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Estimates for the Stokes Operator in
Lipschitz Domains

Russell M. Brown & Zhongwei Shen

Abstract. We study the Stokes operator A in a three-
dimensional Lipschitz domain Ω. Our main result asserts that

the domain of A is contained in W 1,p
0 (Ω)∩W 3/2,2(Ω) for some

p > 3. Certain L∞-estimates are also established. Our results
may be used to improve the regularity of strong solutions of
Navier-Stokes equations in nonsmooth domains. In the ap-
pendix we provide a simple proof of area integral estimates
for solutions of Stokes equations.

Introduction. In a recent interesting paper, Deuring and von Wahl [DW]
consider strong solutions of the nonstationary Navier-Stokes equations in Ω×
(0,T ): 


∂u

∂t
= ∆u− (u ·∇)u−∇π+ f,

divu = 0,

with the initial-Dirichlet condition{
u(X,t) = 0 for (X,t) ∈ ∂Ω× (0,T ),

u(X,0) = u0(X), X ∈ Ω,

where Ω is a bounded Lipschitz domain in R3. Based on the functional analytical
approach of Fujita and Kato [FK] and the Rellich estimates of Shen [S1], they

show that, if u0 ∈ D(A1/4+ε) for some ε ∈ (0, 12 ) and f is bounded and locally

Hölder continuous, then a solution (u,π) exists for some T > 0 and

u ∈ C
(
(0,T ],D(A)

)
∩C

(
[0,T ],D(A1/4+ε)

)
,

where A = −P∆ denotes the Stokes operator.
The purpose of this note is to describe D(A), the domain of A, in terms of

Sobolev’s spaces. In the case of smooth domains, it is well known that

D(A) = W 2,2(Ω)∩W 1,2
0 (Ω)∩L2σ(Ω)
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where L2σ(Ω) denotes the space of solenoidal functions in L2(Ω) (e.g., see [CF]).

One can not expect such results in Lipschitz domains, as the W 2,2-estimate, in

general, fails in nonsmooth domains. Our main results in this paper assert that

(0.1) D(A) ⊂W 1,p
0 (Ω)∩W 3/2,2(Ω)

for some p = p(Ω) > 3 (Theorem 2.17). In particular, it follows from Sobolev’s

imbedding that for every t ∈ (0,T ], u(t) ∈ Cα(Ω̄) for some α = α(Ω) > 0, i.e.,

the strong solution of the Navier-Stokes equations is Hölder continuous up to

the boundary as a function of X. We also obtain the following L∞ estimates:

(0.2)
‖u‖L∞(Ω) ≤ C

∥∥∇u∥∥1/2
L2(Ω)

∥∥Au∥∥1/2
L2(Ω)

,

‖u‖L∞(Ω) ≤ C
∥∥u∥∥1/4

L2(Ω)

∥∥Au∥∥3/4
L2(Ω)

for u ∈ D(A). To establish (0.2), we use the reverse Hölder inequality, (0.1) and

some localization techniques. See Theorem 3.1 and Corollary 3.2. Estimates like

(0.2) are very useful in the study of Navier-Stokes equations. See [CF] and [H]

in the case of smooth domains.

To prove (0.1), we shall study the Dirichlet problem for the Stokes equations

with a forcing term, and interpolate between the L2 estimates in [FKV] and the

Hölder estimates in [S2]. The following area integral estimate,

∫
Ω

|∇u(X)|2dist(X,∂Ω) dX ≤ C

∫
∂Ω

|u|2 dσ,

for solutions of Stokes equations ∆u = ∇π, divu = 0 in Ω, plays an important

role. This estimate is due to E. Fabes, C. Kenig and G. Verchota, but no proof

has appeared in the literature. In the appendix of this paper, which is due to

Z. Shen, we will provide a simple proof of the area integral estimates for solutions

of Stokes equations. The proof given here is based on the idea of a recent paper

by B. Dahlberg, C. Kenig, J. Pipher, and G. Verchota [DKPV] for higher order

equations and systems, together with some observations on the pressure term π.

Finally, the second author would like to thank C. Kenig for many helpful

conversations.

1. Notation and definitions. In this section we collect the definitions for

Lipschitz domains, the nontangential maximal function, the Sobolev and Besov

spaces we will use, and the Stokes operator. We shall also recall a few elementary

facts regarding complex interpolation.
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Lipschitz domains. Let Ω be a bounded, open, connected set in Rn. We
say that Ω is a Lipschitz domain if for each P ∈ ∂Ω, there exists a coordinate
system (x′,xn), which is isometric to the usual coordinates, and a Lipschitz

function ψ : Rn−1 → R, a radius r > 0 so that

B(P,2r)∩Ω = {(x′,xn) ∈ R
n : xn > ψ(x′)}∩B(P,2r),

B(P,2r)∩ ∂Ω = {(x′,xn) ∈ R
n : xn = ψ(x′)}∩B(P,2r).

The nontangential maximal function. For a function u on Ω, we define
its nontangential maximal function (u)∗ by

(u)∗(P ) = sup{|u(X)| : X ∈ Ω, |X −P | ≤ 2dist(X,∂Ω)} ,(1.1) P ∈ ∂Ω.

We now give the definition of the function spaces we will use.

Sobolev and Besov spaces. For Ω ⊂ Rn, p ∈ [1,∞) and k = 1,2, . . . , we

let W k,p(Ω) denote the space of functions u on Ω such that the norm

‖u‖Wk,p(Ω) ≡
∑
|α|≤k

‖Dαu‖Lp(Ω)

is finite.
For 1 ≤ p < ∞ and 0 < α < 1, we define Wα,p(Ω) to be the collection of

functions u on Ω with the norm

(1.2) ‖u‖Wα,p(Ω) ≡ ‖u‖Lp(Ω)+

(∫ ∫
Ω×Ω

|u(X)−u(Y )|p

|X −Y |n+αp
dX dY

)1/p
<∞.

For 1 < α < 2, we define Wα,p(Ω) to be the set of functions on Ω such that

‖u‖Wα,p(Ω) ≡ ‖u‖Lp(Ω)+ ‖∇u‖Wα−1,p(Ω) <∞.

We may define Wα,p(∂Ω) for 0 < α < 1 and 1 ≤ p <∞ in a similar manner
with the integral over ∂Ω× ∂Ω.

For a regionD above the graph of a Lipschitz function ϕ, i.e.,D = {(x′,xn) ∈

R
n : xn > ϕ(x′)}, we define the space W 1,2(∂D) as the space of functions

f
(
x′,ϕ(x′)

)
= g(x′) where g ∈ W 1,2(Rn−1). Using a partition of unity for ∂Ω,

we may extend this definition to the boundary of a bounded Lipschitz domain

Ω for W 1,2(∂Ω). We remark that Wα,p(∂Ω) may also be defined in this manner.

See [Gr, p. 20].

We will useW k,p
0 (Ω) to denote the closure of C∞0 (Ω) in the norm ofW k,p(Ω).

If k is a nonnegative integer, we use W k,p(Ω) to denote the dual of W−k,p
0 (Ω).

We will use the same notation Lp(Ω), Wα,p(Ω), W k,p(Ω), etc., for vectorial
counterparts.
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Complex interpolation. We will need the following results on complex
interpolation:

(1.3)
[
L2(∂Ω),W 1,2(∂Ω)

]
ϑ
= Wϑ,2(∂Ω)

and

(1.4)
[
Wα,2(∂Ω),Cγ(∂Ω)

]
ϑ
= W t,p(∂Ω)

where
1

p
=

ϑ

2
, and t = αϑ+ γ(1−ϑ).

When ∂Ω is replaced by Rn, (1.3) and (1.4) are well known (e.g., see [BL]).
To extend this result to boundaries of Lipschitz domains, we use the following
easy proposition, whose proof is omitted.

Proposition 1.5. Suppose Ai, Bi (i = 0,1) are Banach spaces and {C(ϑ) :
ϑ ∈ [0,1]} is a family of Banach spaces such that C(0) = A0, C(1) = A1 and

C(ϑ) ⊂ A0+A1. Also assume that there exist linear operators I : A0+A1 →
B0+B1 and P : B0+B1 → A0+A1 such that I : C(ϑ) → [B0,B1]ϑ, P :

[B0,B1]ϑ → C(ϑ) are bounded for each ϑ ∈ [0,1] and P ◦ I is the identity on
A0+A1. Then

[A0,A1]ϑ = C(ϑ).

To see (1.3), let {Bj = B(Pj ,r) : j = 1,2, . . . ,N} be a covering of ∂Ω

by balls as in the definition of Lipschitz domain, and ηj ∈ C∞0 (Rn) such that

supp ηj ⊂ Bj , 0 ≤ ηj ≤ 1,
∑
j ηj = 1 on ∂Ω. Let ϕj be an isometry of Rn such

that
ϕj(Bj ∩Ω) = {(x

′,xn) : xn > ψj(x
′), |(x′,xn)| ≤ r} .

We now choose A0 = L2(∂Ω), A1 = W 1,2(∂Ω), B0 = L2(R(n−1),RN ), B1 =

W 1,2(R(n−1),RN ), and C(ϑ) = Wϑ,2(∂Ω). If g is a function of ∂Ω, we define Ig

by letting the jth component be given by

Ig(x′)j = (ηjg)
(
ϕ−1j

(
x′,ψj(x

′)
))
.

We let η̃j ∈ C∞0
(
B(Pj ,2r)

)
, j = 1, . . . ,N , be functions satisfying η̃j = 1 on

B(Pj ,r), we let πn(x
′,xn) = x′ be projection on the first n− 1 coordinates and

define

P
(
(fj)1≤j≤N

)
(Q) =

N∑
j=1

η̃j(Q)fj
(
πn ◦ϕj(Q)

)
for Q ∈ ∂Ω.

With these definitions, (1.3) then follows easily from Proposition 1.5. The state-

ment (1.4) may be proved in the same manner.
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The Stokes operator. To introduce the Stokes operator A, let

C∞0,σ(Ω) = {ϕ ∈ C∞0 (Ω) : divϕ = 0},

and L2σ(Ω) be the closure of C
∞
0,σ(Ω) in L2(Ω). We first define a quadratic form

Q on C∞0,σ(Ω):

Q(u,v) =

∫
Ω

∇u ·∇v dX =
n∑
j=1

∫
Ω

∇uj ·∇vj dX.

We then extend this form to D(Q), the closure of C∞0,σ(Ω) in the norm

‖u‖Q = ‖u‖L2(Ω)+ {Q(u,u)}1/2.

It is known that ([CF])

D(Q) = {u ∈W 1,2
0 (Ω) : divu = 0}.

We now define the Stokes operator A : D(A)→ L2σ(Ω) by∫
Ω

Au ·ϕ = Q(u,ϕ) for all ϕ ∈ C∞0,σ(Ω),

where the domain of A, D(A), is the collection of u in D(Q) such that v → Q(u,v)

can be extended to a bounded linear functional on L2σ(Ω). It is well known that

A gives a self-adjoint operator on L2σ(Ω). Also, it is not hard to see that

D(A) = {u ∈ D(Q) : −∆u+∇π ∈ L2σ(Ω) for some π ∈ L2(Ω)}

and

Au = −∆u+∇π, for u ∈ D(A).

This is the definition of the Stokes operator given in [DW].

Finally, we will follow the standard practice of letting C denote a constant

which varies. Throughout this paper C will depend at most on the dimension

n and the Lipschitz domain Ω through the collection of balls used to cover the

boundary and the maximum of ‖∇ψi‖∞ where ψi are the functions whose graphs

define ∂Ω.
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2. The Imbedding of D(A). In this section we will establish the imbed-
ding estimate (0.1) for the domain of A.

We will need to consider both the Dirichlet problem with nonzero forcing
term f :

(DP)



−∆u+∇π = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

and the problem with inhomogeneous boundary data:

(BVP)



−∆u+∇π = 0 in Ω,

divu = 0 in Ω,

u = g on ∂Ω.

Obviously, since divu = 0 in Ω, the boundary data g should verify the
necessary condition

(2.1)

∫
∂Ω

〈g,N〉 dσ = 0,

where N denotes the outward unit normal to ∂Ω and 〈 , 〉 the scalar product on
R
n.

The following result is due to Fabes, Kenig and Verchota [FKV]. The esti-
mates for the nontangential maximal functions, the existence and the uniqueness
may be found in their paper. The estimates for the solution in Sobolev spaces
were announced in that paper, but no proof has appeared. The proof may be
obtained by combining the area integral estimates in the appendix of this pa-
per, with the argument given by E. Fabes in [F] to establish the corresponding
Sobolev estimates for harmonic functions. We remark that in the first inequality
on the top of page 69 of [F], the integration on Rn−1×Rn−1 should only range
over {(x,y) : |x− y| > t}.

Theorem 2.2 (Fabes, Kenig and Verchota [FKV]). Let Ω be a bounded

Lipschitz domain in Rn, n ≥ 3. Suppose g ∈ L2(∂Ω) and verifies the condition
(2.1). Then there exists a solution u to (BVP) which satisfies∫

∂Ω

|(u)∗|2 dσ ≤ C

∫
∂Ω

|g|2 dσ.

This solution is unique in the class of u satisfying (u)∗ ∈ L2(∂Ω). In addition,
we have the estimate

‖u‖W 1/2,2(Ω) ≤ C

∫
∂Ω

|g|2dσ.

Furthermore, if g ∈W 1,2(∂Ω), then we also have

‖(∇u)∗‖L2(∂Ω)+ ‖u‖W 3/2,2(Ω) ≤ C‖g‖W 1,2(∂Ω).

We shall also need the Hölder estimates established in [S2, Theorem 0.2,
p. 801] for the three-dimensional Lipschitz domains.
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Theorem 2.3 (Z. Shen [S2]). Let Ω be a bounded Lipschitz domain in

R
3. There exists α0 > 0 so that if 0 < α < α0, and g ∈ Cα(∂Ω) verifies the

condition (2.1), then the solution to (DP) lies in Cα(Ω̄) and satisfies

sup
X∈Ω

δ(X)1−α|∇u(X)| ≤ C‖g‖Cα(∂Ω),

where δ(X) = dist(X,∂Ω).

Our estimates for the Stokes operator A will be obtained by interpolating

between the estimates of Theorem 2.2 and 2.3. We begin with the following

lemma.

Lemma 2.4. Let Ω be a bounded Lipschitz domain in R3. There exists

ε > 0 so that if 2 ≤ p ≤ 3+ ε, and g ∈ W 1−1/p,p(∂Ω) satisfies the condition

(2.1), then the solution u of (BVP) for Stokes equations with boundary data g

satisfies (∫
Ω

|∇u(X)|p dX

)1/p
≤ C‖g‖W 1−1/p,p(∂Ω).

Proof. Let η be a smooth vector field on R3 such that 〈η,N〉 ≥ c0 > 0 a.e.

on ∂Ω. Recall that N is the outward unit normal to ∂Ω.

For g ∈Wα,p(∂Ω), we define Sg by

Sg(P ) = g(P )−

∫
∂Ω

〈g,N〉 dσ∫
∂Ω

〈η,N〉 dσ
· η(P ) for P ∈ ∂Ω.

It is easy to see that ∫
∂Ω

〈Sg,N〉 dσ = 0.

Now let u be the solution of (BVP) with boundary data Sg. We observe

that Theorem 2.2, the area integral estimate in Appendix A (Theorem A.1) and

interior estimates imply that

(∫
Ω

δ(X)3|∇2u(X)|2 dX

)1/2
≤ C‖Sg‖L2(∂Ω) ≤ C‖g‖L2(∂Ω),

(∫
Ω

δ(X)|∇2u(X)|2 dX

)1/2
≤ C‖Sg‖W 1,2(∂Ω) ≤ C‖g‖W 1,2(∂Ω).
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It then follows from the complex interpolation that(∫
Ω

(
δ(X)3/2−α|∇2u(X)|

)2
dX

)1/2
≤ C‖g‖Wα,2(∂Ω),(2.5) 0 < α < 1.

where we have used (1.3).

Now, since Ω ⊂ R3, we may apply Theorem 2.3 and the interior estimates
to obtain

(2.6) sup
X∈Ω
{δ(X)2−γ |∇2u(X)|} ≤ C‖Sg‖Cγ(∂Ω) ≤ C‖g‖Cγ(∂Ω)

for 0 < γ < α0. If we interpolate between (2.5) and (2.6) and use (1.4), we
obtain that

(2.7)

(∫
Ω

{
δ(X)|∇2u(X)|

}p
dX

)1/p
≤ C‖g‖W 1−1/p,p(∂Ω)

for 2 < p < 3+ ε.
To see this, set ϑ = 2/p < 1, and choose α and γ so that

1 =

(
3

2
−α

)
ϑ+(2− γ)(1−ϑ).

Thus,

t = αϑ+ γ(1−ϑ) = 1−
1

p
.

We use (1.4) to identify the interpolation space

[Wα,2(∂Ω),Cγ(∂Ω)]ϑ = W t,p(∂Ω).

Note that 2/p < 1 implies that p > 2 and the restrictions that α < 1 and
γ < α0 imply that

ϑ =
1− γ

α+
1

2
− γ

>
2(1−α0)

3− 2α0

or

p =
2

ϑ
<

3− 2α0
1−α0

≡ 3+ ε, ε =
α0

1−α0
> 0.

Finally, by the Hardy inequality [St, p. 272],∫
Ω

|∇u(X)|p dX ≤ C

∫
Ω

|δ(X)∇2u(X)|p dX + sup
X∈K

|∇u(X)|p

≤ C‖g‖p
W 1−1/p,p(∂Ω)

,

where K is a compact subset of Ω. The proof is complete.
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Let Γ(X) =
(
Γij(X)

)
1≤i,j≤n

be the matrix of fundamental solutions and

q(X) =
(
qj(X)

)
1≤j≤n

be the corresponding pressure vector where

(2.8) Γij(X) =
1

2ωn

(
1

(n− 2)

δij
|X|n−2

+
xixj
|X|n

)
, qj(X) =

1

ωn

xj
|X|n

.

Theorem 2.9. Let Ω be a bounded Lipschitz domain in R3. Suppose f ∈
W−1,p(Ω) where (3+ ε)/(2+ ε) < p < 3+ ε and ε is the same as in Lemma 2.4.

Then there exist u ∈W 1,p
0 (Ω) and π ∈ Lp(Ω) so that

(2.10)

{
−∆u+∇π = f,

divu = 0

in Ω and
‖∇u‖Lp(Ω)+ inf

c∈R
‖π− c‖Lp(Ω) ≤ C‖f‖W−1,p(Ω).

The solution u is unique and π is unique up to a constant.

Proof. Let 2 < p < 3+ ε and f ∈ W−1,p(Ω). We may extend f to lie

in W−1,p(R3). Let v = Γ ∗ f ∈ W 1,p(R3). By the trace theorem [Gr, p. 33],

v ∈W 1−1/p,p(∂Ω) and we obtain

(2.11) ‖v‖W 1−1/p,p(∂Ω) ≤ C‖v‖W 1,p(Ω) ≤ C‖f‖W−1,p(Ω).

Now let u = v−w where w is the solution of (BVP) for the Stokes equations
with boundary data v|∂Ω. Then u satisfies (2.10) and

‖∇u‖Lp(Ω) ≤ ‖∇v‖Lp(Ω)+ ‖∇w‖Lp(Ω)

≤ C
{
‖f‖W−1,p(Ω)+ ‖v‖W 1−1/p,p(∂Ω)

}
≤ C‖f‖W−1,p(Ω)

by Lemma 2.4 and (2.11).
We may obtain the existence of a solution and the estimates of u for

(3+ ε)/(2+ ε) < p < 2 by duality.
For the pressure term π, we have

inf
c∈R
‖π− c‖Lp(Ω) ≤ ‖∇π‖W−1,p(Ω) ≤ ‖∆u‖W−1,p(Ω)+ ‖f‖W−1,p(Ω)

≤ C‖∇u‖Lp(Ω)+ ‖f‖W−1,p(Ω) ≤ C‖f‖W−1,p(Ω).

Finally, the uniqueness for p ≥ 2 follows by energy estimates. If p < 2,

let −∆u+∇π = 0 and u ∈ W 1,p
0 (Ω). Choose f ∈ Lp

′
(Ω). We may solve

−∆v+∇q = f , div v = 0 in Ω, v ∈W 1,p′(Ω), and thus obtain that∫
Ω

〈f,u〉 dX =

∫
Ω

∇v ·∇u dX = 0, for any f ∈ Lp
′
(Ω),

or that u = 0.
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Our next result, which is valid for Lipschitz domains in Rn (n ≥ 3), gives
a sharper estimate for solutions of the Dirichlet problem. It will yield the best
embedding of D(A) in the scale of Sobolev spaces W s,2(Ω).

Theorem 2.12. Let Ω be a bounded Lipschitz domain in Rn (n ≥ 3) and

f ∈ L2(Ω). Suppose that (u,π) is the solution of (DP) with data f , then for
q0 = 2n/(n+1), we have the estimate

‖u‖W 3/2,2(Ω)+ inf
c∈R
‖π− c‖W 1/2,2(Ω) ≤ C‖f‖Lq0 (Ω).

Proof. We construct the solution of (DP) as the sum of the free space solu-
tion (v, π̃) = (Γ ∗ f,q ∗ f) and the solution of the boundary value problem


−∆w+∇ψ = 0 in Ω,

divw = 0 in Ω,

w = −v on ∂Ω.

By the Calderón-Zygmund estimates [St], we have

(2.13) ‖∇2v‖Lp(Rn)+ ‖∇π̃‖Lp(Rn) ≤ C‖f‖Lp(Rn)

for 1 < p < ∞. This estimate with p = q0 = 2n/(n+1) and the Sobolev
embedding theorem imply that

‖v‖W 3/2,2(Ω)+ ‖π̃‖W 1/2,2(Ω) ≤ C‖f‖Lq0 (Ω).

Now consider (w,ψ). We claim that the boundary values of w, −Γ ∗ f |∂Ω,
satisfy

(2.14) ‖w‖W 1,2(∂Ω) ≤ C‖f‖Lq0 (Ω).

Then the desired estimate,

‖w‖W 3/2,2(Ω)+ ‖ψ‖W 1/2,2(Ω) ≤ C‖f‖Lq0 (Ω),

will follow from Theorem 2.2.
To establish (2.14), we observe that

(2.15)

∫
∂Ω

|∇v|2 dσ ≤ C

∫
Ω

(
|∇v|2+ |∇v| |∇2v|

)
dX.

This follows by applying the divergence theorem to η · |∇v|2 where η is a smooth
vector field on Rn with the property 〈η,N〉 ≥ c0 > 0 a.e. on ∂Ω. By (2.13), we

have |∇2v| ∈ Lq0(Rn), while

|∇v(X)| ≤ C

∫
Ω

|f(Y )|

|X −Y |n−1
dY

satisfies

(2.16) ‖∇v‖
L
q′
0 (Rn)

≤ C‖f‖Lq0 (Rn), q′0 =
q0

q0− 1
.

Since q′0 > 2, the estimate for ∇w on ∂Ω follows from (2.15), (2.16) and (2.13).
The estimate for w is easier and we omit the details.
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Theorem 2.17. Suppose Ω is a bounded Lipschitz domain in R3. Then

D(A) ⊂W 1,p
0 (Ω)∩W 3/2,2(Ω)

for some p = p(Ω) > 3. Moreover, for u ∈ D(A),

‖u‖W 1,p
0 (Ω)+ ‖u‖W 3/2,2(Ω) ≤ C‖Au‖L2(Ω).

Proof. Let u ∈ D(A). Then



−∆u+∇π = f in Ω,

divu = 0 in Ω,

u ∈W 1,2
0 (Ω),

where f = Au ∈ L2σ(Ω). Since

L2(Ω) ⊂W−1,p(Ω)

for p ≤ 6 in R3, the theorem follows immediately from Theorems 2.9 and

2.12.

3. Some L∞ estimates. In this section we will give the proof of the

estimate (0.2). We are only able to prove this estimate in three dimensions

and thus throughout this section we will assume that Ω is a bounded Lipschitz

domain in R3.

Theorem 3.1. There exists a constant C > 0 such that, for u ∈ D(A),

‖u‖L∞(Ω) ≤ C
∥∥∇u∥∥1/2

L2(Ω)

∥∥Au∥∥1/2
L2(Ω)

.

By the definition of A and a limiting argument,

∫
Ω

Au ·u dX =

∫
Ω

∇u ·∇u dX.

It then follows from the Cauchy inequality that

∥∥∇u∥∥2
L2(Ω)

≤
∥∥Au∥∥

L2(Ω)
‖u‖L2(Ω).

Thus, we have:
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Corollary 3.2. There exists a constant C > 0 such that, for u ∈ D(A),

‖u‖L∞(Ω) ≤ C
∥∥u∥∥1/4

L2(Ω)

∥∥Au∥∥3/4
L2(Ω)

.

As in the case of smooth domains, A−1 : L2σ(Ω)→ L2σ(Ω) is a compact opera-

tor. Hence, there exists a sequence of positive numbers {λk} and an orthonormal

basis {ωk} of L2σ(Ω) such that Aωk = λkωk, ωk ∈ D(A) and limk→∞λk =∞.

Corollary 3.3. Let Ω be a bounded Lipschitz domain in R3. Then there
exists c > 0 such that

λk ≥ c

(
k

|Ω|

)2/3
.

With Corollary 3.2, the proof is exactly the same as in the smooth case. See
[CF, p. 38-39].

To prove Theorem 3.1, we start with a reverse Hölder inequality.

Lemma 3.4. Let X0 ∈ Ω̄, R > 0 be small, and D(X0,R) = B(X0,R)∩Ω.

Assume (u,π) satisfies the Stokes equations

{
−∆u+∇π = 0,

divu = 0,

in D(X0,8R) and u = 0 on ∂Ω. Then

(
1

R3

∫
D(X0,R)

|∇u|p0 dX

)1/p0
≤ C

(
1

R3

∫
D(X0,4R)

|∇u|2 dX

)1/2
,

where p0 > 2 depends only on Ω.

Proof. We begin with a Caccioppoli type inequality for the Stokes equations
(see [S2, Lemma 1.5, p. 804]). We consider two cases. If B(X0,2R)∩ ∂Ω �= Ø,
we have ∫

D(X0,R)

|∇u|2 dX ≤
C

R2

∫
D(X0,3R)

|u|2 dX.

On the other hand, if B(X0,2R) ⊂ Ω, we get

∫
D(X0,R)

|∇u|2 dX ≤
C

R2

∫
D(X0,3R)

|u−uR|
2 dX

where

uR =
1

|B(X0,2R)|

∫
B(X0,2R)

u(X) dX.
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In both cases, by Sobolev-Poincaré inequality, we obtain(
1

|D(X0,R)|

∫
D(X0,R)

|∇u|2 dX

)1/2

≤ C

(
1

|D(X0,3R)|

∫
D(X0,3R)

|∇u|6/5 dX

)5/6
.

The lemma then follows from the usual reverse Hölder inequality (e.g., see

[Gi, Proposition 1.1, p. 122]).

We now give the:

Proof of Theorem 3.1. Let u ∈ D(A) and f = Au ∈ L2σ(Ω). Fix X0 ∈ Ω.

Let Dt = B(X0, t)∩Ω where t ∈ (0,1) is to be chosen later.

Let f1 = f in Dt and 0 otherwise. Let f2 = f − f1. We use (ui,πi), i = 1,2,

to denote solutions of (DP) for the Stokes equations with data fi. By uniqueness,
u = u1+u2.

First we estimate u1(X0). We claim that

|u1(X0)| ≤ Ct1/2‖f‖L2(Ω).

Indeed, for anyX ∈ Dt, by the imbedding theorem of Morrey [GT, Theorem 7.17,

p. 163],

|u1(X)−u1(X0)| ≤ Ctγ‖∇u1‖Lp(Ω),

where p > 3 and γ = 1− 3/p. It then follows from Theorem 2.9 that

|u1(X)−u1(X0)| ≤ Ctγ‖f1‖W−1,p(Ω) ≤ Ctγ‖f1‖Lq(Ω) ≤ t1/2‖f‖L2(Ω),

where 1/q = 1/p+1/3 and we also used the Sobolev imbedding theorem [GT,

Theorem 7.26, p. 171] and Hölder inequality (we also assume that p < 6).
Now we integrate the inequality above in X over Dt. This, together with

the Sobolev imbedding, gives

|u1(X0)| ≤

(
1

|Dt|

∫
Dt

|u1|
6 dX

)1/6
+Ct1/2‖f‖L2(Ω)

≤ Ct−1/2‖∇u1‖L2(Ω)+Ct1/2‖f‖L2(Ω)

≤ Ct−1/2‖f1‖W−1,2(Ω)+Ct1/2‖f‖L2(Ω)

≤ Ct−1/2‖f1‖L6/5(Ω)+Ct1/2‖f‖L2(Ω)

≤ Ct1/2‖f‖L2(Ω).
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To estimate u2(X0), let s ∈ [t/8, t/4] andX ∈ Ds. Note that −∆u2+∇π2 =
0 and divu2 = 0 in Ds. We may apply Theorem 2.3 on Ds to obtain

|u2(X)−u2(X0)| ≤ Ctα sup
P1,P2∈∂Ds
P1 
=P2

|u2(P1)−u2(P2)|

|P1−P2|α

≤ Ctα
(∫
∂Ds

|∇u2|
p0 dσ

)1/p0
,

where p0 = 2/(1−α) > 2 and we have used the Sobolev imbedding on the set

∂Ds. By integration in s over [t/8, t/4], we get

|u2(X)−u2(X0)| ≤ Ctα−1/p0

(∫
Dt/4

|∇u2|
p0 dX

)1/p0

≤ Ct

(
1

|Dt/4|

∫
Dt/4

|∇u2|
p0 dX

)1/p0

≤ Ct

(
1

|Dt|

∫
Dt

|∇u2|
2 dX

)1/2

≤ Ct

{(
1

|Dt|

∫
Dt

|∇u|2 dX

)1/2
+

(
1

|Dt|

∫
Dt

|∇u1|
2 dX

)1/2}

≤ Ct−1/2‖∇u‖L2(Ω)+Ct−1/2‖∇u1‖L2(Ω)

≤ Ct−1/2‖∇u‖L2(Ω)+Ct1/2‖f‖L2(Ω),

where we used the reverse Hölder inequality (Lemma 3.4) in the third inequality.
Thus,

|u2(X0)| ≤

(
1

|Dt|

∫
Dt

|u2|
6 dX

)1/6
+Ct−1/2‖∇u‖L2(Ω)+Ct1/2‖f‖L2(Ω)

≤ Ct−1/2‖u2‖L6(Ω)+Ct−1/2‖∇u‖L2(Ω)+Ct1/2‖f‖L2(Ω)

≤ Ct−1/2‖∇u2‖L2(Ω)+Ct−1/2‖∇u‖L2(Ω)+Ct1/2‖f‖L2(Ω)

≤ Ct−1/2‖∇u‖L2(Ω)+Ct−1/2‖∇u1‖L2(Ω)+Ct1/2‖f‖L2(Ω)

≤ Ct−1/2‖∇u‖L2(Ω)+Ct1/2‖f‖L2(Ω).

To summarize, we have proved that

|u(X0)| ≤ Ct−1/2‖∇u‖L2(Ω)+Ct1/2‖f‖L2(Ω)
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for any t ∈ (0,c0), where c0 depends only on Ω.

Finally, by the energy estimate, ‖∇u‖L2(Ω) ≤ C0‖f‖L2(Ω), so we may choose

t =
c0‖∇u‖L2(Ω)
2C0‖f‖L2(Ω)

< c0

to obtain

|u(X0)| ≤ C
∥∥∇u∥∥1/2

L2(Ω)

∥∥Au∥∥1/2
L2(Ω)

.

The proof is finished.

Appendix A. In this appendix, we present a simple proof of the area
integral estimates for solutions of Stokes equations.

Theorem A.1. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 3.

Suppose ∆u = ∇π, divu = 0 in Ω, and (u)∗ ∈ L2(∂Ω). Then

∫
Ω

|∇u(X)|2δ(X) dX ≤ C

∫
∂Ω

|u|2 dσ

and ∫
∂Ω

|u|2 dσ ≤ C

{∫
Ω

|∇u(X)|2δ(X) dX +

∫
Ω

|u(X)|2 dX

}
,

where δ(X) = dist(X,∂Ω).

Theorem A.1 is due to E. Fabes, C. Kenig and G. Verchota (unpublished).
The proof given here is based on an idea of B. Dahlberg, C. Kenig, J. Pipher
and G. Verchota [DKPV] developed for elliptic systems, and some observations
on the pressure term π.

The following lemma is due to C. Kenig and E. Stein.

Lemma A.2. Suppose ψ : Rn−1 → R is a Lipschitz function. Let ϑ ∈
C∞0 (Rn−1) be radial, and ϑ ≥ 0,

∫
ϑdx = 1. Then, if λ ≥ C(n,‖∇ψ‖L∞),

(x,t)→ (x,y) =
(
x,ϕ(x,t)

)
is a bi-Lipschitz map from Rn+ to D = {(x,y) : y > ψ(x)} where x ∈ Rn−1, t, y ∈

R and

ϕ(x,t) = λt+(ϑt ∗ψ)(x), ϑt(x) =
1

tn−1
ϑ
(x
t

)
.

Moreover, |∇2ϕ(x,t)|2t dx dt is a Carleson measure on Rn+.
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Lemma A.3. Let D = {(x,y) ∈ Rn : y > ψ(x)} where ψ : Rn−1 → R is a
Lipschitz function. Suppose that{

−∆u+∇π = f,

divu = g,

in D. Also assume that u, π have compact supports and (u)∗ ∈ L2(∂D). Then∫
D

|∇u|2δ(X) dX ≤ C

{∫
∂D

|(u)∗|2 dσ+

∫
D

|π|2δ(X) dX +

∫
D

|∇π|2δ3(X) dX

+

∫
D

|∆g+div f | |u|δ2(X) dX +

∫
D

|f | |u|δ(X) dX

}

and∫
∂D

|u|2 dσ ≤ ε

∫
∂D

|(u)∗|2 dσ+Cε

{∫
D

|∇u|2δ(X) dX +

∫
D

|π|2δ(X) dX

+

∫
D

|∇π|2δ3(X) dX +

∫
D

|∆g+div f | |u|δ2(X) dX +

∫
D

|f | |u|δ(X) dX

}

for any ε > 0.

Proof. Let ρ : Rn+ → D be defined by

ρ(x,t) = (x,y) =
(
x,ϕ(x,t)

)
,

where ϕ(x,t) = λt+ϑt ∗ψ(x) is given in Lemma A.2.
Let v = u ◦ ρ, q = π ◦ ρ be defined on Rn+. Note that v and q have compact

supports in Rn+ and satisfy

(A.4)




∂v

∂t
=

∂u

∂y
◦ ρ ·

∂ϕ

∂t
,

∂v

∂xi
=

∂u

∂xi
◦ ρ+

∂u

∂y
◦ ρ ·

∂ϕ

∂xi
, i = 1,2, . . . ,n− 1.

It follows from integration by parts that∫
Rn−1

|u ◦ ρ|2 dx =

∫
Rn−1

|v|2 dx = −2

∫ ∫
R
n
+

∂v

∂t
· v dx dt(A.5)

= 2

∫ ∫
R
n
+

t

∣∣∣∣∂v∂t
∣∣∣∣
2

dx dt+2

∫ ∫
R
n
+

t
∂2v

∂t2
· v dx dt

= 2

∫ ∫
R
n
+

t

∣∣∣∣∂ϕ∂t
∣∣∣∣
2 ∣∣∣∣∂u∂y ◦ ρ

∣∣∣∣
2

dx dt+2

∫ ∫
R
n
+

t

∣∣∣∣∂ϕ∂t
∣∣∣∣
2
∂2u

∂y2
◦ ρ ·u ◦ ρ dx dt+G,
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where G denotes terms which are bounded in absolute value by

C

∫ ∫
R
n
+

t|∇2ϕ| |∇u ◦ ρ| |u ◦ ρ| dx dt(A.6)

+C

∫ ∫
R
n
+

t|∇2ϕ| |π ◦ ρ| |u ◦ ρ| dx dt

+C

∫ ∫
R
n
+

t2|∇2ϕ| |∇π ◦ ρ| |u ◦ ρ| dx dt

+C

∫ ∫
R
n
+

t|π ◦ ρ| |∇u ◦ ρ| dx dt

+C

∫ ∫
R
n
+

t2|∇π ◦ ρ| |∇u ◦ ρ| dx dt.

By the Stokes equations ∆u = ∇π− f , we have

∂2u

∂y2
◦ ρ = −

∂2u

∂x2i
◦ ρ+∇π ◦ ρ− f ◦ ρ

= −
∂

∂xi

{
∂u

∂xi
◦ ρ

}
+

∂2u

∂y∂xi
◦ ρ ·

∂ϕ

∂xi
+∇π ◦ ρ− f ◦ ρ

= −
∂

∂xi

{
∂u

∂xi
◦ ρ

}
+

∂

∂xi

{
∂u

∂y
◦ ρ

}
·
∂ϕ

∂xi

−
∂2u

∂y2
◦ ρ · |∇xϕ|

2+∇π ◦ ρ− f ◦ ρ,

where the repeated index i is summed over {1,2, . . . ,n− 1} and

∇x =

(
∂

∂x1
, . . . ,∂∂xn−1

)
.

It follows that

∂2u

∂y2
◦ ρ =

1

1+ |∇xϕ|2

{
−
∂

∂xi

{
∂u

∂xi
◦ ρ
}
+
∂

∂xi

{
∂u

∂y
◦ ρ

}
·
∂ϕ

∂xi
+∇π ◦ ρ− f ◦ ρ

}
.
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Thus, we may use integration by parts to obtain∫ ∫
R
n
+

t

∣∣∣∣∂ϕ∂t
∣∣∣∣
2
∂2u

∂y2
◦ ρ ·u ◦ ρ dx dt

=

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

·
∂u

∂xi
◦ ρ ·

∂

∂xi
{u ◦ ρ} dx dt

−

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
∂ϕ

∂xi
1+ |∇xϕ|2

·
∂u

∂y
◦ ρ ·

∂

∂xi
{u ◦ ρ} dx dt

+

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

· {∇π ◦ ρ− f ◦ ρ} ·u ◦ ρ dx dt+G

=

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

·

∣∣∣∣ ∂u∂xi ◦ ρ
∣∣∣∣
2

dx dt

−

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
|∇xϕ|2

1+ |∇xϕ|2
·

∣∣∣∣∂u∂y ◦ ρ
∣∣∣∣
2

dx dt

+

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

· {∇π ◦ ρ− f ◦ ρ} ·u ◦ ρ dx dt+G.

This, together with (A.5), implies that

(A.7)

∫
Rn−1

|u ◦ ρ|2 dx = 2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

· |∇u ◦ ρ|2 dx dt

+2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

· {∇π ◦ ρ− f ◦ ρ} ·u ◦ ρ dx dt+G.

It remains to estimate

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

∇π ◦ ρ ·u ◦ ρ dx dt.
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To this end, we let u = (u1,u2, . . . ,un) and note that

∇π ◦ ρ ·u ◦ ρ =
∂π

∂xi
◦ ρ ·ui ◦ ρ+

∂π

∂y
◦ ρ ·un ◦ ρ

=
∂

∂xi
{π ◦ ρ} ·ui ◦ ρ+

∂π

∂y
◦ ρ ·

{
un ◦ ρ−ui ◦ ρ

∂ϕ

∂xi

}
.

Thus, the integration by parts yields

2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

∇π ◦ ρ ·u ◦ ρ dx dt(A.8)

= 2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

∂π

∂y
◦ ρ ·

{
un ◦ ρ−ui ◦ ρ

∂ϕ

∂xi

}
dx dt+G.

Now, we write 2t = ∂t2/∂t. Using integration by parts, we obtain

2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

·
∂π

∂y
◦ ρ ·

{
un ◦ ρ−ui ◦ ρ

∂ϕ

∂xi

}
dx dt

= −

∫ ∫
R
n
+

t2
(
∂ϕ

∂t

)3
1+ |∇xϕ|2

·
∂2π

∂y2
◦ ρ ·

{
un ◦ ρ−ui ◦ ρ

∂ϕ

∂xi

}
dx dt+G.

Since ∆u = ∇π− f , we have ∆π = ∆(divu)+div f = ∆g+div f . Thus,

∂2π

∂y2
◦ ρ = −

∂2π

∂x2i
◦ ρ+∆g ◦ ρ+(div f) ◦ ρ

= −
∂

∂xi

{
∂π

∂xi
◦ ρ

}
+

∂

∂xi

{
∂π

∂y
◦ ρ

}
·
∂ϕ

∂xi
−

∂2π

∂y2
◦ ρ|∇xϕ|

2

+∆g ◦ ρ+(div f) ◦ ρ.

It follows that

∂2π

∂y2
◦ ρ =

1

1+ |∇xϕ|2

{
−
∂

∂xi

{
∂π

∂xi
◦ ρ
}
+
∂

∂xi

{
∂π

∂y
◦ ρ

}
·
∂ϕ

∂xi
+∆g ◦ ρ+(div f) ◦ ρ

}
.



1202 R. M. Brown & Z. Shen

Hence, the integration by parts again yields

2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

·
∂π

∂y
◦ ρ ·

{
un ◦ ρ−ui ◦ ρ

∂ϕ

∂xi

}
dx dt

= −

∫ ∫
R
n
+

t2
(
∂ϕ

∂t

)3
(1+ |∇xϕ|2)2

{∆g+div f} ◦ ρ ·

{
un ◦ ρ−ui ◦ ρ

∂ϕ

∂xi

}
dx dt+G.

Thus, putting together (A.7), (A.8) and the estimate above, we have proved
that ∫

Rn−1

|u ◦ ρ|2 dx

= 2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

|∇u ◦ ρ|2 dx dt

−

∫ ∫
R
n
+

t2
(
∂ϕ

∂t

)3
(1+ |∇xϕ|2)2

{∆g+div f} ◦ ρ ·

{
un ◦ ρ−ui ◦ ρ

∂ϕ

∂xi

}
dx dt

− 2

∫ ∫
R
n
+

t

(
∂ϕ

∂t

)2
1+ |∇xϕ|2

f ◦ ρ ·u ◦ ρ dx dt+G.

This implies that

∫
∂D

|u|2 dσ ≤ C

∫
D

|∇u|2δ(X) dX +C

∫
D

|∆g+div f | |u|δ2(X) dX

+C

∫
D

|f | |u|δ(X) dX + |G|

and ∫
D

|∇u|2δ(X) dX ≤ C

∫
∂D

|u|2 dσ+C

∫
D

|∆g+div f | |u|δ2(X) dX

+C

∫
D

|f | |u|δ(X) dX + |G|.
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Since |∇2ϕ|2t dx dt is a Carleson measure, by the Cauchy-Schwartz inequal-
ity and (A.6), we have

|G| ≤ C

(∫
D

|∇u|2δ(X) dX

)1/2(∫
∂D

|(u)∗|2 dσ

)1/2

+C

(∫
D

|π|2δ(X) dX

)1/2(∫
∂D

|(u)∗|2 dσ

)1/2

+C

(∫
D

|∇π|2δ3(X) dX

)1/2(∫
∂D

|(u)∗|2 dσ

)1/2

+C

(∫
D

|π|2δ(X) dX

)1/2(∫
D

|∇u|2δ(X) dX

)1/2

+C

(∫
D

|∇π|2δ3(X) dX

)1/2(∫
D

|∇u|2δ(X) dX

)1/2
.

The lemma now follows easily from the Cauchy inequality.

Lemma A.9. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 3. Suppose

that ∆u = ∇π, divu = 0 in Ω, and (u)∗ ∈ L2(∂Ω). Then there exists a function
π̃ such that π̃ = π+ c and∫

Ω

|π̃(X)|2δ(X) dX +

∫
Ω

|∇π̃(X)|2δ3(X) dX ≤ C

∫
∂Ω

|u|2 dσ.

Proof. By the L2 estimates in [FKV], u can be represented in terms of a
double layer potential:

ui(X) =

∫
∂Ω

{
∂

∂yk
{Γij(X −Y )}Nk(Y )− qi(X −Y )Nj(Y )

}
hj(Y ) dσ(Y ),

where ‖h‖L2(∂Ω) ≤ C‖u‖L2(∂Ω),
(
Γij(X)

)
is the matrix of fundamental solutions

and
(
qi(X)

)
is the corresponding pressure vector given in (2.8).

Note that

∆Γij(X) =
1

2ωn
∆

{
xixj

|X|n

}
=

1

ωn
∇

(
xi

|X|n

)
·∇xj =

1

ωn

∂

∂xi

{
xj

|X|n

}
.

Thus,

∆ui(X) = ∆

∫
∂Ω

∂

∂yk
{Γij(X −Y )}Nk(Y )hj(Y ) dσ(Y )

= −
∂

∂xi

∂

∂xk

∫
∂Ω

xj − yj

ωn|X −Y |n
Nk(Y )hj(Y ) dσ(Y ) =

∂π̃

∂xi
,
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where

π̃(X) = −
∂wk(X)

∂xk
and wk(X) =

∫
po

xj − yj

ωn|X −Y |n
Nk(Y )hj(Y ) dσ(Y ).

Clearly, π̃ = π+ c since ∇π̃ = ∇π. Note that wk is harmonic in Ω and

(wk)
∗ ∈ L2(∂Ω). By the area integral estimates for the harmonic function [D],

∫
Ω

|π̃|2δ(X) dX ≤
n∑
k=1

∫
Ω

|∇wk|
2δ(X) dX ≤ C

n∑
k=1

∫
∂Ω

|(wk)
∗|2 dσ

≤ C

∫
∂Ω

|h|2 dσ ≤ C

∫
∂Ω

|u|2 dσ.

Also, since ∆π̃ = 0 in Ω, by interior estimates,

∫
Ω

|∇π̃(X)|2δ3(X) dX ≤ C

∫
Ω

|π̃(X)|2δ(X) dX ≤ C

∫
∂Ω

|u|2 dσ.

This completes the proof.

We are now in a position to give the:

Proof of Theorem A.1. Fix P ∈ ∂Ω and r > 0 small. Using linear
transformations both in the variable X and functions u, π (see [S1, p. 347]), we
may assume that

Ω∩B(P,3r) = {(x,y) ∈ Rn : y > ψ(x)}∩B(P,3r).

Let η ∈ C∞0
(
B(P,2r)

)
such that η ≡ 1 on B(P,r). Since ∆u = ∇π,

divπ = 0 in Ω, we have

∆(uη) = (∆u)η+2∇u ·∇η+u ·∆η

= (∇π)η+2∇u ·∇η+u ·∆η

= ∇(πη)−π∇η+2∇u ·∇η+u ·∆η

= ∇(πη)− f

where f = π∇η− 2∇u ·∇η−u ·∆η.
Note that |f | ≤ C{|π|+ |∇u|+ |u|}. Also, div (uη) = u ·∇η ≡ g and |g| ≤

C|u|. Moreover, it is not hard to see that

|∆g+div f | ≤ C{|∇u|+ |∇π|+ |π|+ |u|}.
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We now apply Lemma A.3 to the equations

−∆(uη)+∇(πη) = f, div (uη) = g

in D = {(x,y) ∈ Rn : y > ψ(x)}. Let Dr = Ω∩B(P,r). We obtain∫
Dr

|∇u|2δ(X) dX ≤ C

∫
∂Ω

|u|2 dσ+C

∫
Ω

|π|2δ(X) dX +C

∫
Ω

|∇π|2δ3(X) dX

+C

∫
Ω

|∇u| |u|δ2(X) dX +C

∫
Ω

|u|2 dX

≤ C

∫
∂Ω

|u|2 dσ,

where we have used Lemma A.9 in the second inequality. It follows that∫
Ω

|∇u|2δ(X) dX ≤ C

∫
∂Ω

|u|2dσ.

To finish the proof, note that Lemma A.3 also gives∫
∂Ω∩B(P,r)

|u|2 dσ ≤ ε

∫
∂Ω

|(u)∗|2 dσ+Cε

{∫
Ω

|∇u|2δ(X) dX +

∫
Ω

|u|2 dX

∫
Ω

|π|2δ(X) dX +

∫
Ω

|∇π|2δ3(X) dX

}
.

It then follows from the L2-estimates [FKV] that∫
∂Ω

|u|2dσ ≤ C

{∫
Ω

|∇u|2δ(X) dX +

∫
Ω

|π|2δ(X) dX +

∫
Ω

|u|2 dX

}
.

This estimate holds for any pressure term π. In particular, we may choose π

such that π(X0) = 0 for some X0 ∈ Ω. Then, by the Hardy inequality [St, p.

272], ∫
Ω

|π|2δ(X) dX ≤ C

∫
Ω

|∇π|2δ3(X) dX ≤ C

∫
Ω

|∇2u|2δ3(X) dX

≤ C

∫
Ω

|∇u|2δ(X) dX,

where the last inequality follows from the interior estimates.
Thus, ∫

∂Ω

|u|2 dσ ≤ C

{∫
Ω

|∇u|2δ(X) dX +

∫
Ω

|u|2 dX

}
.

The proof is complete.
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