φ)νC
B(Φ) = [ν(Φ), dν(Φ)]A

B,

RA
GDF B πA

Bπ
C
BDπ

G
Eπ

C
EF − πG

Bπ
C
BDπ

A
Eπ

C
EF

and

Ω̃A
G B

1
2

RA
GDF(Φ)

(
ΨD, ei · ΨF

)
ηi.

Then ΩA
B = −ΩB

A, Ω̃A
B = −Ω̃B

A and the Euler-Lagrange equations for L can be rewritten as
follows [23] ∆ΦA = −

⟨
ΩA

B, dΦ
B
⟩
+

⟨
Ω̃A

B, dΦ
B
⟩
,

/∂ΨA = −ΩA
B · ΨB.

Using the Clifford multiplication · for the Dirac bundle Ω∗(M), we can also write the above
system as follows: ∆ΦA = ΩA

B · dΦB +
⟨
Ω̃A

B, dΦ
B
⟩
,

/∂ΨA = −ΩA
B · ΨB.

Proof of Remark 2.1. The proof is similar to [23]. However, we will present a proof here using our
notations. Introduce

S AC
D B πA

Bπ
C
BD,

then
RA

GDF = S AC
D S GC

F − S GC
D S AC

F

satisfies
RA

GDF = −RG
ADF = −RA

GFD.

Moreover, ⟨
Ω̃A

B, dΦ
B
⟩
=

1
2

RA
GDF(Φ)

(
ΨD,∇ΦG · ΨF

)
=S AC

D S GC
F

(
ΨD,∇ΦE · ΨF

)
=πA

Bπ
C
BDπ

C
EF

(
ΨD,∇ΦE · ΨF

)
.
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Now we need only to check that
ΩA

B ∧ dΦB = 0.

Using the fact νA
BdΦB = 0, we have that

ΩA
B ∧ dΦB = νA

CdνC
B ∧ dΦB = 0.

□

Proof of Proposition 2.4. Note that both η and ξ have compact support in M̊. Since

L(Φ,Ψ) =
1
2

∫
M

(∥∥∥∇ΦA
∥∥∥2
+

(
ΨA, /∂ΨA

))
,

then, by using the relationship (2.1),

dL(Φt,Ψt)
dt

∣∣∣∣∣
t=0
=

∫
M

⟨
∇ΦA,∇(πA

Bη
B)

⟩
+

1
2

∫
M

(
πA

Bξ
B + πA

BCπ
C
DΨ

BηD, /∂ΨA
)

+
1
2

∫
M

(
ΨA, /∂

(
πA

Bξ
B + πA

BCπ
C
DΨ

BηD
))

=

∫
M

⟨
∇ΦA, πA

B∇ηB + πA
BC∇ΦCηB

⟩
+

∫
M

(
πA

Bξ
B + πA

BCπ
C
DΨ

BηD, /∂ΨA
)

+
1
2

∫
∂M

(
ΨA,n ·

(
πA

Bξ
B + πA

BCπ
C
DΨ

BηD
))

= −
∫

M

(
∆ΦA − πA

BC

⟨
∇ΦB,∇ΦC

⟩
− πA

Bπ
C
BDπ

C
EF

(
ΨD,∇ΦE · ΨF

))
ηA

+

∫
M
πA

Bπ
C
BD

(
ΨD, /∂ΨC − πC

EF∇ΦE · ΨF
)
ηA +

∫
M

(
/∂ΨA − πA

BC∇ΦB · ΨC, ξA
)

+

∫
∂M
∇nΦ

AηA +
1
2

(
ΨA,n · ξA

)
= −

∫
M

(
∆ΦA − πA

BC

⟨
∇ΦB,∇ΦC

⟩
− πA

Bπ
C
BDπ

C
EF

(
ΨD,∇ΦE · ΨF

))
ηA

+

∫
M
πA

Bπ
C
BD

(
ΨD, /∂ΨC − πC

EF∇ΦE · ΨF
)
ηA +

∫
M

(
/∂ΨA − πA

BC∇ΦB · ΨC, ξA
)
,

where n is the unit outward normal vector field along ∂M. □

3. Existence and uniqueness of solutions of Dirac equations with chiral boundary conditions

In this section, we suppose that Mm (m ≥ 2) is a compact Riemannian spin manifold with
boundary ∂M and E is a Dirac bundle on M. We want to derive an existence and uniqueness
result for solutions of Dirac equations with chiral boundary conditions. The key observation is
that for harmonic spinors, the homogeneous chiral condition is equivalent to the zero Dirichlet
boundary condition. With this observation, we can derive a useful L2-estimate for solutions
of Dirac equations with chiral boundary conditions. The assumption that the boundary is non-
empty is essential here. Another application of this observation is that one can derive Schauder
boundary estimates.
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3.1. A property of chiral boundary conditions. Importantly, the chiral boundary condition is
conformally invariant. Moreover, it satisfies

Proposition 3.1. Suppose that ∇ is a smooth Dirac connection, then for every ψ ∈ H1(E), we
have ∣∣∣∣∣∫

∂M

(
∥ψ∥2 − 2 ∥Bψ∥2

)∣∣∣∣∣ ≤ 2 ∥ψ∥L2(E)

∥∥∥ /Dψ∥∥∥
L2(E)

.

Proof. First, we assume that ψ is smooth. Introduce a vector field

X B
1
2

(ψ, ei ·Gψ) ei,

then

⟨X,n⟩ = 1
2
⟨ψ,n ·Gψ⟩ ,∥∥∥B±ψ∥∥∥2

=
1
2
∥ψ∥2 ± ⟨X,n⟩ ,

and

div X = − (
/Dψ,Gψ

)
.

Using these facts and integrating by parts, we get that∣∣∣∣∣∫
∂M

(
∥ψ∥2 − 2 ∥Bψ∥2

)∣∣∣∣∣ = 2
∣∣∣∣∣∫

M

(
/Dψ,Gψ

)∣∣∣∣∣ ≤ 2
∥∥∥ /Dψ∥∥∥

L2(E) ∥ψ∥L2(E) .

The general case follows since Γ(E) is dense in H1(E). □

Remark 3.1. This proposition says that the following two systems /Dψ = 0, M;
Bψ = 0, ∂M,

 /Dψ = 0, M;
ψ = 0, ∂M,

are equivalent. This fact is important for our whole theory of Dirac equations. With this obser-
vation, we then can solve Dirac equations with chiral boundary value conditions.

Remark 3.2. Proposition 3.1 also holds for J-boundary operators. The proof is similar to Proposition 3.1
and we omit it here. Moreover, all the results in the sequel associated to chiral boundary values
are also valid for J-boundary values. Again, we omit the proof.

3.2. Regularity of weak solutions and elliptic estimates.

Definition 3.1. Suppose that /Γ ∈ Lp′

loc(M). Let ψ, φ ∈ Lp
loc(E) where 1/p + 1/p′ = 1 with p ≥ 1.

We call φ a weak solution of the Dirac equation /Dψ = φ if∫
M
⟨φ, η⟩ =

∫
M

⟨
ψ, /Dη

⟩
,

holds for all smooth spinors η ∈ Γ0(E) of E with compact support in the interior of M.

Define
m̂ > 2 for m = 2; m̂ = m, for m > 2

First, we have the following regularity results.
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Theorem 3.2 (Regularity of weak solutions, see [9;10]). Let M, E be as in Theorem 1.1. Suppose
that /Γ ∈ Wk,m̂

loc (M). Let ψ ∈ L2
loc(E) be a weak solution of /Dψ = φ with φ ∈ Hk

loc(E), then
ψ ∈ Hk+1

loc (E).

Theorem 3.3 (Lp-estimate). Let M, E be as in Theorem 1.1. Suppose that p ∈ (1,∞), /Γ ∈ Lµ(M)
where µ = m if p < m and µ > p if p ≥ m. Let ψ ∈ W1,p(E) be a solution of /Dψ = φ with
φ ∈ Lp(E), then there exists a constant c = c

(
p, /Γ

)
> 0 with

∥ψ∥W1,p(E) ≤ c
(
∥φ∥Lp(E) + ∥Bψ∥W1−1/p,p(E|∂M) + ∥ψ∥Lp(E)

)
.

Proof. For every ε > 0, decompose /Γ = /Γε + /Γ∞ with∥∥∥/Γε∥∥∥Lµ(E)
≤ ε,

∥∥∥/Γ∞∥∥∥L∞(E)
≤ c(ε).

Noticing that
/D0ψ = φ − /Γψ = φ − /Γεψ − /Γ∞ψ,

we have ∥∥∥ /D0ψ
∥∥∥

Lp(E)
≤ ∥φ∥Lp(E) +

∥∥∥/Γεψ∥∥∥Lp(E)
+

∥∥∥/Γ∞ψ∥∥∥Lp(E)

≤ ∥φ∥Lp(E) +
∥∥∥/Γε∥∥∥Lµ(E) ∥ψ∥Lpµ/(µ−p)(E) +

∥∥∥/Γ∞∥∥∥L∞(E) ∥ψ∥Lp(E)

≤ ∥φ∥Lp(E) + ε ∥ψ∥W1,p(E) + c(ε) ∥ψ∥Lp(E)

since 1/p − 1/µ = 1/p − 1/m for p < m and

1/p − 1/µ > 1/p − 1/m

for µ > p ≥ m. Hence, by Theorem 2.2, for suitable ε > 0, we get that

∥ψ∥W1,p(E) ≤ c
(
∥φ∥Lp(E) + ∥Bψ∥W1−1/p,p(E|∂M) + ∥ψ∥Lp(E)

)
.

□

Remark 3.3. If µ > m, we can choose c = c
(
p,

∥∥∥/Γ∥∥∥
Lµ(M)

)
> 0.

Proof of Remark 3.3. We need only to check the case of a smooth spinor, i.e., ψ ∈ Γ(E). If not,
suppose that there exists a sequence ψn ∈ Γ(E) and /Γn ∈ Lµ(M) such that

1 = ∥ψn∥W1,p(E) ≥ n
(∥∥∥ /Dnψn

∥∥∥
Lp(E)
+ ∥Bψn∥W1−1/p,p(E|∂M) + ∥ψn∥Lp(E)

)
,

and ∥∥∥/Γn

∥∥∥
Lµ(M)

≤ 1,

where /Dn = /D0 + /Γn. Then for max {p,m} < p′ < µ, /Γn is a bounded subset in Lp′(E) and
hence there exists a subsequence, denoted also by /Γn, that converges weakly to /Γ ∈ Lp′(M) in the
reflexive space Lp′(E). We may assume that

ψn ⇀ ψ W1,p(E), ψn → ψ L p̃(E)

according to the Sobolev-Kondrachev embedding theorem where 1/ p̃ = 1/p−1/p′ > 1/p−1/m.
Hence ψ = 0 by the choice of ψn. Moreover, if we denote /D = /D0 + /Γ, then∥∥∥ /Dψn

∥∥∥
Lp(E)
≤

∥∥∥ /Dnψn

∥∥∥
Lp(E)
+

∥∥∥(/Γ − /Γn
)
ψn

∥∥∥
Lp(E)
≤

∥∥∥ /Dnψn

∥∥∥
Lp(E)
+

∥∥∥/Γ − /Γn

∥∥∥
Lp′ (M) ∥ψn∥L p̃(E) .
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In particular, /Dψn converges strongly to 0 in Lp(E) and so does /Γnψn. But we know already that

Bψn → 0 W1−1/p,p(E|∂M), ψn → 0 Lp(E).

The Lp-estimate Theorem 3.3 implies that

1 = ∥ψn∥W1,p(E) ≤ c(p, /Γ)
(∥∥∥ /Dψn

∥∥∥
Lp(E)
+ ∥Bψn∥W1−1/p,p(E|∂M) + ∥ψn∥Lp(E)

)
→ 0.

Remark 3.4. By a similar computation, Proposition 3.1 holds for the case of a non-smooth con-
nection ∇ = ∇0 + Γ with Γ ∈ Lm̂(M).

3.3. L2-estimate. In this subsection, we want to prove that the solution of the Dirac equation
with chiral boundary values is unique, i.e., /Dψ = 0, M;

Bψ = 0, ∂M

has only the zero solution. In dimension m = 2, we recall Hörmander’s L2-estimate method [30]

which was originally developed to get the L2-existence theorem for ∂̄-operators on weakly pseudo-
convex domains by using Carleman-type estimates. Later, Shaw in [41] extended this method to
∂̄b-manifolds. Here, we use a similar idea to derive the L2-estimate for the Dirac equations and
use this L2-estimate to get the uniqueness of solutions of Dirac equations with chiral boundary
values. In higher dimension m > 2, we use the weak Uniqueness Continuation Property (WUCP)
for Dirac type operator to get the uniqueness. We shall then use this uniqueness to derive some
useful elliptic estimates.

We will need the following Weitzenböck type formula (c.f. [33])

(3.1) /D2
= −∇2 + R,

where the curvature operator R is given by

R B 1
2

ei · e j · R(ei, e j)

and R(X, Y) = [∇X,∇Y] − ∇[X,Y] is the curvature of the connection ∇ = ∇0 + Γ.

Theorem 3.4 (Weighted Reilly formula). Let M, E be as in Theorem 1.1 and suppose Γ ∈
Dp∗(E). Let f be a smooth function, then for every ψ ∈ Γ(E), we have∫

∂M
exp( f )

((
/̄Dψ, ψ

)
+

m − 1
2

(h + n( f )) ∥ψ∥2
)
+

m − 1
m

∫
M

exp ( f )
∥∥∥ /Dψ∥∥∥2

=

∫
M

exp( f )
(
m − 1

2
∆ f − (m − 1)(m − 2)

4
∥∇ f ∥2 + Rψ

)
∥ψ∥2

+

∫
M

exp((1 − m) f )
∥∥∥∥∥P

(
exp

(m
2

f
)
ψ
)∥∥∥∥∥2

.

Here
Rψ ∥ψ∥2 = (Rψ, ψ) .
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Remark 3.5. (1) If m = 2, we have∫
∂M

exp( f )
((
/̄Dψ, ψ

)
+

1
2

(h + n( f )) ∥ψ∥2
)
+

1
2

∫
M

exp( f )
∥∥∥ /Dψ∥∥∥2

=

∫
M

exp( f )
(
1
2
∆ f + Rψ

)
∥ψ∥2 +

∫
M

exp(− f )
∥∥∥P

(
exp ( f )ψ

)∥∥∥2
.

(2) If m > 2, let f = (1 − τ) log u (with τ = m/(m − 2)), then∫
∂M

u1−τ
(
/̄Dψ, ψ

)
+

m − 1
2

∫
∂M

u−τ
(
hu − 2

m − 2
∂u
∂n

)
∥ψ∥2 + m − 1

m

∫
M

u1−τ
∥∥∥ /Dψ∥∥∥2

=

∫
M

u−τ
(
−m − 1

m − 2
∆u + Rψu

)
∥ψ∥2 +

∫
M

u1+τ
∥∥∥P

(
u−τψ

)∥∥∥2
.

Proof. We only prove this theorem for smooth setting. For general case, this can be done by
density theorem. Denote the twistor operator by

PXψ B ∇Xψ +
1
m

X · /Dψ, ∀X ∈ Γ(T M), ψ ∈ Γ(E).

This twistor operator has the following property

(3.2) ∥∇ψ∥2 = ∥Pψ∥2 + 1
m

∥∥∥ /Dψ∥∥∥2
.

In fact, since tr P = 0, i.e., ei · P(ei) = γ ◦ P = 0, we have that

∥∇ψ∥2 =
∑

i

∥∥∥∥∥Peiψ −
1
m

ei · /Dψ
∥∥∥∥∥2

= ∥Pψ∥2 − 2
m

∑
i

(
Peiψ, ei · /Dψ

)
+

1
m

∥∥∥ /Dψ∥∥∥2

= ∥Pψ∥2 + 2
m

∑
i

(
ei · Peiψ, /Dψ

)
+

1
m

∥∥∥ /Dψ∥∥∥2
= ∥Pψ∥2 + 1

m

∥∥∥ /Dψ∥∥∥2
.

For every smooth function f ∈ C∞(M) and every smooth spinor ψ ∈ Γ(E), by using (3.2) and
(3.1), we have that

1
2
∆

(
exp( f ) ∥ψ∥2

)
= exp( f )

(
1
2

(
∆ f + ∥∇ f ∥2

)
∥ψ∥2 + 1

2
∆ ∥ψ∥2 + 2

(
∇∇ fψ, ψ

))
= exp( f )

(
1
2

(
∆ f + ∥∇ f ∥2

)
∥ψ∥2 + 2

(
∇∇ fψ, ψ

))
+ exp( f )

(
∥∇ψ∥2 −

(
/D2ψ, ψ

)
+ (Rψ, ψ)

)
= exp( f )

(
1
2

(
∆ f + ∥∇ f ∥2

)
∥ψ∥2 + 2

(
P∇ fψ, ψ

)
− 2

m
(∇ f · /Dψ, ψ))

+ exp( f )
(
∥Pψ∥2 + 1

m

∥∥∥ /Dψ∥∥∥2 −
(
/D2ψ, ψ

)
+ (Rψ, ψ)

)
= exp( f )

(
1
2
∆ f ∥ψ∥2 + (Rψ, ψ) +

2 − m
2m

∥∇ f ∥2 ∥ψ∥2
)
− (

/D
(
exp( f ) /Dψ

)
, ψ

)
+

1
m

exp( f )
∥∥∥ /Dψ∥∥∥2

+
m − 2

m
exp( f )

(∇ f · /Dψ, ψ) + exp(− f )
∥∥∥P

(
exp( f )ψ

)∥∥∥2
.
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The last identity follows from the following two identities∥∥∥P
(
exp ( f )ψ

)∥∥∥2
= exp(2 f )

∥∥∥∥∥Peiψ + ei( f )ψ +
1
m

ei · d f · ψ
∥∥∥∥∥2

= exp(2 f )
(
∥Pψ∥2 +

∥∥∥∥∥ei( f )ψ +
1
m

ei · d f · ψ
∥∥∥∥∥2

+ 2
(
P∇ fψ, ψ

))
= exp(2 f )

(
∥Pψ∥2 + m − 1

m
∥ψ∥2 ∥∇ f ∥2 + 2

(
P∇ fψ, ψ

))
,

and (
/D
(
exp( f ) /Dψ

)
, ψ

)
= exp( f )

((
/D2ψ, ψ

)
+

(∇ f · /Dψ, ψ)) .
Integrating by parts, we get that∫

∂M
exp( f )

((
/̄Dψ, ψ

)
+

1
2

((m − 1)h + n( f )) ∥ψ∥2
)

=

∫
M

exp( f )
(
1
2
∆ f ∥ψ∥2 + (Rψ, ψ) +

2 − m
2m

∥∇ f ∥2 ∥ψ∥2
)
+

∫
M

exp(− f )
∥∥∥P

(
exp( f )ψ

)∥∥∥2

− m − 1
m

∫
M

exp( f )
(∥∥∥ /Dψ∥∥∥2

+
m − 2
m − 1

(
/Dψ,∇ f · ψ)) .

By using the following identity∥∥∥∥∥∥ /D
(
exp

(
m − 2

2(m − 1)
f
)
ψ

)∥∥∥∥∥∥2

= exp
(
m − 2
m − 1

f
) ∥∥∥∥∥ /Dψ + m − 2

2(m − 1)
∇ f · ψ

∥∥∥∥∥2

= exp
(
m − 2
m − 1

f
) (∥∥∥ /Dψ∥∥∥2

+
m − 2
m − 1

(
/Dψ,∇ f · ψ) + (m − 2)2

4(m − 1)2 ∥∇ f ∥2 ∥ψ∥2
)

we get that∫
∂M

exp( f )
((
/̄Dψ, ψ

)
+

1
2

((m − 1)h + n( f )) ∥ψ∥2
)

=

∫
M

exp( f )
(
1
2
∆ f ∥ψ∥2 + (Rψ, ψ) +

2 − m
4(m − 1)

∥∇ f ∥2 ∥ψ∥2
)
+

∫
M

exp(− f )
∥∥∥P

(
exp( f )ψ

)∥∥∥2

− m − 1
m

∫
M

exp
(

1
m − 1

f
) ∥∥∥∥∥∥ /D

(
exp

(
m − 2

2(m − 1)
f
)
ψ

)∥∥∥∥∥∥2

.

Set g = f /(m − 1) and σ = exp ((m − 2) f /(2m − 2))ψ, then we have∫
∂M

exp(g)
((
/̄Dσ,σ

)
+

m − 1
2

(h + n(g)) ∥σ∥2
)

=

∫
M

exp(g)
(
m − 1

2
∆g − (m − 1)(m − 2)

4
∥∇g∥2 + Rσ

)
∥σ∥2

+

∫
M

exp((1 − m)g)
∥∥∥∥∥P

(
exp

(m
2

g
)
σ
)∥∥∥∥∥2

− m − 1
m

∫
M

exp (g)
∥∥∥ /Dσ∥∥∥2

.

□
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It is well known that the curvature operator R of E can be calculated as

R = R0 + dΓ + [ω0, Γ] + [Γ, ω0] + [Γ,Γ]

where ω0 is the associated connection 1-form of ∇0 (c.f. [36]). In particular, ∥R∥ B ∥R∥op ∈
Lp∗(M), where the operator norm Rop at each point is defined by

∥R∥op = sup
ψ,0

∥Rψ∥
∥ψ∥ .

We need the following Lemma.

Lemma 3.5. Suppose M is a Riemann surface with boundary and Γ ∈ Dp∗(E). There is a function
f ∈ W2,p(M) for all 1 < p < p∗ satisfying

1
2
∆ f − ∥R∥ = 0, in M;

f = 0, on ∂M.

Now we can state the following L2-estimate in dimension m = 2.

Theorem 3.6 (L2-estimate). Let M, E be as in Theorem 1.1. Suppose that m = 2 and Γ ∈ Dp∗(E).
Then there exists a function f ∈ W2,p(M) for all 1 < p < p∗, such that for every spinor ψ ∈ H1(E)∫

∂M
exp( f )

((
/̄Dψ, ψ

)
+

1
2

(h + n( f )) ∥ψ∥2
)
+

1
2

∫
M

exp( f )
∥∥∥ /Dψ∥∥∥2

≥
∫

M
exp(− f )

∥∥∥P
(
exp ( f )ψ

)∥∥∥2
.

(3.3)

Proof. Choose f in Lemma 3.5. Since f ∈ W2,p(M) for all 1 < p < p∗, by using the Sobolev
embedding theorem, we know that f ∈ C2−2/p(M). In particular, f is continuous. Moreover, the
trace theorem implies that

f |∂M ∈ W2−1/p,p(∂M)
and hence again the Sobolev theorem

W1−1/p,p(∂M) ⊂ Lq(∂M)

implies that n( f ) ∈ Lq(∂M), where we assume 1 < p < min {2, p∗} without loss of generality and
1
q
=

1
p
−

(
1 − 1

p

)
=

2 − p
p

.

Hence ∣∣∣∣∣∫
∂M

e f n( f ) ∥ψ∥2
∣∣∣∣∣ ≤ C ∥n( f )∥Lq(∂M) ∥ψ∥2Lq′ (∂M) ≤ C ∥ψ∥2H1(M) .

Here we have used the Sobolev embedding and the trace theorem

H1/2(∂M) ⊂ Lq′(∂M),

where
1
2

(
1 − 1

q

)
=

1
q′
>

m − 2
2(m − 1)

= 0

which is equivalent to
p > 1.
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For the remaining terms, it is easy to get that∣∣∣∣∣∫
∂M

e f
(
/̄Dψ, ψ

)∣∣∣∣∣ ≤ C ∥ψ∥2H1(M) ,∫
M

e f
∥∥∥ /Dψ∥∥∥2 ≤ C ∥ψ∥2H1(M) ,

and ∫
M

e− f
∥∥∥∥P

(
e fψ

)∥∥∥∥2
≤ C ∥ψ∥2H1(M) .

As a consequence, by using Theorem 3.4 and Remark 3.4 we know that (3.3) holds for all ψ ∈
H1(E) by using the density theorem. □

Corollary 3.7 (Uniqueness dimension m = 2). Let M, E be as in Theorem 1.1. Suppose m = 2
and Γ ∈ Dp∗(E), then a weak solution of /Dψ = 0, M;

Bψ = 0, ∂M

is a trivial spinor, i.e., ψ = 0.

Proof. It follows that ψ is a strong solution since /Γ ∈ L2p∗(M), i.e., ψ ∈ H1(E), according to the
elliptic estimates. By using Proposition 3.1 and Remark 3.4, we have ψ = 0 on the boundary.
Theorem 3.6 then implies that P(e fψ) = 0 in M. That is, for every tangent vector field X on M,
we have

(3.4) ∇Xψ + X( f )ψ +
1
2

X · ∇ f · ψ = 0

in the weak sense. Notice that

(X · ∇ f · ψ, ψ) = (ψ,∇ f · X · ψ) = − (ψ, X · ∇ f · ψ) − 2X( f ) ∥ψ∥2 .
As a consequence,

(X · ∇ f · ψ, ψ) = −X( f ) ∥ψ∥2 .
Therefore, it follows from (3.4) that

(∇Xψ, ψ) +
1
2

X( f ) ∥ψ∥2 = 0

which means that
∇

(
e f ∥ψ∥2

)
= 0

in M, i.e., e f ∥ψ∥2 is a constant in M. Remembering that we have proved that ψ = 0 along the
boundary, we then get that ψ = 0 in the whole manifold M. □

For higher dimension, first we have the following uniqueness theorem.

Theorem 3.8 (Uniqueness for small perturbation). Let M, E be as in Theorem 1.1 and m > 2.
There is a constant ε > 0 such that if ∥R∥Lm/2 < ε, then there is no nontrivial solution of the
following boundary value problem  /Dψ = 0, M;

Bψ = 0, ∂M
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Proof. The proof is a direct consequence of the Bochner formula, the Poincaré-Sobolev inequal-
ity, Proposition 3.1 and Remark 3.4. First, according to Proposition 3.1, we know that ψ|∂M = 0,
and then the Poincaré-Sobolev inequality yields

∥ψ∥L2m/(m−2)(M) ≤ CPS ∥∇ψ∥L2(M) .

Second, the classical Bochner formula (or c.f. Theorem 3.4 with weight function f = 0) says

0 =
∫

M
(Rψ, ψ) +

∫
M
∥∇ψ∥2 .

Now applying the Hölder and Poincaré-Sobolev inequalities, we get

0 ≥ ∥∇ψ∥2L2(M) − ∥R∥Lm/2(M) ∥ψ∥2L2m/(m−2)(M)

≥ ∥∇ψ∥2L2(M) −CPS ε ∥∇ψ∥2L2(M) .

Hence, if ε < C−1
PS , we get ∇ψ = 0. Therefore, ψ ≡ 0 in M. □

In the general case, we still have uniqueness if we require more regularity on Γ. For example,
Γ ∈ D(3m−2)/4. To see this, we recall the weak Unique Continuation Property (WUCP) for Dirac
type operators D + V , where D is a Dirac operator with a smooth connection and V is a potential
(see [18] for V continuous, [13] for V bounded, and [31] for V ∈ L(3m−2)/2). D+V is said to satisfy the
WUCP, if for any solution ψ ∈ H1(M) of (D + V)ψ = 0 such that ψ vanishes in a nonempty open
subset of M, then ψ vanishes in the whole connected component of M. The proofs of the WUCP
are based on certain Carleman-type estimates. For sharper results on the structure of the zero set
of solutions of generalized Dirac equations, we refer to [8].

Theorem 3.9 (WUCP, see [31]). Let M, E be as in Theorem 1.1 and m > 2. Let D + V be a Dirac
type operator, where D is a Dirac operator with a smooth connection and V ∈ L(3m−2)/2(M) is a
potential. Then the WUCP holds for D + V .

Thanks to this WUCP, we can apply some extension arguments similar to the smooth case
considered in [14] to derive the uniqueness theorem.

Theorem 3.10 (Uniqueness in dimension m > 2). Let M, E be as in Theorem 1.1 and m > 2.
Suppose that Γ ∈ Dp∗(E), p∗ ≥ (3m − 2)/4. Then there is no nontrivial solution of the following
boundary value problem  /Dψ = 0, M;

Bψ = 0, ∂M

Proof. According to Proposition 3.1 and Remark 3.4, we have ψ = 0 on the boundary. First,
there is a closed double M̃ of M and a Dirac bundle Ẽ on M̃ such that Ẽ|M = E and

/̃D0|M = /D0,

where /̃D0 is the associated Dirac operator of Ẽ (c.f. [14]). Here we write /D = /D0 + /Γ and /D0 is
smooth. Extend /Γ trivially to some /̃Γ on M̃, i.e.,

Γ̃ =

Γ, M;
0, M̃ \ M.
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Then the trivial extension ψ̃ of ψ, i.e.

ψ̃ =

ψ, M;
0, M̃ \ M,

is a H1(M̃)-solution of
/̃D0ψ̃ + /̃Γψ̃ = 0.

We need only to check that ψ̃ is a weak solution. For every smooth spinor φ on M̃, we have∫
M̃

⟨
ψ̃, /̃D

∗
0φ + /̃Γ

∗
φ
⟩
=

∫
M

⟨
ψ, /̃D

∗
0φ + /Γ

∗
φ
⟩

=

∫
M

⟨
/D0ψ + /Γψ, φ

⟩ − ∫
∂M

⟨
σn( /̃D0)ψ, φ

⟩
=0.

Now we can apply the weak UCP of /̃D0 + /̃Γ to show that ψ̃ = 0 in the whole manifold M̃.
Therefore, ψ ≡ 0 in M. □

Now we can state the main elliptic Lp-estimates.

Theorem 3.11 (Main Lp-estimate). Let M, E be as in Theorem 1.1 and m ≥ 2. Suppose that
Γ ∈ Dp∗(E). Then for 1 < p < p∗, there exists a constant c = c(p,Γ) > 0 such that for any
ψ ∈ W1,p(E)

∥ψ∥W1,p(E) ≤ c
(∥∥∥ /Dψ∥∥∥

Lp(E)
+ ∥Bψ∥W1−1/p,p(E|∂M)

)
.

Proof. Consider the operator

( /D,B) : W1,p(E) −→ Lp(E) ×W1−1/p,p(E|∂M).

Since Γ ∈ L2p∗(E), this is well defined. Moreover, by using Theorem 3.3, we have the following
Lp-estimates

∥ψ∥W1,p(E) ≤ c
(∥∥∥ /Dψ∥∥∥

Lp(E)
+ ∥Bψ∥W1−1/p,p(E|∂M) + ∥ψ∥Lp(E)

)
,

where c = c(p,Γ) > 0.
Now one can show that the range of ( /D,B) is closed and the kernel is trivial. In fact, the kernel

is obviously trivial by using Corollary 3.7 (for m = 2) and Theorem 3.10 (for m > 2). Now we
prove that the image is closed. For ψn ∈ W1,p(E) with

/Dψn → φ ∈ Lp(E), Bψn → ψ0 ∈ W1−1/p,p(E|∂M).

It is clear that Bψ0 = ψ0.
First, we assume that ∥ψn∥Lp(E) ≤ 1. Then the Lp-estimate Theorem 3.3 implies that ψn is

bounded in W1,p(E). Hence, there exists a subsequence of ψn, denoted also by ψn, such that ψn

converges weakly to ψ in W1,p(E) and strongly in Lp(E), i.e.,

ψn ⇀ ψ ∈ W1,p(E), ψn → ψ ∈ Lp(E).

Using Theorem 3.3 again, ψn is a Cauchy sequence in W1,p(E). As a consequence, there exists a
limit of ψn in W1,p(E) and this limit must be ψ. Hence φ = /Dψ and ψ0 = Bψ.

Second, if ψn is not bounded in Lp(E), setting

ψ̃n =
ψn

∥ψn∥Lp(E)
∈ W1,p(E).
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Then
/Dψ̃n → 0 ∈ Lp(E), Bψ̃n → 0 ∈ W1−1/p,p(E|∂M).

By the same arguments as above, ψ̃n has a limit ψ̃ in W1,p(E) such that
∥∥∥ψ̃∥∥∥

Lp(E)
= 1, /Dψ̃ = 0

and Bψ̃ = 0. This is impossible since Corollary 3.7 (for m = 2) and Theorem 3.10 (for m > 2)
implies that ψ̃ = 0.

Hence, the closed graph theorem implies that ( /D,B) is an isometry between H1(E) and the
range of ( /D,B). As a consequence, we have the following estimate

∥ψ∥W1,p(E) ≤ c
(∥∥∥ /Dψ∥∥∥

Lp(E)
+ ∥Bψ∥W1−1/p,p(E|∂M)

)
,

where c = c(p,Γ) > 0. □

Remark 3.6. If p = 2, we can prove this theorem directly by using Theorem 3.3 and Theorem 3.6.
First, according to Theorem 3.3, there exists a constant c = c(Γ) > 0 such that

∥ψ∥H1(E) ≤ c
(∥∥∥ /Dψ∥∥∥

L2(E)
+ ∥Bψ∥H1/2(E|∂M) + ∥ψ∥L2(E)

)
holds for all ψ ∈ H1(E). Second, Theorem 3.6 implies that

∥ψ∥L2(E) ≤ c(Γ)
(∥∥∥ /Dψ∥∥∥

L2(E)
+ ∥Bψ∥H1/2(E|∂M)

)
.

Combining these two estimates, we complete the proof.

Remark 3.7. We can choose c = c
(
p,

∥∥∥/Γ∥∥∥
p∗

)
> 0. See Remark 3.3.

3.4. Existence and uniqueness for solutions of Dirac equations. In this subsection, we shall
consider the existence and uniqueness of solutions of the Dirac equation with chiral boundary
conditions, to find a solution ψ ∈ W1,p(E) of the following,

(3.5)

 /Dψ = φ, M;
Bψ = Bψ0, ∂M,

where φ ∈ Lp(E),Bψ0 ∈ W1−1/p,p(E|∂M).
Several general existence theorems for this system in H1(E) have been derived under some

integral conditions, for example, see [10], p.53, Theorem 7.3. which asserts that (3.5) is solvable
in H1(E) if and only if the following integral condition holds,∫

M
⟨φ, η⟩ = 0, ∀η ∈ ker( /D,B∗).

Moreover, this solution satisfies the following L2-estimate

∥ψ∥H1(E) ≤ c
(
∥φ∥L2(E) + ∥Bψ0∥H1/2(E|∂M) + ∥ψ∥L2(E)

)
.

But the uniqueness may not be true for a general first order elliptic partial differential equation
with an elliptic boundary condition.

Notice that in our setting, this integral condition is always satisfied for each φ ∈ L2(E) since the
kernel of ( /D,B∗) is zero according to Corollary 3.7 (for m = 2) and Theorem 3.10 (for m > 2).
In fact, in our setting, we can state the existence and uniqueness Theorem 1.1 with the help of
the main Lp-estimate Theorem 3.11.
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Proof of Theorem 1.1. We only need to show the existence. We can use a method that is similar
to that for deducing the analogous theorem for second order elliptic partial differential equations
with Dirichlet boundary values, see [27], p.241, Theorem 9.15, for example. For convenience, we
will give a detailed proof here.

First, we consider the case p∗ > 2 and p = 2. The following argument is typical, see [10;27] for
example. Let us consider the following closed subspace of H1(E),

H1
B(E) =

{
ψ ∈ H1(E) : Bψ = 0

}
.

Theorem 3.11 gives the a-priori estimate

∥ψ∥2H1(E) =

∫
M
∥∇0ψ∥2 + ∥ψ∥2 ≤ C

∫
M

∥∥∥ /Dψ∥∥∥2
, ∀ψ ∈ H1

B(E).

In particular,
∫

M

∥∥∥ /Dψ∥∥∥2
is strictly coercive on H1

B(E), so the Lax-Milgram theorem gives ψ ∈
H1
B(E) satisfying ∫

M

⟨
φ, /Dη

⟩
=

∫
M

⟨
/Dψ, /Dη

⟩
, η ∈ H1

B(E).

Denote Φ = /Dψ − φ ∈ L2(E), then∫
M

⟨
Φ, /Dη

⟩
= 0, ∀η ∈ H1

B(E).

Therefore Φ is a weak solution of

/DΦ = 0, B∗Φ = 0.

Since B∗ is elliptic, so all the elliptic estimates stated for B can be stated in a similar way (see
Theorem 3.2). In particular, Φ is a strong solution, i.e., Φ ∈ H1(E). By using the L2-estimate of
Theorem 3.6 (for B∗), we know that Φ = 0. Hence /Dψ = φ and Bψ = 0.

In the general case, we extend Bψ0 to a spinor ψ̃ ∈ H1(E) such that ψ̃|∂M = Bψ0. Setting
ψ̂ = ψ − ψ̃, we then have  /Dψ̂ = φ − /Dψ̃, M;

Bψ̂ = 0, ∂M.

The previous case shows that there is a solution ψ̂ ∈ H1(E). Then ψ = ψ̂ + ψ̃ is the desired
solution of (3.5).

Second, we consider the case 1 < p < p∗. Let φε ∈ Γ(E) such that φε converges strongly to φ
in Lp(E) as ε→ 0. For each ε > 0, let ψε be the unique solution of

/Dψε = φε, Bψε = 0.

The a-priori estimate of Theorem 3.11 says that ψε ∈ W1,p(E) and is a Cauchy sequence in
W1,p(E) since φε converges strongly to φ in Lp(E). Say ψε converges strongly to ψ in W1,p(E),
then /Dψ = φ and Bψ = 0. In the non-homogeneous boundary case, we set ψ = ψ̂ + ψ̃ where
ψ̃ ∈ W1,p(E) is an extension of Bψ0 such that ψ̃|∂M = Bψ0 by the extension theorem. This is
possible since 1 < p < ∞. Then we choose a solution ψ̂ ∈ W1,p(E) such that /Dψ̂ = φ − /Dψ̃, M;

Bψ̂ = 0, ∂M.

Now we get a solution of (3.5). □
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4. Dirac equations along a map

We first consider the following system which is slightly more general than (1.1):

(4.1)

 /DψA + ΩA
B · ψB = ηA, M;

BψA = BψA
0 , ∂M,

A = 1, · · · , q, here ηA ∈ Lp(E),BψA
0 ∈ W1−1/p,p(E|∂M) and Ω ∈ Ω1 (son), i.e., ΩA

B = −ΩB
A. Under

suitable conditions, we can solve this system.

Theorem 4.1. Let M, E be as in Theorem 1.1. Suppose that Γ ∈ Dp∗(E), dΩ ∈ Lp∗(M),Ω ∈
L2p∗(M). Then for 1 < p < p∗, (4.1) admits a unique solution. Moreover, we have the following
elliptic estimate

∥ψ∥W1,p(E) ≤ c
(
∥η∥Lp(E) + ∥Bψ0∥W1−1/p,p(E|∂M)

)
,

where c = c
(
p, ∥Γ∥p∗ , ∥Ω∥L2p∗ (M) + ∥dΩ∥Lp∗ (M)

)
> 0.

Proof. We construct a new Dirac bundle and a new chirality operator, and then we can apply the
existence and uniqueness for the usual Dirac equation to prove this theorem.

Let Ẽ = ⊕nE = E ⊕ . . . ⊕ E︸        ︷︷        ︸
n times

. Then Ẽ becomes a Dirac bundle as a Whitney sum bundle. The

Clifford multiplication is defined as

γ̃(X)(ψA) B (X · ψA),∀X ∈ T M,

i.e., γ̃ = γE Id. Here γE(X)ψA B X · ψA stands for the Clifford multiplication on E. Then the
associated Γ̃ = Γ Id, i.e.,

Γ̃(X)(ψA) B (Γ(X)ψA).
Define Γ′ by

Γ′(X)(ψA) B (ΩA
B(X)ψB).

It is clear that Γ′ ∈ Ω1(Ad(Ẽ)). We need only to check that [Γ′, γ̃] = 0 in order to prove that
Γ′ ∈ Dp∗(Ẽ). In fact,

[Γ′, γ̃](X,Y)(ψA) =
(
ΩA

B(X)
(
Y · ψB

)
− Y ·ΩA

B(X)ψB
)
= 0.

Therefore, we have constructed a new Dirac bundle Ẽ with the Dirac operator D̃ defined by

/̃D(ψA) = ( /DψA + ΩA
B · ψB).

It is obvious that d(Γ̃ + Γ′) ∈ Lp∗(M), Γ̃ + Γ′ ∈ L2p∗(M).
Introduce an operator G̃ ∈ hom(Ẽ),

G̃(ψA) B (GψA).

It is clear that
G̃2 = Id, G̃∗ = G̃, G̃γ̃(X) = −γ̃(X)G̃, ∀X ∈ T M.

Moreover, ∇̃G̃ = 0. In fact,

∇̃XG̃(ψA) =
(
∇XGψA + ΩA

B(X)GψB
)
=

(
G∇Xψ

A +GΩA
B(X)ψB

)
= G̃∇̃X(ψA).

In particular, G̃ is a chirality operator on Ẽ. Therefore, the associated chirality boundary operator

B̃(ψA) B
(
BψA

)
.
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Then we can use the theory of the Dirac equation Theorem 1.1 to finish the proof of this theorem.
□

Now we suppose that M is a Riemannian spin manifold with boundary ∂M and give the

Proof of Theorem 1.2. Embedding N into some Euclidian space, then as shown in section 2, we
can rewrite this boundary value problem for the Dirac equation as/∂ΨA + ΩA

B · ΨB = ηA, M;
BΨA = BψA, ∂M,

where
ΩA

B = [ν(Φ), dν(Φ)]A
B.

In particular, dΩ = [dν(Φ), dν(Φ)]. Therefore, if Φ ∈ W1,2p∗(M,N), then Φ ∈ C0(M̄,N) by using
the Sobolev embedding theorem. As a consequence,

Ω ∈ L2p∗(M), dΩ ∈ Lp∗(M).

Hence, by using the Theorem 4.1, we get a unique solution of Ψ ∈ W1,p(ΣM⊗Φ−1TRq) for some
larger q. Moreover, there exists a constant c = c

(
p, ∥Φ∥W1,2p∗ (M)

)
> 0 such that

∥Ψ∥W1,p(M) ≤ c
(
∥η∥Lp(M) + ∥Bψ∥W1−1/p,p(∂M)

)
.

Now we want to prove that Ψ is a spinor along the map Φ. Introduce Ψ̃A = νA
BΨ

B, then we
need only to prove that Ψ̃ = 0.

Claim. /∂Ψ̃A + ΩA
B · Ψ̃B = 0, M;

BΨ̃A = 0, ∂M.

If this claim is true, then using the Theorem 4.1 again, we get that Ψ̃ = 0. Hence, we complete
the proof of this theorem.

Now, we confirm the claim. In fact, noticing that νA
Bη

B = 0, νA
BBψB = 0 since η is a spinor

along the map Φ and Bψ is the restriction of a spinor along the map Φ to the boundary ∂M, we
have that

/∂Ψ̃A =νA
B/∂ψ

B + dνA
B · ΨB = −νA

BdνB
C · ΨC + νA

BdνB
Cν

C
D · ΨD + νA

Bη
B + dνA

B · ΨB

=dνA
B · Ψ̃B = −dπA

B · Ψ̃B =
(
dπA

Cπ
C
B − πA

CdπC
B

)
· Ψ̃B =

(
dνA

Cν
C
B − νA

CdνC
B

)
· Ψ̃B

= −ΩA
B · Ψ̃B,

and

BΨ̃A = νA
BBΨB = νA

BBψB = 0.

□

Remark 4.1. Using the same method, one can prove that /Dψ = η ∈ Lp
(
E ⊗ Φ−1V

)
, M;

BΨ = Bψ ∈ W1−1/p,p
((

E ⊗ Φ−1V
)
|∂M

)
, ∂M
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admits a unique solution Ψ ∈ W1,p(E ⊗Φ−1V), where E is a Dirac bundle on M, V is a Hermitian
metric vector bundle on N, /D is the associated Dirac operator of E ⊗Φ−1V , the Dirac connection
∇ = ∇0 + Γ satisfies the condition Γ ∈ Dp∗E and Φ ∈ W1,2p∗(M; N).

Remark 4.2. IfΦ is smooth, then ΣM⊗Φ−1T N is a smooth Dirac bundle, in this case, Theorem 1.2
is just a direct corollary of Theorem 1.1.

Now let us give some further remarks on the Schauder theory of Dirac equations. The interior
Schauder estimate for the Dirac equation is

Theorem 4.2 (See [1]). Let M, E be as in Theorem 1.1. Suppose that /Γ ∈ Cα(M) for some 0 <
α < 1, then for all M′ ⋐ M′′ ⋐ M,

∥ψ∥1+α;M′ ≤ c
(
α, dist(M′, ∂M′′),

∥∥∥/Γ∥∥∥
α;M′′

) (∥∥∥ /Dψ∥∥∥
α;M′′
+ ∥ψ∥0;M′′

)
.

Due to Proposition 3.1, one can also state a boundary Schauder estimate for the Dirac equation.

Theorem 4.3. Let M, E be as in Theorem 1.1. Suppose that /Γ ∈ Cα(M̄) for some 0 < α < 1, then

∥ψ∥1+α;M ≤ c
(
α,

∥∥∥/Γ∥∥∥
α:M

) (∥∥∥ /Dψ∥∥∥
α;M
+ ∥Bψ∥1+α;∂M + ∥ψ∥0;M

)
.

Proof. The classical argument for Schauder estimates (see [27]) can be combined with Proposition 3.1.
□

By using the main Lp-estimates of Theorem 1.1, we can get

Theorem 4.4. Let M, E be as in Theorem 1.1. Suppose that Γ ∈ D1(E), Γ ∈ Cα(M̄) and dΓ ∈
Cα(M̄) for some 0 < α < 1, then

∥ψ∥1+α;M ≤ c
(
α, ∥Γ∥α:M + ∥dΓ∥α;M

) (∥∥∥ /Dψ∥∥∥
α;M
+ ∥Bψ∥1+α;∂M

)
.

Proof. By using the main Lp-estimates of Theorem 1.1, we know that for large p

∥ψ∥0;M ≤c(p, ∥Γ∥p∗)
(∥∥∥ /Dψ∥∥∥

Lp(E)
+ ∥Bψ∥W1−1/p,p(E|∂M)

)
≤c

(
α, ∥Γ∥α:M + ∥dΓ∥α;M

) (∥∥∥ /Dψ∥∥∥
α;M
+ ∥Bψ∥1+α;∂M

)
.

Then applying Theorem 4.3, we prove the desired result. □

Similarly to the case of the Lp-estimate, we can prove the following two theorems:

Theorem 4.5. Let M, E be as in Theorem 1.1. Suppose that Γ ∈ D1(E),Γ ∈ Cα(M̄), dΓ ∈
Cα(M̄),Ω ∈ Cα(M̄), dΩ ∈ Cα(M̄) for some 0 < α < 1. Let η ∈ Cα(M̄),Bψ0 ∈ C1,α(∂M), then
(4.1) admits a unique solution ψ ∈ C1,α(M̄). Moreover, the following estimate holds

∥ψ∥1+α;M ≤ c
(
α, ∥Γ∥α;M + ∥dΓ∥α;M , ∥Ω∥α;M + ∥dΩ∥α;M

) (∥∥∥ /Dψ∥∥∥
α;M
+ ∥Bψ∥1+α;∂M

)
.

Theorem 4.6. Let M,N be as in Theorem 1.2. Let Φ ∈ C1,α(M̄,N) for some 0 < α < 1, then the
following Dirac equation /DΨ = η ∈ Cα(M̄;ΣM ⊗ Φ−1T N), M;

BΨ = Bψ ∈ C1,α
(
∂M;ΣM ⊗ Φ−1T N

)
, ∂M
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admits a unique solution Ψ ∈ C1,α(M̄ : ΣM ⊗ Φ−1T N), where /D is the Dirac operator along the
map Φ. Moreover,

∥Ψ∥α;M ≤ c(α, ∥Φ∥1+α;M)
(
∥η∥α;M + ∥Bψ∥1+α;∂M

)
.

5. Short time existence of first order Dirac-harmonic map flows

In this section, we assume that Mm (m ≥ 2) is a compact Riemannian spin manifold with
boundary ∂M and choose a fixed spin structure on M.

Let us consider the family of coupled system of differential equations for a map Φ : M ×
[0,T ] −→ Rq with Φ = (ΦA) and for a spinor field Ψ : M × [0,T ] −→ ΣM ⊗ Φ−1TRq with
Ψ = (ΨA) along the map Φ

(
∂

∂t
− ∆

)
ΦA + ΩA

B · dΦB +
⟨
Ω̃A

B, dΦ
B
⟩
= 0, M × (0, T ];

/∂ΨA + ΩA
B · ΨB = 0, ∂M × [0, T ]

(5.1)

with the initial and boundary conditionsΦ(x, t) = ϕ(x, t), (x, t) ∈ ∂M × [0,T ] ∪ M × {0} ;
BΨ = Bψ, ∂M × [0,T ],

(5.2)

where B is a chirality boundary operator.

Lemma 5.1. Suppose the image of Φ lies in N and Ψ is a spinor along the map Φ, then (Φ,Ψ)
satisfies the Dirac-harmonic map flow (1.5), i.e.,∂tΦ = τ(Φ) − R(Φ,Ψ),

/DΨ = 0,

if and only if (Φ,Ψ) satisfies (5.1).

Proof. A well-known computation. □

Lemma 5.2. Suppose that (Φ,Ψ) is a solution of (5.1) which is continuous on M × [0,T ] with
ϕ(x, t) ∈ N for all (x, t) ∈ ∂M × [0,T ]∪M × {0} and ψ is a spinor along the map ϕ|∂M for all time
[0,T ]. Suppose Φ(x, t) ∈ Ñ on M × (0,T ], then Φ(x, t) ∈ N for all (x, t) ∈ M × [0,T ] and Ψ(·, t)
is a spinor along the map Φ(·, t) for all time t ∈ [0,T ]. In fact, Ψ̃A = νA

BΨ
B satisfies the following

Dirac-type equation /∂Ψ̃A + ΩA
B · Ψ̃B = 0, M;

BΨ̃ = 0, ∂M.

Proof. For z ∈ Rq, let us define ρ : Rq −→ Rq by ρ(z) = z − π(z). Consider

φ(x, t) = ∥ρ(Φ(x, t))∥2 =
q∑

A=1

∥∥∥ρA(Φ(x, t))
∥∥∥2
.
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We can get that(
∂

∂t
− ∆

)
φ(x, t) = −2 ∥∇ρ(Φ(x, t))∥2 + 2 ⟨∂tρ − ∆ρ, ρ⟩

= − 2 ∥∇ρ(Φ(x, t))∥2 + 2
⟨
νA

B

(
∂tΦ

B − ∆ΦB
)
− πA

BC

⟨
∇ΦB,∇ΦC

⟩
, ρA

⟩
= − 2 ∥∇ρ(Φ(x, t))∥2 − 2

⟨
νA

B(Φ)
(
Ω(Φ)B

C · dΦC +
⟨
Ω̃(Φ)B

C, dΦ
C
⟩)
+ πA

BC(Φ)
⟨
∇ΦB,∇ΦC

⟩
, ρ(Φ)A

⟩
.

If Φ = π(Φ), then⟨
νA

B(Φ)
(
Ω(Φ)B

C · dΦC +
⟨
Ω̃(Φ)B

C, dΦ
C
⟩)
+ πA

BC(Φ)
⟨
∇ΦB,∇ΦC

⟩
, ρ(Φ)A

⟩
= 0.

Therefore, we have the following estimate by applying the mean value theorem(
∂

∂t
− ∆

)
φ ≤ Cφ.

Since φ ≥ 0 and φ = 0 on ∂M × [0,T ] ∪ M × {0}, we have that φ = 0 on M × [0,T ]. Hence
Φ(x, t) ∈ N for all (x, t) ∈ M × [0,T ] according to the maximum principle.

Next we show that Ψ is a spinor along the map Φ. In order to do this, we consider Ψ̃A = νA
BΨ

B,
then

/∂Ψ̃A =νA
B/∂Ψ

B + ∇νA
B · ΨB = −νA

B∇νB
C · ΨC + ∇νA

B · ΨB

=∇νA
B · Ψ̃B = −∇πA

B · Ψ̃B

=
(
∇πA

Cπ
C
B − πA

C∇πC
B

)
· Ψ̃B = −ΩA

B · Ψ̃B.

Moreover, Ψ̃A satisfies the following boundary conditions

BΨ̃A = 0

for all time t ∈ [0,T ]. By the uniqueness of solutions of Dirac equations with chiral boundary
values, see Theorem 4.1, we get that Ψ̃ = 0, i.e., Ψ is a spinor along the map Φ. □

To state the short time existence for the Dirac-harmonic map flow, we first recall some basic
facts of heat kernels on Riemannian manifolds. An important property is that the heat kernel is
almost Euclidean [19;37]. In other words, if p is a heat kernel, then p and E are of the same order,
locally uniformly in (x, y) as t → 0+, and a similar statement holds for the first derivatives of p
and E, where

E(x, y, t) = (4πt)−m/2e− dist2(x,y)/(4t).

One can show that the Dirichlet heat kernel h(x, y, t) is also almost Euclidean [19], hence

h(x, y, t) ≤ ct−m/2e− dist2(x,y)/(4t),

and

∥∇h(x, y, t)∥ ≤ ct−m/2−1e− dist2(x,y)/(4t) dist(x, y).

We summarize these properties in
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Lemma 5.3 (See [19;34]). For ever β > 0, there exists a constant c = c(β) such that

h(x, y, t) ≤ c(β)t−m/2+β dist(x, y)−2β,

∥∇h(x, y, t)∥ ≤ c(β)t−m/2−1+β dist(x, y)1−2β,

and

∥∇nh(x, y, t)∥ ≤ c(β)t−m/2−1+β dist(x, y)2−2β, x, y ∈ ∂M,

as t → 0+.

Proof. It is a consequence of the following inequality

xβe−x ≤ ββe−β, ∀x > 0, β > 0.

The improvement in the exponent of dist(x, y) in the third inequality is due to the fact that the
derivative is in the direction normal to the boundary ∂M. □

Now we can give a proof of the main Theorem 1.3.

Proof of Theorem 1.3. We will split the proof into four steps.

Step I Short time existence for the flow (5.1) and (5.2).

Let h(x, y, t) be the Dirichlet heat kernel of M. Define an operator T by

Tu(x, t) = u0(x, t) −
∫ t

0

∫
M

h(x, y, t − τ)
(
Ω(u) · du +

⟨
Ω̃(u,Ψ(u)), du

⟩)
(y, τ) dy dτ,

where

u0(x, t) =
∫

M
h(x, y, t)ϕ(y, 0) dy −

∫ t

0

∫
∂M

∂h
∂ny

(x, y, t − τ)ϕ(y, τ) dσ(y) dτ.

Here

Ω(u) = [ν(u), dν(u)],

and

Ω̃(u,Ψ(u)) =
1
2

RA
BCD(u)

(
Ψ(u)C, ei · Ψ(u)D

)
ηi C R(u)(Ψ(u),Ψ(u)),

where Ψ(u) is the unique solution of/∂ΨA = −Ω(u)A
B · ΨB, M;

BΨA = BψA, ∂M

according to Theorem 4.1.
It is clear that u0 is the unique solution of

∂

∂t
u0 = ∆u0, M × (0,∞);

u0 = ϕ, ∂M × [0,∞) ∪ M × {0} .
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For every ε > 0 and each u ∈ ∩0<t<εC1,0,0(M̄ × [t, ε]) ∩C0(M̄ε), define the norm

∥u∥ B ∥u∥C0(M̄×[0,ε]) + sup
t∈[0,ε]
∥∇u(·, t)∥C0(M̄) .

Let Xε
ϕ be the completion of the following subset of C0(M̄ε){

u ∈ ∩0<t<εC1,0,0(M̄ × [t, ε]) ∩C0(M̄ε) : u = ϕ on PMε

}
.

Here
Mε B M × (0, ε], PMε B ∂M × [0, ε] ∪ M × {0} .

For u ∈ Xε
ϕ, according to Theorem 4.1 we have that for large p

∥Ψ(·, t)∥Cα(M̄) ≤c(p) ∥Ψ(·, t)∥W1,p(M) ≤ C(∥u∥) ∥BΨ0(·, t)∥W1−1/p,p(∂M)

≤C(∥u∥) ∥BΨ0(·, t)∥C1,α(∂M) ≤ C(∥u∥) ∥Bψ∥C1,0,α(∂Mε) .

As a consequence,
T : Xε

ϕ −→ Xε
ϕ

is well defined. For δ > 0, let Bδ =
{
u ∈ Xε

ϕ : ∥u − u0∥ ≤ δ
}
.

According to Lemma 5.3, for every β > 0,

h(x, y, t) ≤ c(β)tβ−m/2 dist(x, y)−2β,

∥∇h(x, y, t)∥ ≤ c(β)tβ−1−m/2 dist(x, y)1−2β,

and

∥∇nh(x, y, t)∥ ≤ c(β)tβ−1−m/2 dist(x, y)2−2β, x, y ∈ ∂M.

1) u0 ∈ Xε
ϕ.

Let v0 = u0 − ϕ, then∂tv0 − ∆v0 = ∆ϕ − ∂tϕ C f , MT ;
v0 = 0, PMT .

Since ϕ ∈ C2,1,α(M̄T ), we know that f ∈ C0,0,α(M̄T ) and

∥ f ∥C0(M̄T ) ≤ c ∥ϕ∥C2,1,0(M̄T ) , ∥ f ∥C0,0,α(M̄T ) ≤ c(α) ∥ϕ∥C2,1,α(M̄T ) .

Moreover, v0 can be given in the following formula, for (x, t) ∈ MT ,

v0(x, t) =
∫ t

0

∫
M

h(x, y, t − τ) f (y, τ) dy dτ.

The Schauder estimates imply that v0 ∈ ∩0<t<TC2,1,α(M̄ × [t,T ]) ∩ C0(M̄T ). The
following estimates follow by straightforward computations.

|v0(x, t)| ≤ ∥ϕ∥C2,1,0(M̄ε) ε,

|∇v0(x, t)| ≤ c(β) ∥ϕ∥C2,1,0(M̄ε) ε
β−1,
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for all (x, t) ∈ Mε and β ∈ (m/2, (m + 1)/2). In fact,

|v0(x, t)| ≤
∫ t

0

∫
M

h(x, y, t − τ) | f (y, τ)| dy dτ

≤ ∥ f ∥C0(M̄t)

∫ t

0

∫
M

h(x, y, t − τ) dy dτ ≤ ∥ f ∥C0(M̄t) t,

and

|∇v0(x, t)| ≤
∫ t

0

∫
M
|∇xh(x, y, t − τ)| | f (y, τ)| dy dτ

≤c(β) ∥ f ∥C0(M̄t)

∫ t

0

∫
M
|t − τ|−2+β dist(x, y)1−2β dy dτ ≤ c(β) ∥ f ∥C0(M̄t) tβ−m/2.

where β ∈ (m/2, (m + 1)/2). Therefore u0 ∈ Xε
ϕ, and for δ, ε both small we have that

u0 ⊂ Ñ if ϕ ⊂ N.

2) For ε small, T (Bδ) ⊂ Bδ.

Since u ∈ Bδ, we have ∥u∥ ≤ C1.

∥Ω(u)∥C0(M̄×[0,ε]) = ∥[ν(u), dν(u)]∥C0(M̄×[0,ε]) ≤ c sup
t∈[0,ε]
∥∇u(·, t)∥C0(M̄) ≤ c(C1),

and ∥∥∥Ω̃(u,Ψ(u))
∥∥∥

C0(M̄×[0,ε])
≤c sup

t∈[0,ε]
∥Ψ(·, t)∥2C0(M̄)

≤c(C1) sup
t∈[0,ε]
∥Bψ(·, t)∥2H1−1/p,p(∂M)

≤c(C1) ∥Bψ∥2C1,0,α(∂̄M×[0,ε]) ≤ c(C1)C2,

for p large enough, and the second inequality has used Theorem 4.1. Hence,

∥Ω(u)∥C0(M̄ε) +
∥∥∥Ω̃(u,Ψ(u))

∥∥∥
C0(M̄ε)

≤ c(C1,C2),∀u ∈ Bδ.

As a consequence,

∥Tu − u0∥ ≤ c(β)c(C1,C2) ∥du∥C0(M̄ε) ε
β−m/2,

for β ∈ (m/2, (m + 1)/2).

3) ∥Tu − Tv∥ ≤ 1
2
∥u − v∥ for u, v ∈ Bδ and ε small.

First, we have,

Tu(x, t) − Tv(x, t) = −
∫ t

0

∫
M

h(x, y, t − τ)
(
Ω(u) · du +

⟨
Ω̃(u,Ψ(u)), du

⟩)
(y, τ) dy dτ

+

∫ t

0

∫
M

h(x, y, t − τ)
(
Ω(v) · dv +

⟨
Ω̃(v,Ψ(v)), dv

⟩)
(y, τ) dy dτ.
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Moreover, notice that
Ω(u) −Ω(v) =[ν(u), dν(u)] − [ν(v), dν(v)]

=[ν(u) − ν(v), dν(u)] + [ν(v), dν(u) − dν(v)],

and

Ω̃(u,Ψ(u)) − Ω̃(v,Ψ(v))
=R(u)(Ψ(u),Ψ(u)) − R(v)(Ψ(v),Ψ(v))
= (R(u) − R(v)) (Ψ(u),Ψ(u)) + R(v)(Ψ(u) − Ψ(v),Ψ(u)) + R(v)(Ψ(v),Ψ(u) − Ψ(v)),

we have

∥Ω(u) −Ω(v)∥C0(M̄ε) ≤ c(C1,C2) ∥u − v∥ ,

and∥∥∥Ω̃(u,Ψ(u)) − Ω̃(v,Ψ(v))
∥∥∥

C0(M̄ε)
≤c(C1,C2)

(
∥u − v∥ + ∥Ψ(u) − Ψ(v)∥C0(M̄×[0,ε])

)
≤c(C1,C2) ∥u − v∥ .

The last inequality follows from the following fact/∂
(
Ψ(u)A − Ψ(v)A

)
= −Ω(u)A

B · (Ψ(u)B − Ψ(v)B) +
(
Ω(u)A

B −Ω(v)A
B

)
· Ψ(v)B, M;

B(Ψ(u) − Ψ(v)) = 0, ∂M.

And Theorem 4.1 implies that for large p
∥Ψ(u) − Ψ(v)∥Cα(M̄) ≤c(p) ∥Ψ(u) − Ψ(v)∥W1,p(M) ≤ c(p,C1,C2) ∥u − v∥ ∥Ψ(v)∥Lp(E)

≤c(p,C1,C2) ∥u − v∥ .
Thus,∥∥∥∥Ω(u) · du +

⟨
Ω̃(u,Ψ(u)), du

⟩
−Ω(v) · dv −

⟨
Ω̃(v,Ψ(v)), dv

⟩∥∥∥∥
Cα(M̄)

≤ c(p,C1,C2) ∥u − v∥ .

Using a similar argument for v0, one gets that

∥Tu − Tv∥ ≤ c(β)c(C1,C2)εβ−m/2 ∥u − v∥ ,
where β ∈ (m/2, (m + 1)/2).

Therefore, there exists a fixed point of T in Bδ, i.e., we have proved the short time
existence of (5.1) and (5.2).

Step II Regularity.

Let (Φ,Ψ) be the solution of (5.1) and (5.2) constructed above. The Theorem 4.1
implies that Ψ ∈ L∞(M̄ε) and hence Φ ∈ ∩0<t<εC1,0,α(M̄ × [t, ε]) ∩ C(M̄ε) by using the
Lp-estimate for the heat equation. For every 0 < t, τ ≤ ε, we have /∂

(
ΨA(·, t) − ΨA(·, τ)

)
= −ΩA

B(·, t) ·
(
ΨB(·, t) − ΨB(·, τ)

)
+

(
ΩA

B(·, τ) −ΩA
B(·, t)

)
· ΨB(·, τ), M;

B (Ψ(·, t) − Ψ(·, τ)) = B (ψ(·, t) − ψ(·, τ)) , ∂M.

Again by using Theorem 4.1, for larger p

∥Ψ(·, t) − Ψ(·, τ)∥Cα(M̄) ≤ c(p,C1,C2) |t − τ|α/2 .
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Thus,Ψ ∈ ∩0<t<εC0,0,α(M̄×[t, ε])∩C0(M̄ε). The Schauder estimate for the heat equation
implies thatΦ ∈ ∩0<t<εC2,1,α(M̄×[t, ε])∩C0(M̄ε). The interior Schauder estimate for the
Dirac equation implies that Ψ(·, t) ∈ C2,α(M) for every t ≤ ε. If one uses the boundary
Schauder estimate, one can get that Ψ(·, t) ∈ C1,α(M̄) for t ≤ ε.

Suppose that
lim sup
t<T1,t→T1

∥dΦ(·, t)∥C0(M̄) < ∞,

the discussion above implies that this flow can be extended to a larger time T ′1 > T1,
hence T1 is not the maximum time which is a contradiction.

Step III Uniqueness.

Finally, we state the uniqueness. Suppose that (Φi,Ψi) are solutions of (5.1) and
(5.2). Let u = Φ1 − Φ2, η = Ψ1 − Ψ2, then

|∂tu − ∆u| ≤ C |∇u| +C |u| +C |η| ,

and ∣∣∣/∂η + Ω1 · η
∣∣∣ ≤ C |∇u| +C |u| .

Hence, applying Theorem 4.1 and using the same computation as for v0, we get that

∥η(·, t)∥C0(M̄) ≤ C ∥u∥ ,

and

∥u∥ ≤ C ∥u∥ εβ−m/2

holds for 0 < ε ≤ T1 and β ∈ (m/2, (m + 1)/2), where ∥·∥ is the norm corresponding to
Mε. Thus, if ε is small, then ∥u∥ = 0, i.e., u = 0 and hence η = 0. Then we can prove
the uniqueness of the Dirac-harmonic heat flow by iteration.

Step IV Completion of the proof.

We have actually proved that Φ ⊂ Ñ if ϕ ⊂ N. Therefore, we can use Lemma 5.2.
As a consequence, Φ(·, t) ∈ N and Ψ(·, t) ∈ ΣM × Φ(·, t)−1T N for all 0 ≤ t < T1

since Bψ(·, t) ∈
(
ΣM ⊗ ϕ(·, t)−1T N

)
|∂M for all t. Then applying Lemma 5.1, we finally

complete the proof of this theorem.

□

6. Dirac equations along a map between Riemannian disks

In this section, we discuss a Dirac equation along a smooth map ϕ : M = (D, λ |dz|2) −→ N =
(D, ρ |dw|2) where D = {|z| < 1} is the open unit disk on C. Let ΣM be the spin bundle on M.
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Consider a Dirac bundle ΣM ⊗ ϕ−1T N and split this Dirac bundle as (see [36;44])

ΣM ⊗ ϕ−1T N

=
(
Σ+M ⊗ ϕ−1T 1,0N

)
⊕

(
Σ−M ⊗ ϕ−1T 1,0N

)
⊕

(
Σ+M ⊗ ϕ−1T 0,1N

)
⊕

(
Σ−M ⊗ ϕ−1T 0,1N

)
,

where
Σ+M = {ψ ∈ ΣM : ∂z̄ · ψ = 0} , Σ−M = {ψ ∈ ΣM : ∂z · ψ = 0} .

We identify the Clifford multiplication by the orthogonal bases ∂z, ∂z̄ with the following ma-
trices (see [23;36]):

∂z = λ
1/2

(
0 0
1 0

)
, ∂z̄ = λ

1/2
(
0 −1
0 0

)
.

And the spinor ψ ∈ ΣM ⊗ ϕ−1T N can be written as

ψ =

(
f +

f −

)
⊗ ∂ϕ +

(
f̃ +

f̃ −

)
⊗ ∂ϕ̄

with (
1
0

)
∈ Σ+M,

(
0
1

)
∈ Σ−M.

The connection on the spin bundle ΣM is then given by the following operators (see [36])

∇ΣM
∂z
=
∂

∂z
+

1
4
∂ log λ
∂z

, ∇ΣM
∂z̄
=
∂

∂z̄
+

1
4
∂ log λ
∂z̄

.

Therefore, the Dirac operator on ΣM ⊗ ϕ−1T N is of the following form

/D =2λ−1/2


0 − ∂

∂z
− 1

4
∂ log λ
∂z

− ∂ log ρ
∂ϕ

∂ϕ

∂z
∂

∂z̄
+

1
4
∂ log λ
∂z̄

+
∂ log ρ
∂ϕ

∂ϕ

∂z̄
0


⊕ 2λ−1/2


0 − ∂

∂z
− 1

4
∂ log λ
∂z

− ∂ log ρ
∂ϕ̄

∂ϕ̄

∂z
∂

∂z̄
+

1
4
∂ log λ
∂z̄

+
∂ log ρ
∂ϕ̄

∂ϕ̄

∂z̄
0

 .
The chiral boundary operator [22;23;29] is given by

B± = 1
2

(
1 ±z−1

±z 1

)
⊕ 1

2

(
1 ±z−1

±z 1

)
.

Now we consider the following Dirac equation /Dψ = 0, D;
B±ψ = B±ψ0, ∂D.

As discussed above, /Dψ = 0 is equivalent to the following systems

f +z̄ +
(
1
4

(log λ)z̄ + (log ρ)ϕϕz̄

)
f + = 0, f −z +

(
1
4

(log λ)z + (log ρ)ϕϕz

)
f − = 0,
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and

f̃ +z̄ +
(
1
4

(log λ)z̄ + (log ρ)ϕ̄ϕ̄z̄

)
f̃ + = 0, f̃ −z +

(
1
4

(log λ)z + (log ρ)ϕ̄ϕ̄z

)
f̃ − = 0,

where the spinor ψ has the form

ψ =

(
f +

f −

)
⊗ ∂ϕ +

(
f̃ +

f̃ −

)
⊗ ∂ϕ̄.

Let g be a solution of the Riemannian-Hilbert problemgz̄ =
1
4

(log λ)z̄ + (log ρ)ϕϕz̄, D;

Re g = log
(
λ1/4ρ1/2

)
, ∂D.

All solutions can be given in the following formulae [see [11], p.71, Theorem 21.]

g(z) =i Im g(0) + log λ1/4(z) +
1

2πi

∫
∂D

log
(
ρ(ϕ(ζ))1/2

)
ζ

ζ + z
ζ − z

dζ

+
1

4πi

∫
D

(
(log ρ)ϕϕζ̄(ζ)

ζ

ζ + z
ζ − z

+
(log ρ)ϕ̄ϕ̄ζ(ζ)

ζ̄

1 + zζ̄
1 − zζ̄

)
dζ ∧ dζ̄,

for all z ∈ D. Then

f +z̄ + gz̄ f + = 0, f − z̄ +
(
(log ρ + log λ1/2)z̄ − gz̄

)
f − = 0,

and

f̃ +z̄ +
(
(log ρ + log λ1/2)z̄ − gz̄

)
f̃ + = 0, f̃ − z̄ + gz̄ f̃ − = 0.

Therefore, there exist four holomorphic functions A+, A−, Ã+, Ã− such that

f + = e−gA+, f − = λ−1/2ρ−1eḡA−, f̃ + = λ−1/2ρ−1egÃ+, f̃ − = e−ḡÃ−.

The chirality boundary condition B±ψ = B±ψ0 now is equivalent to

A+ ± z−1A− = λ1/4ρ1/2ei Im g
(

f +0 ± z−1 f −0
)
, Ã+ ± z−1Ã− = λ1/4ρ1/2e−i Im g

(
f̃ +0 ± z−1 f̃ −0

)
,

for z ∈ ∂D, where

ψ0 =

(
f +0
f −0

)
⊗ ∂ϕ +

(
f̃ +0
f̃ −0

)
⊗ ∂ϕ̄.

Since the index of z−1 is−1, the solutions A+, A−, Ã+, Ã− must be unique according to Theorem A.1
(see Appendix A). In particular, f +, f −, f̃ +, f̃ − are independent of the choice of g. In fact, we
can write any other choice of g by g + ic where c is some real number. Then the solutions
A+, A−, Ã+, Ã− must be replaced by eicA+, e−icA−, e−icÃ+, eicÃ− respectively. As a consequence,
f +, f −, f̃ +, f̃ − do not change.

Next, we construct these solutions by using Theorem A.1. Denote

F(z) B
1

2πi

∫
∂D

λ1/4(ζ)ρ(ϕ(ζ))1/2ei Im g(ζ)( f +0 (ζ) ± ζ−1 f −0 (ζ))
ζ − z

dζ, z < ∂D
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and

F̃(z) B
1

2πi

∫
∂D

λ1/4(ζ)ρ(ϕ(ζ))1/2e−i Im g(ζ)( f̃ +0 (ζ) ± ζ−1 f̃ −0 (ζ))
ζ − z

dζ, z < ∂D.

Then

A+(z) = F(z), A−(z) = ±z−1F(1/z̄), Ã+(z) = F̃(z), Ã−(z) = ±z−1F̃(1/z̄), z ∈ D

are the solutions.
To summarize the previous discussion and using Theorem A.2 (see Appendix A), we have the

following

Theorem 6.1. Suppose that ϕ ∈ C1+α(D̄) and B±ψ0 ∈ C1+α(∂D) for some α ∈ (0, 1), then there
exits a unique solution ψ ∈ C1+α(D̄) of /Dψ = 0, D;

B±ψ = B±ψ0, ∂D.

Moreover, there exists a constant c = c(α) such that

∥ψ∥1+α;D ≤ c
∥∥∥B±ψ0

∥∥∥
1+α;∂D

∥ϕ∥1+α;D .

Remark 6.1. When the domain is D = {|z| < 1}, the MIT bag boundary operator is given by

B±MIT =
1
2

(
1 ∓iz−1

±iz 1

)
⊕ 1

2

(
1 ∓iz−1

±iz 1

)
.

The index of ∓iz−1 is −1 and therefore we can use the Theorem A.1 and Theorem A.2 (see
Appendix A). In particular, the above theorem is also true for MIT bag boundary value con-
ditions.

Appendix A. The boundary value problem for the ∂̄-equation

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plain C. We say that (A+, A−) is
a holomorphic function pair on D if A+, A− are two holomorphic functions on D. Consider the
following transformation

Ã+(z) B A+(z), ∀z ∈ D+ B D,

and

Ã−(z) B A−(1/z̄), ∀z ∈ D− B C̄ \ D̄.

Then Ã+ and Ã− are holomorphic in D+ and D− respectively. Moreover, if A+, A− satisfy the
following boundary condition

A+ − φA− = f , on ∂D,

then Ã+, Ã− satisfy the following boundary condition

Ã+ − φÃ− = f , on ∂D.



ESTIMATES FOR DIRAC EQUATIONS 37

Theorem A.1 (See [11], p.39, Theorem 14., p.42, Theorem 15., p.11, Theorem 5.). Suppose that
φ ∈ Cα(∂D) with φ(ζ) , 0 for all ζ ∈ ∂D, where 0 < α < 1. Let f ∈ Cα(∂D) and κ be the index
of φ. Then if κ ≥ 0, there exist exactly κ + 1 linearly independent holomorphic function pairs
(A+, A−) on D such that

A+ − φA− = 0

is satisfied on the boundary ∂D. If κ = −1, then there exists a unique holomorphic function pair
(A+, A−) such that

A+ − φA− = f

holds on the boundary. Moreover, A± ∈ Cα(D̄) ∩ A(D). In fact, if we set

γ(z) B
1

2πi

∫
∂D

log (ζφ(ζ))
ζ − z

dζ, z < ∂D,

and

ψ(z) B
1

2πi

∫
∂D

f (ζ)e−γ(ζ)

ζ − z
dζ, z < ∂D,

then the holomorphic pair (A+, A−) is

A+(z) = eγ(z)ψ(z), A−(z) = z−1eγ(1/z̄)ψ(1/z̄), z ∈ D.

Moreover, there exists a constant c = c(α) such that∥∥∥A±
∥∥∥
α;D
≤ c ∥φ∥α;D ∥ f ∥α;D .

We also need the following Schauder estimate.

Theorem A.2 (See [11], p.11, Theorem 5., p.84, Theorem 29.). Suppose that f ∈ Cα(D̄) and
h ∈ C1+α(∂D) for some 0 < α < 1, then every solution ofsgz̄ = f , D;

Re g = h, ∂D

is of class C1+α(D̄). Moreover, there exists a constant c = c(α) such that

∥g∥1+α;D ≤ c
(
∥ f ∥α;D + ∥h∥1+α;∂D + |Im g(0)|

)
.
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