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Estimates of covariance functions for growth from birth to
630 days of age in Nelore cattle1

L. G. Albuquerque2,3 and K. Meyer

Animal Genetics and Breeding Unit4, University of New England, Armidale NSW 2351, Australia

ABSTRACT: Weight records of Brazilian Nelore cat-

tle, from birth to 630 d of age, recorded every 3 mo,

were analyzed using random regression models. Inde-

pendent variables were Legendre polynomials of age at

recording. The model of analysis included contemporary

groups as fixed effects and age of dam as a linear and

quadratic covariable. Mean trends were modeled

through a cubic regression on orthogonal polynomials

of age. Up to four sets of random regression coefficients

were fitted for animals’ direct and maternal, additive

genetic, and permanent environmental effects.

Changes in measurement error variances with age were

modeled through a variance function. Orders of polyno-
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Introduction

Recently, covariance functions and random regres-
sion models (RRM) have been proposed as an alterna-

tive to model traits that are recorded repeatedly during
the animal’s life (i.e., longitudinal data; Kirkpatrick et
al., 1990, 1994; Schaeffer and Dekkers, 1994). A covari-
ance function gives the (co)variance of traits that are
measured at different ages as a function of these ages
and is the “infinite dimensional” equivalent to a (co)var-
iance matrix in a multitrait analysis (Kirkpatrick and
Heckman, 1989). Meyer and Hill (1997) and Meyer
(1998b) showed that random regression models are a
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mial fit from three to six were considered, resulting in
up to 77 parameters to be estimated. Models fitting
random regressions modeled the pattern of variances
in the data adequately, with estimates similar to those
from corresponding univariate analysis. Direct herita-
bility estimates decreased after birth and tended to be
lowest at ages at which maternal effect estimates
tended to be highest. Maternal heritability estimates
increased after birth to a peak around 110 to 120 d of
age and decreased thereafter. Additive genetic direct
correlation estimates between weights at standard ages
(birth, weaning, yearling, and final weight) were moder-
ate to high and maternal genetic and environmental
correlations were consistently high.

special case of covariance functions, and covariance
function coefficients can be estimated directly from ran-
dom regression models by restricted maximum like-
lihood.

Random regression models provide EBV for the com-
plete growth curve (i.e., in contrast to multitrait models,
which provide estimates for given points only) for any
target age and for functions of the growth curve. To
date, random regression models have been applied
mostly for test-day records of dairy cattle (Jamrozik et
al., 1997; Van der Werf et al., 1998). In beef cattle,
few papers using random regression models have been
published, and most dealt with adult weights (Meyer,
1998b, 1999, 2000). Meyer (2001a) estimated genetic
direct and maternal covariance functions for growth
from birth to weaning of two beef cattle breeds in Aus-
tralia. Genetic covariance functions from birth to post-
weaning ages are not available.

Nelore is a Zebu breed (Bos indicus) from India that
was taken to Brazil at the end of the 19th century. Due
to their “easy care” traits, adaptation, and production
under an extensive system they became predominant
and today represent about 80% of the Brazilian beef
cattle population.

The objective of this study was to estimate genetic
direct and maternal covariance functions using a ran-
dom regression model for weights from birth to 630 d
of age in Nelore cattle.
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Table 1. Summary of data structure

Number Data set 1 Data set 2 Data set 3

Records 20,065 21,564 23,581

Animals with records 3,016 3,500 3,450

With 3 records 456 298 258

With 4 records 158 357 169

With 5 records 5 359 222

With 6 records 79 694 206

With 7 records 978 1,057 978

With 8 records 1,340 731 1,614

With 9 records 0 4 3

Sires 87 93 136

Dams 1,903 1,271 1,779

Animals in analysis 5,751 5,114 6,333

Contemporary groups 523 1,901 2,441

Mean, kg 156.2 155.6 178.1

SD, kg 82.9 83.9 95.7

Materials and Methods

Data were supplied by the Brazilian Zebu Breeders
Association (ABCZ). Since 1974, ABCZ has been run-

ning a genetic improvement program considering
growth, fertility, and maternal ability traits.

The initial data set consisted of 74,591 weight rec-
ords on 10,751 Nelore animals, weighed, on average,
every 90 d from birth to 730 d of age. Calves were born
all year round and were weaned at about 240 d of age.
All animals were raised on pasture. Weights recorded
after 630 d of age were disregarded. Only records of
animals with at least three weights and belonging to
contemporary groups (CG) of at least four animals

were kept. The definition of CG included herd, year
and month of birth, sex, weaning state (suckling or
weaned), and year and month of record.

The edited data set had 65,210 weight records on

9,966 animals born from 1981 to 1999. This data set
was split into three data sets, comprising records from
1, 2, and 3 herds, respectively. A summary of data
structure is presented in Table 1. Numbers of records
and mean weights for 4-d intervals are shown in Figure
1. Data set 1 (DS1) comprised records from a single
herd, with a higher concentration of calvings from Au-
gust to December than for the other two data sets.
Numbers of animals with birth weight were 3,016,
3,186, and 3,139 for data sets 1, 2 (DS2), and 3 (DS3),
respectively, and 79, 71, and 81% of animals in each
data set had six or more records.

To decrease computer memory requirements, obser-

vations were grouped at each 4 d of age, and 159 age
classes were created, including birth i.e., (0, 1–4, 5–8,
. . ., 628–630 d).

Univariate Analysis

Standard univariate analysis of BW for ages at 0, 1
to 60, 30 to 90, . . ., 570 to 630 d, considering only
one record per animal, were carried out. The model of
analysis included CG as fixed effects and age of dam,

linear and quadratic effects, and linear effect of animal

age (except for birth weight) as covariables. Two mod-

els of analysis were applied. The first fitted additive

genetic direct and permanent environmental effect of

dam as random effects. The second considered additive

genetic maternal effects in addition. Variance compo-

nent estimates were obtained by REML using AS-

REML (Gilmour et al., 1999).

Random Regression Analysis

Covariances between random regression (RR) coef-

ficients were estimated by REML using the program

DXMRR (Meyer, 1998a). Fixed effects were the same

as for univariate analysis, with an additional cubic

regression on orthogonal polynomials of age to model

mean age trends. Legendre polynomials of age at re-

cording were used as independent variables.

Previous phenotypic RR analysis of the total data

set, including weights from birth to 730 d of age,

showed that the log likelihood function increased with

order (k) of the polynomial (from 3 to 9), and orders

of six or higher were adequate to model the variation

in the data. For this data set, 17% of the animals

had nine records. Genetic analyses started with k = 6

(quintic) for all random effects in the model using DS1.

Different orders of fit were tried only for DS1. Initially,

random effects considered in the model of analysis

were animal additive genetic effects and animal and

maternal permanent environmental effects only

(Model A). Model M included additive genetic maternal

effects in addition.

The general model can be represented as follows:

yij =Fij + ∑
3

m=0

βmφm(a*
ij) + ∑

kA−1

m=0

αimφm(a*
ij)

+ ∑
kM−1

m=0

γimφim(a*
ij) + ∑

kC−1

m=0

δimφm(a*
ij)

+ ∑
kQ−1

m=0

ρimφm(a*
ij) + εij

where yij is the jth record from the ith animal; a*
ij is the

standardized (−1 to +1) age at recording; φm(a*
ij) is the

mth Legendre polynomial of age; Fij is a set of fixed

effects; βm are the fixed regression coefficients to model

the population mean; αim, γim, δim, and ρim are the ran-

dom regression coefficients for genetic direct, genetic

maternal, and animal and maternal permanent envi-

ronmental effects, respectively; kA, kM, kC, and kQ de-

note the corresponding orders of fit; and εij is the tem-

porary environmental effect.

In matrix notation:

y = XB + Z1α + Z2γ + W1δ + W2ρ + ε, and
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with y the vector of observations; B the vector of fixed

effects (including Fij and βm); α the vector of additive

genetic direct random coefficients; γ the vector of addi-
tive genetic maternal random coefficients; δ the vector

of animal permanent environmental coefficients; ρ the
vector of maternal permanent environmental coeffi-

cients; X, Z1, Z2, W1, and W2 are the correspondent
incidence matrices; and ε denotes the vector of residu-

als. KA, KM, KC, and KQ are the matrices of coefficients
of the covariance function for additive direct and ma-

ternal effects and animal and permanent environmen-

tal effects, respectively. A is the additive numerator

relationship matrix and I an identity matrix. Tempo-

rary environmental effects (ε) were considered inde-

pendently distributed, with variances modeled by a

quadratic or cubic variance function (VF) assuming a

log-linear model, as described by Meyer (2001a):

Figure 1. Top: weight means divided by 10 (+) and number of observations divided by 10 (bars). Bottom: standard
deviations (�) and coefficient of variation (�), for data sets 1 (left), 2 (middle), and 3 (right), respectively.

σ2
j = σ2

0 exp



1 + ∑

v−1

r=1

br(a
*
ij)

r



,

where σ2
j is the variance at the jth age, σ2

0 is the error
variance at the mean age, and br and v are the coeffi-
cients and the number of parameters of the VF, respec-
tively.

To improve convergence of the iterative procedure,
eigenvalues of covariance matrix (K) smaller than
0.001 were fixed to an operational zero, forcing esti-
mates of K matrix to have reduced rank. In this case,
the number of parameters to be estimated was km −
m(m − 1)/2 instead of k(k + 1)/2, with k = order of
polynomial fit and m = rank of the coefficient matrix
(Meyer, 1998b).

Models with different orders of fitting and random
effects were compared by log-likelihood ratio test
(LRT). The log-likelihood ratio test only allows com-
parisons between nested models and tends to favor
models with higher number of parameters (Olori et al.,
1999; Meyer, 2000). Restricted maximum likelihood
forms of information criteria such as Akaike’s Informa-
tion Criterion (AIC) and Schwarz’s Bayesian Informa-
tion Criterion (BIC) (see Wolfinger, 1993), that impose
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penalties according to the number of parameters to be

estimated, were also used.

Results and Discussion

Mean weights and SD were 156.1 kg and 82.9 kg for
DS1, 155.6 kg and 83.9 kg for DS2, and 178.1 kg and

95.7 kg for DS3, respectively. For the three data sets,

weights increased almost linearly with age, with a

decrease in growth rate after weaning. Animals from

DS3 were heavier than those in the other two data

sets (Figure 1). Standard deviations showed the same

trend as the means, increasing with age. Coefficients

of variation increased until animals were about 30 to

60 d of age and then decreased slightly with age. Birth

weight SD and CV in DS2 and DS3 were lower than

in DS1.

Due to computational demands different orders of
polynomial fit were applied only for DS1. This data

set was chosen because it had a smaller number of

contemporary groups than the other two and, there-

fore, a smaller number of equations. Although this

data set comprised records of only one herd, estimates

of genetic parameters obtained by univariate analysis

showed the same trend as estimates obtained pre-

viously using a large Nelore data set (Albuquerque

and Meyer, 2001).

Preliminary, phenotypic random regression analy-
ses (not shown), considering the three data sets to-

gether, indicated that 1) increasing the order of polyno-

mial fit decreased the residual variance; 2) phenotypic

SD estimates, using polynomials with order of fit of 6

(quintic) or more, agreed closely with those estimated

by univariate analyses except for birth weight; and 3)

modeling measurement error variances (σ2
ε) using a

variance function, assuming a log linear model, pro-

duced a better fit than assuming homogeneous σ2
ε.

Initially, an order of fit of 6 for all polynomials was
applied. The model included additive direct effect, ani-
mal and maternal permanent environmental effects
(Model A) with kA = 6, kM = 0, kC = 6, and kQ = 6 (6,
0, 6, 6). Measurement error variances were modeled
by a quadratic variance function using a log linear
model. For this model, a total of 66 parameters were
estimated. Estimates of covariances between RR coef-
ficients indicated that there was little variation for
maternal permanent environmental effects quartic
and quintic regression coefficients. Fitting a model
with k = 6, 0, 6, 4 (55 parameters) did not change the
log likelihood function (log L) significantly, and all
information criteria were smaller for this model than
for the previous one (Table 2). A significant change in
log L occurred by modeling the measurement error
variances as a cubic instead of a quadratic variance
function.

A set of models attempting to separate maternal
genetic from maternal permanent environmental vari-
ances (Model M) was fitted. Adding maternal genetic
effects to the model of analysis significantly increased

the log L and AIC decreased (Table 2). However, if the
number of parameters were equal to 61 or more, a
model without maternal genetic effects (k = 6, 0, 6, 4
and v = 4) would be selected by BIC. Both LRT and

AIC suggested that a model with k = 6, 6, 6, 4 and v
= 4, with a total of 77 parameters, was necessary to

model the variances in the data. A more parsimonious
model with k = 4, 4, 6, 3, v = 4 and 51 parameters was

chosen by BIC.
For DS2 and DS3, only three models were fitted,

with k = 6, 0, 6, 4, k = 6, 4, 6, 4, and k = 6, 6, 6, 4, and
residual variances were modeled by a log linear cubic
variance function. For both data sets, BIC suggested
that a model not including additive maternal effects
(k = 6, 0, 6, 4), with a total of 56 parameters to be
estimated, would suffice to describe the covariance
structure in the data. However, LRT and AIC selected
models with k = 6, 4, 6, 4, and k = 6, 6, 6, 4 as the

“best” to describe variances in DS2 and DS3, respec-
tively. The suggestion of a model with k = 6, 6, 6, 4

for DS3 is clearly a situation in which LRT is favoring
the wrong model, because univariate analysis showed
little or no variation due to maternal genetic effects
in this data set. As expected, LRT and AIC tended to
favor models with a higher number of parameters,
whereas BIC, which involves a more stringent penalty
for number of parameters, selected more parsimoni-
ous models.

Estimates of (co)variances and correlations between
RR coefficients for models with k = 4, 4, 6, 3, k = 6, 6,

6, 4, and v = 4 for DS1 are presented in Table 3. For
all sets of RR the most variable coefficient was the
intercept. Correlations between intercept and linear
coefficient were positive for all polynomials and moder-
ate to high. However, correlations between intercept
and quadratic regression coefficient were negative and
ranged from almost zero (genetic direct effect) to al-
most unity (genetic maternal effect). Meyer (2001a),
applying RRM to weights from birth to weaning in two
beef cattle breeds in Australia, described similar
results.

High correlations between regression coefficients

caused some of the eigenvalues to be negligible and
set to operational zero, mainly when k = 6, 6, 6, 4.

For this model, the variance estimates for quartic and
quintic regression coefficients of genetic direct and ma-
ternal, and for the third regression coefficient of mater-
nal permanent environmental effects, were smaller
than 1.0. For both models, the variance estimates for
genetic maternal linear regression coefficient were
also smaller than one. This latter result is different
from that reported by Meyer (2001a) for weights until
weaning but was consistent for the three data sets
(models with k = 6, 4, 6, 4 for DS2 and DS3, not shown).

Estimates of (co)variances and correlations between
RR coefficients for DS2 and DS3 with a model with k
= 6, 0, 6, 4 are presented in Table 4. Similar results
as for DS1 were observed, except that the correlation
between intercept and linear regression coefficient of
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Table 2. Order of fit for animal direct (kA) and maternal (kM) genetic effects, animal
(kQ) and maternal permanent (kC) environmental effects, and residual (v-1), number

of parameters (np), log likelihood function (log L +50,000), Akaike’s Information
Criterion (AIC), and Bayesian Information Criterion (BIC) (all-100,000)

Order of fit

kA kM kQ kC v-1 np log L AIC BIC

Data set 1

6 6 4 3 56 −1,565 3,242 3,683

6 6 4 2 55 −1,599 3,308 3,741

6 6 6 2 66 −1,592 3,315 3,835

4 4 6 4 3 55 −1,561 3,231 3,665

4 4 6 3 3 51 −1,561 3,224 3,626

5 5 6 3 3 61 −1,545 3,213 3,693

6 1 6 3 3 53 −1,574 3,253 3,671

6 4 6 4 3 66 −1,531 3,194 3,714

6 6 6 4 3 77 −1,515 3,184 3,791

6 6 6 4 2 76 −1,550 3,251 3,850

6 6 6 6 3 88 −1,511 3,198 3,892

Data set 2

6 0 6 4 3 56 −6,800 13,712 14,154

6 4 6 4 3 66 −6,777 13,686 14,207

6 6 6 4 3 77 −6,772 13,698 14,305

Data set 3

6 0 6 4 3 56 −11,584 23,280 23,725

6 4 6 4 3 66 −11,572 23,276 23,802

6 6 6 4 3 77 −11,559 23,272 23,885

maternal permanent environmental effects in DS3
was low and negative. Covariance functions for DS1
are presented in Table 5 and for DS2 and DS3 in Ta-
ble 6.

Variance functions for residuals were as follows:

=σ2
j 14.6146exp[1 + 0.0487(a*

ij) − 0.9259(a*
ij)

2

+ 1.3454(a*
ij)

3]
for DS1 with k = 4, 4, 6, 3;

=σ2
j 14.6384exp[1 + 0.0429(a*

ij) − 0.9378(a*
ij)

2

+ 1.3553(a*
ij)

3]

for DS1 with k = 6, 6, 6, 4;
=σ2

j 59.9458exp[1 − 0.3729(a*
ij) − 1.9480(a*

ij)
2

+ 3.3847(a*
ij)

3]

for DS2 with k = 6, 0, 6, 4; and

=σ2
j 42.5107exp[1 − 0.1239(a*

ij) − 1.5657(a*
ij)

2

+ 2.2750(a*
ij)

3]
for DS3 with k = 6, 0, 6, 4.

Variance Component Estimates

Variance component estimates for weights from birth
to 630 d of age, obtained with the model chosen by LRT

and AIC (k = 6, 6, 6, 4) and by BIC (k = 4, 4, 6, 3) for
DS1, are presented in Figure 2. Variance estimates

from both RRM were very similar and agreed with those

from univariate analyses. Decreasing the order of fit

for genetic direct effects from kA = 6 to kA = 4 slightly
changed the partitioning of animal effect variances. The

difference between the two models was largest after

400 d, with a decrease in genetic direct and an increase

in animal permanent environmental variances with k

= 4, 4, 6, 3. Variance estimates for DS2 and DS3 (not

shown) presented similar trends as for DS1, although

phenotypic variances for DS2 tended to be overesti-

mated after 600 d. Regression coefficient estimates are

highly influenced by data in the extremes, and birth

weight SD for these two data sets were very small (Fig-

ure 1). To examine the effect of this small variance

on the RRM parameter estimates, birth weights were

eliminated from DS2, creating data set 4 (DS4), and

the same model (k = 6, 0, 6, 4) was applied. Phenotypic

variance estimated using DS4 agreed closely with those

from univariate analysis even after 600 d of age.

Direct and Maternal Heritability Estimates

Direct and maternal heritability estimates for DS1

are presented in Figure 3. Estimates from both models

agreed closely with those obtained by univariate analy-

sis for the same data set. Direct heritability estimates

decreased after birth (0.32) until animals were about

120 to 180 d old (0.14), increased slowly until 270 d of

age (0.17), and increased faster after that. Maternal

heritability estimates increased from birth (0.02) to

about 110 to 120 d of age (0.25) and decreased with age

thereafter. At weaning (240 d) maternal heritability

estimate was 0.20. As Nelore animals were weaned

around 240 d of age, results show that maternal genetic

effects started to decrease before weaning. These trends
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are similar to that described by Albuquerque and Meyer

(2001) for estimates of direct and maternal heritability

obtained using univariate analysis for Nelore cattle.

However, they found that the peak in maternal herita-

bility estimates occurred closer to weaning, around 180

Table 3. Estimates of variances (diagonal), covariances (below diagonal), and
correlations (above diagonal) between random regression coefficients and

eigenvalues (λ) of coefficient matrix for models with order of fit of
4,4,6,3 and 6,6,6,4 for additive genetic direct and maternal effects

and animal and maternal permanent environmental effects,
respectively, and fitting a cubic variance function

for measurement errors for data set 1

0 1 2 3 4 5 λ

k = 4, 4, 6, 3

Additive direct effect

176.44 0.87 −0.05 −0.12 227.84

91.95 62.94 0.36 −0.58 14.03

−0.77 3.40 1.39 −0.84 0.39

−2.02 −5.71 −1.24 1.57 0.07

Animal permanent environmental effect

245.91 0.70 −0.62 0.20 −0.22 −0.42 280.30

78.15 51.37 −0.12 −0.36 −0.26 −0.32 33.22

−41.37 −3.82 18.32 −0.40 −0.56 0.23 9.62

7.66 −6.51 −4.25 6.24 −0.01 −0.66 4.21

−6.31 −3.49 −4.45 −0.05 3.42 0.14 0.14

−9.78 −3.41 1.49 −2.45 0.37 2.22 0.00

Additive maternal effect

89.62 0.75 −0.98 0.91 96.22

6.70 0.89 −0.87 0.43 0.95

−19.66 −1.74 4.54 −0.79 0.04

12.63 0.59 −2.47 2.16 0.00

Maternal permanent environmental effects

59.08 0.98 −0.92 64.54

14.21 3.59 −0.81 0.56

−10.99 −2.38 2.43 0.00

k = 6, 6, 6, 4

Additive direct effect

231.04 0.90 −0.16 −0.11 −0.79 −0.82 293.46

116.13 72.88 0.15 −0.49 −0.58 −0.67 13.90

−3.65 1.92 2.36 −0.73 0.15 0.55 1.42

−1.93 −5.02 −1.33 1.42 0.06 −0.08 0.41

−11.13 −4.58 0.22 0.06 0.87 0.66 0.06

−10.34 −4.71 0.70 −0.07 0.51 0.69 0.00

Animal permanent environmental effect

211.27 0.65 −0.65 0.15 0.04 −0.04 238.99

63.43 44.74 −0.12 −0.45 −0.05 −0.02 31.12

−38.24 −3.28 16.28 −0.35 −0.68 0.06 8.02

5.10 −7.18 −3.33 5.59 −0.03 −0.66 3.41

0.93 −0.49 −4.28 −0.13 2.45 −0.03 0.17

−0.60 −0.14 0.28 −1.83 −0.06 1.38 0.00

Additive maternal effect

95.75 0.72 −0.95 0.98 −0.09 −0.91 105.11

6.47 0.84 −0.74 0.57 −0.41 −0.87 0.76

−22.82 −1.66 6.02 −0.91 −0.14 0.97 0.56

17.55 0.96 −4.08 3.35 −0.02 −0.82 0.00

−0.36 −0.16 −0.15 −0.01 0.18 0.00 0.00

−4.71 −0.42 1.26 −0.80 0.00 0.28 0.00

Maternal permanent environmental effect

55.42 0.99 −0.90 −0.28 60.71

12.53 2.89 −0.82 −0.14 0.69

−11.63 −2.44 3.04 0.67 0.00

−0.47 −0.05 0.27 0.05 0.00

to 210 d of age. Meyer (2001a), using RRM for two beef

cattle breeds in Australia, also described a decrease in

direct heritability estimates after birth. However, the

author found that maternal heritability estimates al-

most did not change with age.
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Table 4. Estimates of variances (diagonal), covariances (below diagonal), and
correlations (above diagonal) between random regression coefficients and eigenvalues

(λ) of coefficient matrix for models with order of fit of 6,0,6,4 for additive genetic
direct and maternal effects and animal and maternal permanent
environmental effects, respectively, and fitting a cubic variance

function for measurement errors for data sets 2 and 3

0 1 2 3 4 5 λ

Data set 2

Additive direct effect

133.43 0.87 −0.29 0.64 −0.63 −0.47 157.06

53.33 27.92 0.09 0.20 −0.84 −0.67 8.69

−5.66 0.83 2.88 −0.80 −0.28 0.12 1.49

7.23 1.01 −1.32 0.94 0.08 0.06 0.39

−8.25 −5.01 −0.53 0.09 1.29 0.79 0.00

−5.86 −3.82 0.22 0.06 0.96 1.17 0.00

Animal permanent environmental effect

257.12 0.64 −0.63 0.15 −0.14 −0.03 290.06

79.18 58.82 −0.27 −0.56 0.11 0.05 41.81

−36.92 −7.67 13.38 −0.61 −0.24 0.45 13.90

7.60 −13.35 −6.95 9.84 −0.11 −0.46 12.22

−6.65 2.54 −2.68 −1.12 9.16 0.43 0.00

−1.42 1.18 5.16 −4.50 4.08 9.69 0.00

Maternal permanent environmental effects

48.83 0.50 −0.99 0.85 52.09

3.59 1.04 −0.56 −0.03 1.37

−8.55 −0.70 1.50 −0.81 0.00

8.56 −0.05 −1.44 2.09 0.00

Data set 3

Additive direct effect

294.89 0.85 −0.74 0.50 0.20 −0.53 340.90

107.12 54.32 −0.39 0.02 0.13 −0.30 19.76

−35.62 −8.04 7.88 −0.92 −0.67 0.92 3.46

19.65 0.37 −5.90 5.22 0.57 −0.82 0.00

3.84 1.09 −2.13 1.46 1.27 −0.91 0.00

−6.71 −1.63 1.90 −1.37 −0.75 0.54 0.00

Animal permanent environmental effect

208.61 0.72 −0.43 −0.16 −0.30 −0.04 249.52

83.03 63.70 0.03 −0.56 −0.28 −0.08 36.05

−25.07 1.01 16.06 −0.17 −0.50 0.03 14.76

−6.92 −13.05 −2.02 8.53 −0.32 −0.67 8.46

−9.78 −5.05 −4.58 −2.15 5.20 0.49 0.28

−1.57 −1.71 0.29 −5.17 2.93 6.96 0.00

Maternal permanent environmental effect

40.99 −0.16 −0.89 0.36 46.74

−1.26 1.54 −0.11 −0.89 4.73

−14.67 −0.35 6.57 0.04 0.56

3.99 −1.89 0.15 2.92 0.00

Estimates of direct heritabilities for DS2 and DS3

are presented in Figure 4. For both data sets, the RRM
estimates agreed closely with those from univariate

analysis. However, direct heritability estimates did

not decrease after birth, probably because birth weight

variances for these two data sets were very small. For

all data sets direct heritability estimates tended to be

lower when maternal effect estimates were higher.

Some of the negative correlation between direct and

maternal effects could be due to negative sampling co-

variance.

Direct heritability estimates for DS4 (same as DS2

excluding birth weight) were almost the same as be-

fore. However, differences occurred for animal perma-
nent environmental effects and residual and will be
discussed in the next section.

Permanent Environmental Effects

Direct permanent environmental variances as a pro-
portion of the phenotypic variances (c2) for DS1 using
a model with k = 4, 4, 6, 3 (Figure 3) increased rapidly
from birth (0.28) to about 50 d of age (0.42) remained
almost the same with a slight trend to decrease until
580 d of age and, after that, decreased markedly with
age. Meyer (2001a) described a similar pattern for
weights from birth to weaning in the Wokalup breed
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Table 5. Estimates of coefficients of covariance function for models with order of fit of
4,4,6,3 (above diagonal) and 6,6,6,4 (below diagonal) for additive genetic direct and

maternal effects and animal and maternal permanent environmental effects,
respectively, and fitting a cubic variance function for

measurement errors for data set 1

1 2 3 4 5 6

Additive direct effect

1 108.82 89.95 77.59 −3.91 −2.09

2 62.16 119.36 146.02 18.14 −53.29

3 48.38 49.89 59.77 7.83 −13.79

4 151.94 3.35 32.07 333.97 34.25

5 −68.25 −32.78 −59.09 −94.62 74.60

6 −137.84 −47.06 −44.28 −266.19 87.61 233.825

Animal permanent environmental effect

1 166.54 181.33 9.19 −126.28 200.81 16.52 −143.98

2 37.38 230.79 237.42 52.59 −424.67 −23.17 229.62

3 −150.36 19.58 408.18 487.57 −56.95 −350.70 10.57

4 42.82 −378.39 −55.47 1,054.11 1,539.61 −73.23 −1,051.25

5 55.58 −4.71 −275.13 5.82 211.01 294.92 63.92

6 −12.70 203.70 20.88 −680.80 −10.13 470.57 755.74

Additive maternal effect

1 77.04 69.63 −23.05 −41.49 50.91

2 −55.81 41.54 14.27 11.41 −24.97

3 −49.83 36.64 50.58 25.55 −27.45

4 161.85 −115.27 −105.80 343.69 47.28

5 −0.02 −1.40 −16.25 −0.74 15.21

6 −79.91 54.39 54.99 −174.58 0.13 95.18

Maternal permanent environmental effect

1 42.62 43.34 14.61 −22.99

2 14.73 5.10 5.39 −6.92

3 −25.21 −8.88 17.11 13.67

4 −2.53 −0.98 2.96 1.12

Table 6. Estimates of coefficients of covariance function for a model with order of fit
of 6,0,6,4 for additive genetic direct and maternal effects and animal and maternal

permanent environmental effects, respectively, and fitting a cubic variance
function for measurement errors for data set 2 (below diagonal)

and data set 3 (above diagonal)

1 2 3 4 5 6

Additive direct effect

1 67.06 200.00 16.24 −121.56 232.48 50.20 −126.22

2 7.44 22.22 146.57 83.67 −180.55 −55.95 77.44

3 18.97 30.58 117.86 204.97 −333.79 −140.54 192.67

4 101.86 −11.01 128.82 499.92 601.95 205.30 −320.90

5 −40.70 −19.98 −106.80 −179.70 110.86 109.30 −127.84

6 −65.47 5.16 −132.19 −436.81 165.33 398.04 182.54

Animal permanent environmental effect

1 179.87 140.42 84.43 −87.47 −43.78 7.79 18.31

2 42.37 568.51 496.23 −81.93 −1,176.05 118.24 794.69

3 −129.43 −114.56 755.88 592.19 521.97 −484.75 −417.92

4 84.43 −1,460.96 379.23 5,158.22 4,111.34 −651.63 −3,085.80

5 43.62 224.39 −735.13 −825.15 788.88 448.02 502.46

6 −33.97 1,046.62 −373.27 −4,060.34 698.93 3,304.73 2,375.46

Maternal permanent environmental effect

1 34.91 41.01 −8.33 −36.93 12.63

2 −16.39 18.30 38.27 −2.05 −49.10

3 −17.15 7.53 8.45 36.98 1.71

4 33.61 −27.63 −15.93 45.61 63.78
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Figure 2. Genetic direct (top left), genetic maternal (top middle), maternal permanent environmental (top right),
animal permanent environmental (bottom left), residual (bottom middle), and phenotypic (divided by 2: bottom right)
variance component estimates from univariate analysis (�) and random regression analysis with k = 4, 4, 6, 3 (�)
and k = 6, 6, 6, 4 (�) for genetic direct and maternal and animal and maternal permanent environmental effects,
respectively, and a log linear cubic variance function for measurement error variances for data set 1.

(synthetic breed formed by mating Charolais × Brah-
man bulls to Friesian × Angus or Hereford cows). How-

ever, for Polled Hereford animals c2 increased with

age. The author suggested that the difference between
the two could be due to sampling variation in the parti-
tion of animal effects.

For DS2 and DS3 (Figure 4), c2 showed a larger

increase after birth than for DS1, followed by a de-
crease in the residual variance as proportion of pheno-
typic variance estimates (e2). After excluding birth
weight from the analysis for DS2, c2 showed a trend

similar to that observed for DS1. Because the change
in c2 was accompanied by a proportional change in e2

there was no difference in the other parameter esti-
mates (i.e., heritabilities and maternal permanent en-
vironmental variance, as proportion of phenotypic
variance estimates remained the same).

Maternal permanent environmental effect esti-

mates (q2) for DS1 were almost the same for both mod-

els (k = 4, 4, 6, 3 and k = 6, 6, 6, 4), practically did

not change with age, and were lower than maternal

genetic effects (Figure 3). Estimates of q2 from univari-
ate analyses were larger than those obtained with
RRM. Partition of maternal effects in genetic and per-
manent environmental effects, mainly using field
data, presents some difficulties even for simple, uni-
variate analyses (Willham, 1980; Gerstmayr, 1992;
Meyer, 1992a). It is expected that these problems
would also arise with RRM. There is evidence that by
including only one of the maternal effects (additive
genetic or permanent environmental) in the model
most of the maternal variation would be accounted for
(Meyer, 1992b). For DS2 and DS3, maternal genetic
effects were not included in the model and, for both
data sets, maternal permanent environmental effects
increased from birth (0.04 and 0.02 for DS2 and DS3)
to a peak around 100 to 130 d of age (0.13–0.14) and
decreased with age thereafter.

Correlation Estimates

Estimates of phenotypic correlations between
weights from birth to 630 d of age for DS1 and DS2
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are presented in Figure 5. Genetic direct and maternal

and animal and maternal permanent environmental

correlations for DS1 are shown in Figure 6. In general,

correlations tended to decrease with increasing num-

ber of days between records.

Phenotypic correlations for DS2 (Figure 5) and DS3
(not shown) were not as smooth as for DS1. This could

be due to the high order of polynomial fit for these two

data sets. A higher-order polynomial is expected to be

more flexible and consequently to be able to follow

the changes in (co)variances more closely. However,

higher-order polynomials have been known for inten-

sifying sampling problems, producing “wiggly” func-

tions (Kirkpatrick et al., 1994; Meyer, 1998b).
For DS2 and DS3, correlations of all ages with birth

weight were low and did not decrease much with in-

creasing lag in ages. These latter results are consistent

with the small variance observed for birth weight in

DS2 and DS3.

Correlation estimates obtained using k = 4, 4, 6, 3
(Figure 6) and k = 6, 6, 6, 4 (not shown) for DS1 were

similar, except for genetic maternal correlation esti-

Figure 3. Direct (top left) and maternal (top right) heritability estimates and animal (bottom left) and maternal
(bottom right) variance component estimates as proportions of phenotypic variances for data set 1 from univariate
analysis (�) and random regression analysis with k = 4 ,4, 6, 3 (�) and k = 6, 6, 6, 4 (�) and a log linear cubic variance
function for measurement error variances.

mates between birth weight and all the other ages,

which were larger for k = 6, 6, 6, 4. Estimates obtained
for DS2 and DS3 were similar to those found for DS1,

although none of them were as smooth as for DS1.

Correlations between birth weight and all the other

ages for these two data sets were much smaller than

for DS1. Maternal permanent environmental correla-

tions between birth weight and some other ages for

DS3 were negative. As already pointed out, these dif-

ferences are probably due to small variances for birth

weight in DS2 and DS3 and to the higher-order polyno-

mials applied for these two data sets. Removing birth

weights from DS2 did not change correlation esti-

mates. Many authors have reported problems in mod-

eling covariances between early and late records in

dairy (Jamrozik et al., 1997; Brotherstone et al., 2000)

and beef (Meyer, 1998b, 1999, 2000) cattle. A small

number of records for extreme ages, far from the mean,

and over-parameterization have been pointed out as

possible reasons for these problems (Kirkpatrick et

al., 1994; Meyer, 2000). Only results from DS1 are

presented in the following.
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Figure 4. Random regression direct heritability estimates (�), and animal (�) and maternal (�) permanent environ-
mental and residual (▲) variance components as proportion of phenotypic variances. Univariate analysis direct
heritability estimates (�) and maternal permanent environmental variances (�) as proportion of phenotypic variances.
Data set 2 (bottom) and data set 3 (top). Animal permanent environmental (dash line) and residual (dot dash line)
variances as proportion of phenotypic variances for data set 4 (bottom right).

Additive Direct and Maternal Correlations

Genetic direct correlation estimates (Figure 6) de-

creased with increasing age between weights. How-
ever, the estimates showed small peaks at the edges

Figure 5. Phenotypic correlation estimates for data set 1 (left) and data set 2 (right), with k = 4, 4, 6, 3 and k = 6,
0, 6, 4, respectively, and measurement error variances modeled as a log linear cubic variance function.

(i.e., between early and late weights), with a minimum
value of 0.42 between 30 to 40 d and 540 to 560 d of age.

Estimates of genetic direct correlations were 0.65,
0.53, 0.44, 0.93, 0.82, and 0.97 between birth and 240,
birth and 360, birth and 550, 240 and 360, 240 and 550,
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and 360 and 550 d of age, respectively. Mercadante et

al. (1995), in a review, reported weighted mean genetic

correlations of 0.63, 0.41, 0.40, 0.78, 0.71, and 0.77,

respectively, at these same ages for Zebu breeds in

the tropics. As pointed out by the authors, most of

the estimates were obtained with small data sets and

maternal effects were not taken into account. Lôbo

et al. (2000), also in a review, found corresponding

weighted means for genetic correlation of 0.62, 0.62,

0.60, 0.75, 0.74, and 0.97 for European and Zebu

breeds in the tropics. The results we have obtained

with RRM are, overall, similar to those reported by

these authors.

Additive genetic maternal correlation estimates
after 20 d of age were close to unity, forming a flat

horizontal plane. Meyer (2001a), using RRM for Polled

Herefords in Australia, described a similar pattern.

The minimum correlation value occurred between

birth and 460 to 480 d of age. Genetic maternal correla-

tions were low between birth and 240 (weaning), 360

(yearling), and 550 (final weight) d of age (0.14, 0.05,

and 0.05) and close to unity between the other ages.

There are few estimates of genetic maternal correla-

tions for weights of Zebu breeds in Brazil. Eler et al.

(1995) found low genetic maternal correlations be-

tween birth and weaning and birth and yearling

weights for Nelore cattle of 0.21 and 0.18, respectively.

Similarly, they found a high genetic maternal correla-

tion between weaning and yearling weights, 0.84.

Figure 6. Additive direct (top left), additive maternal (top right), and animal (bottom left) and maternal (bottom
right) correlation estimates with k = 4, 4, 6, 3 and measurement error variances modeled as a log linear cubic variance
function for data set 1.

Permanent Environmental Correlations

Animal permanent environmental correlation esti-
mates decreased with increasing lag between ages
reaching a minimum between birth and 630 d of age
(0.10). Meyer (2001a), also modeling animal perma-
nent environmental effects using an order of fit of 6
for weights from birth to weaning, found a similar
pattern. However, correlations between very early and
later ages were higher than would be initially ex-
pected.

Estimates of maternal permanent environmental
correlations were consistently high, with a minimum
value (0.84) occurring between birth and 200 to 240
d of age, forming a horizontal plane after 10 d of age.
Maternal permanent environmental correlations be-
tween birth and 240, birth and 360, birth and 550,
240 and 360, 240 and 550, and 360 and 550 d of age
were 0.84, 0.85, 0.95, 1.00, 0.98, and 0.99, respectively.
These values are higher than those reported by Eler
et al. (1995) for Nelore cattle in Brazil of 0.27, 0.45,
and 0.80 between birth and weaning, birth and year-
ling and, weaning and yearling weights, respectively.
Meyer (2001a) found maternal permanent environ-
mental correlation between birth and weaning
weights smaller than in the present study for Polled
Hereford (0.66).

General Discussion

Direct heritability estimates decreased after birth
and tended to be lowest at ages at which maternal
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effect estimates tended to be highest. Maternal herita-

bility estimates increased after birth to a peak at 110

to 120 d of age and decreased thereafter. Similar re-

sults were found by Albuquerque and Meyer (2001)

using univariate analyses for Nelore cattle in Brazil

and by Meyer (2001a) for two beef cattle breeds in

Australia. A higher response to selection for maternal

ability would be expected if selection were based on

preweaning weights. However, there is evidence that

milk production is the main cause of maternal effects

(Meyer et al., 1994). Hence, selection for maternal abil-

ity is expected to increase milk production and, in the

long term, could produce animals with higher nutri-

tional requirements.
A model with RR modeled the pattern of (co)vari-

ances in the data adequately, with estimates similar

to those obtained with univariate analysis. Increasing

the order of polynomial fit increased the flexibility of

the curve. However, applying polynomials with a high

order of fit increased computational requirements,

made convergence difficult to reach, and increased

sampling problems (Kirkpatrick et al., 1994; Meyer,

1998b).

A question still to be answered is how much would
be gained by applying RRM to genetic evaluations. In

general, two approaches have been used to analyze

beef cattle data. The most common has been to adjust

weights to standard ages and use uni- or multitrait

analyses to estimate genetic parameters and to predict

breeding values for those ages. Information from rela-

tives is incorporated into the analysis through a rela-

tionship matrix. In this case, although multitrait anal-

yses take into account the correlations between traits,

covariance matrices are not structured.
Another approach has been to consider weight as

a trait that changes with time and to describe the

trajectory by a mathematical model. Several nonlinear

functions such as Richard’s, Brody’s, Bertalanffy’s,

and Gompertz’s growth curves (Fitzhugh, 1976) have

been used to describe beef cattle growth. Usually, the

parameters of the curve are estimated for each animal

and, as a second step, environmental effects and vari-

ance components are estimated for the parameters.

When fitting a curve, all weights available are consid-

ered; however, repeated records have correlated errors

that have not been taken into account by this method

(DeNise and Brinks, 1985). Another aspect is that in-

formation on relatives is not considered in the first

step, when the growth curve is estimated (i.e., not all

information is used and animals with only one or a

few records cannot be included in the analysis). This

approach has rarely been used for genetic evaluation

in a mixed-model context.

With RRM, a fixed regression on age is used to model
the population trajectory and each random effect can

also be modeled by a trajectory as a function of age.

Environmental effects are separated into permanent

and temporary effects, and if animal genetic and per-

manent effects were modeled appropriately, measure-

ment errors would be independent. Covariance func-

tions that give the covariances between any two ages

within the range of ages in the data can be estimated

by applying a RRM and REML (Meyer, 1998b), and

impose a structure on the covariance matrices. Instead

of predicting breeding values (BV) for each recorded
weight, BV are predicted for additive direct and mater-

nal regression coefficients. If the appropriate curve is

chosen, the number of traits to be considered is re-

duced without loss of information (Meyer and Hill,

1997; Meyer, 1998b), (i.e., a RRM with optimal k [order

of fit] is equivalent to a multitrait model with less

computer requirement).

Using the genetic regression coefficients, BV can be
predicted for the growth curve as a whole, for any age

(within the range in the data), even those for which

the animal had no records and for functions of the

growth curve. Animals with only one or even without

records can be evaluated using information from rela-

tives. This is particularly important when the selec-

tion objective is to select young animals for growth

without changing mature weight. However, mature

weights of relatives have to be available because pre-

dictions can only be done in the range of ages present

in the data (Kirkpatrick et al., 1990). Functions of the

growth curve, such as rate of maturity, can also be

used with this objective. Appropriate functions to find

fast-growing and early-maturing animals have to be

defined. Another important advantage of RRM is that

there is no need for age of animal adjustments because

age is in the design matrix, avoiding a source of errors

associated with the estimation of adjustment factors.

Random regression models are expected to give more

accurate estimates of genetic parameters and predic-

tions of breeding values than the conventional

multitrait model used nowadays. Future research

should concentrate on quantifying how much would

be gained in terms of accuracy and response to selec-

tion by applying RRM instead of multitrait models,

considering a limited number of points such as birth,

weaning, yearling, and final weights.

An important issue to consider for genetic evalua-
tions of a large number of animals, as in national

evaluation programs, is computational requirements.

Applying RRM instead of multitrait models for genetic

evaluations of growth traits will increase the number

of mixed-model equations, the coefficient matrix of

random effects will be denser, and, consequently, com-

puting requirements will increase accordingly. Alter-

natives to decrease the order of polynomial fit must

be investigated. Pool and Meuwissen (2000) found that

the order of polynomial fit necessary to model the (co)-

variance matrix was reduced by using only complete

lactation records (from 5 to 4) and by correcting for

heterogeneous variances across classes of days in milk

(from 4 to 3). Parametric growth curves, generally with

a small number of parameters, could be applied with

a Bayesian procedure as presented by Varona et al.

(1997, 1999). Stationary or nonstationary correlation
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parametric models could be applied to model within-

animal variance, decreasing the number of parame-

ters necessary to describe changes in variance with

age (Pletcher and Geyer, 1999; Foulley et al., 2000;

Meyer 2001b).

Implications

A model with random regressions modeled the pat-

tern of (co)variances in the data adequately, with esti-

mates similar to those obtained with univariate analy-

sis. Random regression models are expected to give

more accurate estimates of genetic parameters and

predictions of breeding values than the conventional

multitrait model considering a limited number of

points, such as birth, weaning, yearling, and final

weights, used nowadays.
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Lôbo, R. N. B., F. E. Madalena, and A. R. Vieira. 2000. Average

estimates of genetic parameters for beef and dairy cattle in

tropical regions. Anim. Breed. Abstr. 68:433–462.
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