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ESTIMATES FOR THE PRINCIPAL SPECTRUM POINT
FOR CERTAIN TIME-DEPENDENT PARABOLIC OPERATORS

V. HUTSON, W. SHEN, AND G. T. VICKERS

(Communicated by David S. Tartakoff)

Abstract. Non-autonomous parabolic equations are discussed. The periodic
case is considered first and an estimate for the principal periodic-parabolic
eigenvalue is obtained by relating the original problem to the elliptic one ob-
tained by time-averaging. It is then shown that an analogous bound may be
obtained for the principal spectrum point in the almost periodic case. These
results have applications to the stability of nonlinear systems and hence, for
example, to permanence for biological systems.

1. Introduction

We shall examine a class of time-dependent parabolic problems. In order to
clarify the purpose of the analysis, we discuss first a relatively simple case with
time periodicity (see [9]). The basic question concerns the principal eigenvalue
(p.e.v.) for the partial differential equation

−ω∂tv + µ∆v + h(x, t)v = λv,(1.1)

where ∆ is the Laplacian, ω is the frequency and h(x, ·) has period unity. Here
the domain Ω is bounded and suitable boundary conditions are imposed on v at
∂Ω, the boundary of Ω (the details are given in section 2). The p.e.v. is the
unique eigenvalue of equation (1.1) corresponding to non-negative v. The problem
is important from the point of view of applications. The most obvious of these is
to extend the analysis of stability for reaction-diffusion equations from the class
of autonomous equations, which have been much studied, to periodic problems,
which are more realistic in some contexts, for example in biological applications. In
particular, the sign of λ determines the stability of the origin, and hence whether
or not persistence (that is, the long-time survival of the species) holds for the scalar
problem

ω∂tz = zm(x, t, z) + µ∆z,(1.2)

where h(x, t) = m(x, t, 0). This is discussed at length in [9] and applications to
systems are covered in [2]. The importance of eigenvalue estimates for the au-
tonomous problem corresponding to equation (1.1) is well known and there has
been considerable research directed towards this problem both theoretically and
numerically. A key point is that the operator is formally self-adjoint and powerful
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variational techniques are available. Of course equation (1.1) is not self-adjoint and
this rules out one of the main approaches. Estimates for λ are available under cer-
tain assumptions, e.g. µ small, but the theory (see [9]) is much less developed. We
present in section 2 a general estimate, with the Laplacian replaced by an arbitrary
(not necessarily self-adjoint) elliptic operator, which appears to be new; this is that
λ ≥ λ∗ where λ∗ is the p.e.v. for the corresponding problem for the time average
of h. This has a surprising implication: the addition of temporal variation (with
time average zero at every spatial point) tends to destabilise an equilibrium un-
der all circumstances. For the biological problem this means that spatio-temporal
variation always favours persistence (in the above sense).

In section 3 we generalise (1.1) in a different direction by examining the case when
h(x, ·) is almost periodic. Here λ must be interpreted as the principal spectrum
point (or upper Lyapunov exponent), which is defined in detail later. Almost-
periodic time variation is also of interest in the biological context, (see [3] for
ordinary differential equation models and [14] for a model involving partial differ-
ential equations). The result is clearly analogous to that for the previous case; the
Lyapunov exponent satisfies λ ≥ λ∗ and again time variation favours persistence.

2. A bound for the principal eigenvalue in the periodic case

The assumptions we shall make are similar to those in [9] with small adjustments.
The most important change is in the sign of the eigenvalue, which is here chosen
to fit in with the natural notation of the next section. Let

Lv =
n∑

i, j=1

∂i(ai j∂jv) +
n∑
j=1

bj ∂jv,

where the ai j and bj are functions of x only. Assume throughout this section that
the following hold for some θ > 0:

(C1) Ω ⊂ Rn is bounded and open with ∂Ω ∈ C2+θ.
(C2) Let ∂/∂n denote differentiation along the outward normal. The boundary

conditions are one of the following types:
(a) v = 0 on ∂Ω (Dirichlet boundary condition),
(b) ∂v/∂n+b0(x)v = 0 on ∂Ω, where b0 ∈ C1+θ and b0 ≥ 0 (x ∈ ∂Ω) (regular

oblique derivative boundary condition).
(C3) ai j ∈ C1+θ(Ω̄), bj ∈ Cθ(Ω̄). Also h ∈ F where F = {w ∈ Cθ,θ/2(Ω̄× R) : w

1-periodic in t}.
(C4) We may assume that ai j = aj i (x ∈ Ω̄) without loss of generality. Suppose

also that −L is uniformly elliptic, that is, there exists δ > 0 such that

n∑
i, j=1

ai jξiξj ≥ δ|ξ|2 (ξ ∈ Rn, x ∈ Ω̄).

Define the time average for h : Ω̄× R→ R as follows:

ĥ(x) =

1∫
0

h(x, t)dt,
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THE PRINCIPAL SPECTRUM POINT OF PARABOLIC OPERATORS 1671

and take h(x, t) = ĥ(x)+H(x, t), so that Ĥ(x) = 0 (x ∈ Ω̄). Consider the principal
eigenvalue problem for the elliptic equation

Lu+ ĥu = λ∗u,(2.1)

and for the periodic-parabolic equation

−ω∂tv + Lv + hv = λv,(2.2)

under one of the boundary conditions (C2).

Theorem 2.1. The inequality λ ≥ λ∗ holds, with equality if and only if H is
independent of x.

We need a simple preliminary result.

Lemma 2.2. With f = (f1, ..., fn)T , let f : [0, 1] → Rn be continuous. Then for
each x,

n∑
i, j=1

ai j

∫ 1

0

fi(t)dt
∫ 1

0

fj(t)dt ≤
n∑

i, j=1

ai j

∫ 1

0

fi(t)fj(t)dt.(2.3)

Proof. By (C4), there is an orthogonal matrix L such that A = LTDL where D is
diagonal with entries di > 0. With x, y column vectors in Rn, set y = Lx. Then

n∑
i, j=1

xiai jxj =
n∑
i=1

diy
2
i .(2.4)

Put first xi =
∫ 1

0 fi(t)dt and y = Lx = L
∫ 1

0 f(t)dt =
∫ 1

0 Lf(t)dt. Then take
xi = fi(t) and y(t) = Lx(t). Using (2.4), one sees that (2.3) becomes

n∑
i=1

di

(∫ 1

0

yi(t)dt
)2

≤
n∑
i=1

di

∫ 1

0

y2
i (t)dt.

The result follows from Schwarz’s inequality.

Proof of Theorem 2.1. Let

w(x) = exp

 1∫
0

ln v(x, t)dt

 .(2.5)

For boundary conditions (C2)(b) this definition is valid for x ∈ Ω̄. For (C2)(a),
suppose (2.5) holds for x ∈ Ω and extend w to Ω̄ by defining it to be zero on ∂Ω.
Differentiation of (2.5) gives

∂jw

w
=
∫ 1

0

∂jv

v
dt.(2.6)

Multiplication of each equation by ai j, summation over j and differentiation with
respect to xi yields the relation

−∂iw
w2

n∑
j=1

ai j∂jw +
1
w
∂i

n∑
j=1

ai j∂jw

= −
∫ 1

0

∂iv

v2

n∑
j=1

ai j∂jvdt+
∫ 1

0

1
v
∂i

 n∑
j=1

ai j∂jv

 dt.
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The first term of this equation may be expressed in terms of v by using (2.6). Now
sum over i and rearrange to obtain

1
w

n∑
i, j=1

∂i(ai j∂jw) =
n∑

i, j=1

∫ 1

0

∂iv

v
dt ai j

∫ 1

0

∂jv

v
dt

−
n∑

i, j=1

∫ 1

0

∂iv

v
ai j

∂jv

v
dt+

∫ 1

0

1
v

n∑
i, j=1

∂i(ai j∂jv)dt

≤
∫ 1

0

1
v

n∑
i, j=1

∂i(ai j∂jv)dt

by Lemma 2.2 with fi = v−1∂iv. Therefore, from the differential equation (2.2) for
v,

1
w

n∑
i, j=1

∂i(ai j∂jw) ≤
∫ 1

0

1
v

(
ω∂tv −

n∑
i=1

bi∂iv − hv + λv

)
dt.

From periodicity, the first term on the right-hand side is zero. Thus, using (2.6)
again and rearranging, we obtain

Lw ≤ −(ĥ− λ)w.(2.7)

We note for future reference that strict inequality holds for some x unless, for each
i and x ∈ Ω̄, v−1∂iv is independent of t.

We first prove that λ ≥ λ∗. For if λ < λ∗, since w > 0 (x ∈ Ω), from (2.7) there
is a function m with m(x) < 0 (x ∈ Ω) such that

Lw + (ĥ− λ∗)w = m(x).(2.8)

From (2.1), zero is the principal eigenvalue of the operator L + ĥ − λ∗. It follows
(see [1], Proof of Theorem 4.3 and Theorem 3.2 for example) that zero is also
the principal eigenvalue of the adjoint operator with corresponding eigenfunction
u′, say, which is also strictly positive in Ω. From a standard Fredholm alternative
argument, equation (2.8) has a solution if and only if

∫
Ω
m(x)u′(x)dx = 0. However,

this is impossible as u′ > 0 and m < 0 on Ω. This contradiction proves that λ ≥ λ∗.
Finally, consider the case of equality, that is, λ = λ∗. Clearly this holds if H(x, t)

is a function of t only, say g, where we recall the definition h(x, t) = ĥ(x) +H(x, t).
To see this one only needs to substitute

v(x, t) = u(x) exp

 1
ω

t∫
0

g(s)ds


into equation (2.2) and use equation (2.1). On the other hand, it was noted above
that strict inequality holds in (2.7) for some x (and hence λ < λ∗ by a minor
amendment of the argument in the last paragraph) unless for each i and x ∈ Ω,
v−1∂iv is independent of t, say v−1∂iv = Fi(x) for some F . Then ∇ ln v = F and
∇∂ ln v/∂t = 0. Thus v = X(x)T (t) for some smooth X , T (where X is positive
and T is periodic and positive). From equation (2.2), for all x ∈ Ω and t ∈ R

−ωT
′

T
+
LX

X
+ h = λ.

Therefore h is of the form asserted.
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THE PRINCIPAL SPECTRUM POINT OF PARABOLIC OPERATORS 1673

3. A bound for the principal spectrum point

in the almost periodic case

In this section, we consider the spectrum of the almost periodic parabolic prob-
lem  ∂tv = µ∆v + h(x, t)v (x ∈ Ω),

Bv = 0 (x ∈ ∂Ω),
(3.1)

where Ω satisfies (C1), Bv = 0 denotes one of the boundary conditions (C2) (a) or
(b), and h ∈ Cθ,θ/2(Ω̄×R) and is uniformly almost periodic in t. To do so, we first
give a brief review of the basic theory of almost periodic functions and construct
a skew-product semiflow associated with (3.1). Then we introduce the definition
of the dynamic spectrum and present the continuous separation property of (3.1).
Finally we provide a bound for the principal spectrum point of (3.1) (Theorem
3.14).

It should be pointed out that, as in the previous section, the results in this
section also hold when the Laplacian in (3.1) is replaced by an arbitrary elliptic
operator. But for simplicity in notation, we consider the relatively simple equation
(3.1) only. It should also be pointed out that if h is actually periodic, then Theorem
3.14 implies Theorem 2.1, but Theorem 2.1 can be proved directly as is done.

3.1. Almost periodic functions.

Definition 3.1.

1) A function f ∈ C(R,Rm) is said to be almost periodic if for any ε > 0, the
set

T (f, ε) = {τ : |f(t+ τ) − f(t)| < ε ∀ t ∈ R}

is a relatively dense subset of R, that is, there is positive number L such that
[a, a+L]∩T (f, ε) 6= ∅ ∀ a ∈ R, where | · | is the usual Euclidean norm in Rm.
For further discussion see [6].

2) Let D ⊂ Rn. A function f ∈ C(D × R,Rm): (x, t) 7→ f(x, t) is said to be
uniformly almost periodic in t if f is almost periodic in t for each x ∈ D, and
for any compact set E ⊂ D, f is uniformly continuous on E × R.

3) Let D ⊂ Rn and f ∈ C(D × R,Rm) be uniformly almost periodic in t. Then
H(f) = cl{f · τ : τ ∈ R} is called the hull of f , where f · τ(x, t) = f(x, t+ τ)
and the closure is taken in the compact open topology.

Lemma 3.2.

1) Let f ∈ C(R,R) be almost periodic. Then limT→∞
1
T

∫ T
0
g(t)dt exists and is

independent of g ∈ H(f).
2) Let D ⊂ Rn and f ∈ C(D × R,Rm): (x, t) 7→ f(x, t) be uniformly almost

periodic in t. Then H(f) is compact in the compact open topology.
3) Let D ⊂ Rn and fk ∈ C(D×R,Rm) : (x, t) 7→ fk(x, t) (k ∈ Z+) be a family of

uniformly almost periodic functions in t and limk fk(x, t) = f0(x, t) uniformly
for t ∈ R and x in compact subsets of D. Then f0(x, t) is uniformly almost
periodic in t.

Proof. See [6].
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3.2. Skew-product semiflow. Consider (3.1). Let X ⊂ Lp(Ω) (p > n) be a
fractional power space of −∆ : D → Lp(Ω) satisfying X ↪→ Cν(Ω̄) for some ν with
1 < ν < 2, where D = {v ∈ H2,p(Ω)|Bv = 0 on ∂Ω} (see [8]). Let ‖ · ‖ be the norm
of X . Then (3.1) generates a skew-product semiflow:

Πt : X ×H(h)→ X ×H(h), t ≥ 0,(3.2)

Πt(v0, k) = (v(·, t; v0, k), k · t),

where v(x, t; v0, k) is the solution of ∂tv = µ∆v + k(x, t)v (x ∈ Ω),

Bv = 0 (x ∈ ∂Ω),
(3.3)

with v(x, 0; v0, k) = v0(x) (k ∈ H(h)).
Let X+ = {v ∈ X |v(x) ≥ 0 for x ∈ Ω}. Note that IntX+ 6= ∅. Hence X+ defines

a strong ordering on X as follows:

v1 ≤ v2 iff v1(x) ≤ v2(x) for all x ∈ Ω,

v1 < v2 iff v1 ≤ v2 but v1 6= v2,

v1 � v2 iff v2 − v1 ∈ IntX+.

Lemma 3.3. The skew-product semiflow {Πt}t∈R+ in (3.2) is strongly monotone
in the sense that Πt(v0, k)� 0 for any t > 0, k ∈ H(h), and v0 ∈ X+.

Proof. This follows from the strong maximum principle for parabolic equations
([7]).

3.3. Dynamic spectrum and Lyapunov exponent. For given σ ∈ R, define

Πσ
t : X ×H(h)→ X ×H(h), t ≥ 0,(3.4)

Πσ
t (v0, k) = (Φσ(t, k)v0, k · t),

where Φσ(t, k)v0 = e−σtv(·, t; v0, k). We say that Φσ(t, k)v0 has a negative contin-
uation if the solution v(·, t; v0, k) of (3.3) has a backward extension for all t < 0.
Define

Bσ = {(v0, k) ∈ X ×H(h) : Φσ(t, k)v0 has a negative continuation(3.5)
and sup

t∈R
‖Φσ(t, k)v0‖ <∞}.

For a given operator P : X → X , let R(P ) denote the range of P .

Definition 3.4. Given σ ∈ R, the linear skew-product semiflow (3.4) is said to
have an exponential dichotomy (ED) if there exist β > 0, C > 0, and continuous
projections P (k) : X → X (k ∈ H(h)) such that for any k ∈ H(h) the following
holds:

1) Φσ(t, k)P (k) = P (k · t)Φσ(t, k) for t ∈ R+;
2) Φσ(t, k)|R(P (k)) : R(P (k))→ R(P (k · t)) is an isomorphism for t ∈ R+ (hence

Φσ(−t, k) := Φ−1
σ (t, k · (−t)) : R(P (k)) → R(P (k · (−t)) is well defined for

t ∈ R+);
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THE PRINCIPAL SPECTRUM POINT OF PARABOLIC OPERATORS 1675

3)

‖Φσ(t, k)(I − P (k))‖ ≤ Ce−βt for t ∈ R+,

and

‖Φσ(t, k)P (k)‖ ≤ Ceβt for t ∈ R−.

Definition 3.5. Given σ ∈ R, (3.4) is said to be weakly hyperbolic if Bσ = {0} ×
H(h).

Definition 3.6. The set Σ = {σ ∈ R : (3.4) admits no ED} is called the Sacker-Sell
or the dynamic spectrum of (3.2) or (3.1).

Lemma 3.7. Given σ ∈ R, (3.4) admits ED if and only if it is weakly hyperbolic.

Proof. See [12].

Lemma 3.8. Σ has one of the following forms:
1) Σ = ∅;
2) Σ =

⋃∞
i=1[ai, bi];

3) Σ = (−∞, b∞];
4) Σ = (−∞, b∞] ∪ (

⋃k
i=1[ai, bi]) for some integer k,

where the intervals are nonempty and nonoverlapping and {ai}, {bi} are decreasing
sequences of real numbers with ai ≤ bi (an interval degenerates to a point if ai = bi).

Proof. See [4] or [10].

Definition 3.9. For given k ∈ H(h), define

λ(k) = lim sup
t→∞

ln ‖Φ(t, k)‖
t

(3.6)

where Φ(t, k) = Φ0(t, k). The number

λ = sup
k∈H(h)

λ(k)(3.7)

is called the upper Lyapunov exponent of (3.2) or (3.1).

Lemma 3.10. sup Σ = λ.

Proof. See [13].

We remark that if Σ is of form 2) or 4) in Lemma 3.8, then by invariant manifold
theory ([5]) the spectrum interval [a1, b1] determines the stability of the zero solution
of (3.1). We may call [a1, b1] the principal spectrum interval (principal spectrum
point if a1 = b1) of (3.1). If h is actually periodic (h(x, t+ T ) = h(x, t)), then Σ is
of form 2) in Lemma 3.8 and ai = bi for each i = 1, 2, · · · . Moreover, λ = a1 is the
principal eigenvalue of the periodic parabolic equation

−∂tv + µ∆v + h(x, t)v = λv (x ∈ Ω),

Bv = 0 (x ∈ ∂Ω),

v(x, 0) = v(x, T ).

(3.8)

We shall prove that in the almost periodic case Σ is of form 2) or 4) in Lemma 3.8,
and a1 = b1 (Theorem 3.14).
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3.4. Continuous separation.

Definition 3.11. The skew-product semiflow (3.2) is said to admit a continuous
separation if there are subspaces {X1(k)}k∈H(h), {X2(k)}k∈H(h) with the following
properties:

1) X = X1(k) ⊕ X2(k) (k ∈ H(h)) and X1(k), X2(k) vary continuously in
k ∈ H(h);

2) X1(k) = span{v(k)}, where v(k) ∈ IntX+ and ‖v(k)‖ = 1 (k ∈ H(h));
3) X2(k) ∩X+ = {0} (k ∈ H(h));
4) for any t > 0 and k ∈ H(h), Φ(t, k)X1(k) = X1(k · t) and Φ(t, k)X2(k) ⊂

X2(k · t);
5) there are M > 0 and δ > 0 such that for any k ∈ H(h) and w ∈ X2(k) with
‖w‖ = 1,

‖Φ(t, k)w‖ ≤Me−δt‖Φ(t, k)v(k)‖ (t > 0).

Note that intuitively, a continuous separation of (3.2) means that for any k ∈
H(h), there is a time dependent split of X , X = X1(k · t) ⊕ X2(k · t), which
is invariant (Definition 3.11 4)) and exponentially separated (Definition 3.11 5))
under (3.3). Moreover, X1 is spanned by a positive vector (Definition 3.11 2)) and
X2 does not contain a positive vector (Definition 3.11 3)). It then implies that
the stability of the zero solution of (3.1) is determined by the ‘one dimensional
flow’ Πt : X1(k) × {k} → X1(k · t) × {k · t}, and the Lyapunov exponent λ =
supk∈H(h) lim supt→∞ ‖Φ(t, k)v(k)‖/t. Clearly, when h(x, t) is time independent or
periodic, by the Krein-Rutman theorem (see Theorems 7.1 and 7.2 in [9]), (3.2)
admits a continuous separation with X1(h) being the eigenspace corresponding to
the principal eigenvalue. In general, we have the following extension of the Krein-
Rutman theorem.

Lemma 3.12. The skew-product semiflow (3.2) admits a continuous separation.

Proof. See [11] or [13].

Observe that {‖v(k)‖2 : k ∈ H(h)} is bounded away from zero, where ‖ · ‖2
denotes the norm in L2(Ω). Let

ṽ(·, t; k) =
v(k · t)
‖v(k · t)‖2

(k ∈ H(h))(3.9)

and ṽ(k) = ṽ(·, 0; k). We have

Lemma 3.13. For any k ∈ H(h), the following holds :
1) ṽ(x, t; k) is differentiable in t.
2) ṽ(x, t; k) ∈ C(Ω̄×R,R) and ∇ṽ(x, t; k) ∈ C(Ω̄×R,Rn) are uniformly almost

periodic in t.
3) ∆ṽ(x, t; k) ∈ C(Ω× R,R) is uniformly almost periodic in t.

Proof. 1) Note that ṽ(x, t; k) can also be expressed as

ṽ(x, t; k) =
v(x, t; v(k), k)
‖v(·, t; v(k), k)‖2

.

1) follows from the differentiability of v(x, t; v(k), k) and ‖v(·, t; v(k), k)‖2 in t.
2) First, it is clear that ṽ(x, t; k) ∈ C(Ω̄×R,R) and ∇ṽ(x, t; k) ∈ C(Ω̄×R,Rn).

Next, by Lemma 3.12, v(k · t) ∈ C(Ω̄ × R,R), ∇v(k · t) ∈ C(Ω̄ × R,Rn), and
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‖v(k · t)‖2 ∈ C(R,R) are uniformly almost periodic in t. Hence ṽ(x, t; k) and
∇ṽ(x, t; k) are uniformly almost periodic in t for x ∈ Ω̄.

3) Similarly, it is clear that ∆ṽ(x, t; k) ∈ C(Ω× R,R). Let

s(t, k) = ‖v(·, t; ṽ(k), k)‖2.
Then v(x, t; ṽ(k), k) = s(t, k)ṽ(x, t; k). By 1), s(t, k) is differentiable in t. Hence

st(t, k)ṽ(x, t; k) + s(t, k)ṽt(x, t; k) = µs(t, k)∆ṽ(x, t; k)(3.10)
+k(x, t)s(t, k)ṽ(x, t; k).

It then follows from
∫

Ω ṽ
2(x, t; k)dx = 1 that

st(t, k) = k̃(t, k)s(t, k)(3.11)

where

k̃(t, k) = µ

∫
∂Ω

ṽ(x, t; k)
∂ṽ

∂n
(x, t; k)dx − µ

∫
Ω

|∇ṽ(x, t; k)|2dx(3.12)

+
∫

Ω

k(x, t)|ṽ(x, t; k)|2dx.

By 2), k̃(t, k) is almost periodic in t and hence is bounded. By (3.10) and (3.11),

ṽt(x, t; k) = µ∆ṽ(x, t; k) + k(x, t)ṽ(x, t; k)− k̃(t, k)ṽ(x, t; k).(3.13)

Then by a priori estimates for parabolic equations and the boundedness of ṽ(·, t; k),

lim
h→0

ṽxi(x + hej, t; k)− ṽxi(x, t; k)
h

= ṽxixj (x, t; k)

uniformly for t ∈ R and x in compact subset sets of Ω, where ej is jth unit vector
of Rn. By Lemma 3.2 and 2), ∆ṽ is uniformly almost periodic in t.

3.5. A bound for the principal spectrum point. Consider (3.1) and its average
companion  ∂tu = µ∆u+ ĥ(x)u (x ∈ Ω),

Bu = 0 (x ∈ ∂Ω),
(3.14)

where ĥ(x) = limt→∞
1
t
∫ t

0 h(x, τ)dτ . Let Σ and λ be the spectrum and upper
Lyapunov exponent of (3.2), respectively, and λ∗ be the principal eigenvalue of µ∆u+ ĥ(x)u = λ∗u (x ∈ Ω),

Bu = 0 (x ∈ ∂Ω).
(3.15)

Then we have the following main results.

Theorem 3.14.
1) Σ is of form 2) or 4) in Lemma 3.8 and a1 = b1 (hence λ = a1).
2) λ ≥ λ∗.

Proof. 1) By Definitions 3.9 and 3.11 and Lemma 3.12,

λ = sup
k∈H(h)

lim sup
t→∞

1
t

ln ‖Φ(t, k)ṽ(k)‖.

Observe that Φ(t, k)ṽ(k) = v(·, t; ṽ(k), k) = s(t, k)ṽ(·, t; k), where s(t, k) satis-
fies (3.11). By (3.12), k̃(t, k) is almost periodic in t and limt→∞

1
t
∫ t

0
k̃(τ, k)dτ
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exists and is independent of k ∈ H(h). Therefore limt→∞
1
t ln ‖Φ(t, k)ṽ(k)‖ =

limt→∞
1
t
∫ t

0
k̃(τ, k)dτ exists and is independent of k ∈ H(h). It then follows from

Lemma 3.12 that (3.4) is weakly hyperbolic for any σ ∈ (λ− δ, λ). Now by Lemma
3.7, σ 6∈ Σ for any σ ∈ (λ− δ, λ). Hence by Lemma 3.8, Σ is of the form 2) or 4) in
that lemma and, by Lemma 3.10,

λ = a1 = b1 = lim
t→∞

1
t

ln ‖Φ(t, k)ṽ(k)‖.

2) Let φ(x) = limt→∞ exp(1
t
∫ t

0
ln ṽ(x, τ ;h)dτ). By Lemma 3.13,

∇φ(x) = lim
t→∞

[
exp

(
1
t

∫ t

0

ln ṽ(x, τ ;h)dτ
)
· 1
t

∫ t

0

∇ṽ(x, τ ;h)
ṽ(x, τ ;h)

dτ

]
,

∆φ = lim
t→∞

[
exp

(
1
t

∫ t

0

ln ṽ(x, τ ;h)dτ
)
·
∣∣∣∣1t
∫ t

0

∇ṽ(x, τ ;h)
ṽ(x, τ ;h)

dτ

∣∣∣∣2(3.16)

+ exp
(

1
t

∫ t

0

ln ṽ(x, τ ;h)dτ
)
· 1
t

∫ t

0

(
∆ṽ(x, τ ;h)
ṽ(x, τ ;h)

−
∣∣∣∣∇ṽ(x, τ ;h)
ṽ(x, τ ;h)

∣∣∣∣2
)
dτ

]
for x ∈ Ω, and

Bφ = 0 for x ∈ ∂Ω.

By Schwarz’s inequality∣∣∣∣1t
∫ t

0

∇ṽ(x, τ ;h)
ṽ(x, τ ;h)

dτ

∣∣∣∣2 ≤ 1
t

∫ t

0

∣∣∣∣∇ṽ(x, τ ;h)
ṽ(x, τ ;h)

∣∣∣∣2 dτ.
It follows from (3.13) and (3.16) that µ∆φ ≤ −(ĥ− λ)φ (x ∈ Ω),

Bφ = 0 (x ∈ ∂Ω).

Assertion 2) then follows from the arguments in section 2.
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