Estimates of eigenvalues of a boundary value problem with a parameter*

Alexey Vladislavovich Filinovskiy ${ }^{1, \dagger}$
${ }^{1}$ Department of Fundamental Sciences, N.E. Bauman Moscow State Technical University, $2^{\text {nd }}$ Baumanskaya 5, 105005 Moscow, Russia

Received October 31, 2013; accepted March 21, 2014

Abstract

We study an eigenvalue problem for the Laplace operator with a boundary condition containing a parameter. We estimate the rate of convergence of the eigenvalues to the eigenvalues of the Dirichlet problem for large positive values of the parameter. AMS subject classifications: 35J05, 35P15, 49R05 Key words: Laplace operator, boundary value problem, large parameter, eigenvalues

1. Introduction

We consider the eigenvalue problem

$$
\begin{align*}
\Delta u+\lambda u=0 & \text { in } \quad \Omega \tag{1}\\
\frac{\partial u}{\partial \nu}+\alpha \sigma(x) u=0 & \text { on } \quad \Gamma \tag{2}
\end{align*}
$$

where $\Omega \subset R^{n}, n \geq 2$, is a bounded domain with boundary $\Gamma=\partial \Omega \in C^{2}$. By ν we denote the outward unit normal vector to Γ, α is a real parameter. The function $\sigma(x) \in C^{1}(\Gamma)$ is positive:

$$
0<\sigma_{0} \leq \sigma(x) \leq \sigma_{1}, \sigma_{0}=\inf _{x \in \Gamma} \sigma(x) \text { and } \sigma_{1}=\sup _{x \in \Gamma} \sigma(x)
$$

Problem (1), (2) with $\sigma(x)=1$ is known as the Robin (Fourier) problem for $\alpha>0$ (see [6, Ch. 7, Par. 7.2]), and the generalized Robin problem for all α ([5]).

There is a sequence of eigenvalues $\lambda_{1}(\alpha)<\lambda_{2}(\alpha) \leq \ldots$ of problem (1) - (2) enumerated according to their multiplicities with

$$
\lim _{k \rightarrow \infty} \lambda_{k}(\alpha)=+\infty
$$

We also consider the sequence of eigenvalues $0<\lambda_{1}^{D}<\lambda_{2}^{D} \leq \ldots$ of the Dirichlet eigenvalue problem

$$
\begin{align*}
\Delta u+\lambda u=0 & \text { in } \quad \Omega, \tag{3}\\
u=0 & \text { on } \quad \Gamma, \tag{4}
\end{align*}
$$

[^0]with
$$
\lim _{k \rightarrow \infty} \lambda_{k}^{D}=+\infty
$$

Note that the eigenvalues $\lambda_{1}(\alpha)$ and λ_{1}^{D} are simple and the corresponding eigenfunctions $u_{1, \alpha}(x)$ and $u_{1}^{D}(x)$ are positive.

In this paper, we estimate $\lambda_{k}(\alpha)$ for large values of α. We now give some known results.

It is easy to see that $\lambda_{k}(\alpha) \leq \lambda_{k}^{D}, k=1,2, \ldots$ These inequalities give the upper bound of $\lambda_{k}(\alpha)$ for all values of α. It was announced in ([2, Ch. 6, Par. 2, No. 1]) that for $n=2$ and a smooth boundary $\lim _{\alpha \rightarrow+\infty} \lambda_{k}(\alpha)=\lambda_{k}^{D}$.

Later the properties of the first eigenvalue $\lambda_{1}(\alpha)$ were studied more precisely. Consider the case $\sigma(x)=1$. The following two-sided estimates:

$$
\lambda_{1}^{D}\left(1+\frac{\lambda_{1}^{D}}{\alpha q_{1}}\right)^{-1} \leq \lambda_{1}(\alpha) \leq \lambda_{1}^{D}\left(1+\frac{4 \pi}{\alpha|\Gamma|}\right)^{-1}, \quad \alpha>0
$$

were obtained in [12] for $n=2$. Here $|\Gamma|$ is the length of Γ and q_{1} is the first eigenvalue of the Steklov problem

$$
\begin{aligned}
\Delta^{2} u & =0 \quad \text { in } \quad \Omega \\
u & =0, \quad \Delta u-q \frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad \Gamma .
\end{aligned}
$$

In [4], for any $n \geq 2$ we establish the following asymptotic expansion:

$$
\lambda_{1}(\alpha)=\lambda_{1}^{D}-\frac{\int_{\Gamma}\left(\frac{\partial u_{1}^{D}}{\partial \nu}\right)^{2} d s}{\int_{\Omega}\left(u_{1}^{D}\right)^{2} d x} \alpha^{-1}+o\left(\alpha^{-1}\right), \quad \alpha \rightarrow+\infty
$$

The case $\alpha<0$ has recently attracted attention (see, for instance, [9]). It was shown in [9] that for a piecewise- C^{1} boundary

$$
\liminf _{\alpha \rightarrow-\infty} \lambda_{1}(\alpha) /\left(-\alpha^{2}\right) \geq 1
$$

For C^{1} boundaries it was proved ([10]) that

$$
\lim _{\alpha \rightarrow-\infty} \lambda_{1}(\alpha) /\left(-\alpha^{2}\right)=1
$$

The C^{1}-condition is optimal. In [9], the authors constructed plane triangle domains for which

$$
\lim _{\alpha \rightarrow-\infty} \lambda_{1}(\alpha) /\left(-\alpha^{2}\right)>1 .
$$

In [3], the authors proved that for C^{1} boundaries

$$
\begin{equation*}
\lim _{\alpha \rightarrow-\infty} \frac{\lambda_{k}(\alpha)}{-\alpha^{2}}=1 \tag{5}
\end{equation*}
$$

for all $k=1,2, \ldots$.

2. Main results

The main result of this paper reads as follows.
Theorem 1. The eigenvalues $\lambda_{k}(\alpha), k=1,2, \ldots$, satisfy the estimates

$$
\begin{equation*}
0 \leq \lambda_{k}^{D}-\lambda_{k}(\alpha) \leq C_{1} \alpha^{-1 / 2}\left(\lambda_{k}^{D}\right)^{2}, \quad \alpha>0 \tag{6}
\end{equation*}
$$

where the constant C_{1} does not depend on k.
In the following theorem we gather the qualitative properties of eigenvalues of problem (1) - (2) (see also [2, Ch. 6] for i) and [9] for ii) and iii) for $\sigma(x)=1$)

Theorem 2. The eigenvalues have the following properties:
i) $\lambda_{k}(\alpha), k=1,2, \ldots$, are continuous functions of α and

$$
\begin{equation*}
\lambda_{k}\left(\alpha_{1}\right) \leq \lambda_{k}\left(\alpha_{2}\right), \quad \alpha_{1}<\alpha_{2} \tag{7}
\end{equation*}
$$

ii) $\lambda_{1}(\alpha)$ is a concave function of α :

$$
\begin{equation*}
\lambda_{1}\left(\beta \alpha_{1}+(1-\beta) \alpha_{2}\right) \geq \beta \lambda_{1}\left(\alpha_{1}\right)+(1-\beta) \lambda_{1}\left(\alpha_{2}\right), \quad 0<\beta<1 \tag{8}
\end{equation*}
$$

iii) $\lambda_{1}(\alpha)$ is differentiable and

$$
\begin{equation*}
\lambda_{1}^{\prime}(\alpha)=\frac{\int_{\Gamma} \sigma u_{1, \alpha}^{2} d s}{\int_{\Omega} u_{1, \alpha}^{2} d x}>0 \tag{9}
\end{equation*}
$$

iv) the following estimate

$$
\begin{equation*}
\liminf _{\alpha \rightarrow-\infty} \frac{\lambda_{1}^{\prime}(\alpha)}{-\alpha} \geq \sigma_{1}^{2} \tag{10}
\end{equation*}
$$

holds.

3. Operator treatment

In this section, we introduce two linear operators associated with problems (1) - (2) and (3) - (4) to derive the eigenvalue estimates (6).

Consider problem (1) - (2) in the space $H^{1}(\Omega)([1,11])$. We define an eigenvalue of problem (1), (2) as a value λ for which there exists the non-zero function $u \in H^{1}(\Omega)$ satisfying the integral identity

$$
\begin{equation*}
\int_{\Omega}(\nabla u, \nabla v) d x+\alpha \int_{\Gamma} \sigma u v d s=\lambda \int_{\Omega} u v d x \tag{11}
\end{equation*}
$$

for any $v \in H^{1}(\Omega)$. Relation (11) can be rewritten as

$$
\begin{equation*}
\int_{\Omega}((\nabla u, \nabla v)+M u v) d x+\alpha \int_{\Gamma} \sigma u v d s=(\lambda+M) \int_{\Omega} u v d x, \quad M>0 . \tag{12}
\end{equation*}
$$

Let us define an equivalent scalar product in the space $H^{1}(\Omega)$ by the formula

$$
\begin{equation*}
[u, v]_{M}=\int_{\Omega}((\nabla u, \nabla v)+M u v) d x, \quad\|u\|_{M}^{2}=[u, u]_{M} \tag{13}
\end{equation*}
$$

Now (12) transforms to

$$
[u, v]_{M}+\alpha[T u, v]_{M}=(\lambda+M)[B u, v]_{M}
$$

where the linear self-adjoint non-negative operators $T: H^{1}(\Omega) \rightarrow H^{1}(\Omega)$ and B : $H^{1}(\Omega) \rightarrow H^{1}(\Omega)$ were defined by the bilinear forms

$$
\begin{equation*}
[T u, v]_{M}=\int_{\Gamma} \sigma u v d s, \quad[B u, v]_{M}=\int_{\Omega} u v d x, \quad u, v \in H^{1}(\Omega) \tag{14}
\end{equation*}
$$

Hence we have an equation in the space $H^{1}(\Omega)$ with the norm $\|\cdot\|_{M}$:

$$
\begin{equation*}
(I+\alpha T) u=(\lambda+M) B u \tag{15}
\end{equation*}
$$

Now we use the inequality ([11, Ch. 3, Par. 5, Formula 19])

$$
\begin{equation*}
\|v\|_{L_{2}(\Gamma)}^{2} \leq \varepsilon\|\nabla v\|_{L_{2}(\Omega)}^{2}+C_{\varepsilon}\|v\|_{L_{2}(\Omega)}^{2} \tag{16}
\end{equation*}
$$

which is valid for $v \in H^{1}(\Omega)$ with an arbitrary $\varepsilon>0$. Using (14), (16), we obtain

$$
\begin{align*}
\|T u\|_{M}^{2}= & {[T u, T u]_{M}=\int_{\Gamma} \sigma u T u d s \leq \sigma_{1}\|u\|_{L_{2}(\Gamma)}\|T u\|_{L_{2}(\Gamma)} } \\
\leq & \sigma_{1} \varepsilon\left(\int_{\Omega}\left(|\nabla T u|^{2}+\frac{C_{\varepsilon}}{\varepsilon}(T u)^{2}\right) d x\right)^{1 / 2} \\
& \times\left(\int_{\Omega}\left(|\nabla u|^{2}+\frac{C_{\varepsilon}}{\varepsilon} u^{2}\right) d x\right)^{1 / 2} \leq C_{2} \varepsilon\|T u\|_{M}\|u\|_{M} \tag{17}
\end{align*}
$$

where $\varepsilon>0, M=M_{\varepsilon}$. It follows from (17) that

$$
\|T u\|_{M_{\varepsilon}} \leq C_{2} \varepsilon\|u\|_{M_{\varepsilon}},
$$

and for any arbitrary small ε we have $\|\alpha T\|_{H^{1}(\Omega) \rightarrow H^{1}(\Omega)}<1$ for $|\alpha|<1 / C_{2} \varepsilon$. Therefore, the inverse operator $(I+\alpha T)^{-1}$ is bounded and

$$
\left\|(I+\alpha T)^{-1}\right\| \leq(1-|\alpha|\|T\|)^{-1}
$$

Hence, equation (15) is equivalent to

$$
\left(I-(\lambda+M)(I+\alpha T)^{-1} B\right) u=0
$$

The operator B is compact ([11, Ch. 3, Par. 5, Th. 3]) and the operator $(I+$ $\alpha T)^{-1} B: H^{1}(\Omega) \rightarrow H^{1}(\Omega)$ is also compact. Hence the spectrum of problem (15) consists of real eigenvalues $\lambda_{j}(\alpha), j=1,2, \ldots$, of finite multiplicity with the only limit point at the infinity. From (14), (15) we obtain the inequality

$$
\lambda_{j}(\alpha) \geq-M_{\varepsilon}+(1-|\alpha|\|T\|) \frac{\left\|u_{j, \alpha}\right\|_{M_{\varepsilon}}^{2}}{\left\|u_{j, \alpha}\right\|_{L_{2}(\Omega)}^{2}} \geq-M_{\varepsilon}
$$

with the corresponding eigenfunction $u_{j, \alpha}$. Thus, $\lambda_{j}(\alpha) \rightarrow+\infty, j \rightarrow \infty$.
By the variational principle ([11, Ch. 4, Par. 1, No. 4]) we have

$$
\begin{align*}
& \lambda_{k}(\alpha)=\sup _{v_{1}, \ldots, v_{k-1} \in L_{2}(\Omega)} \tag{18}\\
& \inf _{\substack{v \in H^{1}(\Omega) \\
\left(v, v_{j}\right)_{L_{2}(\Omega)}=0 \\
j=1, \ldots, k-1}} \frac{\int_{\Omega}|\nabla v|^{2} d x+\alpha \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x}, \tag{19}\\
& \lambda_{k}^{D}=\sup _{v_{1}, \ldots, v_{k-1} \in L_{2}(\Omega)} \inf _{\substack{v \in H^{1}(\Omega) \\
\left(v, v_{j}\right)_{L_{2}(\Omega)}=0 \\
j=1, \ldots, k-1}} \frac{\int_{\Omega}|\nabla v|^{2} d x}{\int_{\Omega} v^{2} d x}, \quad k=1,2, \ldots .
\end{align*}
$$

To prove inequalities (6) we apply the following statement (see [6, Ch. 2, Th. 2.3.1]).

Theorem 3. Let T_{1} and T_{2} be two linear self-adjoint, compact and positive operators on a separable Hilbert space H. Assume also that $\mu_{k}\left(T_{1}\right)$ and $\mu_{k}\left(T_{2}\right)$ are their k-th respective eigenvalues. Then

$$
\begin{equation*}
\left|\mu_{k}\left(T_{1}\right)-\mu_{k}\left(T_{2}\right)\right| \leq\left\|T_{1}-T_{2}\right\| \tag{20}
\end{equation*}
$$

Now we give the proof of Theorem 1.
Proof. Consider the boundary value problem

$$
\begin{align*}
-\Delta u+u=h & \text { in } \quad \Omega \tag{21}\\
\frac{\partial u}{\partial \nu}+\alpha \sigma(x) u=0 & \text { on } \quad \Gamma, \quad \alpha>0 \tag{22}
\end{align*}
$$

with $h \in L_{2}(\Omega)$. A weak solution $u \in H^{1}(\Omega)$ of problem (21), (22) satisfy the integral identity

$$
\begin{equation*}
\int_{\Omega}((\nabla u, \nabla v)+u v) d x+\alpha \int_{\Gamma} \sigma u v d s=\int_{\Omega} h v d x \tag{23}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$. Let us define the scalar product in the space $H^{1}(\Omega)$ as

$$
\begin{equation*}
(u, v)_{H^{1}(\Omega), \alpha}=\int_{\Omega}((\nabla u, \nabla v)+u v) d x+\alpha \int_{\Gamma} \sigma u v d s \tag{24}
\end{equation*}
$$

and the corresponding norm by

$$
\|u\|_{H^{1}(\Omega), \alpha}^{2}=(u, u)_{H^{1}(\Omega), \alpha}
$$

Due to (16), scalar product (24) is equivalent to the standard one

$$
\begin{equation*}
(u, v)_{H^{1}(\Omega)}=\int_{\Omega}((\nabla u, \nabla v)+u v) d x \tag{25}
\end{equation*}
$$

Using (23), (24), we obtain the relation

$$
\begin{equation*}
(u, v)_{H^{1}(\Omega), \alpha}=(h, v)_{L_{2}(\Omega)} . \tag{26}
\end{equation*}
$$

Hence, consider the linear functional

$$
l_{h}(v)=(h, v)_{L_{2}(\Omega)}
$$

This functional is bounded on the space $H^{1}(\Omega)$:

$$
\begin{equation*}
\left|l_{h}(v)\right| \leq\|h\|_{L_{2}(\Omega)}\|v\|_{L_{2}(\Omega)} \tag{27}
\end{equation*}
$$

Now, by the Riesz lemma there exists the unique function $u \in H^{1}(\Omega)$ satisfying integral identity (23). Applying (26) with $v=u$, we obtain

$$
\|u\|_{H^{1}(\Omega), \alpha}^{2} \leq\|h\|_{L_{2}(\Omega)}\|u\|_{H^{1}(\Omega), \alpha}
$$

Therefore,

$$
\begin{equation*}
\|u\|_{L_{2}(\Omega)} \leq\|u\|_{H^{1}(\Omega), \alpha} \leq\|h\|_{L_{2}(\Omega)} \tag{28}
\end{equation*}
$$

and we can define the bounded linear operator $A_{\alpha}: L_{2}(\Omega) \rightarrow L_{2}(\Omega)$ such that $u=A_{\alpha} h$ and $\left\|A_{\alpha}\right\| \leq 1$. Moreover, if the domain Ω with C^{2} boundary is bounded, then the space $H^{1}(\Omega)$ embeds compactly into the space $L_{2}(\Omega)([6, \mathrm{Ch} .1, \mathrm{Th} .1 .1 .1])$. It means that the operator A_{α} is compact. Note that

$$
\begin{align*}
\left(h, A_{\alpha} g\right)_{L_{2}(\Omega)} & =\int_{\Omega} h A_{\alpha} g d x=\int_{\Omega} h v d x \\
& =\int_{\Omega}((\nabla u, \nabla v)+u v) d x+\alpha \int_{\Gamma} \sigma u v d s \\
& =\int_{\Omega} u g d x=\left(A_{\alpha} h, g\right)_{L_{2}(\Omega)}, \quad f, g \in L_{2}(\Omega) \tag{29}
\end{align*}
$$

with $u=A_{\alpha} h, v=A_{\alpha} g, u, v \in H^{1}(\Omega)$. Relation (29) means that A_{α} is a self-adjoint operator. Now, by relation (29) we have

$$
\begin{aligned}
\left(h, A_{\alpha} h\right)_{L_{2}(\Omega)} & =\int_{\Omega} u h d x \\
& =\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x+\alpha \int_{\Gamma} \sigma u^{2} d s=\|u\|_{H^{1}(\Omega), \alpha}^{2}>0, \quad h \neq 0
\end{aligned}
$$

Hence, the operator A_{α} is positive. Finally, A_{α} is a self-adjoint positive compact operator in the Hilbert space $H=L_{2}(\Omega)$. By the well-known theorem ($[6, \mathrm{Ch} .1$, Th. 1.2.1]), A_{α} has a sequence of eigenvalues $\left\{\mu_{k}(\alpha)\right\}, k=1,2, \ldots$ with finite multiplicities such that $\mu_{k}(\alpha)>0, \mu_{k}(\alpha) \searrow 0, k \rightarrow \infty$. Let us denote by $u_{k, \alpha}(x) \in$ $L_{2}(\Omega)$ the eigenfunction satisfying $A_{\alpha} u_{k, \alpha}=\mu_{k}(\alpha) u_{k, \alpha}$. Thus,

$$
\mu_{k}(\alpha)\left(u_{k, \alpha}, v\right)_{H^{1}(\Omega), \alpha}=\left(u_{k, \alpha}, v\right)_{L_{2}(\Omega)}
$$

and

$$
\mu_{k}(\alpha)\left(\int_{\Omega}\left(\left(\nabla u_{k, \alpha}, \nabla v\right)+u_{k, \alpha} v\right) d x+\alpha \int_{\Gamma} \sigma u_{k, \alpha} v d s\right)=\int_{\Omega} u_{k, \alpha} v d x
$$

It can be seen that

$$
\mu_{k}(\alpha)=\frac{1}{\lambda_{k}(\alpha)+1}
$$

Let us note that for $\alpha>0$ we have

$$
\mu_{k}(\alpha) \leq \frac{1}{\lambda_{1}(\alpha)+1}<1
$$

so $\left\|A_{\alpha}\right\|<1$.
Furthermore, consider a Dirichlet problem

$$
\begin{align*}
-\Delta y+y=h & \text { in } \quad \Omega, \tag{30}\\
y=0 & \text { on } \quad \Gamma . \tag{31}
\end{align*}
$$

For $h \in L_{2}(\Omega)$ a weak solution $y \in \stackrel{o}{H^{1}}(\Omega)$ of problem (30), (31) satisfies the integral identity

$$
\begin{equation*}
\int_{\Omega}((\nabla y, \nabla v)+y v) d x=\int_{\Omega} h v d x \tag{32}
\end{equation*}
$$

for all $v \in{ }_{H}^{H}(\Omega)$. Define the scalar product in the space ${ }^{\circ}{ }^{1}(\Omega)$ by (25). Using (25), (32), we obtain the relation

$$
\begin{equation*}
(y, v)_{H^{1}(\Omega)}=l_{h}(v) \tag{33}
\end{equation*}
$$

Now, by (27) and the Riesz lemma there exists the unique function $y \in{ }_{H}^{H}{ }^{1}(\Omega)$ satisfying integral identity (32). Using (32) with $v=y$, we obtain

$$
\begin{equation*}
\|y\|_{H_{H^{1}(\Omega)}^{2}}^{2} \leq\|h\|_{L_{2}(\Omega)}\|y\|_{H_{H^{1}(\Omega)}} \tag{34}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\|y\|_{L_{2}(\Omega)} \leq\|y\|_{H^{1}(\Omega)} \leq\|h\|_{L_{2}(\Omega)} \tag{35}
\end{equation*}
$$

and we can define the bounded linear operator $A^{D}: L_{2}(\Omega) \rightarrow L_{2}(\Omega)$ such that $u=A^{D} h$ and $\left\|A^{D}\right\| \leq 1$. If the domain Ω is bounded, then the space ${ }_{H}^{o}{ }^{1}(\Omega)$ embeds compactly into the space $L_{2}(\Omega)$ ([6, Ch. 1, Th. 1.1.1]). Hence, the operator A^{D} is compact. Note that

$$
\begin{align*}
\left(h, A^{D} g\right)_{L_{2}(\Omega)} & =\int_{\Omega} h A^{D} g d x=\int_{\Omega} h v d x=\int_{\Omega}((\nabla y, \nabla v)+y v) d x \\
& =\int_{\Omega} y g d x=\left(A^{D} h, g\right)_{L_{2}(\Omega)}, \quad f, g \in L_{2}(\Omega) \tag{36}
\end{align*}
$$

with $y=A^{D} h, v=A^{D} g, y, v \in \stackrel{o}{H^{1}}(\Omega)$. Relation (36) means that A^{D} is a self-adjoint operator. Now, by (36) we have

$$
\left(h, A^{D} h\right)_{L_{2}(\Omega)}=\int_{\Omega} y h d x=\int_{\Omega}\left(|\nabla y|^{2}+y^{2}\right) d x=\|y\|_{H^{1}(\Omega)}^{2}>0, \quad h \neq 0 .
$$

Hence, the operator A^{D} is positive. Finally, A^{D} is a self-adjoint positive compact operator in the Hilbert space $H=L_{2}(\Omega)$. By ($[6, \mathrm{Ch} .1$, Th. 1.2.1]), there exists a
sequence of eigenvalues $\left\{\mu_{k}^{D}\right\}, k=1,2, \ldots$, of the operator A^{D} with finite multiplicities such that $\mu_{k}^{D}>0, \mu_{k}^{D} \searrow 0, k \rightarrow \infty$. Denote by $y_{k}(x) \in L_{2}(\Omega)$ the respective eigenfunction satisfying $A^{D} y_{k}=\mu_{k}^{D} y_{k}$. Thus, $\mu_{k}^{D}\left(y_{k}, v\right)_{H^{1}(\Omega)}=\left(y_{k}, v\right)_{L_{2}(\Omega)}$ and

$$
\mu_{k}^{D} \int_{\Omega}\left(\left(\nabla y_{k}, \nabla v\right)+y_{k} v\right) d x=\int_{\Omega} y_{k} v d x
$$

Then,

$$
\mu_{k}^{D}=\frac{1}{\lambda_{k}^{D}+1}
$$

Note that

$$
\mu_{k}^{D} \leq \frac{1}{\lambda_{1}^{D}+1}<1
$$

so $\left\|A^{D}\right\|<1$.
Now we estimate the norm $\left\|A_{\alpha}-A^{D}\right\|_{L_{2}(\Omega) \rightarrow L_{2}(\Omega)}$ for large positive values of α.
Let us remind that in domains with C^{2}-class boundaries and positive $\sigma(x) \in$ $C^{1}(\Gamma)$ the functions $u=A_{\alpha} h$ and $y=A^{D} h$ are strong solutions and belong to $H^{2}(\Omega)([11$, Ch. 4, Par. 2, Th. 4]). Moreover, the following estimate

$$
\begin{equation*}
\|y\|_{H^{2}(\Omega)} \leq C_{2}\|h\|_{L_{2}(\Omega)} \tag{37}
\end{equation*}
$$

holds. Now we use estimate (16) with $\varepsilon=1$:

$$
\begin{equation*}
\|y\|_{L_{2}(\Gamma)} \leq C_{3}\|y\|_{H^{1}(\Omega)} . \tag{38}
\end{equation*}
$$

Combining (37) and (38) we derive the inequality

$$
\begin{equation*}
\|\nabla y\|_{L_{2}(\Gamma)} \leq C_{4}\|y\|_{H^{2}(\Omega)} \tag{39}
\end{equation*}
$$

Since $\left|\frac{\partial y}{\partial \nu}\right| \leq|\nabla y|$ on Γ, from (37), (39) we obtain the estimate

$$
\begin{equation*}
\left\|\frac{\partial y}{\partial \nu}\right\|_{L_{2}(\Gamma)} \leq C_{5}\|h\|_{L_{2}(\Omega)} \tag{40}
\end{equation*}
$$

Suppose that $w=\left(A^{D}-A_{\alpha}\right) h$. By (21), (22), (30), (31) the function w is a solution of the boundary value problem

$$
\begin{align*}
-\Delta w+w & =0 \quad \text { in } \quad \Omega \tag{41}\\
\frac{\partial w}{\partial \nu}+\alpha \sigma w & =\frac{\partial y}{\partial \nu} \quad \text { on } \quad \Gamma . \tag{42}
\end{align*}
$$

Multiplying equation (41) by w and integrating it over Ω with respect to boundary condition (42), we get the relation

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla w|^{2}+w^{2}\right) d x+\frac{1}{\alpha} \int_{\Gamma}\left(\frac{\partial w}{\partial \nu}\right)^{2} \frac{d s}{\sigma}=\frac{1}{\alpha} \int_{\Gamma} \frac{\partial w}{\partial \nu} \frac{\partial y}{\partial \nu} \frac{d s}{\sigma}, \quad \alpha>0 \tag{43}
\end{equation*}
$$

Then we obtain the inequality

$$
\|w\|_{L_{2}(\Omega)}^{2}+\frac{1}{\alpha}\left\|\frac{\partial w}{\partial \nu}\right\|_{L_{2}(\Gamma)}^{2} \leq \frac{C_{6}}{\alpha}\left\|\frac{\partial w}{\partial \nu}\right\|_{L_{2}(\Gamma)}\left\|\frac{\partial y}{\partial \nu}\right\|_{L_{2}(\Gamma)}
$$

and, consequently,

$$
\|w\|_{L_{2}(\Omega)}^{2}+\frac{1}{\alpha}\left\|\frac{\partial w}{\partial \nu}\right\|_{L_{2}(\Gamma)}^{2} \leq \frac{1}{2 \alpha}\left\|\frac{\partial w}{\partial \nu}\right\|_{L_{2}(\Gamma)}^{2}+\frac{C_{6}^{2}}{2 \alpha}\left\|\frac{\partial y}{\partial \nu}\right\|_{L_{2}(\Gamma)}^{2}
$$

Therefore, we have the estimate

$$
\begin{equation*}
\|w\|_{L_{2}(\Omega)} \leq \frac{C_{6}}{\sqrt{2 \alpha}}\left\|\frac{\partial y}{\partial \nu}\right\|_{L_{2}(\Gamma)}, \quad \alpha>0 \tag{44}
\end{equation*}
$$

Combining (44) with (40), we get

$$
\|w\|_{L_{2}(\Omega)} \leq C_{7} \alpha^{-1 / 2}\|h\|_{L_{2}(\Omega)}, \quad \alpha>0
$$

with the constant C_{6} independent of α. Thus, for all $h \in L_{2}(\Omega)$ we have the estimate

$$
\left\|\left(A^{D}-A_{\alpha}\right) h\right\|_{L_{2}(\Omega)} \leq C_{7} \alpha^{-1 / 2}\|h\|_{L_{2}(\Omega)}
$$

and

$$
\begin{equation*}
\left\|A^{D}-A_{\alpha}\right\| \leq C_{7} \alpha^{-1 / 2}, \quad \alpha>0 \tag{45}
\end{equation*}
$$

Now we apply (20) to the operators $T_{1}=A_{\alpha}, T_{2}=A^{D}$. Then, by the relations

$$
\mu_{k}(\alpha)=\frac{1}{\lambda_{k}(\alpha)+1}, \quad \mu_{k}^{D}=\frac{1}{\lambda_{k}^{D}+1}
$$

and inequalities (20), (45) we get the estimate

$$
\begin{equation*}
\left|\frac{1}{\lambda_{k}(\alpha)+1}-\frac{1}{\lambda_{k}^{D}+1}\right| \leq C_{7} \alpha^{-1 / 2} \tag{46}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left|\lambda_{k}^{D}-\lambda_{k}(\alpha)\right| \leq C_{7} \alpha^{-1 / 2}\left(\lambda_{k}^{D}+1\right)\left(\lambda_{k}(\alpha)+1\right) \tag{47}
\end{equation*}
$$

and taking into account inequalities (49) (see Section 4), we obtain the estimate

$$
\begin{equation*}
0 \leq \lambda_{k}^{D}-\lambda_{k}(\alpha) \leq C_{7} \alpha^{-1 / 2}\left(\lambda_{k}^{D}+1\right)^{2} \leq C_{1} \alpha^{-1 / 2}\left(\lambda_{k}^{D}\right)^{2} \tag{48}
\end{equation*}
$$

The proof of Theorem 1 is completed.

4. General properties of eigenvalues

In this Section, we give the proof of Theorem 2.
Proof. Due to (18), $\lambda_{k}(\cdot)$ is an increasing function. Using (19) and the inclusion $\stackrel{o}{H^{1}}(\Omega) \subset H^{1}(\Omega)$, we have

$$
\begin{align*}
\lambda_{k}(\alpha) & =\sup _{v_{1}, \ldots, v_{k-1} \in L_{2}(\Omega)} \inf _{\substack{v \in H^{1}(\Omega) \\
\left(v, v_{j}\right)_{L_{2}(\Omega)}=0 \\
j=1, \ldots, k-1}} \frac{\int_{\Omega}|\nabla v|^{2} d x+\alpha \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x} \\
& \leq \sup _{v_{1}, \ldots, v_{k-1} \in L_{2}(\Omega)} \inf _{\substack{v \in H^{1}(\Omega) \\
v \in v_{j} \\
\left(v, v_{j}\right)_{L_{2}(\Omega)}=0 \\
j=1, \ldots, k-1}} \frac{\int_{\Omega}|\nabla v|^{2} d x+\alpha \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x} \\
& =\sup _{v_{1}, \ldots, v_{k-1} \in L_{2}(\Omega)} \inf _{\substack{v \in H^{1}(\Omega) \\
\left(v, v_{j}\right)_{L_{2}(\Omega)}=0 \\
j=1, \ldots, k-1}} \frac{\int_{\Omega}|\nabla v|^{2} d x}{\int_{\Omega} v^{2} d x}=\lambda_{k}^{D} . \tag{49}
\end{align*}
$$

The continuity of $\lambda_{k}(\alpha)$ was proved in ([2, Ch. 6, Par. 2, No. 6]).
Inequality (8) can be proved by the following:

$$
\begin{aligned}
\lambda_{1}\left(\beta \alpha_{1}+(1-\beta) \alpha_{2}\right)= & \inf _{v \in H^{1}(\Omega)} \frac{\int_{\Omega}|\nabla v|^{2} d x+\left(\beta \alpha_{1}+(1-\beta) \alpha_{2}\right) \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x} \\
\geq & \beta \inf _{v \in H^{1}(\Omega)} \frac{\int_{\Omega}|\nabla v|^{2} d x+\alpha_{1} \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x} \\
& +(1-\beta) \inf _{v \in H^{1}(\Omega)} \frac{\int_{\Omega}|\nabla v|^{2} d x+\alpha_{2} \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x} \\
= & \beta \lambda_{1}\left(\alpha_{1}\right)+(1-\beta) \lambda_{1}\left(\alpha_{2}\right), \quad 0<\beta<1 .
\end{aligned}
$$

The eigenvalue $\lambda_{1}(\alpha)$ is simple for all $-\infty<\alpha<\infty$. The family of self-adjoint operators $(I+\alpha T)^{-1} B$ in the space $H^{1}(\Omega)$ with norm (13) satisfies the conditions of the asymptotic perturbation theorem ([7, Ch. 8, Par. 4, Th. 2.9]). It means that the eigenvalue $\lambda_{1}(\alpha)$ is a differentiable function of α. So

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\lambda_{1}\left(\alpha_{j}\right)-\lambda_{1}(\alpha)}{\alpha_{j}-\alpha}=\lambda_{1}^{\prime}(\alpha) \tag{50}
\end{equation*}
$$

for an arbitrary sequence $\alpha_{j} \rightarrow \alpha, j \rightarrow \infty, \alpha_{j} \neq \alpha$. Let $\alpha_{j} \rightarrow \alpha, j \rightarrow \infty$, and $\left\|u_{1, \alpha_{j}}\right\|_{L_{2}(\Omega)}=1, u_{1, \alpha_{j}} \geq 0$. Therefore, $\left\|u_{1, \alpha_{j}}\right\|_{H^{1}(\Omega)} \leq C_{8}$. By (11), the functions $u_{1, \alpha_{j}}$ satisfy

$$
\begin{equation*}
\int_{\Omega}\left(\nabla u_{1, \alpha_{j}}, \nabla v\right) d x+\alpha_{j} \int_{\Gamma} \sigma u_{1, \alpha_{j}} v d s=\lambda_{1}\left(\alpha_{j}\right) \int_{\Omega} u_{1, \alpha_{j}} v d x \tag{51}
\end{equation*}
$$

Now, we can choose a subsequence $u_{1, \alpha_{j}} \rightharpoonup u$ weakly in $H^{1}(\Omega)$ and $\| u_{1, \alpha_{j}}-$ $u\left\|_{L_{2}(\Omega)} \rightarrow 0,\right\| u_{1, \alpha_{j}}-u \|_{L_{2}(\Gamma)} \rightarrow 0$. It means that $u \geq 0$ and $\|u\|_{L_{2}(\Omega)}=1$. Due to (51), u satisfies the integral identity

$$
\begin{equation*}
\int_{\Omega}(\nabla u, \nabla v) d x+\alpha \int_{\Gamma} \sigma u v d s=\lambda_{1}(\alpha) \int_{\Omega} u v d x \tag{52}
\end{equation*}
$$

Hence, by the uniqueness of the first positive normalized eigenfunction $u=u_{1, \alpha}$ and

$$
\begin{equation*}
\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{L_{2}(\Omega)} \rightarrow 0, \quad j \rightarrow \infty \tag{53}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
\int_{\Omega} \mid \nabla\left(u_{1, \alpha_{j}}-\right. & \left.u_{1, \alpha}\right)\left.\right|^{2} d x+\alpha \int_{\Gamma} \sigma\left(u_{1, \alpha_{j}}-u_{1, \alpha}\right)^{2} d s \\
= & \lambda_{1}(\alpha) \int_{\Omega}\left(u_{1, \alpha_{j}}-u_{1, \alpha}\right)^{2} d x \\
& +\left(\lambda_{1}\left(\alpha_{j}\right)-\lambda_{1}(\alpha)\right) \int_{\Omega} u_{1, \alpha_{j}}\left(u_{1, \alpha_{j}}-u_{1, \alpha}\right) d x \\
& -\left(\alpha_{j}-\alpha\right) \int_{\Gamma} \sigma u_{1, \alpha_{j}}\left(u_{1, \alpha_{j}}-u_{1, \alpha}\right) d s . \tag{54}
\end{align*}
$$

It follows from (54) that

$$
\begin{align*}
\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{H^{1}(\Omega)}^{2} \leq & C_{9}\left(|\alpha|\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{L_{2}(\Gamma)}^{2}\right. \\
& +\left(\left|\lambda_{1}(\alpha)\right|+1\right)\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{L_{2}(\Omega)}^{2} \\
& +\left|\lambda_{1}\left(\alpha_{j}\right)-\lambda_{1}(\alpha)\right|\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{L_{2}(\Omega)}\left\|u_{1, \alpha_{j}}\right\|_{L_{2}(\Omega)} \\
& \left.+\left|\alpha_{j}-\alpha\right|\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{L_{2}(\Gamma)}\left\|u_{1, \alpha_{j}}\right\|_{L_{2}(\Gamma)}\right) . \tag{55}
\end{align*}
$$

Applying (50) and (16) with sufficiently small ε we obtain

$$
\begin{equation*}
\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{H^{1}(\Omega)}^{2} \leq C_{10}\left(\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{L_{2}(\Omega)}^{2}+\left(\alpha_{j}-\alpha\right)^{2}\left\|u_{1, \alpha_{j}}\right\|_{H^{1}(\Omega)}^{2}\right) . \tag{56}
\end{equation*}
$$

Due to (16), (53) and (56) we get

$$
\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{L_{2}(\Gamma)} \leq C_{11}\left\|u_{1, \alpha_{j}}-u_{1, \alpha}\right\|_{H^{1}(\Omega)} \rightarrow 0, \quad j \rightarrow \infty .
$$

Therefore,

$$
\begin{equation*}
\int_{\Gamma} \sigma u_{1, \alpha_{j}}^{2} d s \rightarrow \int_{\Gamma} \sigma u_{1, \alpha}^{2} d s, \quad j \rightarrow \infty . \tag{57}
\end{equation*}
$$

Now, to obtain (9) we use the inequalities

$$
\begin{aligned}
\lambda_{1}\left(\alpha_{j}\right)-\lambda_{1}(\alpha) & =\lambda_{1}\left(\alpha_{j}\right)-\inf _{v \in H^{1}(\Omega)} \frac{\int_{\Omega}|\nabla v|^{2} d x+\alpha \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x} \\
& \geq \lambda_{1}\left(\alpha_{j}\right)-\frac{\int_{\Omega}\left|\nabla u_{1, \alpha_{j}}\right|^{2} d x+\alpha \int_{\Gamma} \sigma u_{1, \alpha_{j}}^{2} d s}{\int_{\Omega} u_{1, \alpha_{j}}^{2} d x}=\left(\alpha_{j}-\alpha\right) \frac{\int_{\Gamma} \sigma u_{1, \alpha_{j}}^{2} d s}{\int_{\Omega} u_{1, \alpha_{j}}^{2} d x}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{1}\left(\alpha_{j}\right)-\lambda_{1}(\alpha) & =\inf _{v \in H^{1}(\Omega)} \frac{\int_{\Omega}|\nabla v|^{2} d x+\alpha_{j} \int_{\Gamma} \sigma v^{2} d s}{\int_{\Omega} v^{2} d x}-\lambda_{1}(\alpha) \\
& \leq \frac{\int_{\Omega}\left|\nabla u_{1, \alpha}\right|^{2} d x+\alpha_{j} \int_{\Gamma} \sigma u_{1, \alpha}^{2} d s}{\int_{\Omega} u_{1, \alpha}^{2} d x}-\lambda_{1}(\alpha)=\left(\alpha_{j}-\alpha\right) \frac{\int_{\Gamma} \sigma u_{1, \alpha}^{2} d s}{\int_{\Omega} u_{1, \alpha}^{2} d x}
\end{aligned}
$$

Therefore, for $\alpha_{j}>\alpha$

$$
\begin{equation*}
\frac{\int_{\Gamma} \sigma u_{1, \alpha_{j}}^{2} d s}{\int_{\Omega} u_{1, \alpha_{j}}^{2} d x} \leq \frac{\lambda_{1}\left(\alpha_{j}\right)-\lambda_{1}(\alpha)}{\alpha_{j}-\alpha} \leq \frac{\int_{\Gamma} \sigma u_{1, \alpha}^{2} d s}{\int_{\Omega} u_{1, \alpha}^{2} d x} \tag{58}
\end{equation*}
$$

Finally, it follows from (50), (57) and (58) that

$$
\lambda_{1}^{\prime}(\alpha)=\frac{\int_{\Gamma} \sigma u_{1, \alpha}^{2} d s}{\int_{\Omega} u_{1, \alpha}^{2} d x}
$$

By ([11, Ch. 4, Par. 2, Th. 4]), $u_{1, \alpha} \in H^{2}(\Omega)$ and it satisfies equation (1) almost everywhere and the boundary condition in the sense of trace (the so-called strong solution). In the case $\int_{\Gamma} \sigma u_{1, \alpha}^{2} d s=0$, by (2) we have:

$$
u_{1, \alpha}=\frac{\partial u_{1, \alpha}}{\partial \nu}=0 \quad \text { on } \quad \Gamma .
$$

Applying the uniqueness theorem to the Cauchy problem for second-order elliptic equations ($\left[8\right.$, Ch. 1, Par. 3, Th. 1.46]), we get $u_{1, \alpha}=0$ in Ω. This contradiction proves that $\lambda_{1}^{\prime}(\alpha)>0$ for all α. Taking into account (9), we have the inequality $\lambda_{1}(\alpha)<\lambda_{1}^{D}$.

By combining the result from [10] with (9) we obtain the relations

$$
\begin{aligned}
\alpha \lambda_{1}^{\prime}(\alpha) & =\frac{\alpha \int_{\Gamma} \sigma u_{1, \alpha}^{2} d s}{\int_{\Omega} u_{1, \alpha}^{2} d x} \leq \frac{\int_{\Omega}\left|\nabla u_{1, \alpha}\right|^{2} d x+\alpha \int_{\Gamma} \sigma u_{1, \alpha}^{2} d s}{\int_{\Omega} u_{1, \alpha}^{2} d x} \\
& =\lambda_{1}(\alpha)=-\alpha^{2} \sigma_{1}^{2}(1+\varrho(\alpha)), \quad \varrho(\alpha) \rightarrow 0, \quad \alpha \rightarrow-\infty
\end{aligned}
$$

Hence,

$$
\frac{\lambda_{1}^{\prime}(\alpha)}{-\alpha} \geq \sigma_{1}^{2}(1+\varrho(\alpha)), \quad \alpha<0
$$

and inequality (10) is proved.
This completes the proof of Theorem 2.

References

[1] R. A. Castro, Regularity for the solutions of a Robin problem and some applications, Rev. Colombiana Mat. 42(2008), 127-144.
[2] R. Courant, D. Hilbert, Methods of mathematical physics, Wiley, New York, 1989.
[3] D. Daners, J. B. Kennedy, On the asymptotic behaviour of the eigenvalues of a Robin problem, Differential Integral Equations 23(2010), 659-669.
[4] A. V. Filinovskiy, Asymptotic behaviour of the first eigenvalue of a Robin problem, Differ. Equ. 47(2011), 1681-1682.
[5] T. Giorgi, R. G. Smits, Monotonicity results for the principal eigenvalue of the generalized Robin problem, Illinois J. Math. 49(2005), 1133-1143.
[6] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Birkhäuser, Basel, 2006.
[7] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995.
[8] V. A. Kondratiev, E. M. Landis, Qualitative theory of second order linear partial differential equations, Itogi nauki i tehniki, Ser. Sovrem. Probl. Mat., Fundam. Napravleniya. Moscow 32(1988), 99-215, in Russian.
[9] A. A. Lacey, J. R. Ockendon, J. Sabina, Multidimensional reaction-diffusion equations with nonlinear boundary conditions, SIAM J. Appl. Math. 58(1998), 1622-1647.
[10] Y. Lou, M. Zhu, A singularly perturbed linear eigenvalue problem in C^{1} domains, Pacific J. Math. 214(2004), 323-334.
[11] V. P. MikhaĬlov, Partial Differential Equations, Nauka, Moscow, 1983., in Russian.
[12] R.Sperb, Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützen Membran, Zeitschrift Angew. Math. Phys. 23(1972), 231-244.

[^0]: *This work was supported by the RFBR Grant No. 11-01-00989.
 ${ }^{\dagger}$ Corresponding author. Email address: flnv@yandex.ru (A. Filinovskiy)

