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Abstract. In this paper we prove that, unlike the two-dimensional case, the electric
field in the presence of closely adjacent spherical perfect conductors does not blow up
even though the separation distance between the conducting inclusions approaches zero.

1. Introduction. Frequently in two phase composites, inclusions are located very
closely and may even touch; see [3]. It is therefore natural and important to find out
if the electric field in the presence of closely spaced inclusions can be arbitrarily large
or not. The purpose of this paper is to deal with the problem in three dimensions and
show that, unlike the two dimensional case, the electric field is bounded regardless of the
distance between the two inclusions.

In the conductivity model, the electric field is given by ∇u, where u is the solution to⎧⎨
⎩

∇ ·
(
χ(Rd \ B1 ∪ B2) + k1χ(B1) + k2χ(B2)

)
∇u = 0 in R

d (d = 2, 3),

u(x) − H(x) = O(|x|1−d) as |x| → +∞.
(1.1)

Here H is a given harmonic function in R
d such that H(0) = 0, B1 and B2 represent the

inclusions, k1 and k2 are their conductivities, and χ(E) denotes the indicator function
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of the set E. So the question is whether ||∇(u − H)||L∞ can be arbitrarily large as
ε := dist(B1, B2) → 0.

If B1 and B2 are two dimensional disks and k1 and k2 stay away from 0 or +∞, then
it is proved by Bonnetier and Vogelius [4] that |∇(u−H)| stays bounded no matter how
small ε is. Li and Vogelius [10] extended this result and proved that the electric field
stays bounded in most general setting-arbitrary number of inclusions of arbitrary shapes
and in two or three dimensions, as long as the conductivities stay away from 0 and +∞.

If the conductivity tends to +∞ or 0, then the situation is completely different. If the
inclusions are perfect conductors (k = +∞) or insulators (k = 0), then the gradient blows
up at the rate of ε−1/2, as shown by Babus̆ka et al. [3] by numerical evidence. See also
[5, 8, 11]. Recently Ammari et al. [1, 2] considered the case of two circular inclusions and
rigourously derived precise estimates on the gradient clarifying the dependence on the
conductivity, the radii, and the distance between the two inclusions. Yun [13] extended
this result to cover two perfect conductors of arbitrary shapes in the two-dimensional
case.

Unlike the two-dimensional case, not much is known in three dimensions when the
conductivity is zero or infinity: Does the gradient blow up as the distance between the
two inclusions tends to zero? If so, what is the blow-up rate? The purpose of this
paper is to address this question. To our surprise, it turns out that if the inclusions are
perfect conductors and of spherical shape, the gradient stays bounded regardless of the
separation distance between them. More precisely, we prove the following theorem.

Theorem 1.1. Let B1 and B2 be two spheres with radius R and centered at (0, 0,±R± ε
2 ),

respectively. Let H be a harmonic function in R
3 such that H(0) = 0. Define u to be

the solution to ⎧⎪⎪⎨
⎪⎪⎩

∆u = 0 in R
3 \ B1 ∪ B2,

u = 0 on ∂B1 ∪ ∂B2,

u(x) − H(x) = O(|x|−1) as |x| → +∞.

(1.2)

Then there is a constant C independent of ε such that

‖∇(u − H)‖L∞(R3\B1∪B2)
≤ C.

Although our result holds for this special case, we believe that it extends to arbitrary-
shaped conductors if their contact reduces to a point.

Theorem 1.1 is proved by first constructing an explicit solution to (1.2) using the
bispherical coordinate system (section 2), and then carefully estimating the explicit so-
lution (section 3).

2. Representation of solutions. In this section we derive an explicit formula for
the solution to (1.2) using the bispherical coordinate system. Let B1 and B2 be the
spheres as defined above. The bispherical system associated with two spheres B1 and B2

is defined as follows. Let

a :=
1
2

√
4Rε + ε2. (2.1)
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Then, each point x = (x1, x2, x3) in the cartesian coordinate system corresponds to
(ξ, θ, ϕ) ∈ R × [0, π] × [0, 2π] in the bispherical system through the equations

x1 = a
sin θ cos ϕ

cosh ξ − cos θ
,

x2 = a
sin θ sin ϕ

cosh ξ − cos θ
,

x3 = a
sinh ξ

cosh ξ − cos θ
.

See [6] or [12] for the geometric meaning of each coordinate. One relevant feature is
that the coordinate surface ξ = constant represents the sphere centered at (0, 0, a/ tanh ξ)
with radius a/| sinh ξ|. In particular, ∂B1 corresponds to the coordinate surface ξ = ξ0

where

ξ0 = ln(1 +
√

4Rε + ε2 + ε

2R
), (2.2)

and ∂B2 to ξ = −ξ0.
Another important feature of the bispherical system is that it is an orthogonal co-

ordinate system and admits R-separation of variables for harmonic functions. In fact,
since

∆h =
(cosh ξ − cos θ)3

a2 sin θ

[
sin θ

∂

∂ξ

( 1
cosh ξ − cos θ

∂h

∂ξ

)

+
∂

∂θ

( sin θ

cosh ξ − cos θ

∂h

∂θ

)]
+

(cosh ξ − cos θ)2

a2 sin2 θ

∂2h

∂ϕ2

as one can see in [12, P.111], any harmonic function h has a general R-separation

h(ξ, θ, ϕ) =
√

cosh ξ − cos θ
+∞∑
n=0

n∑
m=0

[Dm
n e(n+ 1

2 )|ξ| + Em
n e−(n+ 1

2 )|ξ|]

×Pm
n (cos θ)[Fm

n cos(mϕ) + Gm
n sin(mϕ)],

(2.3)

where Pm
n are Legendre associate functions and Dm

n , Em
n , Fm

n , and Gm
n are constants.

See [6, Equation (38)].
Let us recall one more notion. The spherical radial distance |x| is given by r(ξ, θ)

which is defined by

r(ξ, θ) = a

√
cosh ξ + cos θ

cosh ξ − cos θ
.

Note that r → +∞ if and only if (ξ, θ) → (0, 0), and if this is the case∣∣∣r(ξ, θ)
√

cosh ξ − cos θ
∣∣∣ ≤ C (2.4)

for some constant C. On the other hand, we have

r(ξ, θ) ≤ 2a, for ξ > cosh−1(2). (2.5)
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We now derive an explicit form of the solution to (1.2). Note that when H ≡ 1, the
solution has been derived in [6]: u is given by

u =
√

cosh ξ − cos θ
+∞∑
n=0

√
2
[
e−(n+ 1

2 )|ξ| − e(n+ 1
2 )ξ + e−(n+ 1

2 )ξ

e(2n+1)ξ0 + 1

]
Pn(cos θ)

and
1

|∂B1 ∪ ∂B2|

∫
∂B1∪∂B2

∂u

∂ν
= 16πaΓ(ξ0).

Here Pn are the Legendre polynomials and the function Γ is defined by

Γ(ξ) =
+∞∑
n=0

e(2n+1)ξ − 1
e2(2n+1)ξ0 − 1

.

Now, for a given entire harmonic function H in R
3, we define two harmonic functions

He and Ho, one even and the other odd with respect to x3, by

He(x1, x2, x3) :=
H(x1, x2, x3) + H(x1, x2,−x3)

2
,

Ho(x1, x2, x3) :=
H(x1, x2, x3) − H(x1, x2,−x3)

2
.

According to (2.3), He and Ho can be represented in the general R-separable form:

He(ξ, θ, ϕ) =
√

cosh ξ − cos θ
+∞∑
n=0

e−(n+ 1
2 )|ξ|Fn(a, θ, ϕ), (2.6)

Ho(ξ, θ, ϕ) =
√

cosh ξ − cos θ

+∞∑
n=0

(sgn ξ)e−(n+ 1
2 )|ξ|Gn(a, θ, ϕ), (2.7)

where

Fn(a, θ, ϕ) =
n∑

m=0

Pm
n (cos θ)[Am

n cos(mϕ) + Bm
n sin(mϕ)]

and

Gn(a, θ, ϕ) =
n∑

m=0

Pm
n (cos θ)[Fm

n cos(mϕ) + Gm
n sin(mϕ)].

Here, sgn ξ is defined to be

sgn ξ =

⎧⎪⎪⎨
⎪⎪⎩

1 if ξ > 0,

0 if ξ = 0,

−1 if ξ < 0.

Note that those terms e(n+ 1
2 )|ξ| in (2.3) do not appear in (2.6) and (2.7). This is because

He and He are entire harmonic functions.
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Define an even function ue and an odd function uo, with respect to x3, by

ue =
√

cosh ξ − cos θ
+∞∑
n=0

[
e−(n+ 1

2 )|ξ| + Λe
n(ξ)

]
Fn(a, θ, ϕ), (2.8)

uo =
√

cosh ξ − cos θ
+∞∑
n=0

[
(sgn ξ)e−(n+ 1

2 )|ξ| + Λo
n(ξ)

]
Gn(a, θ, ϕ), (2.9)

where

Λe
n(ξ) := −e−(n+ 1

2 )ξ e(2n+1)ξ + 1
e(2n+1)ξ0 + 1

(2.10)

=
(
e(n+ 1

2 )ξ + e−(n+ 1
2 )ξ

) +∞∑
k=1

(−1)ke−(n+ 1
2 )2kξ0 , (2.11)

Λo
n(ξ) := −e−(n+ 1

2 )ξ e(2n+1)ξ − 1
e(2n+1)ξ0 − 1

(2.12)

= −
(
e(n+ 1

2 )ξ − e−(n+ 1
2 )ξ

) +∞∑
k=1

e−(n+ 1
2 )2kξ0 . (2.13)

Theorem 2.1. The solution u of (1.2) has the following decomposition:

u = ue + uo. (2.14)

Proof. One can see from the definition of Λe
n and Λo

n that u satisfies the boundary
conditions on ∂Bj in (1.2). So we are left to show the last condition in (1.2). We show
that there is a constant M such that

lim sup
|x|→+∞

|x| |(ue − He)(x)| ≤ M, (2.15)

lim sup
|x|→+∞

|x| |(uo − Ho)(x)| ≤ M. (2.16)

Thanks to (2.4), it is enough to show that

lim sup
(ξ,θ)→(0,0)

|(ue − He)(ξ, θ)|√
cosh ξ − cos θ

≤ M

in order to prove (2.15), and likewise for (2.16). Put for the sake of simplicity

g(ξ, θ, ϕ) :=
He(ξ, θ, ϕ)√
cosh ξ − cos θ

=
+∞∑
n=0

e−(n+ 1
2 )|ξ|Fn(a, θ, ϕ).
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It then follows from (2.8) that

ue − He

√
cosh ξ − cos θ

=
+∞∑
n=0

+∞∑
k=1

(−1)k
[
e(n+ 1

2 )ξ + e−(n+ 1
2 )ξ

]
e−(n+ 1

2 )2kξ0Fn(a, θ, ϕ)

=
+∞∑
k=1

(−1)kg(|ξ| + 2kξ0, θ, ϕ) +
+∞∑
k=1

(−1)kg(−|ξ| + 2kξ0, θ, ϕ)

=: I + II.

We then easily get from the mean value theorem

I ≤
+∞∑
k=1

∣∣g(|ξ| + 2kξ0, θ, ϕ) − g(|ξ| + 2(k + 1)ξ0, θ, ϕ)
∣∣

≤
+∞∑
k=1

2ξ0 sup
0≤t≤2ξ0

∣∣∣∣∂g

∂ξ
(|ξ| + 2kξ0 + t, θ, ϕ)

∣∣∣∣ .

Recall that the coordinate surface ξ = c (constant) is the sphere centered at (0, 0,

a/ tanh c) with the radius a/ sinh c. For all k ≥ 1, c = |ξ|+ 2kξo + t is bigger than ξ0, so
{ξ = |ξ| + 2kξo + t} is contained in B1(= {ξ = ξ0}). Thus we get

∣∣∣∣∂g

∂ξ
(|ξ| + 2kξ0 + t, θ, ϕ)

∣∣∣∣
=

∣∣∣∣(∂He

∂ξ

1
(cosh ξ − cos θ)

1
2
− He sinh ξ

2(cosh ξ − cos θ)
3
2

)∣∣
ξ=|ξ|+2kξo+t

∣∣∣∣
≤ C(ξ0)‖H‖C1(B1)

1
ekξ0

,

where C(ξ0) is a constant depending on ξ0, and hence we have

I ≤
+∞∑
k=1

C(ξ0)‖H‖C1(B1)
1

ekξ0
≤ M(ξ0).

In the exact same way, one can show that for small ξ,

II ≤ M(ξ0),

where M(ξ0) is a constant depending on ξ0.
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The estimate (2.16) can be proved similarly. In fact, we have∣∣∣∣ uo − Ho

√
cosh ξ − cos θ

∣∣∣∣
=

∣∣∣∣∣
+∞∑
n=0

+∞∑
k=1

[
e(n+ 1

2 )ξ − e−(n+ 1
2 )ξ

]
e−(n+ 1

2 )2kξ0Gn(a, θ, ϕ)

∣∣∣∣∣
≤

+∞∑
k=1

∣∣∣∣∣ Ho(|ξ| + 2kξ0, θ, ϕ)√
cosh(|ξ| + 2kξ0) − cos θ

− Ho(−|ξ| + 2kξ0, θ, ϕ)√
cosh(−|ξ| + 2kξ0) − cos θ

∣∣∣∣∣
≤

+∞∑
k=1

2|ξ| sup
−|ξ|≤t≤|ξ|

∣∣∣∣ ∂

∂ξ

( Ho

√
cosh ξ − cos θ

)∣∣∣
ξ=2kξ0+t

∣∣∣∣ .

We also have

sup
−|ξ|≤t≤|ξ|

∣∣∣∣ ∂

∂ξ

( Ho

√
cosh ξ − cos θ

)∣∣∣
ξ=2kξ0+t

∣∣∣∣ ≤ ‖H‖C1(B1)
1

ekξ0
,

which proves (2.16). This completes the proof. �

3. Gradient estimates. Let us begin by observing that the sphere ξ = c is the
0-level set of the function

f(x1, x2, x3) = x2
1 + x2

2+
(
x3 − a

cosh c

sinh c

)2

−
( a

sinh c

)2

,

and hence the outward unit normal ν to the sphere ξ = c is given by

νξ=c =
∇f

|∇f | = (sgn c)
( sin θ cos ϕ sinh c

cosh c − cos θ
,
sin θ sin ϕ sinh c

cosh c − cos θ
,
−1 + cosh c cos θ

cosh c − cos θ

)
.

Since
∂(x1, x2, x3)

∂ξ
= −(sgn c)

(
a

cosh c − cos θ

)
νξ=c,

we have
∂u

∂ν

∣∣∣
ξ=c

= ∇u · νξ=c = −(sgn c)
(cosh c − cos θ

a

)∂u

∂ξ

∣∣∣
ξ=c

. (3.1)

We now prove Theorem 1.1. During the course of the proof, we will state necessary
technical lemmas, leaving their proofs to the end of this section.

Proof of Theorem 1.1. To establish the boundedness of ∇(u−H) we first observe that
since (u − H)(x) → 0 as |x| → +∞, |∇(u − H)| attains its maximum on either ∂B1 or
∂B2. It then suffices to estimate |∂(u − H)/∂ν| on the spheres ξ = ±ξ0 since u = 0 on
them.

By (2.14), u − H = (ue − He) + (uo − Ho), and ue − He, uo − Ho are even and odd
in the x3-variable. Therefore, we have

∂(ue − He)
∂ν

∣∣∣
ξ=−ξ0

=
∂(ue − He)

∂ν

∣∣∣
ξ=ξ0

,

∂(uo − Ho)
∂ν

∣∣∣
ξ=−ξ0

= −∂(uo − Ho)
∂ν

∣∣∣
ξ=ξ0

,
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which hold because of the simple relation

(ν1, ν2, ν3)|ξ=−ξ0 = (ν1, ν2,−ν3)|ξ=ξ0 .

Thus it is enough to consider estimates on the sphere ξ = ξ0.
The first technical lemma is the following.

Lemma 3.1. We have
∂(ue − He)

∂ν

∣∣∣
ξ=ξ0

=
(∂He

∂ν
+

sinh ξ0

a
He

)∣∣∣∣
ξ=ξ0

(3.2)

− 2(cosh ξ0 − cos θ)
3
2

+∞∑
k=0

(−1)kfe((2k + 3)ξ0, θ, ϕ),

where

fe(ξ, θ, ϕ) =
1

(cosh ξ − cos θ)
3
2

(∂He

∂ν
(ξ, θ, ϕ) +

sinh |ξ|
2a

He(ξ, θ, ϕ)
)
. (3.3)

We also have
∂(uo − Ho)

∂ν

∣∣∣
ξ=ξ0

=
(∂Ho

∂ν
+

sinh ξ0

a
Ho

)∣∣∣∣
ξ=ξ0

(3.4)

+ 2(cosh ξ0 − cos θ)
3
2

+∞∑
k=0

fo((2k + 3)ξ0, θ, ϕ),

where

fo(ξ, θ, ϕ) =
1

(cosh ξ − cos θ)
3
2

(∂Ho

∂ν
(ξ, θ, ϕ) +

sinh |ξ|
2a

Ho(ξ, θ, ϕ)
)
. (3.5)

Since the formula (3.2) and (3.4) are identical except the multiplication by (−1)k in
(3.2) and (−1)k does not play any role in what follows, we will drop the superscript e

and o afterwards.
Let K be the convex hull of B1 ∪ B2. We prove that∣∣∣∣∂(u − H)

∂ν

∣∣
ξ=ξ0

∣∣∣∣ ≤ C‖H‖C2(K). (3.6)

The first part of the right-hand side of (3.2) and (3.4) is simple to handle. In fact, one
can easily see from (2.1) and (2.2) that there are constants C1 and C2 such that

C1 ≤ ξ0

a
≤ C2, (3.7)

and hence ∣∣∣∣(∂H

∂ν
+

sinh ξ0

a
H

)∣∣
ξ=ξ0

∣∣∣∣ ≤ C‖H‖C1(K),

for some constant C.
To estimate the infinite summation of (3.2) and (3.4), we consider two different cases

separately: the case when H(x) = O(|x|2) as |x| → 0 and the case when H(x) is of
homogeneous degree one.

Suppose that H(x) = O(|x|2) as |x| → 0 so that

|H(x)| ≤ C‖H‖C2(K)|x|2 for x ∈ K,
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for some constant C. In this case, since the sphere {ξ = c} is contained in B1 ∪ B2 if
|c| ≥ ξ0 and |x| = r(c, θ), we have∣∣∣∣(∂H

∂ν
+

sinh |ξ|
2a

H
)∣∣

ξ=c

∣∣∣∣ ≤ C‖H‖C2(K)

(
r(c, θ) +

sinh |c|
a

r2(c, θ)
)

.

It thus follows from (3.3) and (3.5) that

+∞∑
k=0

∣∣f((2k + 3)ξ0, θ, ϕ)
∣∣

≤ C‖H‖C2(K)

+∞∑
k=0

[
1

(cosh ξ − cos θ)
3
2

(
r(ξ, θ) +

sinh |ξ|
a

r2(ξ, θ)
)]

ξ=(2k+3)ξ0

.

The desired estimate (3.6) for this case immediately follows from the following lemma.

Lemma 3.2. For η > 0, there is a constant C > 0 such that for 0 < ξ0 < η and θ ∈ [0, π],

+∞∑
k=0

[
1

(cosh ξ − cos θ)
3
2

(
r(ξ, θ) +

sinh |ξ|
a

r2(ξ, θ)
)]

ξ=(2k+3)ξ0

≤ C

(cosh ξ0 − cos θ)
3
2
.

We now assume that H is homogeneous of degree one. Because of the symmetry of
the configuration, x1 and x2 play the same roles, and hence it suffices to consider the
cases when H = x1 and H = x3.

If H(x) = x3, we have for each c > 0

(∂H

∂ν
+

sinh |ξ|
2a

H
)∣∣∣

ξ=c
=

−1 + cosh c cos θ

cosh c − cos θ
+

sinh2 c

2(cosh c − cos θ)
.

Thus the following lemma, together with (3.4), yields (3.6) when H(x) = x3.

Lemma 3.3. Let

f(t) :=
1

(cosh t − cos θ)
3
2

[−1 + cosh t cos θ

cosh t − cos θ
+

sinh2 t

2(cosh t − cos θ)

]
.

For a given η > 0, there exits a constant C > 0 such that for 0 < ξ0 < η and θ ∈ [0, π],
the following is satisfied:

∣∣∣ +∞∑
k=0

f((2k + 3)ξ0)
∣∣∣ ≤ C

(cosh ξ0 − cos θ)
3
2
. (3.8)

If H(x) = x1, then(∂H

∂ν
+

sinh |ξ|
2a

H
)∣∣∣

ξ=c
=

3
2

sin θ sinh |c|
cosh c − cos θ

cos ϕ.

Thus the following lemma together with (3.2) yields (3.6) when H(x) = x1.

Lemma 3.4. Let

h(t) =
sinh t

(cosh t − cos θ)
5
2
.
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For a given η > 0, there is a constant C > 0 such that for 0 < ξ0 < η and θ ∈ [0, π], the
following is satisfied:

∣∣∣ sin θ
+∞∑
k=0

(−1)kh((2k + 3)ξ0)
∣∣∣ ≤ C

(cosh ξ0 − cos θ)
3
2
. (3.9)

This completes the proof of Theorem 1.1. �

We now prove those lemmas used in the proof of Theorem 1.1.
Proof of Lemma 3.1. Using (2.8) and (3.1), it is easy to see that

∂ue

∂ν

∣∣∣
ξ=ξ0

=
∂He

∂ν

∣∣∣
ξ=ξ0

− sinh ξ0

2a

√
cosh ξ0 − cos θ

+∞∑
n=0

Λe
n(ξ0)Fn(a, θ, ϕ) (3.10)

− (cosh ξ0 − cos θ)
3
2

a

+∞∑
n=0

∂Λe
n

∂ξ
(ξ0)Fn(a, θ, ϕ).

Note that

∂Λe
n

∂ξ
(ξ0) = (n +

1
2
)
−e(n+ 1

2 )ξ0 + e−(n+ 1
2 )ξ0

e(2n+1)ξ0 + 1

= −(n +
1
2
)
[
e−(n+ 1

2 )ξ0 − e−(n+ 1
2 )ξ0

2
e(2n+1)ξ0 + 1

]

= −
[
(n +

1
2
)e−(n+ 1

2 )ξ0 − 2
+∞∑
k=0

(−1)k(n +
1
2
)e−(n+ 1

2 )(2k+3)ξ0

]
.

Since Λe
n(ξ0) = −e−(n+ 1

2 )ξ0 by (2.10), the equation (3.10) becomes

∂ue

∂ν

∣∣∣
ξ=ξ0

=
(

∂He

∂ν
+

sinh ξ0

2a
He

)∣∣∣
ξ=ξ0

+
(cosh ξ0 − cos θ)

3
2

a

+∞∑
n=0

(n +
1
2
)e−(n+ 1

2 )ξ0Fn(a, θ, ϕ)

− 2
(cosh ξ0 − cos θ)

3
2

a

+∞∑
k=0

(−1)k
+∞∑
n=0

(n +
1
2
)e−(n+ 1

2 )(2k+3)ξ0Fn(a, θ, ϕ).

Straightforward computations show that

+∞∑
n=0

(n +
1
2
)e−(n+ 1

2 )ξ0Fn(a, θ, ϕ)

=
a

(cosh ξ0 − cos θ)
3
2

[
∂He

∂ν
(ξ0, θ, ϕ) +

sinh ξ0

2a
He(ξ0, θ, ϕ)

]
,

and hence (3.2) follows.
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On the other hand,

∂uo

∂ν

∣∣∣
ξ=ξ0

=
∂Ho

∂ν

∣∣∣
ξ=ξ0

− sinh ξ0

2a

√
cosh ξ0 − cos θ

+∞∑
n=0

Λo
n(ξ0)Gn(a, θ, ϕ) (3.11)

− (cosh ξ0 − cos θ)
3
2

a

+∞∑
n=0

∂Λo
n

∂ξ
(ξ0)Gn(a, θ, ϕ)

and
∂Λo

n

∂ξ
(ξ0) := −(n +

1
2
)
e(n+ 1

2 )ξ0 + e−(n+ 1
2 )ξ0

e(2n+1)ξ0 − 1

= −(n +
1
2
)
[
e−(n+ 1

2 )ξ0 + 2
+∞∑
k=0

e−(n+ 1
2 )(2k+3)ξ0

]
.

As before, Λo
n(ξ0) = −e−(n+ 1

2 )ξ0 , and hence (3.11) becomes

∂uo

∂ν

∣∣∣
ξ=ξ0

=
(

∂Ho

∂ν
+

sinh ξ0

2a
Ho

)∣∣∣
ξ=ξ0

+
(cosh ξ0 − cos θ)

3
2

a

+∞∑
n=0

(n +
1
2
)e−(n+ 1

2 )ξ0Gn(a, θ, ϕ)

+ 2
(cosh ξ0 − cos θ)

3
2

a

+∞∑
k=0

+∞∑
n=0

(n +
1
2
)e−(n+ 1

2 )(2k+3)ξ0Gn(a, θ, ϕ).

Thus (3.4) follows from the identity
+∞∑
n=0

(n +
1
2
)e−(n+ 1

2 )ξ0Gn(a, θ, ϕ)

=
a

(cosh ξ0 − cos θ)
3
2

[
∂Ho

∂ν
(ξ0, θ, ϕ) +

sinh ξ0

2a
Ho(ξ0, θ, ϕ)

]
,

which can be derived by straightforward computations. This completes the proof. �
Proof of Lemma 3.2. Let

h1(ξ, θ) :=
r(ξ, θ)

(cosh ξ − cos θ)
3
2

and h2(ξ, θ) :=
r2(ξ, θ) sinh ξ

a(cosh ξ − cos θ)
3
2
,

and put

Ii :=
+∞∑
k=0

hi

(
(2k + 3)ξ0, θ

)
, i = 1, 2.

Then, we have
+∞∑
k=0

[
1

(cosh ξ − cos θ)
3
2

(
r(ξ, θ) +

sinh |ξ|
a

r2(ξ, θ)
)]

ξ=(2k+3)ξ0

= I1 + I2.

Note that if 0 < ξ0 < η and θ ∈ [0, π], then

r(ξ, θ) = a

√
cosh ξ + cos θ

cosh ξ − cos θ
≤

⎧⎪⎨
⎪⎩

2a, if ξ ≥ 2 + 3ξ0,
a cosh(2 + 3η)

(cosh ξ − cos θ)
1
2
, if ξ < 2 + 3ξ0.

(3.12)
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Based on the above estimates, we deal with the sums for large and small k separately.
Let for i = 1, 2,

Ii =
∑

k≥1/ξ0

+
∑

0≤k<1/ξ0

:= Ii
1 + Ii

2.

If k ≥ 1/ξ0, then (2k + 3)ξ0 ≥ 2 + 3ξ0, and hence by (3.12) we get

|hi((2k + 3)ξ0, θ)
∣∣∣ ≤ Ma

ekξ0
,

for some constant M . It then follows from (3.7) that

Ii
1 ≤ Ma

1 − eξ0
≤ C, i = 1, 2. (3.13)

If 0 ≤ k < 1/ξ0, then (2k + 3)ξ0 < 2 + 3ξ0, and hence by (3.12) we get

Ii
2 ≤ Ca

∑
0≤k<1/ξ0

fi((2k + 3)ξ0), i = 1, 2,

for some constant C depending only on η, where

f1(t) :=
1

(cosh t − cos θ)2
, f2(t) :=

sinh t

(cosh t − cos θ)
5
2
.

Since f1(t) is a decreasing in (0, +∞), we have

∑
0≤k<1/ξ0

f1((2k + 3)ξ0) ≤
1

2ξ0

∫ 2+3ξ0

ξ0

f1(t) dt

=
1

2ξ0

∫ 2+2ξ0

0

1
(cosh(t + ξ0) − cos θ)2

dt

≤ 1
2ξ0

∫ 2+2ξ0

0

1
(cosh ξ0 − cos θ)2 + (cosh ξ0 − cos θ)t2

dt

≤ 1
2ξ0

1
(cosh ξ0 − cos θ)

3
2

∫ +∞

0

1
1 + t2

dt.

Therefore we get from (3.7)

I1
2 ≤ C

(cosh ξ0 − cos θ)
3
2
. (3.14)

The estimate of I2
2 is a little more involved since f2 is not monotone. However, one

can easily see that f2 increases in (0, tm) and decreases in (tm, +∞), where tm is the
maximum point of f2, i.e.,

tm = cosh−1

(
− cos θ +

√
cos2 θ + 15

3

)
.
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If tm < 3ξ0, then (2k + 3)ξ0 ∈ (tm, +∞) where f2 is decreasing for all k ≥ 0. Thus we
have as before ∑

0≤k<1/ξ0

f2((2k + 3)ξ0) ≤
1

2ξ0

∫ 2+3ξ0

ξ0

f2(t) dt

=
1

2ξ0

∫ 2+3ξ0

ξ0

sinh t

(cosh t − cos θ)
5
2

dt

≤ C
1
ξ0

1
(cosh ξ0 − cos θ)

3
2
. (3.15)

If tm ≥ 3ξ0, the summation can be broken down into two parts according to the
increase or the decrease in f2, i.e.,∑

0≤k<1/ξ0

f2((2k + 3)ξ0) =
∑

3≤(2k+3)< tm
ξ0

+
∑

tm
ξ0

≤(2k+3)< 2
ξ0

+3

.

Since f2 is increasing in the interval relevant to the first summation, we have

∑
3≤(2k+3)< tm

ξ0

f2((2k + 3)ξ0) ≤
1

2ξ0

∫ tm

3ξ0

f2(x) dx + f2(tm),

and for the second one for which f2 is decreasing, we have

∑
tm
ξ0

≤(2k+3)< 2
ξ0

+3

f2((2k + 3)ξ0) ≤ f2(tm) +
1

2ξ0

∫ 2+5ξ0

tm

f2(x) dx.

Thus we have ∑
0≤k<1/ξ0

f2((2k + 3)ξ0) ≤
1

2ξ0

∫ 2+5ξ0

3ξ0

f2(t) dt + 2f2(tm). (3.16)

It then follows from the simple-to-prove inequality

(t + 2)(cosh t − 1) ≥ t sinh t, t ≥ 0,

that

f2(tm) ≤ 1
(cosh tm − cos θ)

3
2

tm + 2
tm

≤ C

ξ0(cosh ξ0 − cos θ)
3
2
.

Here we used the fact tm ≥ 3ξ0. We then get from (3.16) that∑
0≤k<1/ξ0

f2((2k + 3)ξ0) ≤ C
1
ξ0

1
(cosh ξ0 − cos θ)

3
2
. (3.17)

It now follows from (3.15) and (3.17) that

I2
2 ≤ C

(cosh ξ0 − cos θ)
3
2
. (3.18)

The proof is now completed by (3.13), (3.14), and (3.18). �
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Proof of Lemma 3.3. Since∣∣∣∣−1 + cosh t cos θ

cosh t − cos θ

∣∣∣∣ ≤ 1 and
∣∣∣∣ sinh2 t

cosh t − cos θ

∣∣∣∣ ≤ cosh t + 1,

we have

|f(t)| ≤ 2 cosh t

(cosh t − cos θ)
3
2
. (3.19)

Note that F ′(t) = f(t) where

F (t) :=
− sinh t

(cosh t − cos θ)
3
2
.

One can easily see that F is concave in (0, t0) and convex in (t0, +∞), where

t0 := cosh−1
(
− 5 cos θ +

√
21 cos2 θ + 15

)
.

We separately consider the cases of t0 ≤ 5ξ0 and of t0 > 5ξ0.
Suppose t0 ≤ 5ξ0 and let a = (2k+3)ξ0 for k ≥ 2. Since (a−2ξ0, a+2ξ0) is contained

in (t0, +∞), we get from the convexity of F ,

F (a + 2ξ0) − F (a)
2ξ0

≤ f(a) ≤ F (a) − F (a − 2ξ0)
2ξ0

. (3.20)

Summing over all k ≥ 2 gives us that

−F (7ξ0)
2ξ0

≤
+∞∑
k=2

f((2k + 3)ξ0) ≤
−F (5ξ0)

2ξ0
.

Since ∣∣∣∣f(3ξ0) + f(5ξ0)
∣∣∣∣ ≤ 4 cosh 5ξ0

(cosh 3ξ0 − cos θ)
3
2

by (3.19) and

|F (5ξ0)| + |F (7ξ0)| ≤
2 sinh 7ξ0

(cosh ξ0 − cos θ)
3
2
≤ Cξ0

(cosh ξ0 − cos θ)
3
2
,

we have (3.8) in the case when t0 ≤ 5ξ0.
If t0 > 5ξ0, define k0 as the smallest number such that (2k + 1)ξ0 ≥ t0. Note that

k0 ≥ 3 and (2k0 − 1)ξ0 < t0. From the concavity and the convexity of F , we have for
k ≥ k0

F (a + 2ξ0) − F (a)
2ξ0

≤ f(a) ≤ F (a) − F (a − 2ξ0)
2ξ0

(3.21)

and for k ≤ k0 − 3

F (a + 2ξ0) − F (a)
2ξ0

≥ f(a) ≥ F (a) − F (a − 2ξ0)
2ξ0

, (3.22)

where a := (2k + 3)ξ0.
We estimate I by splitting the summation into three parts:

+∞∑
k=0

f((2k + 3)ξ0) =
∑
k≥k0

+
∑

k=k0−2,k0−1

+
∑

0≤k≤k0−3

=: I1 + I2 + I3.
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From (3.19) and the fact that

(2k + 3)ξ0 ≤ t0 + 2ξ0 < cosh−1(6) + 2ξ0 for k = k0 − 2, k0 − 1,

we obtain that

|f((2k + 3)ξ0)| ≤
C

(cosh ξ0 − cos θ)
3
2

for k = k0 − 2, k0 − 1.

Therefore,

|I2| ≤
C

(cosh ξ0 − cos θ)
3
2
. (3.23)

To estimate I1 and I3, we use (3.21) and (3.22). By summing over all k ≥ k0 and all
0 ≤ k ≤ k0 − 3 separately, we have

−F ((2k0 + 3)ξ0)
2ξ0

≤ I1 ≤ −F ((2k0 + 1)ξ0)
2ξ0

and
F ((2k0 − 1)ξ0) − F (3ξ0)

2ξ0
≥ I3 ≥ F ((2k0 − 3)ξ0) − F (ξ0)

2ξ0
. (3.24)

Thus
F ((2k0 − 3)ξ0) − F ((2k0 + 3)ξ0)

2ξ0
− F (ξ0)

2ξ0
≤ I1 + I3

≤ F ((2k0 − 1)ξ0) − F ((2k0+1)ξ0)
2ξ0

− F (3ξ0)
2ξ0

.

Note that for some constant C

|F ((2k0 − 3)ξ0) − F ((2k0 + 3)ξ0)| ≤ 6ξ0 sup
(2k0−3)ξ0≤t≤(2k0+3)ξ0

|f(t)|

≤ Cξ0

(cosh ξ0 − cos θ)
3
2

and

F (ξ0) ≤
Cξ0

(cosh ξ0 − cos θ)
3
2
.

Therefore

I1 + I3 ≥ −M

(cosh ξ0 − cos θ)
3
2
,

for some positive constant M . Similarly, we can show that

I1 + I3 ≤ M

(cosh ξ0 − cos θ)
3
2
,

and hence

|I1 + I3| ≤
M

(cosh ξ0 − cos θ)
3
2
.

This estimate together with (3.23) yields (3.8) for the case when t0 > 5ξ0. This completes
the proof. �
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Proof of Lemma 3.4. We first note that h is increasing in (0, tm) and then decreasing
in (tm, +∞) where

tm := cosh−1
(− cos θ +

√
cos2 θ + 15

3

)
.

If tm ≤ 3ξ0, (2k+3)ξ0 is contained in (tm, +∞) for all k ≥ 1. Thus one can immediately
see that

h(3ξ0) − h(5ξ0) ≤
+∞∑
k=0

(−1)kh((2k + 3)ξ0) ≤ h(3ξ0). (3.25)

Since ∣∣∣∣ sin θ sinh ξ

cosh ξ − cos θ

∣∣∣∣ ≤ 1 for all ξ and θ,

(3.9) follows from (3.25).
If tm > 3ξ0, let m0 be the largest number such that (4m0 + 5)ξ0 ≤ tm. Then we have
+∞∑
k=0

(−1)kh((2k + 3)ξ0) =
∑

0≤m≤m0

[
h((4m + 3)ξ0) − h((4m + 5)ξ0)

]

+ h((4m0 + 7)ξ0) −
∑

m≥m0

[
h((4m + 9)ξ0) − h((4m + 11)ξ0)

]
.

Thus ∣∣∣∣∣
+∞∑
k=0

(−1)kh((2k + 3)ξ0)

∣∣∣∣∣
≤ |h(3ξ0) − h((4m0 + 5)ξ0)| + h((4m0 + 7)ξ0) + h((4m0 + 9)ξ0)

≤ 4h(tm) ≤ 1
| sin θ|

4
(cosh 3ξ0 − cos θ)

3
2
,

and hence (3.9) follows. The proof is now complete. �
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