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1. Introduction

This is a survey paper on estimates for the topological degree and related top-
ics which range from the characterizations of Sobolev spaces and BV functions
to the Jacobian determinant and nonlocal filter problems in Image Process-
ing. These results are obtained in collaboration with Bourgain and Brezis
in [18], Bourgain in [21], and Brezis in [32, 33, 34], and by the author in
[68, 69, 70, 71, 72, 73, 74]. The first topic is on estimates for the topological
degree of maps from a sphere into itself. These estimates, partly joint work
with Bourgain and Brezis in [18, 70], are motivated by the work of Bourgain,
Brezis, and Mironescu in [17]. These results are discussed in Section 2. The
second topic is on the characterizations of Sobolev spaces, partly joint work
with Bourgain in [21, 68, 71]. These characterizations deal with the pointwise
limit of a family of functionals as a small parameter goes to 0. The corre-
sponding results for functions of bounded variations do not hold completely.
This suggests to replace the notion of “pointwise convergence” by the notion
of “Γ-convergence,” which is more flexible. The Γ-convergence of the family
of functionals considered in Section 3 is presented in Section 4; surprisingly
the Γ-limit is strictly smaller than the pointwise limit. In Section 5, we deal
with properties of Sobolev spaces related to the characterizations discussed
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in Section 3. More precisely, we discuss variants of the Sobolev inequality,
the Poincaré inequality, and the Rellich–Kondrachov compactness criterion
in these settings. The next two topics, joint work with Brezis in [32, 33], are
on the Jacobian distributional of maps from a sphere into itself and the Ja-
cobian determinant. These are presented in Sections 6 and 7. The last topic,
obtained with Brezis in [34], discusses briefly some recent results related to
Sobolev spaces and their applications in Image Processing.

2. Estimates for the topological degree

It is known from the work of Bethuel, Brezis, and Hélein in [8] that the
number of singular points of solutions to the Ginzburg Landau equations is
equal to |deg g|, where g is the given boundary data taking values in the
unit circle in two dimensions. Hence good estimates for the degree are of
importance. This direction of work was initiated by Bourgain, Brezis, and
Mironescu in [17]. Their results are improved later by Bourgain, Brezis, and
Nguyen [18] and Nguyen [70]. In this section, we describe these results and
highlight the ideas of the proof.

There is a very beautiful and useful formula to compute the degree of
a map g from a unit sphere S

N in R
N+1 into itself known as Kronecker’s

formula:

deg g =

∫

SN

det(∇g) dσ =

∫

BN+1

det(∇v) dx. (2.1)

Here BN+1 denotes the unit ball in R
N+1 and v is any smooth extension g

in BN+1. From the first equality of (2.1), one can easily obtain

|deg g| ≤ CN‖∇g‖NLN (SN ). (2.2)

Using the second equality of (2.1), one has

|deg g| ≤ CN‖∇v‖N+1
LN+1(BN+1)

,

where v is an extension of g in BN+1. Letting v be the harmonic extension
of g, i.e., Δv = 0 in BN+1 and v = g on S

N , and using the trace theory:

‖∇v‖LN+1(BN+1) ≤ CN |g|N+1

W
N

N+1
,N+1

(SN )
,

one obtains
|deg g| ≤ CN |g|N+1

W
N

N+1
,N+1

(SN )
.

Here and in what follows, W s,p (0 < s < 1, p > 1) denotes the standard
fractional Sobolev space and | · | denotes the corresponding seminorm. This
is an improvement of (2.2) since, by interpolation,

|g|N+1

W
N

N+1
,N+1

(SN )
≤ CN‖g‖L∞(SN )‖∇g‖NLN (SN ).

Using Gagliardo–Nirenberg’s characterization of the fractional seminorm, one
derives

|deg g| ≤ CN

∫

SN

∫

SN

|g(x)− g(y)|N+1

|x− y|2N dx dy. (2.3)
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The first important improvement of (2.3) is due to Bourgain, Brezis,
and Mironescu in [17]. They proved the following theorem.

Theorem 2.1 (Bourgain, Brezis, and Mironescu [17]).

|deg g| ≤ Cp,N

∫

SN

∫

SN

|g(x)− g(y)|p
|x− y|2N dx dy (2.4)

for all g ∈ C0(SN , SN ) and all p > 1.

Estimate (2.4) gets better and better when p becomes larger and larger.
This follows from the fact that

|g(x)− g(y)|q ≤ 2q−p|g(x)− g(y)|p

for q ≥ p since |g(x)− g(y)| ≤ 2 for x, y ∈ S
N .

Their proof of (2.4) is based on an original use of Kronecker’s formula
and the machinery of trace theory in fractional Sobolev spaces. Instead of
choosing the harmonic extension v of g, their extension, based on v, is

u :=

{
v/|v| if |v| > 1/2,

2v if |v| < 1/2.
(2.5)

For every x ∈ S
N , let ρ(x) be the length of the largest radial interval com-

ing from x ∈ S
N on which |v| > 1/2. It is clear that det(∇u) = 0 in

{x ∈ BN+1; |v| > 1/2} which is a subset of
⋃

x∈SN
[0, (1 − ρ(x))x]. Applying

Kronecker’s formula for u and using the fact that |∇v(x)| ≤ C/(1−|x|), after
straightforward computations, they obtained the following inequality:

|deg g| ≤ CN

∫

SN

ρ(x)<1

1

|ρ(x)|N dx. (2.6)

Inequality (2.6) is the crucial point in their proof and for the later develop-
ment on this topic. The rest of their proof is based on the machinery of trace
theory in fractional spaces W s,p which is not discussed here. We next present
a different approach due to Bourgain, Brezis, and Nguyen in [18] and Nguyen
in [70]. The new approach is more elementary and provides better estimates
for the degree.

It is well known that deg g �= 0 implies that g is surjective. In view of
this fact, Bourgain, Brezis, and Mironescu in [17] asked the question whether
or not the inequality

|deg g| ≤ Cδ,N

∫

SN

∫

SN

|g(x)−g(y)|>δ

1

|x− y|2N dx dy (2.7)

holds for δ small enough. It is clear that (2.7) implies (2.4). In their unpub-
lished note [14], they gave a positive answer to this question for N = 1 and
for small δ, δ = 1/10 is allowed. Their technique is quite involved. It is not
clear if their method can be applied for higher dimensions.
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In a joint work with Bourgain and Brezis in [18], we presented a positive
answer to this question in arbitrary dimensions. More precisely, we proved
the following result.

Theorem 2.2. Let N ≥ 1. For every 0 < δ <
√
2, there exists a positive

constant CN,δ such that

|deg g| ≤ Cδ,N

∫

SN

∫

SN

|g(x)−g(y)|>δ

1

|x− y|2N dx dy ∀ g ∈ C0
(
S
N , SN

)
.

The idea of the proof is as follows. We first choose an extension in the
spirit of (2.5). However, instead of choosing v as the harmonic extension, we
take v as the average extension; i.e.,

v(X) =

∫

B(x,r)

g(s) ds,

where x = X/|X| and r = 2(1− |X|) and we define u as follows:

u =

{
v/|v| if |v| > α,

v/α if |v| < α
(2.8)

for some α > 0 small. Here B(x, r) denotes the ball centered at x of radius r
in S

N . The requirement for the smallness of α will be clear in a moment.
This choice of v was used in the definition of the degree for VMO (vanishing
mean oscillation) maps in [35] and is very suitable for our setting, which is
close to VMO one. Similar to (2.6), we obtain the key estimate

|deg g| ≤ CN

∫

SN

ρ(x)<1

1

|ρ(x)|N dx, (2.9)

where ρ(x) is the length of the largest radial interval coming from x ∈ S
N on

which |v| > α. Hence it suffices to prove that, for x ∈ S
N with ρ(x) < 1,

1

|ρ(x)|N ≤ Cδ,N

∫

SN

|g(y)−g(x)|>δ

1

|x− y|2N dy. (2.10)

For x ∈ S
N such that ρ(x) < 1, we have

∣∣∣∣∣

∫

B
(
x,2ρ(x)

) g(y) dy
∣∣∣∣∣ = α. (2.11)

Since α is small (the smallness of α depends on δ) and |g(x)| = 1, it follows
that1 ∣∣∣

{
y ∈ B

(
x, ρ(x)

)
; |g(y)− g(x)| > δ

}∣∣∣ ≥ Cδ,Nρ(x)N , (2.12)

which implies (2.10).

In view of the fact that deg g �= 0 implies that g is surjective, it is
natural to ask whether (2.7) holds for every 0 < δ < 2. Surprisingly, (2.7)

1Here and in what follows |A| denotes the measure of a set A.
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does not hold for every 0 < δ < 2. When δ >
√
2, inequality (2.12) should be

replaced by∣∣∣
{
(ξ, η) ∈ B

(
x, 2ρ(x)

)
×B(x, 2ρ(x)); |g(ξ)− g(η)| > δ

}∣∣∣ ≥ Cδr
2N (2.13)

as long as (2.11) holds. In fact, (2.13) holds only for δ ≤ ℓN defined by

ℓN =

√
2 +

2

N + 1
, (2.14)

which is the side length of an (N + 2) regular simplex inscribed in S
N . This

suggests that ℓN is an upper bound for (2.7). In fact, this is true by consid-
ering a sequence of continuous maps gn whose ranges concentrate more and
more on the vertices of such a regular simplex. Moreover, we can show that
ℓN is optimal. To this end, we establish (2.13) for δ < ℓN . We are also able to
show that the constant Cδ in (2.13) is independent of δ for δ < ℓN . The main
ingredient of the proof is the following geometric lemma which is a discrete
version of (2.13) and is interesting in itself [70, Lemma 3].

Lemma 2.3. Let N ≥ 1 and Ai ∈ S
N (1 ≤ i ≤ N + 2). Assume that

dist
(
0, conv{Ai; 1 ≤ i ≤ N + 2}

)
≤ 1

N + 1
.

Then
|Ai −Aj | ≥ ℓN for some i, j.

Here conv(·) denotes the convex hull of a subset in R
N+1. We hence

reach the following result [70, Theorem 1].

Theorem 2.4. Let N ≥ 1. Then ℓN is optimal for (2.7); i.e.,

|deg g| ≤ CN

∫

SN

∫

SN

|g(x)−g(y)|≥ℓN

1

|x− y|2N dx dy ∀ g ∈ C0
(
S
N , SN

)
, (2.15)

and there exists (gn) ⊂ C(SN ; SN ) such that deg gn = 1 and

lim
n→∞

∫

SN

∫

SN

|gn(x)−gn(y)|>ℓN

1

|x− y|2N dx dy = 0.

For g ∈ C1(SN ), one has

lim
δ→0

∫

SN

∫

SN

|g(x)−g(y)|≥δ

δN

|x− y|2N dx dy = CN

∫

SN

|∇g|N

for some CN > 0 (see, e.g., Theorem 3.4 for similar settings). In view of this
fact, Brezis [26] suggested the following question.

Open question 1. Let g ∈ C0(SN , SN ). Is it true that

|deg g| ≤ CN

∫

SN

∫

SN

|g(x)−g(y)|>δ

δN

|x− y|2N dx dy ∀ 0 < δ < 1, (2.16)

for some CN independent of g and δ?
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Concerning circle-valued maps, there is an important object associated
with them, namely, the lifting which describes the phase of the maps. The lift-
ing of Sobolev maps has attracted much attention in recent decades; see [10,
11, 13, 16, 17] and the references therein. The idea mentioned previously is
also used to obtain estimates for liftings in [61, 62, 72] (see also [9, 60]).

We do not discuss here the formula for the winding number based on
the Fourier coefficients discovered by Brezis in [25] and related problems.
The reader can find an interesting review on these aspects in [25] and recent
results due to Bourgain and Kozma in [20] and Bourgain and Kahane in [19].

3. Characterizations of Sobolev spaces

Various definitions of Sobolev spaces and the variants of well-known proper-
ties of Sobolev spaces have been studied by many authors, e.g., Ambrosio [3],
Korevaar and Schoen [55], Reshetnyak [78], Haj�laz and Koskela [46], Bour-
gain, Brezis, and Mironescu [15] and the references therein. In this section, we
will discuss several characterizations of Sobolev spaces which are motivated
by the quantity used in the estimates for the degree in Section 2. Properties
of Sobolev spaces related to these characterizations are discussed in Section 5.
These characterizations are quite close to the work of Bourgain, Brezis, and
Mironescu in [15], however, the connection is not transparent.

We first state the result of Bourgain, Brezis, and Mironescu in [15] (see
also [24]). Further studies of their characterization are given in [12, 37, 40,
49, 56, 75, 76] and the references therein.

Theorem 3.1 (Bourgain, Brezis, and Mironescu [15]). Let g ∈ Lp(RN ), 1 <
p < +∞. Then g ∈ W 1,p(RN ) if and only if

sup
n∈N

∫

RN

∫

RN

|g(x)− g(y)|p
|x− y|p ρn(|x− y|) dx dy < +∞.

Moreover,

lim
n→∞

∫

RN

∫

RN

|g(x)− g(y)|p
|x− y|p ρn(|x− y|) dx dy

= KN,p

∫

RN

|∇g(x)|p dx ∀ g ∈ W 1,p
(
R

N
)
,

where KN,p is defined by

KN,p =

∫

SN−1

|e · σ|p dσ. (3.1)

Here (ρn)n∈N is a sequence of nonnegative radial functions satisfying

lim
n→∞

∫ ∞

τ

ρn(r)r
N−1 dr = 0 ∀ τ > 0,

lim
n→∞

∫ +∞

0

ρn(r)r
N−1 dr = 1.
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Remark 3.2. Theorem 3.1 also holds for p = 1 if W 1,1 is replaced by BV and∫
RN |∇g| denotes the total variation of g.

Before stating our results, we introduce the following notation.

Notation 1. Let p > 0 and δ > 0. We denote

Iδ(g) :=

∫

RN

∫

RN

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy. (3.2)

Remark 3.3. The quantity Iδ is a variant of the one used in the estimates for
the degree in Section 2. It is also related to the definition of seminorm of the
fractional Sobolev spaces W s,q for 0 < s < 1 and q > 1.

The following characterization of Sobolev spaces was established by
Nguyen in [68], and Bourgain and Nguyen in [21].

Theorem 3.4. Let 1 < p < +∞ and g ∈ Lp(RN ). Then

g ∈ W 1,p
(
R

N
)

if and only if lim
δ→0

Iδ(g) < +∞. (3.3)

Moreover, for g ∈ W 1,p(RN ),

Iδ(g) ≤ CN,p

∫

RN

|∇g(x)|p dx ∀ δ > 0, (3.4)

for some positive constant CN,p, and

lim
δ→0

Iδ(g) =
1

p
KN,p

∫

RN

|∇g(x)|p dx, (3.5)

where KN,p is defined by (3.1).

Remark 3.5. Similar results also hold for smooth bounded domains (see [68]).

Property (3.3) does not hold for p = 1 (see Proposition 4.1). However,
we have the following result.

Theorem 3.6. Let p = 1 and let g ∈ L1(RN ) be such that

lim
δ→0

Iδ(g) < +∞. (3.6)

Then g ∈ BV(RN ).

Remark 3.7. In a recent joint work with Brezis [34], we show that a variant of
Theorems 3.4 and 3.6 for 0 < p < 1 does not hold without assuming enough
regularity on g. Indeed, let 0 < p < 1 and 0 < γ < 1 − p. There exists
g ∈ C0,γ(R) \W 1,1(R) with compact support such that supδ>0 Iδ(g) < +∞;
see [34, Proposition 5].

Proof of (3.4) and (3.5). We only give the proof under the additional as-
sumption g ∈ C1(RN ). The proof in the general case follows similarly but
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requires some facts on the measure theory. Using polar coordinates and ap-
plying Fubini’s theorem, we have

Iδ(g) =

∫

SN−1

∫

RN

∫ ∞

0
|g(x+h)−g(x)|>δ

δp

hp+1
dh dx

=

∫

SN−1

∫

RN

∫ ∞

0
|g(x+δhσ)−g(x)|

δ
>1

1

hp+1
dh dx dσ.

(3.7)

Note that

|g(x+ δhσ)− g(x)|
δ

≤ 1

δ

∫ hδ

0

|〈∇g(x+ sσ), σ〉| ds

≤ hM(∇g, σ)(x),

(3.8)

where

M(∇g, σ)(x) := sup
t>0

1

t

∫ t

0

|〈∇g(x+ sσ), σ〉| ds. (3.9)

A combination of (3.7) and (3.9) yields

Iδ(g) ≤
1

p

∫

SN−1

∫

RN

|M(∇g, σ)(x)|p dx dσ.

Decomposing R
N = σR × (σR)⊥ and applying the theory of maximal func-

tions (see, e.g., [87]), we obtain

Iδ(g) ≤ CN,p

∫

RN

|∇g|p dx dσ,

which is (3.4).
We next prove (3.5). We have

lim
δ→0

|g(x+ δhσ)− g(x)|
δ

= h|〈∇g(x), σ〉|

and
∫

SN−1

∫

RN

∫ ∞

0

h|〈∇g(x),σ〉|>1

1

hp+1
dh dx dσ =

1

p

∫

SN−1

∫

RN

|〈∇g(x), σ〉|p dx dσ.

Hence (3.5) follows from the definition of KN,p and the dominated conver-
gence theorem. �

Sketch of the idea of the proof of (3.3). The proof of (3.3) is due to Bourgain
and Nguyen in [21]. By (3.4), it suffices to prove that, for g ∈ Lp(RN ),

if lim
δ→0

Iδ(g) < +∞, then g ∈ W 1,p
(
R

N
)
. (3.10)

The proof of (3.10) for N ≥ 2 is a consequence of the one-dimensional result
and the following type of inequalities, whose proof is standard as in the
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context of fractional Sobolev spaces (see, e.g., [1, Chapter 7]),
∫

RN−1

∫

R

∫

R

|g(x′,xN )−g(x′,yN )|>2δ

1

|xN − yN |p+1
dxN dyN dx′

≤ CN,p

∫

RN

∫

RN

|g(x)−g(y)|>δ

1

|x− y|N+p
dx dy

(3.11)

for all δ > 0. In the one-dimensional case, the proof of (3.3) is essentially
based on Lemma 3.8 below which is interesting in itself. In fact, applying
Lemma 3.8, one can derive that

∫

Rd

|g(x+ h)− g(x)|p
hp

dx ≤ C

for all 0 < h < 1 and for some positive constant C independent of h. It
follows that g ∈ W 1,p(R) (see, e.g., [23, Chapter 8]). �

The following lemma [21, Lemma 2] due to Bourgain and Nguyen is the
key ingredient of the proof of (3.3) and plays an important role in the topics
discussed in Sections 4 and 5.

Lemma 3.8. Let g be a measurable function on a bounded nonempty interval I
and 1 ≤ p < +∞. Then

lim
δ→0+

∫∫

I×I

|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy

≥ c
1

|I|p−1

(
ess sup

I
g − ess inf

I
g
)p

,

(3.12)

where c = cp is a positive constant depending only on p.

Some words on the proof of Lemma 3.8. The proof of Lemma 3.8 is quite
technical and based on elementary properties of measurable functions and
the mean value theorem. We sketch the idea of the proof in the case g is con-
tinuous on Ī; which already contains all the ingredients of the proof in the
general case. By scaling, without loss of generality, one may assume that

I = [0, 1], max
Ī

g = 1, min
Ī

g = 0.

Take 0 < δ ≪ 1 small enough to ensure that there are two points t+, t− ∈
[40δ, 1− 40δ] ⊂ [0, 1] with

{
|[t+ − τ, t+ + τ ] ∩ [g > 3/4]| > 9 τ/5,

|[t− − τ, t− + τ ] ∩ [g < 1/4]| > 9 τ/5,
∀ 0 < τ < 40δ. (3.13)

Let K ∈ Z+ be such that

δ < 2−K ≤ 2δ. (3.14)



194 H.-M. Nguyen JFPTA

Denote

J =

{
j ∈ Z+;

1

4
< j2−K <

3

4

}
.

Then

card(J) ≥ 2K−1 − 2 ∼ 1

δ
. (3.15)

For each j, define the following sets:

Aj =
{
x ∈ [0, 1]; (j − 1)2−K ≤ g(x) < j2−K

}
,

Bj =
⋃

j′<j

Aj′ , Cj =
⋃

j′>j

Aj′ ,

so that Bj × Cj ⊂
[
|g(x)− g(y)| ≥ 2−K

]
⊂ [|g(x)− g(y)| > δ]. Set

G =
{
j ∈ J ; |Aj | < 2−K+2

}
. (3.16)

Since the collection (Aj) is disjoint, it follows from (3.15) that

card(G) ≥ 2K−2 − 3 ∼ 1

δ
. (3.17)

We claim that, for each j ∈ G, there exist tj ∈ [40δ, 1 − 40δ] and 0 <
λj ≤ 4δ such that

∣∣[tj − 4λj , tj + 4λj ] ∩Bj

∣∣ = 4λj ,

λj

4
≤
∣∣[tj − 4λj , tj + 4λj ] ∩Aj

∣∣ ≤ λj .
(3.18)

Indeed, for j ∈ G, set λ1,j = |Aj | and consider

ψ1(t) =
∣∣[t− 4λ1,j , t+ 4λ1,j ] ∩Bj

∣∣ ∀ t ∈ [40δ, 1− 40δ].

It follows from (3.13) that ψ1(t+) < 4λ1,j and ψ1(t−) > 4λ1,j . Hence there
exists t1,j ∈ [40δ, 1− 40δ] such that

ψ1(t1,j) = 4λ1,j . (3.19)

If ∣∣[t1,j − 4λ1,j , t1,j + 4λ1,j ] ∩Aj

∣∣ ≥ λ1,j

4
,

then set λj = λ1,j . Otherwise, let λ2,j > 0 be such that λ1,j/λ2,j ∈ Z+ and

λ2,j

2
< |[t1,j − 4λ1,j , t1,j + 4λ1,j ] ∩Aj | ≤ λ2,j

and set

ψ2(t) =
∣∣[t− 4λ2,j , t+ 4λ2,j ] ∩Bj

∣∣ ∀ t ∈ [t1,j − 4λ1,j , t1,j + 4λ1,j ].

Using (3.19), we have

ψ2(t2,j) = 4λ2,j for some λ2,j .

If ∣∣[t2,j − 4λ2,j , t2,j + 4λ2,j ] ∩Aj

∣∣ ≥ λ2,j

4
,

then set λj = λ2,j , etc. This process has to stop by the uniform continuity
of g. Claim (3.18) is proved.
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We have, as a consequence of the first equality in (3.18),
∫∫

[tj−4λj ,tj+4λj ]2

|g(x)−g(y)|>δ

1

|x− y|p+1
≥ Cpδ

p−1, (3.20)

and as a consequence of the second inequality in (3.18),

[tj − 4λj , tj + 4λj ] are almost “disjoint.”

By taking the sums of (3.20) with respect to j ∈ G, the conclusion follows.

Under the stronger assumption

lim
δ→0

Iδ(g) < +∞, (3.21)

the proof of (3.3) had been obtained previously by Nguyen in [68]. The proof
is simpler and interesting in itself. It is based on a convex property derived
from Iδ when (3.21) is assumed. The proof is as follows. We first assume that
g ∈ L∞. Set A = ‖g‖L∞ and define

Jε(g) =

∫ 2A

0

εδε−1Iδ(g) dδ.

Then

lim
ε→0

Jε(g) ≤ lim
δ→0

Iδ(g). (3.22)

We have

Jε(g) =
ε

p+ ε

∫

RN

∫

RN

|g(x)− g(y)|p+ε

|x− y|N+p
dx dy.

We now follow the method in the work of Bougain, Brezis, and Mironescu
with the suggestion of Stein presented in [24]. Let (ρn) be a sequence of
smooth mollifiers. Set gn = ρn ∗ g. Then

Jε(gn) ≤ Jε(g),

since Jε(·) is convex. Letting ε go to 0, we have, since gn is smooth,
∫

RN

|∇gn|p dx ≤ C lim
ε→0

Jε(gn) ≤ C lim
δ→0

Iδ(g),

by (3.22). The proof under the additional assumption that g ∈ L∞ is com-
plete. The proof in the general case can be derived from the previous one by
noting that

Iδ(gK) ≤ Iδ(g) for K > 0,

where gK is the truncation of g with respect to K; i.e.,

gK = min
{
K,max{g,−K}

}
.

The characterizations in Theorems 3.4 and 3.6 have been extended in
[71] (see [71, Theorem 1]) to the functionals of the form
∫

RN

∫

RN

Fn(|g(x)− g(y)|)
|x− y|N+p

dx dy ≤ CN,p

∫ ∞

0

Fn(t)t
−(p+1) dt

∫

RN

|∇g(x)|p dx,
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under the following assumptions on Fn:

(i) Fn(t) is a nondecreasing function with respect to t on [0,+∞) for all
n ∈ N;

(ii)
∫ 1

0
Fn(t)t

−(p+1) dt = 1 for all n ∈ N;
(iii) Fn(t) converges uniformly to 0 on every compact subset of (0,+∞) as

n goes to infinity.

The idea of the proof of Lemma 3.8 is also developed in [71] to obtain
the following lemma [71, Lemma 2] which is interesting in itself.

Lemma 3.9. Let g ∈ Lp(RN ), 1 < p < +∞. Assume that
∫∫

K×K

|g(x)−g(y)|>ε

1

|x− y|N+1
dx dy < +∞ ∀K � R

N , ∀ ε > 0 (3.23)

and

lim
ε→0+

∫∫

RN×RN

ε<|g(x)−g(y)|<10ε

εp

|x− y|N+p
dx dy < +∞. (3.24)

Then g ∈ W 1,p(RN ).

The case p = 1 is unknown, the following question remains open.

Open question 2. Let g ∈ L1(RN ) be such that
∫∫

K×K

|g(x)−g(y)|>ε

1

|x− y|N+1
dx dy < +∞ ∀K � R

N , ∀ ε > 0

and

lim
ε→0+

∫∫

RN×RN

ε<|g(x)−g(y)|<10ε

ε

|x− y|N+1
dx dy < +∞.

Is it true that g ∈ BV(RN )?

4. Γ-convergence and Sobolev norms

The characterizations of Sobolev spaces mentioned in Section 3 are complete
in the case p > 1. However, in the case p = 1, one has the following scenario,
observed by Ponce (the proof is presented in [71]).

Proposition 4.1 (Ponce). There exists g ∈ W 1,1(RN ) with compact support
such that

lim
δ→0

Iδ(g) = +∞. (4.1)

The situation in the case p = 1 is quite complicated. The Γ-convergence
is more flexible and suitable than the pointwise convergence in this case. We
first recall the definition of Γ-convergence. A family of functionals (Iδ)δ∈(0,1)
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defined in Lp(RN ) Γ-converges in Lp(RN ) (p ≥ 1), as δ → 0, to a functional I
defined in Lp(RN ) if and only if the following two conditions hold.

(G1) For each g ∈ Lp(RN ) and for every family (gδ)δ∈(0,1) ⊂ Lp(RN ) such

that gδ converges to g in Lp(RN ) as δ → 0, one has

lim
δ→0

Iδ(gδ) ≥ I(g).

(G2) For each g ∈ Lp(RN ), there exists a family (gδ)δ∈(0,1) ⊂ Lp(RN ) such

that gδ converges to g in Lp(RN ) as δ → 0, and

lim
δ→0

Iδ(gδ) ≤ I(g).

In [69, 73], we proved that Iδ Γ-converges in Lp(RN ). Surprisingly, the
Γ-limit is strictly less than the pointwise limit for all p ≥ 1. More precisely,
we have the following result.

Theorem 4.2. Let p ≥ 1 and N ≥ 1. Then (Iδ) Γ-converges in Lp(RN ), as
δ → 0, to the functional I defined in Lp(RN ) by

I(g) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

K̂N,p

∫

RN

|∇g|p dx if p > 1 and g ∈ W 1,p
(
R

N
)

(
resp., p = 1 and g ∈ BV

(
R

N
))
,

+∞ otherwise,

for some constant K̂N,p which satisfies

0 < K̂N,p <
1

p
KN,p. (4.2)

The quantity Iδ is nonconvex and very sensitive to small perturbations.
In a convex setting related to Theorem 3.1, the corresponding Γ-convergence
result is proved by Ponce in [75]; his proof uses essentially the convexity in
that context and is much simpler than ours, which is described below.

The proof of Theorem 4.2 is as follows. Set

K̂N,p = inf lim
δ→0

∫∫

Q2

|hδ(x)−hδ(y)|>δ

δp

|x− y|N+p
dx dy, (4.3)

where the infimum is taken over all families of measurable functions (hδ)δ∈(0,1)

defined in the unit open cube Q = (0, 1)N of RN such that hδ converges to
h(x) ≡ x1+···+xN√

N
in (Lebesgue) measure in Q as δ → 0 (using Lemma 4.3

stated later in this section, one can replace the convergence in measure of hδ

by the convergence in Lp or L∞; the monotonicity of Iδ plays an important

role here). We then establish Theorem 4.2 where K̂N,p is given by (4.3).

The proof of the fact K̂N,p < KN,p/p is essentially based on the following
observation in one dimension. Let g and gδ be defined in [0, 1] by

g(x) = x

and
gδ(x) = (k + 1)δ if kδ ≤ x < (k + 1)δ for 0 ≤ k ≤ [1/δ].
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Here [1/δ] denotes the largest integer less than 1/δ. Then gδ converges to g
in L∞(0, 1) as δ → 0 and

lim
δ→0

∫ 1

0

∫ 1

0
|gδ(x)−gδ(y)|>δ

δp

|x− y|1+p
dx dy <

1

p
K1,p

∫ 1

0

|g′|p dx. (4.4)

Indeed, (4.4) is a consequence of the following facts:

lim
δ→0

⎛
⎜⎝

∫ 1

0

∫ 1

0
|g(x)−g(y)|>δ

δp

|x− y|1+p
dx dy −

∫ 1

0

∫ 1

0
|gδ(x)−gδ(y)|>δ

δp

|x− y|1+p
dx dy

⎞
⎟⎠

≥ lim
δ→0

[1/δ]∑

k=0

∫∫

kδ≤x≤(k+ 1
2 )δ

(k+ 3
2 )δ≤y∈(k+2)δ

δp

|x− y|1+p
dx dy,

lim
δ→0

∫ 1

0

∫ 1

0
|g(x)−g(y)|>δ

δp

|x− y|1+p
dx dy =

1

p
K1,p

∫ 1

0

|g′|p dx =
2

p
,

and

lim
δ→0

[1/δ]∑

k=0

∫∫

kδ≤x≤(k+ 1
2 )δ

(k+ 3
2 )δ≤y≤(k+2)δ

δp

|x− y|1+p
dx dy > 0.

The proof of the fact K̂N,p > 0 is based on (4.3) and essentially uses
the idea in the proof of Lemma 3.8. We first consider the case N = 1. Let
hδ → h in measure in I := [0, 1]. It follows that, for δ small, (3.13) holds for
h and hδ with t+ ≈ 1, t− ≈ 0. Hence, using the same arguments as in the
proof of Lemma 3.8, we have

∫∫

I×I

|hδ(x)−hδ(y)|>δ

δp

|x− y|p+1
dx dy ≥ c (4.5)

for small δ, where c = cp is a positive constant depending only on p. This im-

plies that K̂1,p > 0. The proof in the general case makes use of (3.11) and is
a consequence of the one in one dimension.

We next discuss the ideas of the proof of properties (G1) and (G2). The

proof of (G1) in the case p > 1 somewhat follows from the definition of K̂N,p

in (4.3) and the fact that any function in W 1,p(RN ) is locally approximately
linear in the sense of measure; see, e.g., [42, Theorem 4 on page 223]. The
proof in the case p = 1 is more complicated since the behaviour of functions of
bounded variations, whose derivatives contain the jump part and the Cantor
part as well, is more complicated than the one in W 1,p. In this case, the

proof involves another representation for K̂N,1 (the one given in (4.3) does
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not reflect the jumps of BV functions). More precisely, we have (see [73,
Proposition 4])

K̂N,1 = inf lim
δ→0

∫∫

Q2

|hδ(x)−hδ(y)|>δ

δ

|x− y|N+1
dx dy, (4.6)

where the infimum is taken over all families of measurable functions (hδ)δ∈(0,1)

such that hδ converges toH 1
2
in measure as δ → 0. HereHc(x) := H(x1−c, x′)

for any c ∈ R, where H is the function defined in R
N by

H(x) =

{
0 if x1 < 0,

1 otherwise.

We next turn to the ideas of the proof of property (G2). The proof of
property (G2) is the same for both cases p > 1 and p = 1. It suffices to es-
tablish (G2) under the assumption that g is continuous piecewise linear with
compact support; the general case follows by a standard density argument.
The first step is to show that there exists a family

(hδ) → h(x) =
x1 + · · ·+ xN√

N

in Lp(Q), as δ → 0, such that

lim
δ→0

∫∫

Q2

|hδ(x)−hδ(y)|>δ

δp

|x− y|N+p
dx dy = K̂N,p. (4.7)

The second step is to rescale functions obtained from (4.7) and glue them
together. These two steps are delicate and essentially based on the following
monotonicity property of Iδ [73, Lemma 1], whose proof is quite elementary.

Lemma 4.3. Let N ≥ 1, p ≥ 1, let A be a measurable subset of RN , and let
f and g be two measurable functions defined in A. Define

h1 = min(f, g) and h2 = max(f, g).

Assume g is Lipschitz in A with a Lipschitz constant L. Then
∫∫

A2

|h1(x)−h1(y)|>δ

δp

|x− y|N+p
dx dy

≤
∫∫

A2

|f(x)−f(y)|>δ

δp

|x− y|N+p
dx dy + CLp|A \B1|

(4.8)

and ∫∫

A2

|h2(x)−h2(y)|>δ

δp

|x− y|N+p
dx dy

≤
∫∫

A2

|f(x)−f(y)|>δ

δp

|x− y|N+p
dx dy + CLp|A \B2|.

(4.9)
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Here

B1 = {x ∈ A; f(x) ≤ g(x)} and B2 = {x ∈ A; f(x) ≥ g(x)}.

Proof of Lemma 4.3. We only prove (4.8); the proof of (4.9) follows similarly.
Note that if x, y ∈ B1, then |h1(x)−h1(y)| = |f(x)−f(y)|. Otherwise, x �∈ B1

or y �∈ B1, which implies

|h1(x)− h1(y)| ≤ max
(
|f(x)− f(y)|, |g(x)− g(y)|

)
.

It follows that
∫∫

A2

|h1(x)−h1(y)|>δ

δp

|x− y|N+p
dx dy ≤

∫∫

A2

|f(x)−f(y)|>δ

δp

|x− y|N+p
dx dy

+

∫∫

A2\B2
1

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy.

(4.10)

Since g is Lipschitz with a Lipschitz constant L, it follows that
∫∫

A2\B2
1

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy ≤ CLp|A \B1|. (4.11)

A combination of (4.10) and (4.11) yields (4.8). �

We next concentrate on the case N = 1 and explain very briefly how to
use Lemma 4.3 to reach the conclusions of the two steps. Applying (4.8) with
f = f1 := hδ and g = g1 := x+ε1, f = f2 := min{f1, g1} and g = g2 := 1−ε2
and applying (4.9) with f = f3 := min{f2, g2} and g = g3 = x − ε1, and
f = f4 := max{f3, g3} and g = g4 := ε2 for appropriate choices of ε1 and ε2
(these choices depend on δ), we can assume that hδ given in (4.7) is constant
near 0 and 1, the endpoints of Q = [0, 1] (N = 1). In fact, by using g1 and g3,
one can first assume that hδ converges to x uniformly in [0, 1] and by using g2
and g4, one can then assume that hδ is constant near 0 and 1. Knowing that
hδ can be chosen to be constant near 0 and 1 in (4.7), we then can rescale
these functions and glue them together to reach the conclusion of the first
step. The proof of the second step is more complicated but uses the same
observation.

5. Inequalities related to Sobolev norms

This section is devoted to variants of the Poincaré inequality, the Sobolev
inequality, and the Rellich–Kondrachov compactness criterion which are re-
lated to the characterizations of Sobolev spaces in Section 3. Concerning the
Poincaré inequality, we have the following result [74, Theorem 1].
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Theorem 5.1. Let N ≥ 1, p ≥ 1, and let g be a real measurable function
defined in a ball B ⊂ R

N . We have∫

B

∫

B

|g(x)− g(y)|p dx dy

≤ CN,p

(
|B|N+p

N

∫

B

∫

B
|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy + δp|B|2

)
.

(5.1)

Applying Theorem 5.1, we have g ∈ BMO(RN ), the space of all func-
tions of bounded mean oscillation defined in R

N , if g ∈ L1(RN ) and Iδ(g) <
+∞ for some δ > 0. Moreover, there exists a positive constant C, depending
only on N , such that

|g|BMO := sup
B

∫

B

∫

B

|g(x)− g(y)| dx dy ≤ C
(
I

1
N

δ (g) + δ
)
,

where the supremum is taken over all balls of RN . In a joint work with Brezis
[31] we also showed that if g ∈ L1(RN ) and Iδ(g) < +∞ with p = N for all
δ > 0,2 then g ∈ VMO(RN ), the spaces of all functions of vanishing mean
oscillation. More properties in the case p = N can be found in [31].

Here is a variant of the Sobolev inequality [74, Theorem 3].

Theorem 5.2. Let 1 < p < N , δ > 0, and let g be a real measurable function
defined in R

N . There exist two positive constants C and λ, depending only
on N and p, such that

⎛
⎜⎝
∫

|g|>λδ

|g|q dx

⎞
⎟⎠

1
q

≤ C [Iδ(g)]
1
p with q =

Np

N − p
. (5.2)

In the case p = 1, the following question remains open.

Open question 3. Let p = 1, N > 1, δ > 0, and let g be a real measurable
function defined in R

N . Is it true that, for some positive constants C and λ,
depending only on N ,

⎛
⎜⎝
∫

|g|>λδ

|g| N
N−1 dx

⎞
⎟⎠

N−1
N

≤ CIδ(g). (5.3)

A variant of Rellich–Kondrachov theorem [74, Theorem 2] is the follow-
ing.

Theorem 5.3. Let N ≥ 1, p ≥ 1, (gn) a bounded sequence in Lp(RN ), and let
(δn) be a sequence of positive numbers converging to 0 such that

lim
n→∞

Iδn(gn) < +∞. (5.4)

There exist a subsequence (gnk
) of (gn) and g ∈ Lp(RN ) such that (gnk

) con-
verges to g in Lp

loc(R
N ). Moreover, g ∈ W 1,p(RN ) for p > 1 (resp., g ∈

2One does not require any blow-up rate of Iδ(g) as δ → 0.
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BV(RN ) for p = 1) and there exists a positive constant C, depending only on
N and p, such that ∫

RN

|∇g|p dx ≤ C lim
n→∞

Iδn(gn). (5.5)

Letting δ go to 0 in (5.1), (5.2), and (5.4), we rediscover the Poincaré
inequality, the Sobolev inequality, and the Rellich–Kondrachov compactness
criterion. In the case p > 1, by Theorem 3.4, we improve these classical
results. Since Iδ(g) ≤ (δp/δ′p)Iδ′(g) for δ ≥ δ′, Theorems 5.1 and 5.2 are
more interesting when they are used for large δ.

The proof of Theorem 5.1 essentially uses the following lemma [74,
Lemma 5] which is based on Lemma 3.8.

Lemma 5.4. Let p ≥ 1, 0 < τ0 < 1/2, and let g be a real measurable function
defined in a bounded interval I. Suppose that there exist 0 < τ0 < τ < 1/2,
c1 < c2, and two nonempty subintervals I1 and I2 of I such that
∣∣{x ∈ I1; g(x) < c1}

∣∣ ≥ τ |I1| and
∣∣{x ∈ I2; g(x) > c2}

∣∣ ≥ τ |I2|. (5.6)

There exists some positive constant C, depending only on p and τ0, such that
∫

I

∫

I
|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy ≥ Cp,τ0(c2 − c1)

p|I|1−p ∀ δ ∈ (0, δ0), (5.7)

where δ0 = τ(c2 − c1)/200.

Admitting Lemma 5.4, we give a sketch of the proof of Theorem 5.1.

Sketch of the proof of Theorem 5.1. We first consider the case N = 1. We
assume in addition that g ∈ L∞. By scaling, one may assume that I = [0, 1]
and3

|g|BMO(I) = 2. (5.8)

We recall the following fact due to John and Nirenberg [54]: There exist
two universal constants c1 and c2 such that if −∞ < a < b < +∞ and
u ∈ BMO([a, b]), then

∣∣∣∣∣{x ∈ (a, b); |u−
∫ b

a

u(s) ds| > t}
∣∣∣∣∣

≤ c1(b− a) exp

(
− c2t

|u|BMO([a,b])

)
∀ t > 0.

(5.9)

Let 0 < a < b < 1 be such that
∫ b

a

∣∣∣∣g(x)−
∫ b

a

g(s) ds

∣∣∣∣ dx ≥ 1. (5.10)

3In this paper, we use the following definition of the BMO seminorm:

|f |BMO(Ω) := sup
B(x,r)⋐Ω

∫

B(x,r)

∣

∣

∣

∣

∣

f(ξ)−

∫

B(x,r)
f(η) dη

∣

∣

∣

∣

∣

dξ ∀ f ∈ BMO(Ω),

where B(x, r) denotes the ball in Ω of radius r centered at x.
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The existence of a and b follow from (5.8). Without loss of generality, one
may assume that

∫ b

a

g dx = 0. (5.11)

Using (5.9), we derive from (5.8), (5.10), and (5.11) that there exist two
universal constants τ1 < 0 and τ2 > 0 such that

1

b− a

∣∣{x ∈ (a, b); g(x) < τ1}
∣∣ ≥ C,

1

b− a

∣∣{x ∈ (a, b); g(x) > τ2}
∣∣ ≥ C.

Applying Lemma 5.4, we have
∫ b

a

∫ b

a
|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy + δp ≥ C ∀ δ > 0.

The conclusion follows.

To drop the L∞ assumption, one just needs to apply the result for gK ,
where gK := min{max{g,−K},K} and let K → +∞. The proof in higher
dimensions is based on the one-dimensional result. The proof is quite standard
and uses (3.11). �

Ideas of the proof of Theorem 5.2. The proof of Theorem 5.2 is based on
Theorem 5.1. Using the Poincaré inequality to prove the Sobolev inequal-
ity is not new; see, e.g., [46]. Nevertheless, the standard way to do it is to
use the Riesz potential theory. This approach does not seem to apply in the
context of Theorem 5.2 where (5.1) is known. Note that (5.1) gives an es-
timate for the sharp function g♯ of g from Iδ(g). From the famous result of
Fefferman and Stein (see, e.g., [87]), it is known that if g ∈ Lp(Rd) and p > 1,
then

‖g‖Lp ∼ ‖g♯‖Lp .

Our proof of Theorem 5.2 is in the same spirit. We first derive some estimate
for the sharp function of g (more precisely, the dyadic sharp function of g)
from Iδ(g) and then establish the estimate for g. Indeed, using Vitali’s cov-
ering lemma, it is not difficult to derive from (5.1) that g♯ ∈ Lq

w (weak Lq)
with q = Np/(N−p). To obtain the information for Lq, we apply the trunca-
tion method due to Maz’ya [58] and use an inequality on sharp functions [87,
Estimate (22) on page 153].4 �

4In fact, we use the following variant of (3.24), for p > 1

∫

B

∫

B
|g(x)− g(y)|p dx dy ≤ CN,p

(

|B|
N+p
N

∫

B

∫

B
|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy + δp|B|2

)

,

if the right-hand side is finite (see Lemma 3.9 for its variant). This is due to the truncation
method.
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Proof of Theorem 5.3. Proving Rellich–Kondrachov compactness criterion
using the Poincaré inequality is quite standard; see, e.g., [15, 76]. Applying
Theorem 5.1, we have, for each ball B of RN ,

∫

B

|gn(x)− gn,ε(x)|p dx

≤ CN,p

⎛
⎜⎝εp

∫

RN

∫

RN

|gn(x)−gn(y)|>δn

δpn
|x− y|N+p

dx dy + δpn|B|

⎞
⎟⎠ ,

where

gn,ε =
1

|εB1|
gn ∗ χε.

We recall that B1 is the unit ball centered at the origin. Here χε is the
characteristic function of εB1. Hence

lim
ε→0

(
lim
n→∞

∫

B

|gn(x)− gn,ε(x)|p dx
)

= 0.

Since (gn) is bounded in Lp(RN ), it follows from a standard argument (see,
e.g., the proof of the theorem of Riesz–Frechet–Kolmogorov in [23, Theo-
rem IV.25]) that there exist a subsequence (gnk

) of (gn) and g ∈ Lp(RN )
such that gnk

converges to g in Lp
loc(R

N ). The second assertion of Theo-

rem 5.3 is in the same spirit of the fact that K̂N,p > 0, where K̂N,p is the
constant in Theorem 4.2. �

A variant of the Poincaré inequality related to the setting of Bourgain,
Brezis, and Mironescu in Theorem 3.1 was established by Ponce in [76]. He
first established a compactness criterion, which extended a compactness result
in [15] (see [15, Theorem 4]), and then obtained a variant of the Poincaré
inequality from the compactness. Our proof is completely different from his.
In fact, we use a variant of the Poincaré inequality to prove the compactness
criterion.

6. The Jacobian distributional of maps from a sphere into itself

Brezis and Nirenberg in [35] proved that if (gk) ⊂ C0(SN , SN ) and g ∈
C0(SN , SN ) (N ≥ 1) are such that limk→0 |gk − g|BMO = 0, then

lim
k→∞

deg gk = deg g. (6.1)

On the other hand, the well-known Kronecker formula asserts that

deg g =
1

|SN |

∫

SN

det(∇g) dσ (6.2)

for any g ∈ C1(SN , SN ). In this integral, “det” denotes the determinant of
an N ×N matrix, once an orientation has been chosen on S

N . Consequently,∫
SN

det(∇gk) dσ converges to
∫
SN

det(∇g) dσ provided gk → g in BMO(SN ).
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In joint work with Brezis [32], we considered the quantity

J(g, ψ) :=

∫

SN

ψ det(∇g) dσ ∀ψ ∈ C1(SN ,R)

and studied the convergence of J(gk, ψ) for fixed ψ ∈ C∞(SN ,R) under
various assumptions on the convergence of (gk). We proved the following
result [32, Theorem 1].

Theorem 6.1. Let N ≥ 1, (gk) ⊂ C1(SN , SN ), and g ∈ C1(SN , SN ) be such
that the following two conditions hold:

(i) limk→∞ ‖gk − g‖BMO(SN ) < 1;
(ii) limk→∞ ‖gk − g‖W = 0.

Then

lim
k→∞

J(gk, ψ) = J(g, ψ) ∀ψ ∈ C1(SN ,R).

Here,

‖g‖NW := |g|NW + ‖g‖NLN =

∫

Ω

∫

Ω

|g(x)− g(y)|N
|x− y|2N−1

dx dy + ‖g‖NLN . (6.3)

Note that when N ≥ 2, ‖ · ‖W corresponds to the norm in the fractional
Sobolev space W s,p with s = N−1

N and p = N .
If one of the assumptions of Theorem 6.1 fails, the conclusion need not

be true. More precisely, we can construct the following examples (see [32,
Propositions 1 and 5]).

(a) There exists a sequence (gk) ⊂ C1(SN , SN ) (N ≥ 2) such that

(gk) → g := (0, . . . , 0, 1) in C0,N−1
N ,

sup
k

‖gk‖W < +∞,

lim
k→∞

J(gk, xN+1) > 0 = J(g, xN+1).

(b) There exists a sequence (gk) ⊂ C1(SN , SN ) (N ≥ 1) such that

gk → g := (0, . . . , 0, 1) a.e., ‖gk − g‖W → 0,

sup
k

‖∇gk‖LN < +∞, lim
k→∞

‖gk − g‖BMO = 1,

deg gk = 1 > 0 = deg g for all k.

As a consequence of Theorem 6.1, we obtain the following result, which
is optimal by statement (a) mentioned above.

Corollary 6.2. Let N ≥ 2, N−1
N < α < 1, (gk) ⊂ C1(SN , SN ), and g ∈

C1(SN , SN ) be such that gk converges to g in C0,α(SN ). Then

lim
k→∞

J(gk, ψ) = J(g, ψ) ∀ψ ∈ C1(SN ,R).

We also establish an estimate for J(g, ψ) in the spirit of Section 2
(see [32, Theorem 2]).
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Theorem 6.3. Let N ≥ 1, g ∈ C1(SN , SN ), and ψ ∈ C1(SN ,R). Then

|J(g, ψ)| ≤ C
(
‖ψ‖L∞TℓN (g) + ‖∇ψ‖L∞ |g|NW

)
(6.4)

for some positive constant C = C(N).

Here

Tδ(g) :=

∫

SN

∫

SN

|g(x)−g(y)|≥δ

1

|x− y|2N dx dy,

ℓN is defined by (2.14), and | · |W is defined in (6.3). Clearly, Theorem 6.3
implies (2.15). One cannot derive Theorem 6.3 from (2.15). The proof of
Theorem 6.3 borrows many ideas from the proof of (2.15) by Nguyen in [70]
and also from the earlier papers of Bourgain, Brezis, and Mironescu [16, 17],
and Bourgain, Brezis, and Nguyen [18].

An immediate consequence of Theorem 6.3 is the following.

Corollary 6.4. Let N ≥ 1, N−1
N < α < 1, g ∈ C1(SN , SN ), and ψ ∈

C1(SN ,R). Then

|J(g, ψ)| ≤ C
(
‖ψ‖L∞ |g|

N
α

0,α + ‖∇ψ‖L∞ |g|N0,α
)

for some positive constant C = C(α,N), depending only on α and N .

Corollary 6.4 is optimal in the following sense: Let N ≥ 2 and g =
(0, . . . , 0, 1) ∈ S

N . There exist a sequence (gk) ⊂ C1(SN , SN ) and ψ ∈
C1(SN ,R) such that

lim
k→∞

‖gk − g‖0,N−1
N

= 0 and lim
k→∞

J(gk, ψ) = +∞.

The construction is given in [32, Section 3].
The Jacobian distributional has a special structure when N = 1, which

is considered with great details in [32]. We only present here an open ques-
tion [32, Open question 2].5

Open question 4. Let (gk) ⊂ C1(S1, S1) and g ∈ C1(S1, S1) satisfy the fol-
lowing two conditions:

(i) limk→∞ |gk − g|BMO(S1) < 1,

(ii) gk converges to g a.e. on S
1.

Is it true that

lim
k→∞

∫

S1

det(∇gk)ψ dx =

∫

S1

det(∇g)ψ dx ∀ψ ∈ C1(S1,R)? (6.5)

The results in [32] are reported by Mironescu in [63]. These results
are related to the work of Bourgain, Brezis, and Mironescu [16, 17], Jerrard
and Soner [53], Hang and Lin [47], Brezis, Mironescu, and Ponce [30]. The
reader is warmly invited to consult the original paper [32] for the detailed
discussions. Other types of results concerning S

N -valued maps can be found
in, e.g., [2, 6, 7, 8, 16, 22, 27, 29, 35, 41, 43, 45, 47, 48, 50, 57, 59, 77, 82] and
the references therein.

5See [32, Remark 10] for partial results.
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7. The Jacobian determinant

The study of the Jacobian determinant was initiated by the seminal works of
Morrey [64], Reshetnyak [79], and Ball [4]. It has been known that one can
define the distributional Jacobian determinant Det(∇g) under fairly weak
assumptions on g; in particular, it is defined for all maps

g ∈ W 1, N2

N+1 (Ω)

and also for all maps g ∈ L∞(Ω) ∩ W 1,N−1(Ω) (see, e.g., [4, 5, 39, 44]).
Moreover,
∣∣∣〈Det(∇g), ψ〉

∣∣∣

≤ Cmin
{
‖∇g‖N

L
N2
N+1

, ‖g‖L∞‖∇g‖N−1
LN−1

}
‖∇ψ‖L∞ ∀ψ ∈ C1

c (Ω).
(7.1)

Estimate (7.1) follows from the divergence structure of the Jacobian deter-
minant which is originally due to Morrey [64, Lemma 4.4.6]. Namely, if g is
smooth, we have

det(∇g) =
N∑

j=1

∂gi
∂xj

Ci,j =
N∑

j=1

∂

∂xj
[giCi,j ] ∀ i = 1, . . . , N, (7.2)

since
N∑

j=1

∂Ci,j

∂xj
= 0 ∀ i = 1, 2, . . . , N.

Here (∇g) is the matrix whose components are (∇g)i,j =
∂gi
∂xj

, and C = (Ci,j)

is the matrix of cofactors of matrix (∇g).
As a natural continuation of the study of the Jacobian distributional

discussed in Section 6, with Brezis in [33], we deal with the Jacobian de-
terminant. One of our goals is devoted to the search of an “optimal” space
(containing all the above cases) in which the Jacobian determinant is well

defined (note, for example, that neither W 1, N2

N+1 (Ω) nor W 1,N−1(Ω)∩L∞(Ω)
is a subset of the other). In what follows, we will only concentrate on this
aspect. For this purpose it is convenient to work in the fractional Sobolev
spaces W s,p(Ω). We prove the following result [33, Theorem 3].

Theorem 7.1. Let N ≥ 2.

(i) Det(∇g) is well defined for g in W
N−1
N

,N (Ω) in the distributional sense.

(ii) For all f and g ∈ W
N−1
N

,N (Ω,RN ), and for all ψ ∈ C1
c (Ω,R), we have

∣∣〈Det(∇f), ψ〉 − 〈Det(∇g), ψ〉
∣∣

≤ CN,Ω|f − g|
W

N−1
N

,N

(
|f |N−1

W
N−1
N

,N
+ |g|N−1

W
N−1
N

,N

)
‖∇ψ‖L∞ .

(iii) Let s ∈ (0, 1) and p ∈ (1,+∞) be such that W s,p(Ω) �⊂ W
N−1
N

,N (Ω).
There exist a sequence (g(k)) ⊂ C1(Ω̄,RN ) and a function ψ ∈ C1

c (Ω,R)
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such that

lim
k→∞

‖g(k)‖W s,p = 0 and lim
k→∞

∫

Ω

det
(
∇g(k)

)
ψ = +∞. (7.3)

The proofs of parts (i) and (ii) are based on Lemma 7.3 below and a
standard density argument. The proof of part (iii) is more complicated using
a suggestion of Mironescu. We are grateful for his suggestion. Lemma 7.3 is
a consequence of the following useful lemma which is inspired from the work
of Bourgain, Brezis, and Mironescu in [16, Lemma 3] (see also [47]).

Lemma 7.2. Let N ≥ 2, g ∈ C1(Ω,RN ), and ψ ∈ C1
c (Ω,R). Then

∫

Ω

det(∇g)ψ =
N+1∑

i=1

∫

Ω×(0,1)

Di(u)∂iϕdx (7.4)

for any extensions u ∈ C1(Ω × [0, 1),RN ) ∩ C2(Ω × (0, 1),RN ) and ϕ ∈
C1

c (Ω× [0, 1),R) of g and ψ. Here

Di(u) = (−1)N−i det(∂1u, . . . , ∂i−1u, ∂i+1u, . . . , ∂N+1u) ∀ 1 ≤ i ≤ N,

and

DN+1(u) = − det(∂1u, . . . , ∂Nu).

Proof. Note that

div D = 0 in Ω× (0, 1).

This implies

N+1∑

i=1

∫

Ω×(0,1)

Di ∂iϕ =

∫

∂
(
Ω×(0,1)

) ϕ(D · n).

Since ϕ = 0 for x ∈ ∂(Ω× (0, 1)) \ (Ω× {0}), the conclusion follows. �

Using Lemma 7.2, the trace theory, and the multilinear structure of the
determinant, we can reach the following important estimate.

Lemma 7.3. Let N ≥ 2 and g ∈ C1(Ω̄,RN ). For any f, g ∈ C1(Ω̄,RN ) and
ψ ∈ C1

c (Ω), we have
∣∣∣∣
∫

Ω

det(∇f)ψ −
∫

Ω

det(∇g)ψ

∣∣∣∣

≤ CN,Ω|f − g|
W

N−1
N

,N

(
|f |N−1

W
N−1
N

,N
+ |g|N−1

W
N−1
N

,N

)
‖∇ψ‖L∞ .

(7.5)

We just discuss here a few results in [33], reported by Mironescu in [63].
We finally mention that the Jacobian determinant was extensively studied in
the literature; see, e.g., [4, 5, 28, 38, 39, 44, 51, 52, 64, 65, 66, 67, 80, 81, 85, 86]
and the references therein.
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8. Further results and their applications in Image Processing

Recently in a joint work with Brezis [34], we extended the characterizations
of Sobolev spaces mentioned in Section 3 to a more general setting. We were
also able to establish the Γ-convergence for a class of functionals for which
the monotonicity is not required. We as well applied our results for Image
Processing. We will present here only two results corresponding to the case
p = 1. The reader can find more results in [34].

Let ϕ : [0,+∞) → [0,+∞) be continuous on [0,+∞) except at a finite
number of points in (0,+∞) where it admits a limit from the left and from
the right. Assume that ϕ(0) = 0, ϕ(t) = min{ϕ(t+), ϕ(t−)} for all t > 0, so
that ϕ is lower semicontinuous,

ϕ(t) ≤ at2 in [0, 1] for some positive constant a, (8.1)

ϕ(t) ≤ b in R+ for some positive constant b, (8.2)

and the normalization condition

KN,1

∫ ∞

0

ϕ(t)t−2 dt = 1. (8.3)

Recall that KN,1 is given in (3.1). In this section, we assume that the domain
Ω ⊂ R

N is either bounded and smooth, or that Ω = R
N . Given a measurable

function u on Ω and a small parameter δ > 0, we define

Λ(u) :=

∫

Ω

∫

Ω

ϕ(|u(x)− u(y)|)
|x− y|N+1

dx dy and Λδ(u) := δΛ
(u
δ

)
.

Under conditions (8.1), (8.2), and (8.3), we can prove that (see [34, Proposi-
tion 1])

Λδ(u) →
∫

Ω

|∇u| as δ → 0, for u ∈ C1(Ω̄). (8.4)

Note that Λ is never convex when (8.2) and (8.3) hold. Here are some
examples that we have in mind.

Example 1.

ϕ(t) =

{
0 if t ≤ 1,

1 if t > 1.

Example 2.

ϕ(t) = 1− e−t2 .

Example 3.

ϕ(t) =

{
t2 if t ≤ 1,

t−γ if t > 1

for some γ > 0.

In these examples, we ignore the normalization condition (8.3). Exam-
ple 1 is extensively discussed previously. Example 2 is motivated by Image
Processing and used in the Yaroslavsky filter [88].
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Concerning Γ-convergence, we prove the following result (see [34, The-
orem 1]).

Theorem 8.1. Assume that (8.1), (8.2), and (8.3) hold. There exists a con-
stant k ∈ [0, 1], which depends only on d and ϕ but is independent of Ω such
that, as δ → 0,

Λδ
Γ−→ kΛ0 in L1(Ω), (8.5)

where

Λ0(u) :=

⎧
⎪⎨
⎪⎩

∫

Ω

|∇u| dx for u ∈ BV(Ω),

+∞ otherwise.

Moreover, if lim t→∞ ϕ(t) > 0, then k > 0.

Remark 8.2. The conclusion of Theorem 8.1 is ambiguous when k = 0. The
precise meaning in this case is that

Λδ
Γ−→ 0 in L1(Ω).

The novelty in Theorem 8.1 is that no assumption on monotonicity on
ϕ is required. This assumption is crucial in the proof of Theorem 4.2 given
in [73] (in particular in the proof of Lemma 4.3). Our proof is inspired by
and borrows ideas from the approach in [73].

Here is an application to Image Processing. Let λ > 0 and define

Eδ(u) = λ

∫

Ω

|u− f |q dx+ Λδ(u). (8.6)

We have the following theory (see [34, Theorem 3 and Corollary 6]).

Theorem 8.3. Let N ≥ 1, q ≥ 1, λ > 0, Ω be bounded, and let f ∈ Lq(Ω).
Assume that ϕ satisfies (8.1), (8.2), and (8.3). Let (δn) → 0 as n → ∞.
There exists un ∈ Lq(Ω) such that

Eδn(un) = inf
u∈Lq(Ω)

Eδn(u).

Assume in addition that ϕ is nondecreasing. Then un → u0 in Lq(Ω) where
u0 is the unique minimizer of the functional E0 defined on Lq(Ω)∩BV(Ω) by

E0(u) := λ

∫

Ω

|u− f |q + k

∫

Ω

|∇u|.

Here k is the constant in Theorem 8.1.

As explained in [34], Eδ and E0 are closely related to functionals used
in Image Processing for the purpose of denoising the image f . In fact, E0

corresponds to the celebrated ROF filter originally introduced by Rudin,
Osher, and Fatemi in [83]. While, Eδ (with ϕ as in Example 2) is reminiscent
of a Yaroslavsky filter (see [36, 88, 89]), once it has been expressed in the
variational framework, as explained in the paper by Kindermann, Osher, and
Jones [84]. Theorem 8.3 says that the Yaroslavsky filter converges to the ROF
filter—a fact which seems to be new to the experts in Image Processing.



Vol. 15 (2014) The topological degree and related topics 211

Acknowledgments

The work of the author has been guided by Professor Häım Brezis starting
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