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Preface 

T h e  t h e o r y  of b o u n d e d  t r a n s l a t i o n  i n v a r i a n t  o p e r a t o r s  b e t w e e n  L v s p a c e s  i n  s e v e r a l  

v a r i a b l e s  h a s  a t t r a c t e d  m u c h  i n t e r e s t  i n  t h e  ] i t e r a t u r e  d u r i n g  t h e  p a s t  d e c a d e ,  p a r t l y  

d u e  t o  i t s  a p p l i c a t i o n s  i n  s o m e  f ie lds  s u c h  as  t h e  t h e o r y  of  p a r t i a l  d i f f e r e n t i a l  e q u a -  

t i o n s .  T h r o u g h  t h e  w o r k  of C a l d e r 6 n ,  Z y g m u n d  a n d  o t h e r s  r e a l  v a r i a b l e  m e t h o d s  

h a v e  b e e n  i n t r o d u c e d  w h i c h  h a v e  p e r m i t t e d  t h e  e x t e n s i o n  t o  s e v e r a l  v a r i a b l e s  of re-  

su l t s  o r i g i n a l l y  b a s e d  o n  c o m p l e x  m e t h o d s  i n  t h e  case  of a s ingle  v a r i a b l e .  F u r t h e r ,  
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a suitable framework for a general theory is given by the theory of distributions, 

for translation invariant operators are essentially convolutions with distributions (see 

section 1.1). 

The purpose of this paper is thus the study of the spaces Lp q Of tempered distri- 

butions T in R" such that  with a constant C 

IIT~ul[a<~ClluUp 

for all infinitely differentiable u with compact support, the norms being i q and L p 

norms. In section 1.2 we discuss those properties of these spaces which follow from 

M. Riesz' convexity theorem and the theory of the Fourier transformation in L p spaces. 

Some of these results are taken over from Schwartz [13], and others have been used 

implicitly in various papers on convolution transforms. In section 1.3 we study homo- 

morphisms of the Fourier transform M," of Lp p induced by a mapping in R ~. I t  

turns out that  if the mapping is twice continuously differentiable and p * 2 ,  it must 

be linear. This improves a result of Schwartz [13], but for p =  1 it is weaker than 

known resu]ts concerning the algebra M11 Of Fonrier-Stieltjes transforms. In  section 1.4 

we prove that  the Wiener-L~vy theorem is valid in a certain subalgebra of M~ p whose 

relation to M~ p is studied. The proof is rather trivial but we have included it because 

of its similarity with a result in Chapter I I  which is essential in Chapter I I I .  (Closely 

related results concerning sequence spaces are due to Devinatz and ttirschman, Amer. 

J. Math. 80 (1958), 829-842.) 

Chapters I I  and I I I  are devoted to the numerous estimates which originate from 

Riesz' theorem on conjugate functions (Riesz [10]). In  Chapter I I  we discuss the real 

variable method introduced by CalderSn and Zygmund [2] in the study of conjugate 

functions in several variables. I t  has also been used later by Zygmund [18] to prove 

the Hardy-Littlewood-Sobolev estimates of potentials and also by Stein [15] in studying 

estimates of the kind which we discuss in Chapter I I I .  The main theorem in sec- 

tion 2.1 describes the general situation in which such arguments apply. In  section 2.2 

we show first that  our theorem contains the results of CalderSn and Zygmund [2] 

and Zygmund [18] mentioned above. We then show that  it also gives a short proof 

and a slight improvement of a theorem of Mihlin [8], [9]. (The proof given by Mihlin 

depends on a paper of Marcinkiewicz [7] which is based on the Littlewood-Paley 

theory (see Chapter I I I )  and on the properties of Rademacher functions.) We end 

the section by proving a theorem of the Wiener-Ldvy type for a certain algebra of 

homogeneous functions of degree 0 contained in Mp ". Closely related results are due 

to CalderSn and Zygmund [3] but are not sufficient for the applications in Chapter I I I .  
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In  Chapter I I I  we study estimates of convolution transforms involving para- 

meters. We do not make a systematic theory similar to that  in Chapter I for such 

families of transforms but restrict ourselves to results parallel to those of Chapter II .  

In  sections 3.1.-3.3 estimates involving L 2 norms with respect to the parameters are 

proved. In  section 3.4 they are shown to contain the known results concerning the 

functions of Littlewood-Paley, Lusin and Marcinkiewicz as well as other estimates 

which may be of interest in the theory of partial differential equations. The proofs 

are similar to those in Section 2.1. Real variable methods have previously been used 

by Stein [15] in studying the Marcinkiewicz function in several variables but our 

method differs considerably from his. By studying the adjoint transformations which 

map functions in the product space of R" and the parameter space on functions in 

R ~, we obtain estimates also when 2 < p < ~ .  In  that  case the results known previously 

are rather incomplete when n > 1 and the proofs when n = 1 seem difficult. We also 

obtain simple proofs of general "inverse" estimates. The results concerning Mp p which 

follow from the Littlewood-Paley estimates are not studied here so we refer to Little- 

wood and Paley [5] and Marcinkiewicz [7]. 

This paper is essentially self-contained, which may be an advantage to the non 

specialist in view of the extensive literature in the field. Necessary prerequisites are 

elements of distribution theory, including the Fourier transformation (see [12]); Riesz' 

convexity theorem (see [ l l ]  and [16]), Marcinkiewicz' interpolation theorem (see [18]), 

and also basic facts concerning bounded operators in Banach spaces. The bibliography 

is very incomplete so a reader interested in studying the literature closely should 

consult the references given in the quoted papers also. 

C H A P T E R  T 

General  theory  

1.1. Translation invariant operators as convolutions 

We denote by L p, 1 ~<p~< o~, the space of measurable functions in R '~ with 

integrable pth power, and write 

(1) It is convenient to se~ formally I[u[[~=oo if u~.L ~. 
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When  p = ~  this shall be unders tood as the essential supremum of I /I-  B y  L ~  we 

denote the space of functions in L ~ which tend to 0 at  ~ and  by  C the space of 

continuous functions. M will denote the space of bounded measures d #  normed by  

fld•l. When  1 4 p 4 ~  we shall use the  nota t ion p '  for the conjugate  exponent  

defined by  l i p  + 1 /p '  = 1. 

If  h E R ~ we denote by  ra the operator  defined by  

(r~u) (x)=u(x-h). 

D E F I N I T I O N  1.1. A bounded linear operator A ]rom L ~ to L q is said to be transla- 

tion invariant i /  
l:h A = A vh, h e R  ~. 

Such operators which are non trivial do no t  exist for all p, q. 

T~EOREM 1.1. I /  A is a bounded translation invariant operator /rom L ~ to L q and 

p > q  we have A = O  i/  p < ~  and i /  p = ~  the restriction o/ A to L ~  is O. 

Proo/. First  note t h a t  if p < 

IIn+~ull~-->2"~llull~, ueL~; h-->~; (1.1.1) 

the same is t rue for p =  ~ provided t h a t  u E L ~ .  I n  fact, we can write u = v + w  

where v has compact  support  and II w I1~ < ~. For  sufficiently large I hl the supports  of 

v and  ~hv do no t  meet, hence 

IIv+~vll~=21'~llvll~. 

Since I I I v l l ~ - I I ~ l l ~ l < ~  and I I I v + ~ v l l ~ - I l u + ~ u l l ~ l < 2 ~  and  s is arbi t rary,  we 

obtain  (1.1.1). 

:Now assume tha t  

I IA~II~<Cl lu l I~ ,  u E L  p, (1.1.2) 

with q < p  < ~ .  The l inearity and t ranslat ion invariance of A give 

When  h - + ~  it follows f rom (1.1.1) t ha t  

IIA ~11~< 21~-~'~ c II ~ I1~, (1.1.3) 

which improves (1.1.2) since the  exponent  is negative. If  C denotes the smallest con- 

s tant  such tha t  (1.1.2) holds we thus get a contradict ion unless C = 0 ,  t ha t  is, A = 0 .  

The same arguments  apply  when p = co > q provided t h a t  we replace L ~ by  L~.  The 

proof is complete.  
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Although somewhat  incomplete for p = ~  this result will just ify us to assume 

tha t  p ~< q in what  follows. 

Let $ be the space of infinitely differen~iable functions u such that 

sup Ix~l)~ul < 

for all ~ and •, and with the topology defined by  these seminorms. Here zt = (~1 . . . . .  aj) 

and fl = (ill . . . . .  ilk) are multi-indices, t ha t  is, sequences of indices between 1 and  n, 

D ~ = ( - i ~ / ~ x ~ , )  ... ( - i D / ~ x ~ ) ;  x~=x~, ... xzk. 

We use the no ta t ion  Ice I for the length j of the multi- index g. 8 is dense in L" if 

p < ~ ,  and its closure in L ~ is C N L f f .  The dual space of S is denoted by S' and 

its elements are called tempered distributions. (See Schwartz [12].) 

THEOREM 1.2. I /  A is a bounded translation invariant operator/rom L" to i q, then 

there is a unique distribution T E S' such that 

A u = T ~ u ,  u E $ .  

For  the proof we need a lemma which is a very special case of Sobolev's lemma. 

LEMMA 1.i. I /  a /unction v in R ~ and its derivatives o] order ~ n are in L ~ locally, 

the de/inition o/ v may be changed on a set o/ measure 0 to make it continuous. Then 

we have with a constant C 

, v ( x ) , ~ C  :,~,<.( f , D ~ v , ' d y )  ~''. (1.1.4) 

{y-x[41 

Proo/. The assumptions concerning v are also satisfied with p = l  and (1.1.4) 

follows from H61der's inequal i ty  for every p if it is proved for p = 1. I n  the proof 

we m a y  also assume tha t  x = O  and tha t  v has compact  support  in the uni t  sphere. 

For  let ~ be a funct ion in C~ with support  in the uni t  sphere and which equals 1 

in a neighbourhood of 0. Then w = v ~  has compact  support  in the uni t  sphere, and 

Leibniz '  formula shows that 

lY[<I 

Hence if we prove the s ta tement  of the lemma for w, it follows tha t  v is continuos 

in a neighbourhood of the origin after correction on a null set and tha t  (1.1.4) is 

valid for x = 0. The general s ta tement  of the lcmma then follows by  its t ranslat ion 

invariance. 

7 -  60173032- Acta mathematica. 104. Imprim6 le 21 septembre 1960 
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Now let  h ( x ) = H ( x l ) . . .  H(xn )  where H is the  Heav i s ide  func t ion  which equals  

1 for x > 0  and  0 for x < 0 .  W e  then  have  

~n h//~ xl . . .~ x~ = 6 

in  the  d i s t r ibu t ion  sence. Hence,  since w has  compac t  suppor t ,  

w = w ->+ (~ = w ++ ( ~  h / ~  x 1 ... ~ xn) = (~'~ w / ~  x I ... ~ xn) ++ h. 

I n  the  r ight  h a n d  side we have  a convolu t ion  be tween  an  in tegrab le  and  a bounde d  

funct ion,  hence a cont inuous  funct ion,  w differs f rom this  cont inuous  funct ion  only 

on a null  set  and  if i t s  def in i t ion  is changed there  we have  

(x) l<.II "w/ xl ... a x ,  I dx ,  Iw 

which comple tes  the  proof.  

Proo/  o/ Theorem 1.2. Le t  A be the  opera to r  in the  theorem and  u E S .  W e  

claim t h a t  

D ~ ( A u )  = A  (D~u)  (1.1.5) 

in the  d i s t r ibu t ion  sense. To prove  this  i t  is c lear ly  enough to  consider  a de r iva t ive  

of t he  f irst  order .  P u t  v = A u and  define uh (x) = u (x 1 + h, x~ . . . . .  x~) and  vh s imilar ly .  

Since A is i n v a r i a n t  for t r ans l a t i on  we have  A u~ = vh and  hence 

W h e n  h--~O the  differenee quo t i en t  (uh- -u) / /h  converges to  O u / O x  1 in L p, hence 

( v h - v ) / h  eonverges  to  A (Ou/Oxl)  in L q norm.  Hence  (1.1.5) fo l lows.  

L e m m a  1.1 now shows t h a t  A u is a cont inuous  func t ion  af te r  correct ion on a 

nul l  set  if u E $ and  tha t ,  th is  eorrect ion being made ,  

I (A u) (0) l -< c y ID u[I,. 

Hence  ( A u ) ( 0 )  is a cont inuous  l inear  form on $ so t h a t  i t  m a y  be wr i t t en  

(A u) (0) = T (4) = (T ++ u) (0), 

where ~ ( x ) = u ( - x )  and  T E $ ' .  I n  view of the  invar iance  for t r ans la t ion  of bo th  

sides we ge t  

(A u) (x) = (T + u) (x) 

for  every  x, which proves  the  theorem since the  uniqueness  of T follows i m m e d i a t e l y  

f rom the  proof.  
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If p <  ~ ,  the space $ is dense in L ~ and the operator A is obtained as the 

closure of the operator u-->T~eu. If p =  ~ and q <  co, we have T = 0  in virtue of 

Proposition 1.1; and if p = q =  ~ the distribution T is obviously a bounded measure. 

The case p = ~ therefore does not present great interest. Thus the study of the 

translation invariant operators is essentially equivalent to the study of the spaces Lp q 

of the following definition. 

DEFINITION 1.2. The space o/ distributions T in $' such that 

I IT*ullo<Ollutl,,  ueS, (1.1.6) 

where C is a constant, is denoted by Lp q. The smallest constant C which can be used 

in (1.1.6) will be denoted by L~q(T). 

Lp q is thus isomorphic to a closed subspace of the Banach space of all bounded 

linear mappings of L ~ into i q, hence is also a Banach space. 

Let :~ denote the Fourier transformation u-->~, 

[. 
~ |  - . , ~(~) je  2~'<X~>u(x) dx, ue$, 

extended to all T E S' by continuity or, equivalently, the formula 

(u )=T(~) ,  u 6 S ,  

(see Schwartz [12], Chap. VII). We recall that  the Fourier transformation is an iso- 

morphism of S and of S'. Then the mapping u-->T~u, u E S ,  can also be written 

u->:~ 1 (~:~u)  

and is thus via the Fourier transformation equivalent to multiplication by ~. 

DEFINITION 1.3. The set o/Fourier trans/orms T of distributions T E Lp q is denoted 

by M,  q and we write 
i p  q (~) = L~ q (T). 

The elements in M~ q are called multipliers o/ type (p, q). 

Sometimes we shall write Lpq(,~ and Mpq(n) in order to emphasize that  the number 

of independent variables is n. 
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1.2. Basic properties of Mpq 

Our first theorem in this section is very well known but we formulate it for 

completeness and reference. 

THEOREM 1.3. Let T be a distribution =4=0. Then the set of points ( x , y ) E R  2 such 

that T E Lllx 11~ is a convex subset o/ the triangle 

0~<x~<l, 0~<y~<l, y<~x, (1.2.1) 

which is symmetric with respect to the line x + y = 1. In  this set log Lllx 11y (T) is a convex 

function o/ (x, y) with the corresponding symmetry property. 

Proof. That the set in question satisfies (1.2.1) follows at once from Theorem 1.1. 

The symmetry is proved as follows. Let x', y' be defined by x §  x' = y + y ' =  1. Then if 

II T*ull,,  < C Ilull,,x, ueS,  

we get from HSlder's inequality 

IT u v(0)l <Cllull,=llvll,=.; u, yeS. 

Since convolution products are associative and commutative we get from the converse 

of HSlder's inequality 

II T vll,,. Cllvll, .. 

Hence (x,y) and (y', x') belong to the set in the theorem at the same time, and 

L1/~: 11~ (T)=LI /~,  1I=' (T) since the role of (x, y) and (y', x') may be interchanged in the 

above argument. 

Finally, the convexity follows from Riesz-Thorin's convexity theorem (see Riesz [11], 

Thorin [16]). The proof is complete. 

We next list some cases where Lp q is easy to describe precisely. 

THEORE~ 1.4. We have 

Lp:C=LI~'=L p', p <  ~ ;  L ~ = = L l l = M ,  (1.2.2) 

with equality also o/ the norms. 

Proof of the theorem. In view of Theorem 1.3 it is enough to prove that Lp = =  L "' 

and  that  L:r = =  M. The last fact is essentially the definition of bounded measures 

and  was already observed after Theorem 1.2. The first follows from the fact that  

L ~' is the dual space of L" when p <  ~ .  
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COROLLARY 1.1. TEL1/x 1/y /or all (x ,y)  in the triangle (1.2.1) i/ and only i/ 

T ~ L  1 NL  ~. 

Proof. I n  view of Theorem 1.4 we have T E i11x lly for all three corners (x, y) of 

the triangle if and only if T E L1N L ~0. But  the convexi ty  proper ty  in Theorem 1.3 

shows tha t  T is then in L1/x I/y for every (x, y) in the triangle. 

COROZLARY 1.2. Let p<~q and set 1 / p -  l / q =  1 - 1/a.  Then we have i a ~ i p  q and 

/ e i a .  (1.2.3) 

I /  a=  1, one may replace L 1 by M.  

Proof. In  virtue of Theorem 1.4 the corollary is t rue for p = a ' ,  q =  oo and for 

p - 1 ,  q=a.  Hence it follows in general from the convexi ty  properties in Theorem 1.3. 

Note  tha t  (1.2.3) means exact ly the well-known inequal i ty 

Ill <- llo<ll/llollull,,, f c L  ~ u s. 

We next  tu rn  to some results which are best expressed in terms of the Mp q 

spaces. 

THEOREM 1.5. With equality also o/ the norms we have 

M2 2 = L ~176 (1.2.4) 

Proo/. Let  T E L2 2 so tha t  ~ E M~ 2. Then T ~- u E L e for all u E S, hence the Fourier  

t ransform T d  E L 2, and 

for all ~ E S. This proves first tha t  ~ is a locally square integrable funct ion and then 

tha t  ]T(~)] ~ < i 2  2(~) almost  everywhere. On the other  hand, if I ~(~)1 ~< C almost  

everywhere the same a rgument  proves tha t  M2 2 (T) ~< C. Hence Me 2 (T) is the essential 

supremum of T, which proves the theorem. 

COROLLARY 1.3. For every p we have 

M~ v c L ~, (1.2.5) 

II ! <~ M,  ~ (1), / e M ,  v. (1.2.6) 

Proo/. The convexi ty  and s y m m e t r y  s tated in Theorem 1.3 show tha t  M ~ ' c M ~  2 

and tha t  

Me 2 (l) ~< M .  ~ (1). 

Hence the corollary follows from Theorem 1.5. 
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For p 4 q we can only prove a weaker regularity result. By LPloo we shall mean 

the set of functions which belong to L p on every compact set. 

THEOREM 1.6. The /ollowing inclusions are valid: 

Mp q ~ L~lo~ if p ~> 2; Mp q ~ Lq'1or i f  q ~< 2. (1.2.7) 

Proof. Since M~ q= Mq2" according to Theorem 1.2, it is sufficient to prove the 

latter half of (I.2.7). Let T ELp q, q ~ 2 .  For every u E S we then have T ~ u  E L  q and 

in view of the Hausdorff-Young theorem on Fourier transforms of functions in L q, q ~ 2, 

(Zygmund [17]), we obtain ~ E L  q" for every u E S, hence for every ~ E S. This proves 

the theorem. 

If p>~2 or q~<2 we thus have ipqcL21oc  . Elements in two such Mp q classes 

may thus be multiplied together pointwise, giving a locally integrable product,. This 

gives a sense to the statement in the following theorem. 

TttEOREM 1.7. Let 2<~p<~q<~r or p < ~ q ~ r ~ 2 .  Then i/  / E M ,  q and g E M q  ~ we 

have / g E Mp ~ and 

M ,  ~ (/g) <. Mp q (/) i q  ~ (g). (1.2.8) 

The translation invariant operator corresponding t o / g  is the product o/ those corresponding 

to g and to ]. 

COROLLARY 1.4. Mp p is /or every p a normed ring with the operations o/ point.  

wise multiplication and addition. 

This result is partly given by Schwartz [13]. Note that  Theorem 1.4 shows that  

M11 = M ~  ~ is the algebra of Fourier-Stieltjes transforms. 

Proo/ o/ the theorem. In view of Theorem 1.3 it is enough to consider the Case 

p ~< q ~< r ~ 2. Denote by A I the closure of the mapping 

L p D S ~ u-->:~ -I (]~) E L q. 

A x is a bounded operator from L p to L q. Similarly we define a bounded operator A 0 

from L q to i r. Then we have 

:~ (Aiu )= /~ ,  u E L ' ;  :~ (Agv)=g~ ,  v E L  q. (1.2.9) 

In  fact, these identities arc valid by definition when u and v are in S. To prove 

the second identity, for example, we note that the Hausdorff-Young inequality shows 

that the mapping Lq~v-->:~(Agv)  E L  r" is continuous. Since gEL~loo the mapping 
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Lq~v--->g~ELlloo is also continuous. S being dense in L q, the second formula (1.2.9) 

follows. Taking v = A z u  we thus have 

:~(AgA1u)=/g~,  u E L  p, 

hence in particular this is true when u E $. This proves that  /g is the multiplier 

corresponding to A~Ar, hence (1.2.8) is valid. The proof is complete. 

Without the restriction given on the exponents, Theorem 1.7 would not always 

have a sense (see Theorem 1.9}. However, we can always prove a much weaker 

statement showing tha t  the local smoothness of the elements in M~ q increases with p 

and decreases with q. Combining this with Theorem 1.4 we could also get another 

proof of Theorem 1.6. 

T~EOR~M 1.8. I /  / E M p  q and g E $ we have 

g /EM~ q if r ~ p ;  g / E M ~  ~ if s>~q. 

Proo/. Since Mp q= MaY it is sufficient to prove the first statement.  Let  f =  TI ,  

g = T g .  Then T g E S  and for u E S  we get 

]] (T I~  Tg)~ul iq= ]] Tf)t-(T~ ~u)Itq<ipq(/)  ]] Tg~ullp <~ipq(/) i /  (g) IiulIr. 

Hence T I ~  Tg E L~ q so that  the Fourier transform g /E  Mr q and 

i ~  q (g/) <~ i ~  ~ (g) M~ q (/). 

Theorem 1.6 does not give any  information when p < 2 < q. We shall now study 

tha t  case start ing with the following lemma. 

LEM~A 1.2. I /  U E $ and  us E $ is de/ined by ~t (~) = ~ (~) d ~ t~t~, we have/or p > 2 

with a constant C~ 

Ilut II, ~< c~ Itl t ER. 

Proo/. First note tha t  Parseval 's  formula gives 

To estimate the maximum of ut, we introduce polar coordinates, 

o I~1=1 

dr deo. (1.2.10) 

We shall integrate by parts  with respect to r. Note tha t  
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R 

0 

(1.2.11) 

for all real R, a and t. I n  fact, a change of variables gives tha t  

R c 

f et(2ar+tr~) dr=t-�89 e ia'/t f eir2dr 
0 b 

if t > 0, where b = a / ~ t  and c = R 1/[+ a / ~ .  Since f + :  e ~r' d r  is convergent  as a general- 

ized Riemann  integral, (1.2.11) follows for t > 0 ,  hence by complex conjugat ion for 

t < 0 .  In tegra t ing  by  par ts  in (1.2.10) and using (1.2.11), we obtain  

]us(x) l <,< Cltl-�89 f lOCt/Or + (n-1)r-l ~]rn-l drd~o=Cl ltl-�89 

From this est imate and the fact  t ha t  ]]us]ls is constant  we obtain 

flu, l, dx<.(c, ltl �89 l dx=Vo ltll �89 

which proves the lemma. 

THEOREM 1.9. I /  p < 2 < q  there exist elements in Mp a which are distributions o/ 

positive order, that is, which are not measures. 

Proo]. Assume tha t  the s ta tement  were false, so tha t  every / e  Mp a is a measure. 

Mapping / on the restriction to the set {~;1~1 ~< l} we get a closed everywhere defined 

mapping from M ,  q to the space of bounded measures in the uni t  sphere, with the 

norm defined as the total  variation. I n  vir tue of the theorem on the closed graph 

the mapping  mus t  be continuous.  I n  part icular  

j IIId~<CM,r /eS. (1.2.11) 

Take a funct ion u in S so tha t  4 ( 0 ) 4 0  and define us as in the lemma. With  ] re- 

placed by  fit the left hand  side of (1.2.11) is independent  of t and 4 0 .  I n  vir tue of 

Theorem 1.4 and Lemma 1.2 we obtain  Lv. ~176 (us)=L~ v (us)= I[us[lv-+o if p >  2, tha t  is 

My, ~~ (~t)=MlV(~s)-->O when t-->oo if p > 2 .  

Further ,  it follows from Theorem 1.5 tha t  

= II a 
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which is independent  of t. The logari thmic convexi ty  of the Mp q norm as a func- 

t ion of 1/p and 1/q which is contained in Theorem 1.3 now immedia te ly  shows t h a t  

Mpq(dt)-->0 if p<2 <q, t-->~. 

Hence we get  a contradict ion if f is replaced by  ~t in (1.2.11), and t - + ~ .  

proves the theorem. 

In  part icular  we get  the following familiar result. 

This 

COROLLARY 1.5. I /  p > 2  there exist functions uEL p such that ~ is a distribu- 

tion of positive order. 

Proof. Every  element in M1 ~ is the Fourier  t ransform of a function in L p 

(Theorem 1.4). 

When  1 < p ~< 2 ~< q < ~ ,  an impor tan t  subclass of Mp q is given by t)aley's in- 

equali ty:  

THEOREM 1.10. Let q~>~O be a measurable function such that 

With a constant Cp depending on p and on C we then have when l < p ~ 2 

(1.2.13) 

~)l/p (fla/~[~w~d <~.lluli. ,  ueL ' .  (,.2.14) 

Note  tha t  the in tegrand m a y  be wri t ten ]~[P~2-P so t h a t  it is na tura l  t ha t  we 

define it to  be 0 when ~ = 0 .  

Proof. For  the sake of completeness we recall the proof, following Zygmund  [18]. 

When  p - 2 the inequal i ty  (1.2.14) follows with C 2 = 1 from Parseval ' s  equality.  Wri te  

d # ( ~ ) = ( ~ ( ~ ) ) 2 d ~  and Tu=d/q:.  Note  tha t  it follows from (1.2.13) t h a t  

I n  fact, writ ing m (s) = m {}; ~ (}) >~ s} we have 

/~{~; q)(~)~a}= f s 2 d ( - m ( s ) ) ~ 2  f m(s) sds+ lim 
o 0 

since sm( s )~C  in vir tue of (1.2.13). We now obtain  

/~ {~; ](Tu) (~)]>~ s} <~ 2 C I] u ]]1/8, u e L  1. 

1.2.15) 

(1.2.16) 
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In fact, since I(T u) (~)J < II u lli/~ (~}, the set in question is contained in  the set where 

~(~)~<l[ulll/s. From the validity of (1.2.14) when p = 2  i t  also follows tha t  

ff {~; I(Tu)(~) [ > s} < (11 u ll~/s) ~, u e L  ~. (1.2.17) 

We now only have to invoke Marcinkiewicz' interpolation theorem (Zygmund [18], 

Theorem 1) in order to conclude from (1.2.16) and (1.2.17) tha t  (1.2.14) is valid. 

I f  we combine Theorem 1.10 with the Hausdorff-Young inequality 

II~ll~,~<llull~, 1~<p~<2, (1.2.18) 

and use H(ilder's inequality, we obtain the following 

COROLLARY 1.6. I /  q~ satis/ies (1.2.13) and l <p<r<~p" < ~ ,  we have 

I'~(p(l"-"~'"l'd$ ~<c, llull,, u e L ' .  (1.2.19) 

This reduces to (1.2.18) when r=p '  and to (1.2.14) when r=p .  

THEOREM 1.11. Let / be a measurable /unction such that, with 1 < b <  r we have 

]or some constant C 

m {~; It (~)1 ~> s} < c / s  b. (1.2.20) 

Then / e M ~  q i/ 1 <p-~<2 ~<q< o~, 1 / p -  1/q= 1/b. (1.2.21) 

Proo/. Since M~q=Mq2" we may  assume tha t  p<.q', for otherwise we have 

q'<~ (p')' =p. With ~ = I]1 b and r=q' ,  the assumptions of Corollary 1.6 are then satis- 

fied and since 1 / q ' -  1 /p '= 1 / p -  1/q= 1/b we obtain 

II/~llq. ~< c,, II ~11,,, ueZp.  

Let  T be the distribution with ~ = 1 .  When u E $ the Hausdorff-Young inequality 

gives since q' ~ 2 

II T ~ u  I1o ~< II]~llq. ~ c~ II u I1,,, 

which proves tha t  T E L~ q and hence tha t  ] E Mp q. The proof is complete. 

When p~< 2 ~<q we can thus give bounds on the absolute value of a function / 

which ensure tha t  the function is in M~ q. That  this is not possible for other values 

of p and q is shown by  the following result. 

THEOREM 1.12. Suppose that there exists a measurable /unction F>~O which is 

not 0 almost everywhere, such that every measurable /unction / satis/ying the condition 

I/I < F belongs to M~ q. Then we have p < 2 <. q. 
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Proo 1. 

if g E L  ~. 

We may assume that  F is bounded. The assumption means that  F g E My q 

Thus the mapping 

L ~176 9 g---->Fg EMv q 

is defined everywhere in L ~ and it is obviously closed since it is continuous for the 

topology of L ~ on the right hand side. Hence the closed graph theorem shows that  

the mapping is continuous, that  is, 

M,'(Fg)<CIIglI~. 

In view of the definition of My q this means that  for all u and vES  

I(Fg~;~d~l<~ M,~ (Fg)Ilu I1~ II v I1o, ~< c Ngll~ II ~ II, II v I1o,. 
I J  I 

Hence fF]a6la~<~cI]ull~llv]}o,. (1.2.22) 

More generally, we get for any 

f F ( ~ - ~ ) l  a(~)~(~)ldX_ <~Cllull, llvll~,, (1.2.22)' 

if in (1.2.22) we replace u ( x )  by u(x)e-2~<x"7>and make a similar substitution for v. 

11 g is a continuous positive function with f g d~ = 1 and G= F-)eg, we get by multi- 

plying (1.2.22)' with g (~) and integrating 

This inequality has the advantage over (1.2.22)that  G is continuous und positive 

everywhere. Now take v fixed with v#.0 when l~l~< 1. I t  then follows from (1.2.23) 

that  

f l~ld#<C'llull,, ~eS. 
I~1<1 

Thus, if we replace u by the function ut defined in Lemma 1.2 a contradiction results 

unless p ~< 2. Similarly, taking u fixed we obtMn q' ~< 2, that  is, 2 ~< q, which com- 

pletes the proof. 
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1.3. Homomorphisms of M~ v 

We shall only s tudy  homomorphisms of Mp v which are induced by  a mapping  

~-->a(~) of R n into R m. If / is a func t ion  in  R m a funct ion  a* /  in  R n is defined by  

( a * / ) ( ~ ) = / ( a ( ~ ) ) ,  ~ E R  ~. 

We first consider the case where a is an  affine mapping  

( a ( ~ ) ) j = a j 0 +  ~ ajk~k, ? '=1 . . . . .  m. 
k = l  

THEOREM 1.13. I /  a is an a/fine mapping o/ R ~ onto R m, the mapping a* is 

an isometric mapping o/ MrS(m) into MpV(~), /or every p. I /  m = n, the mapping is onto. 

Proo/. The defini t ion of the L p spaces a nd  hence of L ,  ~ was independent  of the 

system of coordinates except t ha t  it  used a par t icular  Lebesgue measure. However,  

the norm of an  element  in  Lp p is obviously independent  of the Lebesgue measure 

chosen. Fur ther ,  if T is a d is t r ibut ion  whose Four ier  t ransform has a dens i ty  T (~), 

this dens i ty  is independen t  of the choice of Lebesgue measure.  (This is most  easily 

seen when T is a measure and  ~ (~) the Fourier-Stiel t jes  t ransform.)  Hence M ,  p is 

i n v a r i a n t  for every change of coordinates. 

Changing coordinates in  R n and  in  R m (considered as different spaces even if 

n = m )  we may  assume tha t  a is given by  

(a (~))j = ~j § aj0 , ] = 1  . . . . .  m. 

Let  T ELpP(m) and  form T 1 = e - ~ l  T|  

where 1 (x)= x 1 alo + ... + xm am o and  ~ is the Dirac measure in  the variables xm+l . . . . .  x~. 

The Four ier  t ransform of T1 as a d is t r ibut ion  in R n is 

TI = ~ (~1-4- a l o  , . . .  , ~m A- amo) ,  

so tha t  what  we have to prove is t ha t  T 1ELvv(~) a nd  has the same norm there as 

T has in  L~V(~). Now, if u E S(~), 

T~ ~ u  = e -2"~ ( T-)~(e ~ z  u) ), 

where the convolut ion  in  the r ight  hand  side is t aken  with respect to x~, --. , xm, 

the other variables being fixed. If C = L v  ~ (T) we have 

f , T ~ u , v d X l  ... d x . , ~ c ~  f ' u 'Vdx~  "" dx.~ 
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for f ixed Xm+l, "" ,  xn. I n t e g r a t i n g  wi th  respect  to these variables ,  we ge t  

which proves  t h a t  T 1ELpp(n) and  has a norm which is a t  mos t  C. Tha t  the  no rm 

cannot  be smal ler  t h a n  C is i m m e d i a t e l y  seen be considering funct ions  u which are  

p roduc ts  of funct ions  of x 1, ...~ Xm and  a f ixed funct ion  ~ 0  of xm+l, " " ,  x~. Since 

the  mapp ing  a has an  affine inverse  if n = m ,  the  proof  is complete .  

We  omi t  the  s imilar  bu t  less s imple and  useful resul t  concerning M ,  q when p :~ q. 

I n  t h a t  case one can only  t ake  m = n .  

U n d e r  cer ta in  r egu la r i ty  a s sumpt ions  it, will  now be p roved  t h a t  the  a s sumpt ion  

in Theorem 1.13 t h a t  the  mapp ing  a is affine is necessary.  The essential  s tep in the  

proof is the  following l emma.  

L E ~ M A  1.3. e ~AI~I* is not in M~" /or any p 4 2  i/ A is a real constant :~0. 

Proo/. Suppose t h a t  e~AI~'~EM," and  t h a t  A ~:0, p 4 2 .  Since M~P=M~2" we m a y  

assume t h a t  p > 2, and  since Mp ~ is i nva r i an t  for con juga t ion  we m a y  also assume t h a t  

A < 0. I n  v i r tue  of Theorem 1.13 app l i ed  to  the  ma pp ing  ~ - - > ( - t / A )  �89 ~, the  funct ion  

e -ftl~'l~ is in Mp p for eve ry  t >  0 and  M~ p (e -~tt~l~) is i ndependen t  of t. Hence  we get  

when u E S 

if ut is def ined as in L e m m a  1.2 b y  the  equa t ion  e-itlr t ( ~ ) = a ( ~ ) .  W h e n  t - ~  

(1.3.1) con t rad ic t s  L e m m a  1.2 which completes  the  proof.  

LEMMA 1.4. Let A (~) 

/ollows that A = O. 

Proo/. Assume t h a t  A 

we m a y  wri te  

where a 1 4  O. 

be a real quadratic /orm. I /  e~AEM~ p vhere p~=2, it 

does no t  vanish  ident ica l ly .  

A (~) = 31 ,~ + " "  + a~ ~ 

I n  view of Theorem 1.13 we m a y  even assume t h a t  

l a l l > l a 2 1 §  

W i t h  su i tab le  coordina tes  

(1.3.2) 

I f  k is a p e r m u t a t i o n  (k 1, . . . ,  k~) of the  integers  1, . . . ,  n we wri te  

Ak (~) = 31 ~t:2 ~_ . . .  _[_ an ~ k,2. 

Since e~AEMp p we have  also e~A~EMp p in v i r tue  of Theorem 1.13. Hence  Corol lary  1.4 

shows t h a t  
I-[ e ~A~ E Mp ". 
k 
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NOW ~ A k = ( n - - 1 ) !  ( a l + . . . + a n )  l~12=al~l  2 where a * 0  in view of (1.3.2). This 

contradicts  L e m m a  1.3 and  hence proves the ]emma. 

W e  are now able to prove the main  theorems in this section. 

THEOREM 1.14. Let / be a real valued /unction EC ~. Suppose that there exists a 

sequence tk o/ real numbers such that tk--~+ oo and eit~fEM, p, 

Mp v (e ~tkf) < C, k = 1, .-. (1.3.3) 

where C is a constant and p #  2. Then / is a linear /unction. 

On the other  hand, if / ( ~ ) = a + 2 r ~ < h ,  ~> is a real linear funct ion then e " I  

is the Fourier  t ransform of the mass e ~t~ a t  - t h ,  hence M~ "(eits) = 1  for every p. 

(This follows for p =  1, 2 and oo from Theorems 1.4 a n d  1.5, and then in general 

f rom the convexi ty  in Theorem 1.3.) 

Proo/ o/ Theorem 1.14. We shall prove tha t  the second derivatives of / vanish. 

I t  is sufficient to do so for ~ = 0 ,  for every translat ion of / also satisfies (1.3.3) in 

view of Theorem 1.13. Since / E C  2 we have 

/ ( ~ ) = a + < h , ~ > + A ( ~ ) + o ( l ~ l ~ ) ,  ~-->0, 

where a is a real number,  h a real vector,  A a real quadrat ic  form. Wri te  

g (~) = / (~) -- a -- <h, ~>. 

I t  follows from Corollary 1.4 and the remark above after  Theorem 1.14 tha t  g satis- 

fies the same assumptions in the theorem as / does. But  now we have g (~) = A (~) + 

+ o (I $ Is), and writing g~ (~) = tag (~/tk �89 i t  thus follows t h a t  

gk (~)-+A (~), 

uniformly on every compact  set. I t  follows from (1.3.3) and  Theorem 1.13 tha t  

Mp" (e%) < C. 

F rom the following lemma it follows tha t  e ~A E M~ p. Hence A = 0 in view of Lemma 

1.4, which completes the proof. 

LEMMA 1.5. The unit  spheres in M~ ~ and in L~ q are closed in $'. 

Proo/. Only the s ta tement  concerning Lv q needs to be proved,  for the Fourier  

t ransformat ion is an isomorphism of $ '  mapping the uni t  sphere in Lp q onto tha t  in 

M ,  q. Now the uni t  sphere in L ,  q is by  definition the set {T; T e $ '  and ]T~eu~v  (0)[ 

<~ [luH, [[vi{q,; u, v e S}, and  since the left hand  side of the inequal i ty  is the absolute 

value of a continous linear form on S', the assertion is obvious. 
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THEOREM 1.15. Let a be a C 2 mapping o/ R ~ into R m. Assume that a* maps 

MpP(m) into M~(~) and that p=~ 2. Then a i8 a/line and onto. 

Proo/. Since the mapping  a* is obviously closed, it follows from the theorem 

on the closed graph tha t  a* maps M~'(m) cont inuously into MpP(~). I f  l is ~ linear 

funct ion in R m, the norm of e ~t~ in Mp~(m) is 1 for every t. I n  view of the cont inui ty  

of a*, it follows tha t  the norm of e ~t~*~ in Mp'(n) is bounded  for all t. Hence Theo- 

rem 1.14 shows tha t  a*l  is a linear function. Applying this with 1 equal to the ] th 

coordinate in R m, it follows tha t  (a(~))j is a linear function of ~ E R  n for ] = 1 ,  . . . ,  m. 

This proves the theorem. For  if a were no t  onto, its range were a null set and every 

funct ion would be in M~P(n). 

For  p =  1, t ha t  is, for the algebra of Fourier-Stieltjes transforms, a much more 

precise result has been given by  Beurling and Helson [1] (see also Helson [4]). I n  

particular, it is not  necessary in t ha t  case to assume tha t  a EC 2. (These authors  also 

t reat  more general homomorphisms.  However,  the proof of Theorem 1.14 immediate ly  

extends to t ha t  case if a smoothness assumption replacing the assumption a E C 2 is 

made.) For  p:t:  1 and ~o, however, some smoothness assumpt ion is needed in Theo- 

rem 1.14. I t  m a y  be sufficient to assume tha t  a E C  ~ but  no t  merely tha t  a is Lip- 

schitz continuous. In  fact, using Riesz'  theorem on conjugate functions (see Chapter  II) ,  

Corollary 1.4 and Theorem 1.13 it is easily seen tha t  if a is pieceweise linear (and 

has only a finite number  of pieces) then a* maps M~ ~ into itself, if 1 < p <  oo. For  

fur ther  details see Schwartz [13]. 

1.4. Analytic operations in M~ ~ 

Our purpose here is to prove an analogue of the Wiener-L~vy theorem con- 

cerning M11, or ra ther  the subspace of M11 consisting of the Fourier  t ransforms of 

functions in L 1. This subset of M11 can also be regarded as the closure of S in M11 

and we are thus led to introduce the following definition. 

DE~ ' INITION 1.4. The closure o/ S in M~ p will be denoted by mp ~. 

I t  is clear t ha t  m; p is also a normed ring. Since MpP([)>~[[[[[~ according to 

(1.2.6), it follows tha t  m~PcC (1L~. On the other  hand, we can prove an opposite 

result which is only slightly weaker. 

THEOREM 1.16. I] I1/q-1/21<11/p-1/21 we have M / n c n L r c m j .  

Remark. If  p = 1 the result is not  valid with q = 1 since there are singular mea- 

sures with Fourier  t ransforms converging to 0 a t  infinity. ~u do no t  know if i t  is 

possible to take q = p  for some other  value of p :t: 2. 
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Proo/ o/ the theorem. Let  /EMp~N C and assume first t h a t  / has compac t  sup- 

port .  Take  a non negat ive  funct ion ~ EC~ such t h a t  S ~ d ~ =  1 and form 

1~ (~) = f / ( ~ - s ~ )  ~ (~) d~ .  

As is well known,  /~ E C~ and converges to / uni formly  when s-->0, hence M2 ~ ( / -  [~)-->0 

as s-->0 (Theorem 1.5). The  convexi ty  of the norm in Mr p and  Theorem 1.13 also 

give t ha t  Mr r ([~) ~< Mr r ([), hence Mr r ( / - / ~ )  ~< 2 Mr r ([). Replacing if necessary q by  

q' we m a y  assume t h a t  l / q = ~ / p +  ( 1 - ~ ) / 2  where 0~<~<  1. Hence  the  logar i thmic 

convexi ty  of the  i q  q n o r m  as funct ion of 1/q (Theorem 1.3) shows t h a t  

Mq q (f - f~) <, (My ~ (f - f~))~ (M~ ~ ( / -  ]~))1-~-+0 as e-->O, 

which proves  t h a t  / ~ m q  q. Next  let / be an a rb i t r a ry  funct ion in M r r N  C N L~ .  Let  

~pEC~ be equal to 1 when I$1 ~<1 and  set /, ($) = f ($) yJ (e $). Since Mr p is an algebra 

containing $ we get / , E M r  r, and f rom wha t  we have  a l ready proved  it  thus  follows 

t h a t  f, E mq q. Since Mr r (f, - f) <, Mr r (f) (1 + M r  r (W)) and  

/ 2 ~ ( [ - / , ) ~ < ( 1 +  sup I~1) sup I/I- 0 as 
EI~I>I 

i t  follows again f rom the logari thmic convexi ty  of the Mq q norm as a funct ion of 

1/q t h a t  Mqq(/-/~)--~O as ~-->0. Hence  /Emq q. 

THEOI~EM 1.17. The maximal ideal space o/ the algebra mr r can be identi]ied with 

R~; the characters are the mappings /--->[ (~), ~ E R ~. 

Proo[. The restr ict ion of a continuous charac ter  in mr r to ml 1 is a continuous 

character  in ml  1, hence of the  form [->[ (~) since mx 1 is the  Fourier  t r ans form of L 1. 

I n  view of the  definit ion of mr r, the  set  S and  a f o r t i o r i  ml  I is dense in mr ~. Hence  

all continuous characters  on mp r are of the form [--->[ (~). Since S ~ m r r ~  C it  is 

obvious t h a t  the  topology  of the  space of max ima l  ideals is the  usual  topology in R ". 

Remark. I t  is not  known to the au thor  whether  R n is the  max ima l  ideal space 

of M , r N  C for some p4 :2 .  Tha t  this is not  t rue  for p = l  is well known.  (Cf. 

~reider [14].) 

F r o m  Theorem 1.17 and  the  basic results on c o m m u t a t i v e  Banach  algebras  (see 

Loomis  [6], pp.  78 and  79), we obta in  the  following theorem.  

THEOREM 1.18. I[  [Emr r and q) is analytic in a neighbourhood o/ the closed 

range o/ [ and @ (0)= O, then (I)([)~mr r. 

Combinat ion  of Theorems 1.16 and  1.18 also gives 
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THEOREM 1.19. I /  / E M p ~ N  C N L ~  and �9 is analytic in a neighbourhood o/ the 

closed range of ] and r (0) = O, then r (/) E Mq q i]]  l / q  - 1/2]  < ] 1 /p  - 1/2 ]. 

For  another  subalgebra of M~ ~ we shall in Chapter  I I  discuss similar results, 

which are closely related to some theorems of Calder6n and Z y g m u n d  [3]. 

C H A P T E R  I I  

Est imates  for some special operators 

2.1. Main theorem 

Corollary 1.2 shows tha t  T E L  ~ (or T E M  if a =  1)implies TEL~q if 1 ~ p < ~ q ~  ~ and 

1 /p  - l / q =  1 - 1/a.  (2.1.1) 

Theorem 1.4 shows tha t  these conditions on T are also necessary in order t ha t  T E L p  q 

for all p, q satisfying (2.1.1) and l ~ p < ~ q ~  ~ .  The purpose here is to show t h a t  

if the condition T E L  ~ (or M) is slightly weakened we still have T E L l "  if (2.1.1) is 

fulfilled and 1 < p ~< q < c~. 

Le t  k be a locally integrable function. I f  ]c E Lp q and we set with t > 0 

kt (a) (x) = t -n/a k (x/t),  (2.1.2) 

we have also ]gt(a) ELp q and, if (2.1.1) holds, 

Lp q (kt (~)) = L ,  q (/c). (2.1.3) 

This follows from Theorem 1.10 when p = q  and in fact  by  a trivial computa t ion  for 

all p and q. I t  is therefore natura l  t ha t  we now introduce a condition involving the 

family of functions let (a). 

D E F I N I T I O N  2.1. We shall say that the locally integrable /unction ]c is almost in 

L a and write k E K  a i/ there is a compact set M ,  a neighbourhood N o/ 0 and a con. 

stant C such that 

( f []ct(a) (x--y)-]2t(a) (x)ia y E N ,  O<t.  (2.1.4) 

CM 

Remarlc. When a = 1 it would have been enough to assume tha t  k is a measure 

and tha t  the analogue of (2.1.4) is valid. However,  we do not  consider this simple 

generalization in order not  to complicate the notat ions.  

�9 8 -- 60173032. Acta mathematica. 104. I inpr im4 le 23 sep tembre  1960 
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E x a m p l e s  of funct ions  in K a will be given in the  nex t  section. The m a i n  re- 

sul t  we shall  p rove  is 

THEOREM 2.1. Let k E K  ~. Then k E L p  q either /or all p and q satis/ying (2.1.1) 

with l < p <~ q < ~ or else /or no such p and q. 

I n  the  app l i ca t ions  we shall  use Theorem 1.5 or  1.11 to  p rove  t h a t  k E L p  q for 

some p and  q. 

W e  shall  p repa re  the  proof  of Theorem 2.1 b y  rewr i t ing  the  p r o p e r t y  (2.1.4) in 

a more  useful form. Le t  u E L  1 vanish  outs ide N and  form the  convolu t ion  

(kt(a) ~u)  (x) = f kt (~) (x - y) u (y) dy  (2.1.5) 

which exists  a lmos t  everywhere  (and is the  dens i ty  of the  convolu t ion  in  t h e  dis t r i -  

bu t ion  sense.) I f  

f u d x = O  (2.1.6) 

we can also wr i te  

(kt(a)-)eu) (x) = f (kt (a) (x - y) - kt (a) (x) ) u (y) d y. (2.1.5)' 

Using Minkowski ' s  i nequa l i t y  for in tegra ls  and  (2.1.4) we thus  ob ta in  

\ l la  

( f lkt(~ <-C f luldy. (2.1.7) 
CM 

T h a t  (2.1.7) is p rac t i ca l ly  equ iva len t  to (2.1.4) is seen b y  l e t t ing  u in (2.1.7) con- 

verge to  the  difference be tween  the  Dirac  measures  a t  y E N  and  0. (2.1.4) t hen  fol- 

lows wi th  C rep laced  b y  2 C. 

Le t  I 0 be a cube c N  wi th  centre  a t  0 and  le t  I~ be ano the r  cube wi th  centre  

a t  0 conta in ing  M.  If  I is an a r b i t r a r y  cube we denote  b y  I* the  cube wi th  the  

same centre  such t h a t  m ( I * ) / m ( I ) = m ( I ~ ) / m ( I o ) = ~ , .  (By a cube we a lways  mean  

a cube wi th  edges para l le l  to  the  coordinate  axes.) W h e n  I = I  o i t  then  follows from 

(2.1.7) t h a t  

( f lk:~176 f luldy if f udx=O and u=O outside I. (2.1.8) 

r * 

This i nequa l i t y  is in fac t  va l id  for eve ry  cube I .  F o r  since (2.1.8) is i n v a r i a n t  for 

t r ans l a t ion  we m a y  assume t h a t  I has  i ts  centre  a t  0 so t h a t  I =  s - l l o  for some s. 
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If U vanishes outside I i t  follows tha t  v ( x ) = s n u  (sx) vanishes outside I o and an easy 

computa t ion  gives tha t  

(]~t(a)-~V) (X)  = S n /a  (~st(a)"~'U) (8X), 

Applying (2.1.8) with u replaced by  v and I by  I 0, and subst i tut ing x for s x  we 

thus obtain (2.1.8) with t replaced by  st.  Since t is arbi trary,  this proves (2.1.8) for 

all t. I n  particular,  for t = 1 we obtain the following lemma. 

L E ~ M A  2.1. Let  k E K  ~. Then with the same constant C as in De/inition 2.1, 

we have /or every cube I with I* de/ined as above 

]k-~ul a d z )  l u l d x  i/ u d x = O  and u = 0  outside I .  (2.1.9) 

GI* I 

For  the proof of Theorem 2.1 we also need a fundamenta l  "covering l emma"  

due to Calder6n and Z ygm und  [2] (see also Z y g m u n d  [18] and Stein [15]). We give 

it a slightly different form. 

LEMMA 2.2. Let u E L  1 and let s be a number >0 .  Then we can write 

oo 

u = v + ~ wk, (2.1.10) 
1 

where v and all w~ E L 1, 

NVIII ~- ~[IWklll ~< 3 IlUII 1, (2.1.11) 
1 

I v (x) I ~ 2n s almost everywhere, (2.1.12) 

and /or certain disjoint cubes I s 

f w k d x = O ,  w k ( x ) = 0  i/ x q l k ,  (2.1,13) and 

f ~m(lk )~8  -1 luldx. (2.1.14) 
1 

I /  u has compact support, the supports o/ v and all wk are contained in a / ixed 

compact set. 

Proo/. Divide the whole space R ~ into a mesh Of cubes of volume > s  -1 f lul d x. 

The mean value of ]u] over every cube is thus < s. Divide each cube into 2 ~ equal 

cubes and  let 111, Ix2, Ila . . . .  be those (open) cubes so obtained over which the mean 

value of l ul  is ~>s. We have 
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P 
s m (Ilk) < I [ u [ d x  < 2 n s m (Ilk). (2.1.15) 

Ilk 

For  if I1~ was obtained by  subdivision of the cube I ' ,  the construct ion gives 

Ilk I" 

We set v ( X ) - - m ( i l k )  u d y ,  XEIlk;  wlk(x)=  , x~iIl~" 

Ilk 

Next  we make  a new subdivision of the cubes which are not  among the cubes 

Ilk, select those new cubes /21, I~2 . . . .  over which the mean  value of ]u] is ~> s, and 

extend the definitions (2.1.16) to these cubes. Continuing in this way  be obtain  dis- 

joint  cubes Ijk and  functions wsk; for convenience in nota t ions  we rearrange them as 

a sequence. If  the definition of v is completed by  sett ing v ( x ) = u  (x) when x CO= 

I.J Ik, it is clear t ha t  (2.1.10) holds. To prove (2.1.11) we first note t h a t  

Ik lk 

Since the cubes are disjoint, wk vanishes outside Ik and fcolvldx=fooluldx, we 

immediate ly  get  (2.1.11). Fur the r  (2.1.12) follows from (2.1.15) if xEO.  On the other 

hand, if x ~ O, there are arbi trar i ly small cubes containing x over which to mean  value 

of l u I is < s. Hence l u (x) l ~< s a t  every Lebesgue point  in C O, that is, a lmost  every- 

where. (2.1.13) follows from the construction. To prove (2.1.14) we only note  t ha t  

since the cubes Ik are disjoint we get  by  adding the inequalities (2.1.15) 

lul dx. 8 ~ m (Ik)  ~ 

o 

The proof is complete. 

We now prove an  estimate for the case p =  1, q = a ,  which is then a subst i tute 

for  Theorem 2.1. Using this result it will be easy to  prove Theorem 2.1. 

THEOREM 2.2. Let k E K  ~ and assume that k E L p  q /or some p and q satis/ying 

(2.1.1) with l < p ~ < q <  oo. Then we have, when u has compact support and u E L  1, 

re{x; [ k ~ - u ( x ) [ > a }  <C~ (l[u[[x/a)% (~>0, (2.1.17) 

where m denotes Lebesgue measure and C 1 a constant. 
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Proo/. We m a y  assume in the proof t ha t  I lUl [ l= l .  To simplify the notat ions 

we write ~2 (x)=  k ~ u  (x), which exists almost  everywhere as an absolutely convergent  

integral. Form the decomposit ion of u given by  Lemma 2.2. Then we have 

1~2 (x) l ~< I~ (x) l+  ~ I ~  (x) l , (2.1.18) 
1 

for every x such tha t  f l k ( z - - y ) l ( I v ( y ) l + 5 1 w k ( y  ) ) d y < ~ ,  hence almost  every- 

where. I n  vir tue of Lemma 2.1 we have 

c~2 

and if O =  U Ik* it  follows from (2.1.14) t h a t  

m(o)<~-111~lll=~8 -1. 

If  we restrict  the integrat ion in the left hand  side of (2.1.19) to C 0 and use Min- 

kowski 's  inequality,  we get  writing z~ = Z[~k[  

~~ <~[Iwkll~<nCIlulh=3U. 
Co 

Hence the measure of the set of points in C 0 where ~(x)~> �89 is at  most  (6C/a )  a. 

Choosing s = aa we thus have z~ (x) < �89 ~ except  in a set of measure at  most  (y + (6 c)a)/o ~ 

Now the assumption tha t  /c E Lp q for some p and q means tha t  

IIk~ullo<o'll~ll,, ~ e s .  (2.1.2o) 

$ is dense in L p since p <  oo. Hence (2.1.20) follows for every u EL p with compact  

support  (with the convolut ion defined in the distr ibution sense, which however is 

well known to be equivalent  to the classical sense since /c is locally integrable). I n  

particular,  ,(2.1.20) m a y  be applied to v which gives 

I1,~1to ~< c '  I1,,11,, < (2,~)~ ~,  [I v I[y~ < c " ~ , ~ , o - - ~  = c " ~ - o ~  (2.1.21) 

in view of (2.I.11), (2.1.12) and (2.1.I). Hence the measure of the set where [ ,~ l>�89 

is at  most  (2C")qa  -~ Since (2.1.18) shows t h a t  the set where ] ~ [ > a  is contained 

in the union of the set where [ ~l > �89 a and tha t  where ~ > �89 a, the inequal i ty  (2.1.17) 

follows. 

Proo[ o/ Theorem 2.1. Let  k E K  ~ and /cEL~, ~ where P0 and % satisfy (2.1.1). 

Then it follows from Theorem 2.2 tha t  (2.1.17) holds. Bu t  this means tha t  Marcin- 
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kiewicz' interpolation theorem (Zygmund [18], Theorem 1) can be applied, and we 

obtain if l < p < p 0  and q is defined by  (2.1.1) 

IIk ull  <Cllull  if uEL v and u has compact support. (2.1.22) 

In  particular, this holds when u E C~ and since C~ is dense in S for the L p norm 

we obtain (2.1.22) for u E S. Hence k E Lp q. To remove the restriction p < P0 we only 

have to use Theorem 1.3. The proof is complete. 

Remark. I t  is important  in the applications tha t  the proof gives an estimate of 

L~ q (k) which only depends on p, q, P0, q0, Lp0 ~~ (k), the constants C and ~ connected 

with (2.1.4) and the dimension n. This fact is often useful in estimating Lvq(k)even 

when k EL  a. (See for example the proof of Theorem 2.5 below.) 

2.2. Applications 

Our first example is that  of Calder6n and Zygmund [2], where the methods of 

section 2.1 were originally introduced. Thus k is a locally integrable function satisfying 

k(x)~O if Ixl<l, k(tx)=t-nk(x) if t~>l, Ixl >l. (2.2.1) 

Assume further tha t  k E K 1. (In virtue of the footnote on p. 95 in Calder6n and 

Zygmund [2], this follows if k satisfies a Dini condition when Ix[ = 1.) We have to 

examine when the Fourier transform $ is in L ~ so tha t  k E L2 ~. First note that  if 

y E N we have k ( x - y ) -  k(x)E L 1 as a function of x, since k E K 1. Hence the Fourier 

transform (e 2.~<~.~> 1)/~ is continuos. Since this is true for all y in the neigbourhood 

N of 0 it follows tha t  ~ is a continuous function for ~ # 0  and bounded when ~-->~.  

I t  remains to study the behaviour of $($) as ~-+0. Noting tha t  the Fourier trans- 

form of ~t r is ~ (t~), we obtain 

Hence 

1 

Iml=l t 

k(eo) dw dr/r. 

~-~olim ( ~ ( t ~ ) -  ~(~)) = - l o g  tf k(~o) din. 

Letting t-->O we find tha t  if ~ is a bounded function we must  have 

f k(w)dw=O. 
I~1=1 

(2.2.2) 
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Conversely,  if this condit ion is fulfilled, one can write 

1 

]c (t ~ : ) -  fc (~)= f f ( e -2~ir<~ '~>=l)k (w)do)dr / r .  
Io~1=1 t 

I f  we t ake  ~ as a uni t  vector  and  0< t~<  1, the r ight  hand  side is bounded  b y  

2~f lk(co) ldeo , which proves  the  boundedness  of $ for ~ * 0 .  Thus Ic is the sum of 

a bounded funct ion a n d - - p o s s i b l y - - a  dis t r ibut ion with suppor t  a t  0, t h a t  is, a l inear 

combinat ion  of the  Dirae measure  a t  0 and  its derivat ives.  A component  of t h a t  form 

is impossible, however.  To see this it is sufficient to show t h a t  if qJ~(x)=q~(x/s), 

where ~ E C~ r i t  follows t h a t  f c (~) -+0  as e->0.  Now we have  

(~ )  = k (~ )  = f k (x) q~ (e x) e n d x. 

the  facts  t h a t  I~(y) l<~C/( ly[§  ~ e S  and t h a t  f l k ( ro) ) ldco<C/rn ,  Using 

we get  by  introducing polar  coordinates and  comput ing  the  integral  

] fc (~9,)I ~< C e'~ log (1 + l / e ) ,  

and  this tends to 0 as e--*0. Hence  the following theorem follows f rom Theorem 2.1. 

THEOREM 2.3. I /  k is in K 1 and satis/ies (2.2.1), it /oUows that lcEL~ p /or 

1 < p < ~ i] (2.2.2) is /ul/illed whereas k is not in L~ ~ /or any p i] (2.2.2) is not valid. 

We briefly recall the consequences of this result  for the singular integrals  corre- 

sponding to k. Firs t  note  t h a t  i t  follows f rom (2.2.2) t ha t  k0 a) = l i m  kt a) exists in the  

topology  of S'. In  fact ,  if u E  S we have  

kta)(u) ~ f f u(ro~)k(co)deodr/r, 

and in view of (2.2.2) 

f u (rog) k (w) do) = f (u (re)) - u (0)) k (co) dco = 0 (r) 

as r ->0.  Hence  the integral  

0 

k (co) dco 
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exists and is the limit of kt (1) as t-->0. I t  is clear t ha t  /Co r is a distr ibution in $' .  

Since Ilkt(1)*ull~<~C~llullp if u e S ,  t > 0  and l < p < ~ ,  the same estimate for t = O  

follows in the  limit. (Cf. L e m m a  1.5.) Hence we obtain 

COROLLARY 2.1. Let k E K 1 and let (2.2.1), (2.2.2) be valid. Then lim kt r exists 
t.-->O 

in $' and is an element o/ L~ ~, l < p < c ~ .  

Next  consider the potential  kernel 

k( )=lxl -n'a, 

k is locally integrable and E K a. In  fact,  kt(a)=]c so all we have to estimate is 

CM 

where N is the sphere l yl < 1 and M the set I xl ~<2. The mean  value theorem gives 

the  est imate 

]k (x - y) - k (x) l < (I Y / n / a ) / ( ]  x [ -- 1) x+~'a. 

Since the funct ion 1/(] x ] -  1) n+a is integrable over C M, it follows tha t  k E K a. Further ,  

it is well known tha t  the Fourier  t ransform of I l l  -~/a is Ca[~[ -~/a' where Ca is a 

constant .  (This m a y  be proved as follows: k is in L 2 in a neighbourhood of infinity 

if a <  2, hence fc is a function. Considerations of or thogonal  invariance and homo- 

genei ty immedia te ly  show tha t  ~c is proport ional  to  I~1 -~/a'. For  a > 2 the same result 

now follows from Four ier ' s  inversion formula and for a = 2 it is obtained as a limiting 

case.) Using Theorem 1.11 and  Theorem 2.1 we obtain  tha t  k 6 L p  q if (2.1.1)is  valid. 

Hence 

T~EOREM 2.4. I]  k is a locally integrable ]unction such that 

Ik(x)l<cl l a > l ,  (22.3) 

then k e L /  i/ l < p < q <  ~ and (2.1.1) is valid. 

The proof we have given is essentially the same as t ha t  in Zygmund  [18]. The 

theorem itself is due to  H a r d y  and Lit t lewood when n = 1 and  to Sobolev when n >  1. 

(See the references in Zygmund  [18].) 

The next  application is an improvement  of a result proved by  Mihlin [8], [9]. 

T~V.ORE~ 2.5. Let f 6 L  ~ and assume that 

f (2.2.4) ]RE~ID~/]2d~/R~<~B 2, 
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where B is a constant and ~ is the least integer>In. Then it /o/lows that / EMp v, 

l < p < ~ .  

Remark. Mihlin's hypotheses are of the form (2.2.4) with maximum norms instead 

of L ~ norms and involve derivatives up to the order n. 

In  the proof of Theorem 2.5 we need a simple lemma. 

LEMMA 2.3. There is a /unction q~ E C~ with support in the set �89 < 2 such that 

+oO 

~ ~ (2- i~)=  1, ~ # 0 .  (2.2.5) 

Pro@ Let (I)~>0 be a function in C~ r with support  in the set � 8 9  and 

let (I) (~) > 0 when ~/I/~< I~l < VS. Set 

+ ~  

(~) = @ ( ~ ) / Z  �9 (2 -s ~). 

Since the denominator is never 0 for ~4=0 it follows tha t  ~0eC~', and (2.2.5)follows 

immediately. 

Proo/ o/ Theorem 2.5. We shall apply Theorem 2.2 to the inverse Fourier trans- 

form of /. To do so we first decompose / into a sum ~ /s  by setting 

/s (~) = / (~) ~ (2-s ~). (2.2.6) 

The support  of /j belongs to the spherical shell 2s-1<l~l  < 2 s+l. Leibniz' formula gives 

D,/ j (~)  = ~ 2 -si~' (D,/(~))((Dn~)(2-s~)). 

Using (2.2.4) with R = 2  ~ and the fact tha t  the derivatives of ~ are bounded, we 

obtain 

f 2  12s'~iD~isi2d~/2~s<~CB~. (2.2.7) 

(In the whole proof C will denote constants depending only on n but  C may  have 

different values in different formulas.) 

Let  gj be the inverse Fourier transform of /j, 

gs (x) = f e 2~<x'~> /s (~) cl~. 

Parseval 's  formula gives in view of (2.2.7) 

f ( 1  + 22Six I~) ~ [gs I s d x ~< 2 ns, (2.2.8) CB 2 
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and hence it follows from Cauchy-Schwarz' inequality that  

f ,g, ldx<CB(2"J f dx/(l +22r (2.2.9) 

(The integral is convergent since 2u >n . )  Note that  this also shows that  I/Jl = I gs] is 

<<. C'B almost everywhere, hence that  {/]= {Y/j[~< 2 C'B since at most two/ j  can be # 0 

at  any point. Application of Cauchy-Schwarz' inequality also gives, if we drop the 

term 1 in the brackets on the left hand side in (2.2.8), 

f lgjldx<CB(2Jt) (�89 ~). 

Ixl>~t 
(2.2.10) 

N N 

Write FN= ~ / j ,  GN= ~gj .  (2.2.11) 
- - N  - - N  

We then have { F~ { ~ 2 C'B, hence 

L2 ~ (G~) = M s  2 (FN) <<. 2 C'B.  

Further, we shall estimate 

(2.2.12) 

f IGN(x-y)-GN(x)]dx, lyl<t. 
{z{~>2t 

To do so we first note that  (2.2.10) gives 

f lgJ (x-  y) - gs (x)] dx < CB (2Jr) (�89 ~), 

Ixl~2t 

which is a good estimate when 2Jt~> 1, the exponent being negative. Further,  (2.2.9) 

and Bernstein's inequality give 

f Ig,(x-y)-gj(x)[dx<<.CB2J+lt, lyl<~t, (2.2.13) 

since the spectrum of g~ is contained in the sphere with radius 2 i+1. (It is also easy 

to obtain (2.2.13) by a direct estimation without using Bernstein's inequali ty.)Hence,  

when lyl<~t, 

{ GN (x -- y) -- ON (x) { d x <~ CB ~ min (2 j t, (2 j t) (�89 (2.2.14) 

Izl~>2t 

and since the sum is obviously a bounded function of t we get 
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f IGN(x--y)--Gg(x)ldx<~CB, lyl<~t, (2.2.15) 

Ixl~>2t 

which is equivalent to 

f l~N2)(x-y)-GN,(l)(x)ldx<CB, lyl<l. (2.2.15)' 

Ixl~>2 

From (2.2.12) and (2.2.15)' it now follows in view of the remark at the end of 

section 2.1 that  

Mp p (FN) = Lp" (G~) <~ CvB, 1 < p < ~ ,  (2.2.15) 

where C v only depends on p and the dimension n. Since FN(~)~F(~)  for 4 # 0  and 

is uniformly bounded, we have FN--~F in $', N-+ ~ .  Hence it follows from Lemma 1.5 

that  F E Mv v and that 

Mp ~ (F) <~ CpB. (2.2.16) 

The proof is complete. 

Using Theorem 2.5 we shall now prove some results similar to those in section 1.4. 

They are modifications of theorems proved by Calder6n and Zygmund [3]. 

DEFINITION 2.2. We shall denote by Hp, l < p < ~ ,  the closure in My ~ o/ the 

set h r162 o/ /unctions / which are in C ~ /or ~ # 0  and homogeneous o/ degree O, that is, 

/(t~)=l(~),  t>0.  

Note that  Theorem 2.5 shows that  h:CcMv p, and that  Hp is obviously a nor- 

med ring. 

T H E O R ] ~  2.6. Let f EMp v be continuous /or ~:~0 and homogeneous o/ degree O. 

Then we have / eHa i/ ] l / q -  1/2] < ] l / p -  1/2 t. 

Proo/. The theorem is quite parallel to Theorem 1.16 and so is the proof. Let 

On be the orthogonal group, with elements denoted by A, B . . . .  and let dA be the 

I-Iaar measure in 0~. For j = 1, 2 . . . .  take a function ~j>~ 0 in O~ which is infinitely 

differentiable so that any neighbourhood of the identity in O~ contains the supports 

of all ~j except a finite number. Let f q)j(A)dA = 1 and set 

/j (x) = f / (A x) q~j (A) dA.  
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I t  is obvious t h a t  /j is homogeneous of degree 0 and  in view of Theorem 1.13 and 

the convexi ty  of the norm My ~ we have Mv v (/s) ~< Mp v (/), hence My v (/j - / )  ~< 2 Mv ~ (/). 

Fur ther  / j -+/  uniformly when j - > c ~ .  I t  is sufficient to verify this when ~ is on the 

uni t  sphere and then it follows at  once f r o m  the uniform cont inui ty  of /. Thus 

M2z(]j-/)--->O, and  as in the proof of Theorem 1.16 it follows tha t  Mqq(/j-/)-->O as 

j - - > ~ .  I t  remains to prove tha t  /~Eh ~, tha t  is t ha t  the restriction of /r to  the uni t  

sphere is infinitely differentiable. But  this is obvious since 

/ j ( B x ) =  f / ( A B x ) 9 , ( A ) d A =  f / ( A x ) q ) j ( A B - 1 ) d A ,  BEO~ 

and the r ight  hand  side is an  infinitely differentiable funct ion of B. 

THEOREM 2.7. The only continuous multiplicative linear /orms on tip are the 

mappings /-->/(~), I~1 = 1. 

Proo/. Let  /-->T(/) be such a form. If  h ~ is identified with C a ( ~ ) ,  where 

= (~; I~] = 1), the restriction to h a of T can be considered as a dis tr ibut ion T in F. 

I n  fact, Theorem 2.5 or more precisely inequal i ty  (2.2.16) shows tha t  MpP(/~)-->O, 

hence T(/~)-->O, if /~ E h ~ and the derivatives of /n of order ~< �89 ( n +  1)converge  to 0 

uniformly in ~. Thus T (x) = T (e -2~i <x..>) is continuous and satisfies the equat ion 

T ( x §  Hence T ( x ) = e  2,i<x.~> for some complex ~, but  since T has 

support  in ~ it follows tha t  ~ e ~. Hence 

T (/) = / (~), / E h a .  (2.2.17) 

Since h a is dense in Hp, the equali ty (2.2.17) is valid for e v e r y / E H ~ ,  the two sides 

being continuous functions of /E  H~. The proof is complete. 

The result we need in Chapter  I I I  is the following 

COROLLARY 2.1. Let / be continuous/or ~:# 0 and homogeneous o/degree O. Further 

assume that / e Mp ~ ]or all p with 1 < p < ~ and that / (~) ~ 0 when ~ =4= O. Then 1/ /E M~ ~ 

when l < p < co. 

Proo/. Theorem 2.6 shows tha t  / E Hq for all q with 1 < q < c~. Hence the corollary 

follows from Theorem 2.7 and basic facts concerning commuta t ive  Banach algebras 

(Loomis [6], pp. 78 and 79). 
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C H A P T E R  I I I  

Estimates  for some  families o f  operators 

3.1. Preliminaries 

Our a im in th is  chap te r  is to  supp lemen t  the  inves t iga t ion  of the  convolut ion  

t ransforms  kt (a)~u made  in Chap te r  I I  b y  s tudy ing  these as funct ions  of t also. F o r  

s impl ic i ty  we on ly  consider  the  case a = l ,  b u t  in view of some i m p o r t a n t  appl ica-  

t ions we shall  a d m i t  several  pa ramete r s .  Thus le t  T be a set in R m such t h a t  0 r T 

and  T U {0} is a closed(1) cone. Thus  

~tET  if ~ > 0  and  tCT. (3.1.1) 

Wr i t e  Rn=X. We shall  consider  a func t ion  K (x, t) def ined and  measurab le  in  X• 

such t h a t  

K(~x ,~ t )=a-nK(x , t ) ,  (x,t) EX• ~ > 0 .  (3.1.2) 

W i t h  su i tab le  assumpt ions  on K and  on u we shall  s t u d y  the  convolu t ion  

f K ( x - y , t )  u(y) y, (x,t) • d E X 

Wri t ing  /~  (x, t ) =  K ( - x ,  t) we shall  also for funct ions  U in X •  T s t u d y  the  ad jo in t  

t r ans fo rma t ion  which maps  U on the  funct ion  

x T 

I n  the  es t imates  we shall  use norms on measurab le  funct ions  U in X • T of the  

form (3.1.3) wi th  l < ~ p ~ ,  l < ~ q ~ ,  

x T 

(3.1.3) has a sense, f ini te  or infini te ,  in  view of the  F u b i n i  theorem.  ( I t  is clear 

how (3.1.3) should be i n t e rp re t ed  if p or  q is inf ini te . )  We  wri te  X ~ T  q for the  set 

of measurab le  U such t h a t  the  norm (3.1.3) is finite.  This is a Banach  space. I n  fact ,  

the  convex i ty  of XPTq(U) follows b y  r epea ted  use of Minkowski ' s  i nequa l i t y  in / /  

spaces. S imi la r ly  one proves  the  convergence in the  X p T q norm of a series of e lements  

in  XPH ~ whose XPH q norms form a convergent  series. Hence  XPT q is complete .  

(1) This a s sumpt ion  is merely made to get shorter  s ta tements .  
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We shall also use the notation 

If U E X ~ T  q this function of x is finite almost everywhere. 

I-ISlder's inequality takes the following form. 

THEOREM 3.1. Let U and V be measurable in X •  Then 

f I TI Ivl dxdt/Itlm<x r~ XP" T q" (v). (3.1.4) 
J 

X• 

Proo/. We may assume in the proof that the factors in the right hand side are 

finite. For almost all x we can then use H51der's inequality for the integral with 

respect to t and another use of H51der's inequality completes the proof of (3.1.4). 

I t  would be easy to show that  the dual space of the set of all measurable U 

with the norm X ' T q ( U ) <  c~ is the corresponding space with p and q replaced by p' 

and q', provided that  p and q are finite. However, we content ourselves with the 

following converse of HSlder's inequality. 

THEOREM 3.2. Let U be a measurable /unction in X •  and assume that /or all 

measurable V with compact support in X • T we have with constant C 

I ~ UV dxd t / , t ,m  <~ CX~' T q" (V), (3.1.5) 
l a . 2  
X• 

which shall mean in particular that the integral in the le/t hand side exists i/ the right 

hand side is /inite. Then it /ollows that 

X" T q ( U) <~ C. (3.1.6) 

Proo/. We may assume that U>~0, that X P T  q (U)< oz and that  U has compact 

support. In  fact, if the theorem is known when this hypothesis is made a priori we 

only need to form UN defined as m i n ( ] U ] , N )  when ]xl ~<N, 1 / N ~ ] t [ ~ < N  and asO 

otherwise. UN satisfies (3.1.5) and our requirements, so~ we will get XPTq(UN)~C.  

Letting N- ->~ ,  we obtain (3.1.6). Now if the assumptions made above are fulfilled 

and p <  co, q <  ~ ,  we take 

T 

which we define as 0 when a factor in the denominator vanishes. A simple computa- 

tion then gives (3.1.6). The ease when p or q = ~  is easily handled in a similar way. 
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The following va r i an t  of L e m m a  2.2 is i m p o r t a n t  in this chapter .  

L]gMMA 3.1. Let U E X 1 T  q. For every s > 0  u'e can then write 

U =  V § ~ Wk, (3.1.7) 
1 

where V and all W k E X 1T q and /or certain disjoint cubes I~ in X 

X 1 T ~ (V) + ~ X ~ T q (Wk) <~ 3 X ~ T ~ (V). (3.1.8) 
1 

( T  q ( V ) )  (x) ~ 2 n 8 /or ahnos t  al l  x ,  (3.1.9) 

f Wk(x , t )  d x = O  /or t W k ( x , t ) = O  i/ x ~ I k ,  (3.1.10) almost all and 

m (Ik) ~< s - 1 X  1T ~ (U). (3.1.11) 

I /  U= 0 outside a compact set, then there is another compact set such that V and all 

Wk vanish outside that set. 

Proo/. Let  u ~ T q ( U ) .  We have  u E L  i so we can form the  decomposi t ion of u 

given by  L e m m a  2.2. We take  the cubes Ik associated with  u and  s in t h a t  l emma 

and  set 

(x, t) = (m (Ik)) -~ t" U (y, t) dy,  x E I~ V (3.1.12) 

Ik 

Wk (x, t) = U (x, t) - V (x, t), x EIk (3.1.13) 

which has as sense for a lmost  all t. When  x(~Ik we set W k = 0  and when x~[_ ] Ik  

we set  V =  U. Minkowski 's  inequal i ty  and  (2.1.12) give 

<~(m(I~)) -~ u d y = ( m ( I k ) )  -1 v d y < 2 ~ s ,  x E I  k. (3.1.14) 

Ik Xk 

When x ~ [.J Ik we haste 

( f  " q  
]v (x, t)]q dt/]tp) = u (x) < s 

almost  everywhere  which proves  (3.1.9). (3.1.11) follows tr ivial ly f rom L e m m a  2.2 for 

the  r ight  hand  side is s - l f u  dx.  Since (3.I . I4)  gives 

f ( f  lV(x,t)l dt/Itl )'~ 
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we obtain 

This proves (3.1.8). 

LARS ttORMA~DER 

X1Tq(Wk)<2 f udy ,  X 1 T q ( v ) <  f u d y .  

lk  

3.2.  L 2 est imates  

Let  K be a locally integrable function in X x T and form 

(K ~- u) (x, t) = f K (x - y, t) u (y) d y, (3.2.1) 

where u is integrable and  has compact  support .  The integral exists for almost  all 

(x, t) and is a locally integrable function in X x T  in view of the Fubini  theorem. 

We shall s tudy  conditions in order t ha t  the inequali ty 

X ~ T 2 (K ~ u) ~< II u lie (3.2.2) 
shall hold. 

THEOREM 3.3. Let K(x ,  t) be in S' /or almost all /ixed t E T, and assume that 

there is a locally integrable ]unction I~ (~, t) which de]ines the Fourier trans]orm o / K  (x, t) 

as a ]unction o/ x /or almost all t. I /  

T 2 (K) ~ C almost everywhere, (3.2.3) 

the inequality (3.2.2) holds /or all u EL 2 with compact support. 

Proo]. For  almost  all t we get  by  Parseval 's  formula 

Hence 

f f , K - ~ u ] ' d x d t / , t ]  "~= f l~(~)[2d~ fir ( ~ . t ) ' 2 d t / , t ' m < c 2 f  ]4 (~) '2d~ .  (3.2.4) 

which proves (3.2.2). 

W h e n  (3.2.3) holds, the mapping  u--~K%u can thus be extended to a continuous 

mapping A of L 2 into X2T  '. To compute  the adjoint  A* let U EC~ ( X x T ) ( 1 )  and  

form with u E C~ (X). which is a dense set in L ~, 

f f (K.u)~dxdt/Itp=f f ~dxdt/,tp f K(x--y,t) u(y)dy. 

(t) By this we mean that U is the restriction to X x T of a function in C~ (R n x (R m- {0})). 
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The  integrations may  be interchanged since the integrand vanishes except  when 

(x, y, t) is in a compact  set, and K is locally integrable. Hence 

f (K~u)CI dxdt/It] m= f u  K-)eU dx (3.2.5) 

where we have used the nota t ion /~(x,  t ) = K ( - x ,  t) and 

(x) = f K (x -- y, t) U (y, t) dy d t/It]". (I~+u) 

Since an operator  between Hilber~ spaces and its adjoint  have the same bounds, 

we have 

T}~EOl~M 3.4. I] the hypotheses o/ Theorem 3.3 are /ul/iUed it /ollows that 

]]/~-x-UI]2--< CX2T2(U), U e C~ (X• (3.2.6) 

where C is the same constant as in (3.2.3) and (3.2.:2). 

A* is thus the closure of the mapping X 2 T 2 ~ C~ (X • T) 9 U - > / ~ -  U E L 2 (X). 

We shall now compute  A*A. When u E C~(X)  (3.2.4) m a y  be wri t ten  

(X 2 T 2 (A u)) ~ = f ] ~ t 2 (T 2 (J~))2 d $, 

t ha t  is, (A* A u, u) ~ f !~ ]2 (T 2 (/~))2 d ~, u e C~ (X). (3.2.7) 

Polarization of this ident i ty  gives since A*A is a self-adjoint operator  

(A*Au, v ) = f  ~(T2(I~))2d~, u, vEC~(X). 

Thus,  if :~ denotes the Fourier  t ransformation,  we have 

A*A u = :~-1 ((T 2 (/~))~ :~u), u E C~ r (3.2.8) 

is the convolut ion operator  corresponding to the multiplier (T 2 (/~))2. 

essential later  on. For  future  reference we also remark  here t ha t  it 

so tha t  A*A 

This will be 

follows immediate ly  from (3.1.2) tha t  T2(/~) is homogeneous of degree 0, tha t  is, 

(T 2 (/~)) (~ ~) = (T 2 (/s (~), ~ > 0. (3.2.9) 

9-60173032.  Acta matheraatica. 104. Imprim6 le 23 septembre 1960 
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3.3.  Mnin theorem on  mixed  L 2 es t imates  

In  this section we assume throughout that  K is locally in X 1 T 2. By this we 

mean that  a function K 1 which is equal to K in a compact subset of X •  and 

equal to 0 elsewhere in X 1 T  2. Then 

(x)= f / ~ ( x - y ,  t)u (y, t)dy dt/Itl ~ (3.3.1) (/~u) 

exists as an absolutely convergent integral almost everywhere and defines a locally 

integrable function, if U is in X 1 T 2 and has compact support. To prove this it is 

sufficient to study (3.3.l) with K replaced by K 1. But then we can apply the Fubini 

theorem to the measurable function K1 ( x - y ,  t) U (y, t ) j [ t  I "~ of (x, y, t), for 

fff,nl(X-y.t) (y, t)laxayat/,t,m ffT2(ki(x-y..))T2( (y..)) xay= 
= X1 T2 (K1) X1 T2 (U) < o~. 

Also note that the same argument shows that  (3.2.5) is valid for all u E C~ r if U E X 1 T 2 

and has compact support. Thus the operator A* discussed in section 3.2 is defined 

by A * U = K - ) e U  and (3.2.6) is valid for all U E X 2 T  2 with compact support. 

The principal aim of this section is to prove the following theorem. 

THEOREM 3.5. Let K be locally in X 1 T  2 and satis/y the hypotheses o/ Theo- 

rem 3.3. Further assume that there is a neighbourhood N o/ 0 in X and a compact 

set M in X such that 

CM T 

where C is a constant. For 1 < p < c~ there then exists a constant @ such that i / u  EL  p 

has compact support in X 

X "  T 2 (K ~ u )  <~ Cp Il u ll,, (3.3.3) 

and i/ U E X ~ T  2 and has compact support in X •  

II ~ u l l ,  < op, x ,  T ~ (U). (3.3.4) 

Proo]. I t  is sufficient to prove (3.3.3) and (3.3.4) when l < p ~ < 2 ,  for (3.3.3) is 

equivalent to (3.3.4) with p replaced by p '  in view of the duality used in the proof 

of Theorem 3.4. In  fact, if (3.3.4) is known with p replaced by p '  we get using 

(3.2.5) and HSlder's inequality 
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I f  (K<-u) C d x d t / l t ]  m] <HuIIvCvX p" T 2 (U) 

hence (3.1.5) gives X" T 2 (K~u)~Cp  ]in]],. The a r g u m e n t  m a y  of course be reversed.  

Also note  t h a t  Theorems 3.3 and  3.4 show t h a t  the  theorem is val id  for p =  2. 

We now prove  a theorem concerning the  m a p p i n g  u-->T 2 (K-~u)which combined  

wi th  Marcinkiewicz '  i n t e rpo la t ion  theorem gives (3.3.3) for 1 < p  < 2. 

THEOREM 3.6. Let the assumptions o/ Theorem 3.5 be fulfilled. Then there is a 

constant C 1 such that if u EL 1 and has compact support we have 

m {x; (T > < C111 ~ ] l l / ~ ,  ~ > 0. (3.3.5) 

Proof. To prove  th is  theorem we have  essent ia l ly  only to  r epea t  the  proof  of 

Theorem 2.2. There is no res t r ic t ion  in assuming t h a t  the  sets N and  M in (3.3.2) 

are cubes wi th  centre  a t  0; we m a y  wr i te  N = I 0 and  M = I0*. We then  define a cube 

I*  for  eve ry  cube I as  in sect ion 2.1 so t b a t  m.(I*) /m(I )=m(Io*) /m{Io)=y.  I n  view 

of (3.1.2) i t  t hen  follows by  a t r iv ia l  compu ta t i on  t h a t  the  inequa l i t y  

Y (f )~ dx ] K ( x - y , t ) - K ( x , t ) 1 2 d t / ] t l  "~ <~C, y e I  (3.3.2)' 

Xr T 

is va l id  for eve ry  cube 

assume t h a t  

wi th  centre  a t  0. Now let  u G i I have  suppor t  in I and  

f udx=O.  (3.3.6) 

we have  (K-)eu) (x, t) = ( (K (x - y, t) - K (x, t)) u (y) dy. Then 
$ 

Hence  Minkowski ' s  i nequa l i t y  for the  X 1 T~-norm and  (3.3.2)' give 

f T (K-~u) II u II1. (3.3.7) dx C 
x~I* 

In  view of i t s  invar iance  for t rans la t ion ,  (3.3.7) m u s t  hold also for cubes wi th  arbi -  

t r a r y  centre.  

I n  proving  (3.3.5) we m a y  assume t h a t  H u l l l = l .  To s impl i fy  the  no ta t ions  we 

wri te  u* (x, t ) =  (K~u)(x ,  t), which exists  a lmos t  everywhere  as an  abso lu te ly  con- 

ve rgen t  in tegral .  F o r m  the  decompos i t ion  of u given b y  L e m m a  2.2 wi th  s = a .  

Then  we have  
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lu* (x, t)l <Iv* (~, t) l + ~lw,~* (~, t)l (3.3.8) 
1 

for all 

X •  

(x, t) such that  (I K I*(I v I + Z Iw~ I)) (z, t) < ~ ,  hence almost everywhere in 

In  virtue of (3.3.7) we have 

f T~(w?)c~x<Cllw,,ll. 
xr 

(3.3.9) 

(2.I.14) gives an estimate of the measure of the set O= UIk*,  

m (0 )< r ,~  l l l u l l ~  = ~'/(~. 

Restricting the integration in the left hand side of (3.3.9) to C0 and adding, we 

get if w * = Y l w , : l  

T ~ ( w * ) d x ~ C Y l l w ~ t l ~ < 3 C l l u l l ~ = 3 C ,  
1 

xr 

where the last inequality follows from (2.1.11). Hence the measure of the set of 

points in CO where T 2 (w*)>~la is at most 6 C/a.  Thus it follows that  T 2 (w*)~<�89 

except in a set of measure at most (~ + 6 C)/(r. 

Further, since v E L  2 and has compact support, we may apply (3.2.2) to v and 

obtain 

X ~ T ~ (v*) < C II v IIs < c (2 . . )*  I[ v H? < V5 c (2. o)*. 

Hence m {x; T 2 (v *) > ~ a} <~ 3 C 2 2n+2/(~. 

Since (3.3.8) shows that  the set where T 2 (u*)> a is contained in the union of the 

set where T z (v*) > ~ a and that  where T 2 (w*) > ~ o, the inequality (3.3.5) follows. This 

proves Theorem 3.6 and thus (3.3.3) follows from Marcinkiewicz' interpolation theo- 

rem when l < p < 2 .  

We next prove a theorem from which (3.3.4)follows for 1 <p~<2. Since Marcin- 

kiewicz' interpolation theorem has to be somewhat modified in order to be applicable 

here, we have to supply an extra argument after Theorem 3.7 in order to obtain 

<3.3.4). 

THEOREM 3.7. Let the assumptions o/ Theorem 3.5 be valid. Then there is a 

constant C 1 such that i/ U s  1 T 2 and has compact support in X •  T,  we have 

m {x; I(k~U) (x) l>  . }  < CI X ~ T ~ (U)/. ,  ~ > 0. (3.3.10) 
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Proof. The proof is parallel to t h a t  of Theorem 3.6 bu t  uses L e m m a  3.1 instead 

of L e m m a  2.2. Firs t  we shall prove  t ha t  if U (x, t ) =  0 when x ~ I ,  where I is a cube, 

and  if 

f u (x, t) = 0 (3.3.11) dx 

for a lmost  all t, then  

f IK+Utd CX'T 2 X (u). (3.3.12) 

xr  

To prove  this it  is sufficient to assume tha t  I is a cube with  centre a t  0, for (3.3.11) 

is invar ian t  for t ranslat ion.  In  view of (3.3.11) we can write 

( /~+ U ) ( x ) = f  U (y, t ) ( I s  t ) -  ~: (x, t ) )dydt / I t [  "~. 

Hence it  follows f rom Cauchy-Schwarz '  inequal i ty  t h a t  

T 

In tegra t ing  this inequal i ty  over  CI*  and  using (3.3.2)', we obta in  (3.3.12). 

In  proving (3.3.10) we assume t h a t  X 1 T 2 ( U ) =  1. To simplify the  notat ions  we 

write U* (x) = (/~-x-U) (x). F o r m  the decomposi t ion of U given b y  L e m m a  3.1 with 

s ~ a  and  q = 2 .  Then we have  

Iv* (x) l < I v* (x) l+  ~1 wk* (x) l (3.3.13) 
1 

for all x where ( ] K l ~ ( [ V l + ~ l W a l ) ) ( x ) < o o ,  hence a lmost  everywhere  in X. In  

vir tue of (3.3.12) we have  

1 i ~ <  (w~). (3 14) W~ d C X 1 T 2 $31 

XCtl~ 

(3.1.11) gives an es t imate  of the  measure  of the set  O= UIk*,  

m (0) < y a-~ X ~ T 2 (U) = r /a .  

Restr ic t ing the  in tegra t ion  in the left  hand  side of (3.3.14) to C 0  and adding, we 

get  if W * = 5 ] W k *  [ 

f = 
W* dx<~ 6 ' ~  X ~ T 2 (Wk) ~< 3 C X ~ T 2 (U) = 3 C, 

1 
xr o 
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where the last inequality follows from (3.1.8). Hence the measure of the set of points 

in ~ 0  where W*>~la is at  most 6 C / a .  Thus it follows tha t  W*=~[Wk*[<~-~ ex- 
1 

cept in a set of measure a t  most (y + 6 C)/a. 

Further, since V 6 X  2 T 2 and has compact support in X •  T, we may  apply (3.2.6) 

to V and obtain 

It V* I[2 <~ C X~ T~ ( V) <~ C (2" a X~ T2 ( V) )�89 <~ V3 C (2'~ a) ~. 

Hence m {x; [ V ' l >  ~ a} ~< 3 C 2 2 "+s/a. 

Since (3.3.13) shows tha t  the set where [ U * I > a  is contained in the union of the 

set where [ V ' I >  ~ a and tha t  where ~ I Wk*[> i s ,  the inequality (3.3.10) follows. 
1 

End o/ proo/ o/ Theorem 3.5. As we have already mentioned, the inequa]ity 

(3.3.4) for 1 < p  < 2 follows from Theorem 3.7 by  means of the usual proof of Marcin- 

kiewicz' interpolation theorem although the theorem itself does not seem applicable. 

Thus let U 6 X p T ~ and assume that  U has compact support in X • T. Take a number 

s > 0  and set U l (x, t )=  U (x, t) if (T ~ (U) ) (x )<s  and U l ( x , t ) = 0  otherwise. Define 

V~ (x, t) = V (x, t) - V~ (x, t). Then we h~ve [ U* [ < [ Vx* I + [ V2* I and hence 

IV* Iv?l>ls}+ {x; 

To estimate the terms in the right hand side we use (3.2.6) and (3.3.10) respectively. 

This gives 

m (s) < ( 2 / s )  2 C 2 ( X  ~ T ~ (U1)) ~ + ( 2 / s )  C1 X 1 T ~ (U2) = 

=(2/s) c2 f T (V)dx. 
Ts (U)~s  TI(U)~s 

With a change of the order of integrations we now obtain 

f , U ' , P d x = f m ( s ) d ( s ~ ) 4 ( 4 C i p / / ( 2 - p ) + 2 C l p / ( p - 1 ) ) f [ T i ( U ) [ P d x ,  
0 

which proves (3.3.3) for 1 < p <  2. This completes the proof of Theorem 3.5. 

Our results easily give "inverse estimates" also: 

T ~ O R E M  3.8. Let Ks, j= 1 . . . . .  J,  be kernels sati4ying the hypotheses o/ Theo- 

rem 3.5 and assume that 
] 

= ~ ( T  2 (I?.jl) 2 
1 
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is continuous and 4 0  when ~ # O. Then /or 1 < p < ~ there is a constant Cp such that 

i/ u E L  ~ and has compact support 

] 

II u T G II u I1 . (3.3.15) 
1 

P r o @  The last inequality follows from Theorem 3.5. Let Aj, be the bounded 

mapping of L ~ into X v T 2 obtained by closing the mapping u-+Kj-)eu defined for all 

u EL v with compact support. In  view of the remarks at  the beginning of this sec- 

tion, the adjoint A*v is the closure of the mapping U--->I~j-)eU defined for all U E X  p T 2 

with compact support. If  u E L  " ( ? L  2 we have A j p u = A j 2 u  and if U E X  p T  2f?X 2T 2 

we have A*p U =A~z U. Hence if u E C~ r it follows from (3.2.8) tha t  

] ] 

Z A*p A• u = Z A~2 Aj 2 u = ~-1 (u ~ u). (3.3.16) 
1 1 

Let T be the distribution in S' such tha t  T = - 1 .  Since it follows from (3.3.16) th'~t 

~EMp p, Corollary 2.2 implies tha t  ~-IEMpP, hence T ELp p. Let B be the closure in 

L v of the mapping S g v - ~ T ~ v .  The operator B is then bounded and Theorem 1.7 

gives 
] 

B ~ A*pAjp u = u .  
1 

Hence 
J J 

II u IIv ~< ltBIt ~ IIA* It X~ T 2 (Aj ,  u) <~ G ~ X ~ T 2 (K,~eu). 
1 1 

This proves (3.3.15) if u E C ~  and by approximation (3.3.15) follows for arbi trary u 

in L v with compact support. 

3.4. Examples o f  mixed L 2 est imates 

As a first example we shall s tudy the Marcinkiewicz' function (see Stein [15] and 

the references given there). Thus let ~ ( x ) b e  a (posi t ively)homogeneous function 

of degree 0, tha t  is, 

~ ( t x ) = ~ ( x ) ,  t>O,  

which for x # O  satisfies a Dini condition. By this we mean tha t  there is an in- 

creasing function ~ (t), t > O, such tha t  

if Ixl>~l, lyl~>l, 
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1 

| (~ (t) dt/t < ~ .  (3.4.1) and 

0 

The homogeneity of ~ gives that  when x and y are 4:0 

I gl (x) - gl (Y) I ~< (~ (I x - y I/min (I x [, ]y D)- (3.4.2) 

Let ~ be a positive constant and set T = (0, ~ ) .  For t E T we define 

K ( x ,  0 = ~ ( x ) l x l : - n t  - :  if Ixl<~t 
(3.4.3) 

=0  if Ix l> t .  

(~= 1 in Stein [15]). Then K satisfies the homogeneity condition (3.1.2). We have 

to examine if (3.2.3) holds. First note that  /~(~, t)=l~(~t, 1). Since /~(~, 1) is an 

analytic function of ~, it  is clear that  if T 2 (/~) is finite we must have /~ (0, 1)=0,  

that  is, 

f ~  (m) (3.4.4) deo ~ 0Q 

H : I  

Conversely, if this inequality is fulfilled it follows that  /~ (~, 1)/l~ [ is bounded, hence 

I/~ (~, t) I < C]~ I t. Thus the integral 

1 

f lI~ (~, t)12 dt/t (3.4.5) 

0 

is uniformly bounded when I~1= 1. To estimate the integral from 1 to + we have 

to use the Dini condition. Noting that  the Fourier transform of K(x§ 1 ) - K ( x ,  1) 

is (e 2"i<h'~> - 1)/~ (~, l) we obtain 

2]sina<h,~>]] /~<~,  1)]<~ f lK (x+h, 1) -K<x ,  1)]dx. 

Taking h = ~/2I~ I S and estimating the integral on the fight hand side separately for 

I xl <]h],  for ]h I <]x] < 1 - 1 h i  and for Ix[> 1 -  ]h] one easily obtains 

ls 1)I<c'(l~l-+ +l~l-:+~+~ (4l~l-+), I~[~> 1. 

The detailed verification may be left to the reader. In view of (3.4.1)it follows that  

the integral 

: / 
the integral 

l ~ ( ~ , t l l ~ d t / t  ~ I /~ ( t~ ,  l / l ~ d t / t  

1 1 
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is un i formly  convergent  when t~[ = 1. Hence  T 2 (/s is a continuous funct ion of 

for ~ # 0 .  

I t  remains  to prove  t ha t  (3.3.2) is valid. We shall do so taking for N the unit  

sphere and  for M the concentric sphere wi th  radius 2. Le t  z =  x - y .  Since Ix] ~> 2 

and  lyl<i we have  Izl>~lxl-~>~l[x}, hence I~(z)-~(x)l<~(2/Ixl). Assuming for 

example  t h a t  I z] ~<]x] we have  

:r Ixt 

0 Izl 

+ l a ( ~ ) l z [ = - " - ~ ( x ) [ x t = - " l  ~ j t-i-~=dt. 

I:cl 

Since I x l < l ~ l + l  the first integral in the right hand side is at most Izl -~ ~=, the 

second integral  is I xl-~=/2 ~. The mean  value theorem gives 

II z I=-" - lx l~ -"  I < t ~ - n l  ( I x l -  ~)=-" 

and combining this wi th  the  Dini condit ion for ~ we obta in  

(f )+ ]K(z,t)-K(x, t )12dt / t  <C(Ixl-"-++~(2/l~l)lxl-"). (3.4.6) 

0 

In  the same way  we also obta in  (3.4.6) if [xl<~lz]. F r o m  (3.4.1) it  follows again  

t h a t  the  r ight  hand  side of (3.4.6) is integrable over  the  set Ix] >/2. Hence  Theo- 

rems 3.5 and  3.8 give 

T H e O R e M  3.9. I /  K is defined by (3.4.3) where ~ satisfies the Din i  condition 

(3.4.1), (3.4.2) and also (3.4.4), then /or all u in L v, 1 < p <  c ~  with compact support 

i ~ T 2 ( K + u )  ~ C~ [I u []~. 

I] Kj  are a /inite number o/ kernels o/ this type and i/  there does not exist any real 

~ # 0  such that the integral o/ all the kernels Kj (x, t) over the plane <x, ~> = 1 vanishes 

/or all t, then /or l < p < c~ and the same u as above 

c / I I  ull.-< ~ x .  y ~ (K++u) < G II ull.. 
i 

We next  give an  appl icat ion containing es t imates  for the  Li t t lewood-Paley  and  

Lusin functions (see Stein [15]) as well as for similar funct ions connected with  elliptic 

par t ia l  differential equat ions other  t han  the Laplacean.  

Thus  let K be a homogeneous funct ion of degree - n  in X • T which is I-I61der con- 

t inuous of order ~r 0 < c r  in X •  except  a t  (0, 0). We also require t h a t  
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K ( x ,  0 ) = 0 ,  x # 0 .  (3.4.7) 

From the H51der cont inui ty  it  then follows tha t  I g (x, t) l ~< C It I ~ if I xl + ] t l  = 1, hence 

the homogenei ty  gives 

I g (x, t)l <-< Cl t l~/ (I t I  + lxl)  n+~ (3.4.8) 

in X •  This means in part icular  t ha t  K is integrable for fixed t and tha t  the 

Fourier  t ransform /~ (~, t) is continuous in X •  T. The homogenei ty  of K gives 

/~ (e ~, t) = / ~  (~, s t) s > 0. (3.4.9) 

If T 2 ( / ~ ) < ~  we must  thus  have /~(0, t ) = 0 ,  t ha t  is, 

f K (x, t e T .  (3.4.10) t) dx=O, 

We shall now show tha t  the conditions listed are sufficient to make  the results in 

section 3.3 applicable. First  note  tha t  if It I = 1 the est imate 

I~(~ ,  t)l = I/~ (~, t)-R(o, ,)1 le 2ni<z.~> - ll/(1-+- l xl)n+a dX ~ Cl ]~e] ~ 

follows if the integrals when Ix I < 1/I ~1 and when Ix I > 1/I ~l are estimated separately.  

Hence (3.4.9) gives for  all (~e, t ) E X •  

I t :  (~, t)l ~<cl(l~l Itl) ~. (3.4.~1) 

Further ,  since the Fourier  t ransform of K ( x + h ,  t ) - K ( x ,  t) with respect to x is 

(e 2~i<n'r - 1)/~ (~, t), we obtain 

2lsin ~<h, ~>l le( ,  )t<f IK , ) - ~  (x, t)[ dx. 

Now the HSlder  cont inui ty  gives tha t  

] K ( x + h , t ) - K ( x , t ) l < C l h ] ~ / ( [ x l +  tl) ~+=, I h l < l l t l .  (3 .4 .12)  

In  fact,  in view of the homogenei ty  it  is sufficient to prove this when I x l + l t ] =  1 

and then  i t  follows at  once from the HSlder  cont inui ty.  Hence we obtain if ltl = 1 

Isin ~r( h, ~>11-g(L t ) l<~Cilhl  ~, Ihl<~. 

Taking h = ~/2  I~l z we get  I/~. (~, t)l ~< C a I~ 1-~ if I~1 >~ 1, hence 

I t : ($ ,  t ) l<v~l t l -~ls  -~ if Itl I~1~>1. (3.4.13) 
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The es t imates  (3.4.11) and  (3.4.13) toge ther  show t h a t  f [/~ ($, t)l 2 d t / l t l  m is uni-  

fo rmly  convergent  when I~] = 1. Hence  T ~ (/~) is bounded  and  continuous,  and  since 

(3.3.2) follows f rom (3.4.8) we can thus  a p p l y  Theorems 3.5 and  3.8 and  ob ta in  

THEOREM 3.10. I /  K is HSlder continuous in X •  except at (0, O) and satis- 

ties (3.4.7), (3.4.10) then /or all u in L p, 1 < p <  ~ ,  with compact support 

X ~ T 2 ( K ~ n )  < C~ I] u lip. 

I /  Kj  are a /inite number o/ kernels o/ this type and i/  there does not exist any real 

~: 0 such that the integral o/ all the kernel Kj  (x, t) over the plane (x,  ~) = 1 vanishes 

/or all t, we have /or the same u 

C~IHu]], ~ Z X ' T 2  (Kj-~u) <~ CpHuH,. 
i 

A pa r t i cu l a r  case in which these  condi t ions  are  fulf i l led is ob ta ined  in  the  fol- 

lowing way.  Let  K ( x ,  t), t C T = ( 0 ,  ~ ) ,  be a homogeneous  func t ion  of degree - n  

wi th  HSlder  cont inuous  f i rs t  de r iva t ives  in X x T  except  a t  (0, 0), which is in tegrab le  

and  has a non vanish ing  in tegra l  for some t. Then  the kernels  Kj  (x, t) = t~ K (x, t ) /~ xj 

sa t i s fy  the  condi t ions  in the  theorem.  The ver i f ica t ion  of th is  m a y  be lef t  to  the  

reader .  Tak ing  K to be the  Poisson kernel  P we ob t a in  es t imates  of the  Li t t l ewood-  

Pa l ey  funct ion.  The  es t imates  for the  Lus in  funct ion follow if we tuke  K ( x ,  t) 

= P ( x ~ -  t~ . . . . .  x ~ -  t~, t~+~) and  for T the  cone It I [ -~. . .  ~- [t~ [ ~< C t~+l, where C is 

a cons tan t .  
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