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Abstract  

Data on collisions of birds with high voltage electric power lines are scarce and are often 

gathered without protocols for the correction of carcass disappearance. There is actually growing 

awareness that it is important to accomplish carcass removal trials in order to develop correction 

factors for producing adjusted estimates of mortality due to collisions. In this study, we provided 

for the first time raw counts and estimates of bird collisions across seven Italian areas that 

largely differ in their habitats. We also carried out carcass removal trials to compute the rate of 

carcass disappearance and produce better estimates of collision events and of optimal time 

intervals of carcass searches. Results of one-year monitoring showed a general low frequency of 

birds collided with the power lines. Carcass removal trials showed effects of carcass size and 

season on the carcass disappearance, which varied largely among the study areas. In four areas 

both small and large carcasses had more than 50% probability to be removed within three to five 

days from their distribution. Given the high variation among study areas, we suggest that 

estimates of carcass persistence and optimal time intervals should be conducted concurrently for 

each new study site.  

 

 

Keywords: carcass disappearance; collision; high voltage power lines; mortality estimate, 

optimal search interval.  
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Introduction  

Fatal collisions of birds with high voltage electric power lines may represent a threat for bird 

conservation, particularly where lines cross important corridors for migrating birds or resident 

species (Ferrer et al., 1991; Ferrer & Negro, 1992; Alonso et al., 1994; Bevanger, 1998; Janss & 

Ferrer, 1998, 2000; Bevanger & Brøseth, 2001). It is therefore pivotal to understand the extent to 

which power lines represent a collision risk for birds in order to undertake mitigation actions for 

reducing such a risk (Ferrer et al., 1991; Bevanger, 1999; Haas et al., 2005; Birdlife 

International, 2007; Prinsen et al., 2011). This is very relevant considering that the total length of 

transmission and distribution lines in the world is dramatically increasing (ABS, 2011). 

 A first step to evaluate the impact of power lines on birds is to count the carcasses of 

birds found along the lines and to identify which species are more vulnerable to collision. 

However, carcasses of birds may be difficult to find by the observers (e.g., due to lack of 

professional experience or dense vegetation cover, removal by scavengers). Therefore, the initial 

numbers (raw counts) of birds found along the power lines should be multiplied for appropriate 

correction factors in order to provide unbiased estimates of collision (Lehman et al., 2007). In 

addition, the interval between searches can also influence the number of carcasses recovered, as 

a longer interval might increase the likelihood for a carcass to be removed by scavengers 

(Kostecke et al., 2001) or to disappear due to decomposition (Ford, 2006). Other factors, like the 

size of the carcasses, the vegetation density and the weather conditions may also influence the 

search success (Ferrer et al., 1991; Selva et al., 2005; Prosser et al., 2008; Ponce et al., 2010). If 

not adequately considered, all these factors may contribute to bias the estimates of bird 

mortality. The definition of an appropriate protocol for carcass search can help to provide less 

biased estimates and would be, therefore, of particular importance. Few studies have analyzed 
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the factors that affect the success of carcass search along the electric power lines and suggested 

some approaches to produce collision estimates (Huso, 2011; Korner-Nievergelt et al., 2011; 

Bispo et al., 2013).  

 In this study, we monitored for one year bird collisions with high voltage power lines in 

seven Italian areas, six of which are classified as Important Bird and Biodiversity Areas 

(http://www.birdlife.org/). Concomitantly, in each study area, we carried out experimental trials 

at two different times of the year (spring and autumn) to assess the timing and impact of carcass 

removal by scavengers in order to use such information for producing adjusted estimates of 

collision. We distributed quail and chicken carcasses either along the power lines or below the 

pylons to test whether there were differences in the rate of removal due to size and location 

along the lines. Using the results of the carcass removal trials we modeled the rate of 

disappearance in relation to the search interval (days) to find out the optimal search interval for 

each of our study areas. 

 

Materials and methods 

Study areas and carcass search  

The study was carried out from April 2009 to April 2010 in Italy. The study included seven areas 

(Fig. 1) representative of three different environments: open/agricultural area, wetland area, 

woodland area. These study areas were chosen because they have been classified as Important 

Bird Areas for the conservation of birds. For example, the Messina strait is a renowned 

migratory route for birds of prey (Corso 2001; Agostini et al. 2007). Given that no detailed 

studies have been carried out in Italy to determine collision of birds with high-voltage power 

lines, these study areas were also chosen in order to cover a latitudinal gradient along the whole 
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peninsula from North to South. The power lines we selected were those in environments 

representative of the habitats most commonly crossed by power lines in our country (Rubolini et 

al. 2007). Power lines usually run away from densely populated areas and can cross cultivated 

lands, mountains and other types of environments which are suitable for many bird species. 

Given the paucity of studies on collision in Italy, we could not know a priori whether areas 

differed in the risk of collision. Thus, all the areas were considered initially to have same 

potential risk of collision for birds and however, since very few studies have been carried out to 

assess collision risk and this has never been related to different habitats, the seven lines we 

considered were new for this type of investigations and a same protocol of monitoring was 

applied. High voltage power lines included 132 kV to 380 kV running in single or double lines 

with wires without diverters (Table 1) and in each area about 4-12 km were monitored. Overall, 

the monitoring program covered a total of around 79.3 km of power lines.  

 In each study area, two observers were in charge to monitor the site at different time 

intervals (3, 7, 15 and 30 days). They walked in parallel, at slow speed, separately on the two 

sides of the power line at a distance of about 25 m from the vertical projection of the line on the 

ground and 50 m from each other, so as to cover a corridor of 100-150 m along the power lines. 

They searched for either carcasses or remains (feathers, bones and reimander of body) along the 

lines and at the base of the pylons. All the remains were photographed (when possible) and kept 

in a plastic bag for the identification of species, age, sex and for subsequent analyses. Carcasses 

were then removed to avoid recounting in subsequent visits. Birds were classified as collided 

when fresh remains presented fractures of the bones, skin abrasions and ecchymoses with losses 

of feathers. Fresh remains presenting clear signs of predation by peregrines were not considered 

as collided. The efficiency of the operators was not considered in this study because all operators 
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were experienced field ornithologists and we assumed they had similar abilities to find carcasses 

(Ponce et al. 2010).  

 

Carcass removal trials 

In order to assess the rate of carcass disappearance, carcass removal trials were carried out in 

each study area in two distinct periods, autumn (September-October) and spring (April-May). 

For each trial, common quail (150-200 g, small size) and chicken (800-1200 g, large size) 

carcasses were placed along the power lines, spaced about 200 meters from each other. Chickens 

with brown colour (i.e., similar to quail plumage colour) were used in order to limit any 

influence of plumage colour on detection probability. Distribution of small and large carcasses 

was balanced between the base of pylons and along the span between two pylons. Each line was 

then surveyed six times over a 30-day period (i.e. on day 1, 3, 5, 7, 15 and 30 since the 

placement of the carcass). Due to unavailability of carcasses, in the Gran Paradiso National Park 

it was not possible to perform the autumn survey for small carcasses and only data for large-size 

carcasses were available for the autumn survey in Tolfa mountains. 

 

Statistical analyses 

To determine which factors influenced carcass disappearance in our trials, we used generalized 

linear models with gamma distribution and log link function in SPSS Version 23. A backward 

removal (critical P-value at 0.05) of non-significant interactions was used. As factors, we 

considered the study area, the carcass size (small vs. large), the season (autumn vs. summer), the 

carcass location (span vs. pylon) and the two- and three-way interactions. The effect of carcass 

location (span vs. pylon) was tested in six out of the seven areas and, given the small sample 



 7 

size, it was not tested if there were season effects. In each model, as response variable, we used 

the number of days of carcass persistence. For example, if the carcass was present on day 1 and 

3 but not on day 5, we considered a persistence period of 3 days for that carcass, which makes 

our estimates conservative. Given that data on carcass disappearance were not always available 

for all the combinations of factors, various analyses were performed on subsets of the whole 

sample (see Table 4 for both full and reduced models). For the most complete subset of data, 

additional models were run and compared using the Akaike’s information criterion (AIC) for 

model building. The Akaike weight of each model was also calculated. 

 The Cox-Mantel test with censoring indicator was used to compare the rate of carcass 

disappearance between the two size classes within each study area, separately. Carcasses that 

disappeared or were still present at day 30 were coded as 0 and 1, respectively. Trends of 

disappearance were estimated using the Kaplan–Meier method using a web-based application 

available at http://internal.bio3.pt/demo/cp.htm. We used this same application to calculate the 

scavenger removal correction factor (Collet, 2007; Bispo et al., 2013), which is derived from the 

average carcass persistence probabilities calculated for the different time intervals of searches in 

the carcass disappearance trials (1, 3, 5, 7, 15 and 30 days). The Akaike's Information Criterion 

value was used to assess which model better fitted our data for each study area, separately. The 

scavenging removal correction factor was calculated (Table 6) according to Bispo et al. (2013) 

as: 

0

1
( )

I

vk k
r S t dt

I
= ∫      (1) 

where I is the time interval between two consecutive searches and Sk(t) is the parametric survivor 

function for the k-th condition. Rvk expresses the average carcass persistence probability at the v-
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th search for the k-th condition defined by the covariate levels or combination of levels (Bispo et 

al., 2013). This factor assumes that the fatalities caused by collisions occur with the same 

probability at any time t between two consecutive searches for animal carcasses, i.e., at any time 

t in the interval I. The scavenger removal correction factor was calculated using the log-normal 

(Strait of Messina, Carso, Mezzano, Stelvio National Park) or the log-logistic (Montepulciano, 

Tolfa mountains, Gran Paradiso National Park) models because they had a lower Akaike's 

Information Criterion value than either the exponential or the Weibull models.  

 In order to calculate an optimal search interval, for each study area we developed a data-

driven regression curve fitted to the set of carcass removals, with days as independent variable 

and the percentage of carcass removal (averaged on the two sampling periods) as dependent 

variable: 

percentage of carcass removal (days)Y f= =  (2) 

where f could belong to any type (linear, polynomial, exponential, power law, sigmoid etc.) of 

regression model. For each study area, the optimal day for the completion of carcass searches 

was chosen as the one after which the daily removal was less than 2.5% of the carcasses because 

2.5% represents one carcass out of the 40 carcasses used for each study area. 

 

Results 

Monitoring of bird remains  

Overall 48 bird carcasses were found during the one-year monitoring in five study areas, while 

no remains were found in Stelvio National Park and Tolfa mountains. In these five areas, 9 

carcasses were relatively fresh and 39 were deteriorated but still good enough to enable us to 
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recognise the species and carry out an autopsy. Nine carcasses were found below pylons, while 

39 along the spans between two pylons. All the remains found below the pylons 

(Chroicocephalus ridibundus, Columba livia var. domestica, Vanellus vanellus) showed clear 

signs of predation by peregrine falcons. Three carcasses found below the lines were also 

considered not collided (two were shot and one was the remain of a fox meal). Based on the 36 

birds ascertained, the raw number of collided birds per km of power line ranged from 0.06 

(Messina Strait) to 2.68 (Mezzano). The number of carcasses found was not correlated with the 

length of the line monitored (rs = 0.20, P = 0.67). The most frequent species were Phasianus 

colchicus (22.2%) and Anas platyrhynchos (11.1%) (Table 2).  

 

Carcass removal trials 

Table 3 summarizes the days of persistence of carcasses following their distribution. A first 

analysis showed that the disappearance of carcasses did not differ between span and pylon, but it 

differed significantly among areas (Table 4). A second analysis considering five study areas 

(excluding Gran Paradiso and Stelvio National Parks, where fewer carcasses were deployed), 

showed that i) the disappearance of carcasses differed among areas; ii) the disappearance of 

small and large carcasses did not differ (but in Mezzano larger carcasses persisted longer); iii) 

the disappearance differed between seasons (Table 4). A third analysis confirmed that the effect 

of size on the disappearance of carcasses differed across the areas (Table 4; Fig. 2). Finally, the 

five highest-ranking models computed using the AIC weight on the most complete subset of data 

supported outcomes of the previous models (Table 5). 

 

Rate of carcass disappearance 
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Although there was a tendency for smaller carcasses to be removed by scavengers quicker than 

the larger ones, the temporal trend of disappearance differed between smaller and larger 

carcasses only in one (Mezzano, Cox-Mantel test P<0.001) of the seven study areas (Fig. 2). In 

Mezzano, 60% of small carcasses disappeared within three days, while around 70% of large 

carcasses persisted until 30 days after the start of the trial. In some areas, both small and large 

carcasses had more than 50% probability to persist until day 5 (Table 6). In four areas, more than 

85% of carcasses disappeared within one month. 

 

Optimal search intervals 

The optimal search interval clustered in two different groups of sampling areas. In a first group 

(Strait of Messina, Tolfa mountains, Mezzano, Gran Paradiso National Park, Montepulciano 

Lake) the search interval resulted equal to 7-8 days, after which less than one daily carcass 

removal could be expected on average for the successive days. In a second group (Stelvio 

National Park and Carso Triestino) the search interval was 13-14 days, after which less than one 

daily carcass removal could be expected on average for the successive days (see Supplementary 

Material). In order to recover 50% of carcasses, the estimated search interval was 3 days for the 

Strait of Messina, Tolfa mountains, Gran Paradiso National Park and Montepulciano Lake. 

  

Discussion 

Our study assessed for the first time in Italy the collision of birds with high voltage power lines. 

Studies on the interactions between birds and power lines have frequently considered the effects 

of either electrocution or both electrocution and collision on bird mortality, while little attention 

has been devoted to separate their effects. Because of the wider distance between the wires, high 
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voltage power lines are not responsible for electrocution, which is mostly caused by medium and 

low voltage power lines (Janss & Ferrer, 2001, Lehman et al., 2007; Angelov et al., 2013). Our 

work is also the first that sought to estimate the rate of collision in a range of environments 

(open/agricultural area, wetland area, woodland area) using a same methodological approach and 

to quantify correction factors and optimal search intervals.  

 There was a general low frequency of birds collided with the power lines (0.06 to 2.68 

per km) if compared with other European studies. Ferrer et al. (1991) estimated that about 1200 

raptors die every year along the 300 km of power lines within and around the Doñana National 

Park. In southwestern Spain, Janss & Ferrer (2000) estimated mortality rates due to collision of 

1.58 and 2.36/km/year for great bustards (Otis tarda) and common cranes (Grus grus), 

respectively. Hartman et al. (2010) provided annual estimates of 160 birds collided per km of 

power line in the Netherlands. Ponce et al. (2010) reported about 8 collisions per km of line in 

central Spain. In our study, most carcasses were found in Mezzano, an area characterised by 

extensive agricultural land close to extensive wetlands (Comacchio lagoon). The highest 

occurrence of carcasses found in Mezzano does not appear to be due to the local importance of 

the site for birds. All the study areas (with the exception of Tolfa) are actually classified as 

Important Bird and Biodiversity Areas by BirdLife International (http://www.birdlife.org/). In 

Mezzano, we found carcasses belonging to species that occur in wetlands, like ducks or gulls. In 

our carcass removal trials, the time of carcass persistence in Mezzano was the longest of the 

seven study areas. However, this was mostly evident for large carcasses, because the time of 

disappearance of small carcasses was similar to that of other study areas. This might have been 

caused by a lower occurrence of mammalian scavengers in Mezzano than that in other areas (for 

example wild boar in Toso et al., 1999; see also Selva et al., 2005). Other factors might also 
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explain the higher number of carcasses found in Mezzano. Many bird species occur in large 

numbers in wetlands close to Mezzano especially during the migratory seasons (autumn and 

spring). All the remains found in Mezzano are from species considered vulnerable to collision 

(Pirovano & Cocchi, 2008) and they are of large body size and have low flight manoeuvrability, 

which might make them more susceptible to collide (Bevanger, 1998). It has been suggested that 

wetlands are sites of high rates of collision (Santolini, 2007), with annual estimates of 160 birds 

collided per km of power line in the Dutch wetlands (Hartman et al., 2010).  

 Carcass removal trails carried out in different habitats showed that the removal rates may 

vary greatly across our study areas, with 2 to 76% of carcasses disappearing after 24 hours 

(Prosser et al., 2008). Five carcass disappearance trials carried out along electric power lines in 

farmlands showed that smaller birds disappeared at a higher rate than larger ones and that the 

carcass removal rates differed among the five study sites (Ponce et al., 2010). The authors also 

highlighted the importance of carrying out similar trials in areas with different climatic 

conditions or vegetation in order to develop correction factors for mortality estimates for more 

general application in various situations. 

 The carcass size had a significant effect on the rate of disappearance only in Mezzano, 

where large carcasses persisted longer than small ones. This can be explained by the differential 

predation of avian and mammalian predators and by the fact that in such open and agricultural 

area avian predators (crows, gulls) can easily spot and remove small size remains under the lines. 

Hence, the carcass size does not appear to be determinant in most of our study areas for the 

estimations of bird collisions. However, such a conclusion cannot be generalised to all areas 

because previous studies found that small birds were removed faster than large ones (Ponce et 

al., 2010). 
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 Our analyses showed a significant effect of season. We expected an overall stronger 

disappearance in summer because the high temperatures and presence of necrophagous insects 

might accelerate the carcass decomposition. However, this was not the case in all areas. During 

summer, the removal rate was lower in the strait of Messina, Stelvio National Park and 

Mezzano, while it was higher in the Tolfa mountains. It might be that the effect of season was 

most likely dependent on the activity patterns of scavengers in a particular site rather than on 

ambient temperature or other factors. For example, Prosser et al. (2008) found a higher 

disappearance rate of carcasses in spring than in winter, while Ponce et al. (2010) did not find 

any seasonal difference. 

 Another result of our trials is that the placement of the carcass just below the pylon or on 

the ground between two consecutive pylons did not influence the rate of removal. Similarly, 

Prosser et al. (2008) found that the rate of carcass removal did not differ between field-centre 

and field-edge in arable farmlands. 

 The estimation of scavenger removal correction factors showed that in all areas but one 

both small and large carcasses had less than 50% probability to persist after day 5, while the 

likelihood of finding a carcass after 30 days was low, with four of the seven areas showing a 

persistence lower than 20%. Our analyses also suggested that the log-normal and the log-logistic 

models for the calculation of the scavenger removal correction factor performed better than the 

exponential or the Weibull models. Percentages of persistence of carcasses estimated by these 

models may be then used to calculate the number of birds that we would expect to find for a 

certain power line. Four out of seven areas presented an optimal search interval of carcass 

removal equal to seven days, while two areas of about two weeks. The Mezzano study area was 

an exception because even after 30 days the carcass removal was not completed. We argue that 
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this could be due to the pression caused by human activities for agricultural purposes that are 

likely to lower the number of terrestrial scavengers and, at the same time, to disturb the foraging 

activities of bird scavengers. The rates of carcass disappearance in our study areas are higher 

compared to previous studies carried out in other countries. In Spain, 71.5% of the carcasses 

distributed under the power lines disappeared after 28 days (Ponce et al., 2010). Similarly to our 

study, Ponce et al. (2010) found higher rate of removal in the first few days following the start of 

the survey. A review of many studies that measured carrion removal across various regions and 

climates found that on average 75% of available carcasses were removed by vertebrate 

scavengers, however, the durations of these studies varied from 24 hours to several months 

(DeVault et al., 2003). 

   

Conclusions 

Our study provided the first estimates of bird collisions across Italian areas that largely differed 

in terms of habitat. There was a general low frequency of birds collided with the power lines. 

The highest number of birds collided was found below power lines crossing wetlands 

(Mezzano). Our carcass removal trials showed that the effect of carcass size and season on the 

carcass disappearance were contingent on the study area, implying that the definition of general 

protocols of carcass search may be unfeasible. This conclusion was also supported by estimates 

of average carcass persistence probabilities, which largely differed among study areas. With the 

exception of Mezzano, our results suggest that in order to recover 50% of the carcasses in our 

study areas the surveys might be carried out within the first three days for four areas out of seven 

(Strait of Messina, Tolfa mountains, Gran Paradiso National Park and Montepulciano) while at 

least within eight days for two sites (Carso and Stelvio National Park). Many factors (e.g., 
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vegetation structure, density of scavengers, season) contribute to determine this high variation 

among areas in carcass disappearance and optimal search intervals. Thus, the experiments 

performed in this, as well as previous studies, should be repeated for each new study area and be 

conducted concurrently to the carcass-search study. Although pylons and power lines may play 

locally a positive role for the avian community in intensive farmlands (Tryjanowski et al., 2014), 

results of our work and of similar studies carried out in Europe show that they can also cause 

fatalities to many birds, including species of conservation value. Results of our work and of 

similar studies will therefore provide relevant information for power companies that will have to 

modify the structure of their high voltage power lines in order to meet the guidelines of the 

Budapest Declaration for the mitigation of bird mortality on power lines in Europe. 
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 Tables 

 

Table 1. Environmental characteristics and power line type of the seven study areas. DT = 

“doppia terna”, which indicates power lines carrying two lines; ST = “singola terna”, which 

indicates power lines carrying only one line. IBBA = Important Bird and Biodiversity Area. 

 
Study area Environment IBBA Power line type Power line 

length (km) 

Strait of Messina Mediterranean fragmented 

woodlands 

yes 380 KV in DT 15.9 

Tolfa mountains Mediterranean fragmented 

woodlands 

no 380 kV in DT and ST 9.6 

Mezzano Agricultural lands and wetlands yes 380 kV in DT 9.7 

Montepulciano Lake Agricultural lands and wetlands yes 132 kV in ST 7.5 

Gran Paradiso 

National Park 

Alpine mountain open habitats yes 220 kV in ST and 380 

kV in DT 

23.3 

Stelvio National Park Alpine mountain open habitats yes 132 kV in ST 4.8 

Carso Triestino 

mountains 

Mountain open habitats yes 220 kV in ST and 380 

kV in DT 

8.5 
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Table 2. List of carcasses found below the power lines (n = sample size).  

 

 
Study area Species n 

Carso Coccothraustes coccothraustes 1 

 Scolopax rusticola 1 

Gran Paradiso National Park  Columba palumbus 1 

 Corvus corone 1 

Mezzano Acrocephalus scirpaceus 1 

 Anas platyrhynchos 4 

 Ardea cinerea 1 

 Egretta garzetta 3 

 Fulica atra 2 

 Gallinula chloropus 2 

 Larus michahellis 1 

 Larus ridibundus 1 

 Phalacrocorax carbo 1 

 Phasianus colchicus 8 

 Streptopelia decaocto 1 

 Tachybaptus ruficollis 1 

Montepulciano Corvus monedula 1 

 Erithacus rubecula 1 

 Nycticorax nycticorax 2 

 Sturnus vulgaris 1 

Messina Strait Coturnix coturnix 1 

 Total   36 
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Table 3. Descriptive statistics of carcass persistence (expressed in days since their placement 

below the line) along the power lines. n = sample size, s.d. = standard deviation, s.e. = standard 

error, C.I. = 95% confidence interval, L = large, S = small.  
 

 
Study Area Carcass 

Size 

Season n mean s.d. s.e. CI -95.00 CI 

+95.00 

Strait of 

Messina 
L summer 10 3.20 2.20 0.70 1.63 4.77 

 L autumn 10 1.40 0.84 0.27 0.80 2.00 

 S summer 10 3.80 4.64 1.47 0.48 7.12 

 S autumn 10 1.60 0.97 0.31 0.91 2.29 

Stelvio 

National Park 
L summer 12 10.83 10.28 2.97 4.30 17.36 

 L autumn 7 9.86 5.01 1.90 5.22 14.49 

 S summer 12 12.67 9.82 2.83 6.43 18.91 

 S autumn 6 9.67 6.02 2.46 3.35 15.99 

Carso 

Triestino 
L summer 12 11.33 13.87 4.00 2.52 20.14 

 L autumn 12 11.17 5.69 1.64 7.55 14.78 

 S summer 12 7.83 10.52 3.04 1.15 14.52 

 S autumn 12 13.33 3.89 1.12 10.86 15.81 

Mezzano L summer 10 25.80 9.30 2.94 19.15 32.45 

 L autumn 10 20.60 12.58 3.98 11.60 29.60 

 S summer 10 10.50 9.08 2.87 4.00 17.00 

 S autumn 10 6.90 8.95 2.83 0.50 13.30 

Montepulciano 

Lake 
L summer 10 7.00 4.62 1.46 3.70 10.30 

 L autumn 10 6.10 8.49 2.69 0.03 12.17 

 S summer 10 5.40 3.86 1.22 2.64 8.16 

 S autumn 9 6.00 9.00 3.00 -0.92 12.92 

Tolfa 

mountains 
L summer 10 1.40 0.84 0.27 0.80 2.00 

 L autumn 2 3.00 0.00 0.00 3.00 3.00 

 S summer 10 1.20 0.63 0.20 0.75 1.65 

 S autumn 13 5.08 7.49 2.08 0.55 9.60 

Gran Paradiso 

National Park 
L summer 12 3.67 1.56 0.45 2.68 4.66 

 L autumn 24 6.29 6.15 1.25 3.70 8.89 

 S summer 12 4.67 2.06 0.59 3.36 5.98 

 S autumn 0      
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Table 4. Statistical outcomes of full models (i.e., all factors included) and reduced models (i.e., 

after removal for non-significant interactions). d.f. = degrees of freedom. 
 

 

 

 

Full 

Model 

  Reduced 

Model 

  

 df Wald P df Wald P 

MODEL 1       

Study Area 5 212.5 <0.001 5 213.4 <0.001 

Carcass Location 1 1.2 0.27 1 0.01 0.91 

Study Area × Carcass Location 5 4.9 0.43    

       

MODEL 2       

Study Area 5 159.0 <0.001 5 152.9 <0.001 

Carcass Size 1 1.9 0.17 1 1.5 0.23 

Season 1 1.5 0.23 1 0.9 0.35 

Study Area × Carcass Size 5 16.6 0.005 5 16.7 0.005 

Study Area × Season 5 19.2 0.002 5 19.2 0.002 

Carcass Size × Season 1 0.1 0.72    

Study Area × Carcass Size × 

Season 
4 1.9 0.76 

   

       

MODEL 3       

Study Area 6 147.0 <0.001 6 147.0 <0.001 

Carcass Size 1 3.6 0.06 1 3.6 0.06 

Study Area × Carcass Size 6 14.0 0.03 6 14.0 0.03 
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Table 5. The five highest-ranking models computed using the Akaike Information Criterion on 

the most complete subset of data. ΔAIC = difference between AIC of the best model and that of 

each other model; a Δ < 2 indicates substantial support for the model. 

 

Model ΔAIC Model weight 

study area + carcass size + season + study area 

× carcass size + study area × season 

0 0.628 

study area + carcass size + study area × carcass 

size  

2.92 0.145 

study area + carcass size + study area × carcass 

size 

3.95 0.087 

study area + carcass size + season + study area 

× season 

4.94 0.053 

study area + season + study area × season 5.61 0.038 
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Table 6. Scavenger removal correction factors for large and small carcasses across the seven 

study areas. The scavenger removal correction factor was calculated using the log-normal (Strait 

of Messina, Carso, Mezzano, Stelvio) or the log-logistic (Montepulciano, Tolfa mountains, Gran 

Paradiso) model because they had a lower Akaike's Information Criterion value (i.e., better 

fitting) than the exponential or the Weibull models 

 

 

Day 

Carcass 

Size 

Messina 

Strait Carso Mezzano Montepulciano 

Tolfa 

mountains 

Stelvio 

National 

park 

Gran 

Paradiso 

National 

Park 

1 Large 0.78 0.93 1.00 0.98 0.98 0.99 0.99 

1 Small 0.77 0.94 0.92 0.97 0.98 0.99 0.99 

3 Large 0.49 0.83 0.99 0.87 0.79 0.93 0.86 

3 Small 0.48 0.85 0.81 0.82 0.78 0.95 0.89 

5 Large 0.34 0.75 0.97 0.72 0.57 0.85 0.67 

5 Small 0.33 0.77 0.72 0.64 0.56 0.88 0.71 

7 Large 0.26 0.68 0.96 0.58 0.42 0.78 0.53 

7 Small 0.25 0.70 0.65 0.51 0.42 0.81 0.56 

15 Large 0.12 0.50 0.89 0.31 0.21 0.55 0.26 

15 Small 0.12 0.53 0.47 0.27 0.20 0.59 0.29 

30 Large 0.06 0.34 0.78 0.16 0.10 0.33 0.13 

30 Small 0.06 0.36 0.32 0.14 0.10 0.37 0.14 
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Figure captions 

Figure 1. Map showing the seven study areas in Italy. 

Figure 2. Trends of disappearance estimated using the Kaplan–Meier method for each study 

area, separately for large and small carcasses. 



 27 

 

 

 

Figure 1 



 28 

Carso Triestino Messina strait 

Mezzano Montepulciano lake 

Stelvio Tolfa 

Gran Paradiso 

0
 

0
.2

 
0

.4
 

0
.6

 
0

.8
 

1
.0

 
0

 
0

.2
 

0
.4

 
0

.6
 

0
.8

 
1

.0
 

0
 

0
.2

 
0

.4
 

0
.6

 
0

.8
 

1
.0

 
0

 
0

.2
 

0
.4

 
0

.6
 

0
.8

 
1

.0
 

0 5 10 15 20 25 30 

0 5 10 15 20 25 30 

Number of days 

Number of days 

Ŝ
(t

) 
Ŝ

(t
) 

Ŝ
(t

) 
Ŝ

(t
) 

 

Figure 2 



 29 

Supplementary Material 

 

 

Estimates of avian collision with power lines and carcass disappearance 

across differing environments 

 

D. Costantini
1,2,*

, M. Gustin
3
, A. Ferrarini

3
 & G. Dell’Omo

4
  

 

1 Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium  

2 Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, 

Glasgow, UK 

3 Lipu - BirdLife International, Conservation Department, via Udine 3/a, 43121 Parma, Italy  

4 Ornis italica, Piazza Crati 15, 00199 Rome, Italy 

 

 

Correspondence 

D. Costantini, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, 

Belgium; Tel: 0032(0)32652285; Email: davidcostantini@libero.it  



 30 

 

Figure S1. Strait of Messina. On the left: model of carcass removal (red line) fitted to the 

available data (blue points), with days on X-axis and percentage of carcass removal on Y-axis. 

On the right: daily percentages of carcass removal expected by the fitted model. In blue, the day 

after which the expected daily removal is less than 1 out of the 40 (i.e., <2.5%) carcasses used 

for each study area. 
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Figure S2. Tolfa mountains. On the left: model of carcass removal (red line) fitted to the 

available data (blue points), with days on X-axis and percentage of carcass removal on Y-axis. 

On the right: daily percentages of carcass removal expected by the fitted model. In blue, the day 

after which the expected daily removal is less than 1 out of the 40 (i.e., <2.5%) carcasses used 

for each study area. 
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Figure S3. Mezzano. On the left: model of carcass removal (red line) fitted to the available data 

(blue points), with days on X-axis and percentage of carcass removal on Y-axis. On the right: 

daily percentages of carcass removal expected by the fitted model. In blue, the day after which 

the expected daily removal is less than 1 out of the 40 (i.e., <2.5%) carcasses used for each study 

area. 
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Figure S4. Gran Paradiso national park. On the left: model of carcass removal (red line) fitted to 

the available data (blue points), with days on X-axis and percentage of carcass removal on Y-

axis. On the right: daily percentages of carcass removal expected by the fitted model. In blue, the 

day after which the expected daily removal is less than 1 out of the 40 (i.e., <2.5%) carcasses 

used for each study area. 
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Figure S5. Montepulciano. On the left: model of carcass removal (red line) fitted to the available 

data (blue points), with days on X-axis and percentage of carcass removal on Y-axis. On the 

right: daily percentages of carcass removal expected by the fitted model. In blue, the day after 

which the expected daily removal is less than 1 out of the 40 (i.e., <2.5%) carcasses used for 

each study area. 
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Figure S6. Stelvio national park. On the left: model of carcass removal (red line) fitted to the 

available data (blue points), with days on X-axis and percentage of carcass removal on Y-axis. 

On the right: daily percentages of carcass removal expected by the fitted model. In blue, the day 

after which the expected daily removal is less than 1 out of the 40 (i.e., <2.5%) carcasses used 

for each study area. 
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Figure S7. Carso Triestino. On the left: model of carcass removal (red line) fitted to the available 

data (blue points), with days on X-axis and percentage of carcass removal on Y-axis. On the 

right: daily percentages of carcass removal expected by the fitted model. In blue, the day after 

which the expected daily removal is less than 1 out of the 40 (i.e., <2.5%) carcasses used for 

each study area. 

 


