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1. Introduction

We consider the eigenvalue problem

∆u+ λu = 0 in Ω, (1)

∂u

∂ν
+ ασ(x)u = 0 on Γ, (2)

where Ω ⊂ Rn, n ≥ 2, is a bounded domain with boundary Γ = ∂Ω ∈ C2. By ν we
denote the outward unit normal vector to Γ, α is a real parameter. The function
σ(x) ∈ C1(Γ) is positive:

0 < σ0 ≤ σ(x) ≤ σ1, σ0 = inf
x∈Γ

σ(x) and σ1 = sup
x∈Γ

σ(x).

Problem (1), (2) with σ(x) = 1 is known as the Robin (Fourier) problem for
α > 0 (see [6, Ch. 7, Par. 7.2]), and the generalized Robin problem for all α ([5]).

There is a sequence of eigenvalues λ1(α) < λ2(α) ≤ . . . of problem (1) - (2)
enumerated according to their multiplicities with

lim
k→∞

λk(α) = +∞.

We also consider the sequence of eigenvalues 0 < λD
1 < λD

2 ≤ . . . of the Dirichlet
eigenvalue problem

∆u+ λu = 0 in Ω, (3)

u = 0 on Γ, (4)
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with
lim
k→∞

λD
k = +∞.

Note that the eigenvalues λ1(α) and λD
1 are simple and the corresponding eigenfunc-

tions u1,α(x) and uD
1 (x) are positive.

In this paper, we estimate λk(α) for large values of α. We now give some known
results.

It is easy to see that λk(α) ≤ λD
k , k = 1, 2, . . . . These inequalities give the upper

bound of λk(α) for all values of α. It was announced in ([2, Ch. 6, Par. 2, No. 1])
that for n = 2 and a smooth boundary lim

α→+∞
λk(α) = λD

k .

Later the properties of the first eigenvalue λ1(α) were studied more precisely.
Consider the case σ(x) = 1. The following two-sided estimates:

λD
1

(

1 +
λD
1

αq1

)−1

≤ λ1(α) ≤ λD
1

(

1 +
4π

α|Γ|

)−1

, α > 0,

were obtained in [12] for n = 2. Here |Γ| is the length of Γ and q1 is the first
eigenvalue of the Steklov problem

∆2u = 0 in Ω,

u = 0, ∆u− q
∂u

∂ν
= 0 on Γ.

In [4], for any n ≥ 2 we establish the following asymptotic expansion:

λ1(α) = λD
1 −

∫

Γ

(

∂uD
1

∂ν

)2

ds
∫

Ω

(

uD
1

)2
dx

α−1 + o
(

α−1
)

, α → +∞.

The case α < 0 has recently attracted attention (see, for instance, [9]). It was
shown in [9] that for a piecewise-C1 boundary

lim inf
α→−∞

λ1(α)/(−α2) ≥ 1.

For C1 boundaries it was proved ([10]) that

lim
α→−∞

λ1(α)/(−α2) = 1.

The C1-condition is optimal. In [9], the authors constructed plane triangle domains
for which

lim
α→−∞

λ1(α)/(−α2) > 1.

In [3], the authors proved that for C1 boundaries

lim
α→−∞

λk(α)

−α2
= 1 (5)

for all k = 1, 2, . . . .
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2. Main results

The main result of this paper reads as follows.

Theorem 1. The eigenvalues λk(α), k = 1, 2, . . . , satisfy the estimates

0 ≤ λD
k − λk(α) ≤ C1α

−1/2
(

λD
k

)2
, α > 0, (6)

where the constant C1 does not depend on k.

In the following theorem we gather the qualitative properties of eigenvalues of
problem (1) - (2) (see also [2, Ch. 6] for i) and [9] for ii) and iii) for σ(x) = 1)

Theorem 2. The eigenvalues have the following properties:

i) λk(α), k = 1, 2, . . . , are continuous functions of α and

λk(α1) ≤ λk(α2), α1 < α2; (7)

ii) λ1(α) is a concave function of α:

λ1(βα1 + (1− β)α2) ≥ βλ1(α1) + (1 − β)λ1(α2), 0 < β < 1; (8)

iii) λ1(α) is differentiable and

λ′
1(α) =

∫

Γ
σu2

1,α ds
∫

Ω
u2
1,α dx

> 0; (9)

iv) the following estimate

lim inf
α→−∞

λ′
1(α)

−α
≥ σ2

1 (10)

holds.

3. Operator treatment

In this section, we introduce two linear operators associated with problems (1) - (2)
and (3) - (4) to derive the eigenvalue estimates (6).

Consider problem (1) - (2) in the spaceH1(Ω) ([1, 11]). We define an eigenvalue of
problem (1), (2) as a value λ for which there exists the non-zero function u ∈ H1(Ω)
satisfying the integral identity

∫

Ω

(∇u,∇v) dx+ α

∫

Γ

σuv ds = λ

∫

Ω

uv dx (11)

for any v ∈ H1(Ω). Relation (11) can be rewritten as

∫

Ω

((∇u,∇v) +Muv) dx+ α

∫

Γ

σuv ds = (λ+M)

∫

Ω

uv dx, M > 0. (12)
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Let us define an equivalent scalar product in the space H1(Ω) by the formula

[u, v]M =

∫

Ω

((∇u,∇v) +Muv) dx, ‖u‖2M = [u, u]M . (13)

Now (12) transforms to

[u, v]M + α[Tu, v]M = (λ+M)[Bu, v]M ,

where the linear self-adjoint non-negative operators T : H1(Ω) → H1(Ω) and B :
H1(Ω) → H1(Ω) were defined by the bilinear forms

[Tu, v]M =

∫

Γ

σuv ds, [Bu, v]M =

∫

Ω

uv dx, u, v ∈ H1(Ω). (14)

Hence we have an equation in the space H1(Ω) with the norm ‖ · ‖M :

(I + αT )u = (λ+M)Bu. (15)

Now we use the inequality ([11, Ch. 3, Par. 5, Formula 19])

‖v‖2L2(Γ)
≤ ε‖∇v‖2L2(Ω) + Cε‖v‖2L2(Ω), (16)

which is valid for v ∈ H1(Ω) with an arbitrary ε > 0. Using (14), (16), we obtain

‖Tu‖2M = [Tu, Tu]M =

∫

Γ

σuTu ds ≤ σ1‖u‖L2(Γ)‖Tu‖L2(Γ)

≤ σ1ε

(
∫

Ω

(

|∇Tu|2 + Cε

ε
(Tu)2

)

dx

)1/2

×
(
∫

Ω

(

|∇u|2 + Cε

ε
u2

)

dx

)1/2

≤ C2ε‖Tu‖M‖u‖M , (17)

where ε > 0, M = Mε. It follows from (17) that

‖Tu‖Mε
≤ C2ε‖u‖Mε

,

and for any arbitrary small ε we have ‖αT ‖H1(Ω)→H1(Ω) < 1 for |α| < 1/C2ε.
Therefore, the inverse operator (I + αT )−1 is bounded and

‖(I + αT )−1‖ ≤ (1 − |α|‖T ‖)−1.

Hence, equation (15) is equivalent to
(

I − (λ+M)(I + αT )−1B
)

u = 0.

The operator B is compact ([11, Ch. 3, Par. 5, Th. 3]) and the operator (I +
αT )−1B : H1(Ω) → H1(Ω) is also compact. Hence the spectrum of problem (15)
consists of real eigenvalues λj(α), j = 1, 2, . . . , of finite multiplicity with the only
limit point at the infinity. From (14), (15) we obtain the inequality

λj(α) ≥ −Mε + (1− |α|‖T ‖)
‖uj,α‖2Mε

‖uj,α‖2L2(Ω)

≥ −Mε
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with the corresponding eigenfunction uj,α. Thus, λj(α) → +∞, j → ∞.
By the variational principle ([11, Ch. 4, Par. 1, No. 4]) we have

λk(α) = sup
v1,..., vk−1∈L2(Ω)

inf
v ∈ H1(Ω)

(v, vj)L2(Ω) = 0
j = 1, . . . , k − 1

∫

Ω
|∇v|2dx+ α

∫

Γ
σv2ds

∫

Ω
v2dx

, (18)

λD
k = sup

v1,..., vk−1∈L2(Ω)

inf
v ∈

o

H
1(Ω)

(v, vj)L2(Ω) = 0
j = 1, . . . , k − 1

∫

Ω
|∇v|2dx

∫

Ω
v2dx

, k = 1, 2, . . . . (19)

To prove inequalities (6) we apply the following statement (see [6, Ch. 2,
Th. 2.3.1]).

Theorem 3. Let T1 and T2 be two linear self-adjoint, compact and positive operators

on a separable Hilbert space H. Assume also that µk(T1) and µk(T2) are their k-th
respective eigenvalues. Then

|µk(T1)− µk(T2)| ≤ ‖T1 − T2‖ . (20)

Now we give the proof of Theorem 1.

Proof. Consider the boundary value problem

−∆u+ u = h in Ω, (21)

∂u

∂ν
+ ασ(x)u = 0 on Γ, α > 0, (22)

with h ∈ L2(Ω). A weak solution u ∈ H1(Ω) of problem (21), (22) satisfy the
integral identity

∫

Ω

((∇u,∇v) + uv)dx+ α

∫

Γ

σuv ds =

∫

Ω

hv dx (23)

for all v ∈ H1(Ω). Let us define the scalar product in the space H1(Ω) as

(u, v)H1(Ω),α =

∫

Ω

((∇u,∇v) + uv)dx+ α

∫

Γ

σuv ds (24)

and the corresponding norm by

‖u‖2H1(Ω),α = (u, u)H1(Ω),α.

Due to (16), scalar product (24) is equivalent to the standard one

(u, v)H1(Ω) =

∫

Ω

((∇u,∇v) + uv)dx. (25)

Using (23), (24), we obtain the relation

(u, v)H1(Ω),α = (h, v)L2(Ω). (26)
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Hence, consider the linear functional

lh(v) = (h, v)L2(Ω).

This functional is bounded on the space H1(Ω):

|lh(v)| ≤ ‖h‖L2(Ω)‖v‖L2(Ω). (27)

Now, by the Riesz lemma there exists the unique function u ∈ H1(Ω) satisfying
integral identity (23). Applying (26) with v = u, we obtain

‖u‖2H1(Ω),α ≤ ‖h‖L2(Ω)‖u‖H1(Ω),α.

Therefore,
‖u‖L2(Ω) ≤ ‖u‖H1(Ω),α ≤ ‖h‖L2(Ω), (28)

and we can define the bounded linear operator Aα : L2(Ω) → L2(Ω) such that
u = Aαh and ‖Aα‖ ≤ 1. Moreover, if the domain Ω with C2 boundary is bounded,
then the space H1(Ω) embeds compactly into the space L2(Ω) ([6, Ch. 1, Th. 1.1.1]).
It means that the operator Aα is compact. Note that

(h,Aαg)L2(Ω) =

∫

Ω

hAαg dx =

∫

Ω

hv dx

=

∫

Ω

((∇u,∇v) + uv)dx+ α

∫

Γ

σuv ds

=

∫

Ω

ug dx = (Aαh, g)L2(Ω), f, g ∈ L2(Ω), (29)

with u = Aαh, v = Aαg, u, v ∈ H1(Ω). Relation (29) means that Aα is a self-adjoint
operator. Now, by relation (29) we have

(h,Aαh)L2(Ω) =

∫

Ω

uh dx

=

∫

Ω

(|∇u|2 + u2)dx+ α

∫

Γ

σu2 ds = ‖u‖2H1(Ω),α > 0, h 6= 0.

Hence, the operator Aα is positive. Finally, Aα is a self-adjoint positive compact
operator in the Hilbert space H = L2(Ω). By the well-known theorem ([6, Ch. 1,
Th. 1.2.1]), Aα has a sequence of eigenvalues {µk(α)}, k = 1, 2, . . . with finite
multiplicities such that µk(α) > 0, µk(α) ց 0, k → ∞. Let us denote by uk,α(x) ∈
L2(Ω) the eigenfunction satisfying Aαuk,α = µk(α)uk,α. Thus,

µk(α) (uk,α, v)H1(Ω),α = (uk,α, v)L2(Ω)

and

µk(α)

(
∫

Ω

((∇uk,α,∇v) + uk,αv)dx + α

∫

Γ

σuk,αv ds

)

=

∫

Ω

uk,αv dx.

It can be seen that

µk(α) =
1

λk(α) + 1
.
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Let us note that for α > 0 we have

µk(α) ≤
1

λ1(α) + 1
< 1,

so ‖Aα‖ < 1.
Furthermore, consider a Dirichlet problem

−∆y + y = h in Ω, (30)

y = 0 on Γ. (31)

For h ∈ L2(Ω) a weak solution y ∈
o

H1(Ω) of problem (30), (31) satisfies the integral
identity

∫

Ω

((∇y,∇v) + yv)dx =

∫

Ω

hv dx (32)

for all v ∈
o

H1(Ω). Define the scalar product in the space
o

H1(Ω) by (25). Using (25),
(32), we obtain the relation

(y, v) o

H1(Ω)
= lh(v). (33)

Now, by (27) and the Riesz lemma there exists the unique function y ∈
o

H 1(Ω)
satisfying integral identity (32). Using (32) with v = y, we obtain

‖y‖2o
H1(Ω)

≤ ‖h‖L2(Ω)‖y‖ o

H1(Ω)
. (34)

Therefore,

‖y‖L2(Ω) ≤ ‖y‖ o

H1(Ω)
≤ ‖h‖L2(Ω), (35)

and we can define the bounded linear operator AD : L2(Ω) → L2(Ω) such that

u = ADh and ‖AD‖ ≤ 1. If the domain Ω is bounded, then the space
o

H 1(Ω)
embeds compactly into the space L2(Ω) ([6, Ch. 1, Th. 1.1.1]). Hence, the operator
AD is compact. Note that

(h,ADg)L2(Ω) =

∫

Ω

hADg dx =

∫

Ω

hv dx =

∫

Ω

((∇y,∇v) + yv)dx

=

∫

Ω

yg dx = (ADh, g)L2(Ω), f, g ∈ L2(Ω), (36)

with y = ADh, v = ADg, y, v ∈
o

H1(Ω). Relation (36) means that AD is a self-adjoint
operator. Now, by (36) we have

(h,ADh)L2(Ω) =

∫

Ω

yh dx =

∫

Ω

(|∇y|2 + y2)dx = ‖y‖2o
H 1(Ω)

> 0, h 6= 0.

Hence, the operator AD is positive. Finally, AD is a self-adjoint positive compact
operator in the Hilbert space H = L2(Ω). By ([6, Ch. 1, Th. 1.2.1]), there exists a



538 A.Filinovskiy

sequence of eigenvalues {µD
k }, k = 1, 2, . . . , of the operator AD with finite multiplic-

ities such that µD
k > 0, µD

k ց 0, k → ∞. Denote by yk(x) ∈ L2(Ω) the respective
eigenfunction satisfying ADyk = µD

k yk. Thus, µ
D
k (yk, v) o

H 1(Ω)
= (yk, v)L2(Ω) and

µD
k

∫

Ω

((∇yk,∇v) + ykv)dx =

∫

Ω

ykvdx.

Then,

µD
k =

1

λD
k + 1

.

Note that

µD
k ≤ 1

λD
1 + 1

< 1,

so ‖AD‖ < 1.
Now we estimate the norm ‖Aα −AD‖L2(Ω)→L2(Ω) for large positive values of α.
Let us remind that in domains with C2-class boundaries and positive σ(x) ∈

C1(Γ) the functions u = Aαh and y = ADh are strong solutions and belong to
H2(Ω) ([11, Ch. 4, Par. 2, Th. 4]). Moreover, the following estimate

‖y‖H2(Ω) ≤ C2‖h‖L2(Ω) (37)

holds. Now we use estimate (16) with ε = 1:

‖y‖L2(Γ) ≤ C3‖y‖H1(Ω). (38)

Combining (37) and (38) we derive the inequality

‖∇y‖L2(Γ) ≤ C4‖y‖H2(Ω). (39)

Since
∣

∣

∣

∂y
∂ν

∣

∣

∣
≤ |∇y| on Γ, from (37), (39) we obtain the estimate

∥

∥

∥

∥

∂y

∂ν

∥

∥

∥

∥

L2(Γ)

≤ C5‖h‖L2(Ω). (40)

Suppose that w =
(

AD −Aα

)

h. By (21), (22), (30), (31) the function w is a
solution of the boundary value problem

−∆w + w = 0 in Ω, (41)

∂w

∂ν
+ ασw =

∂y

∂ν
on Γ. (42)

Multiplying equation (41) by w and integrating it over Ω with respect to boundary
condition (42), we get the relation

∫

Ω

(

|∇w|2 + w2
)

dx+
1

α

∫

Γ

(

∂w

∂ν

)2
ds

σ
=

1

α

∫

Γ

∂w

∂ν

∂y

∂ν

ds

σ
, α > 0. (43)
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Then we obtain the inequality

‖w‖2L2(Ω) +
1

α

∥

∥

∥

∥

∂w

∂ν

∥

∥

∥

∥

2

L2(Γ)

≤ C6

α

∥

∥

∥

∥

∂w

∂ν

∥

∥

∥

∥

L2(Γ)

∥

∥

∥

∥

∂y

∂ν

∥

∥

∥

∥

L2(Γ)

and, consequently,

‖w‖2L2(Ω) +
1

α

∥

∥

∥

∥

∂w

∂ν

∥

∥

∥

∥

2

L2(Γ)

≤ 1

2α

∥

∥

∥

∥

∂w

∂ν

∥

∥

∥

∥

2

L2(Γ)

+
C2

6

2α

∥

∥

∥

∥

∂y

∂ν

∥

∥

∥

∥

2

L2(Γ)

.

Therefore, we have the estimate

‖w‖L2(Ω) ≤
C6√
2α

∥

∥

∥

∥

∂y

∂ν

∥

∥

∥

∥

L2(Γ)

, α > 0. (44)

Combining (44) with (40), we get

‖w‖L2(Ω) ≤ C7α
−1/2‖h‖L2(Ω), α > 0,

with the constant C6 independent of α. Thus, for all h ∈ L2(Ω) we have the estimate

∥

∥

(

AD −Aα

)

h
∥

∥

L2(Ω)
≤ C7α

−1/2‖h‖L2(Ω)

and
∥

∥AD −Aα

∥

∥ ≤ C7α
−1/2, α > 0. (45)

Now we apply (20) to the operators T1 = Aα, T2 = AD. Then, by the relations

µk(α) =
1

λk(α) + 1
, µD

k =
1

λD
k + 1

,

and inequalities (20), (45) we get the estimate

∣

∣

∣

∣

1

λk(α) + 1
− 1

λD
k + 1

∣

∣

∣

∣

≤ C7α
−1/2. (46)

Therefore,
∣

∣λD
k − λk(α)

∣

∣ ≤ C7α
−1/2

(

λD
k + 1

)

(λk(α) + 1) . (47)

and taking into account inequalities (49) (see Section 4), we obtain the estimate

0 ≤ λD
k − λk(α) ≤ C7α

−1/2
(

λD
k + 1

)2 ≤ C1α
−1/2

(

λD
k

)2
. (48)

The proof of Theorem 1 is completed.
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4. General properties of eigenvalues

In this Section, we give the proof of Theorem 2.

Proof. Due to (18), λk(·) is an increasing function. Using (19) and the inclusion
o

H1(Ω) ⊂ H1(Ω), we have

λk(α) = sup
v1,..., vk−1∈L2(Ω)

inf
v ∈ H1(Ω)

(v, vj)L2(Ω) = 0
j = 1, . . . , k − 1

∫

Ω |∇v|2dx+ α
∫

Γ σv
2ds

∫

Ω
v2dx

≤ sup
v1,..., vk−1∈L2(Ω)

inf
v ∈

o

H
1(Ω)

(v, vj)L2(Ω) = 0
j = 1, . . . , k − 1

∫

Ω |∇v|2dx+ α
∫

Γ σv
2ds

∫

Ω
v2dx

= sup
v1,..., vk−1∈L2(Ω)

inf
v ∈

o

H
1(Ω)

(v, vj)L2(Ω) = 0
j = 1, . . . , k − 1

∫

Ω
|∇v|2dx

∫

Ω v2dx
= λD

k . (49)

The continuity of λk(α) was proved in ([2, Ch. 6, Par. 2, No. 6]).
Inequality (8) can be proved by the following:

λ1(βα1 + (1− β)α2) = inf
v∈H1(Ω)

∫

Ω
|∇v|2 dx+ (βα1 + (1− β)α2)

∫

Γ
σv2 ds

∫

Ω v2 dx

≥ β inf
v∈H1(Ω)

∫

Ω |∇v|2 dx+ α1

∫

Γ σv
2 ds

∫

Ω
v2 dx

+(1− β) inf
v∈H1(Ω)

∫

Ω
|∇v|2 dx+ α2

∫

Γ
σv2 ds

∫

Ω
v2 dx

= βλ1(α1) + (1− β)λ1(α2), 0 < β < 1.

The eigenvalue λ1(α) is simple for all −∞ < α < ∞. The family of self-adjoint
operators (I + αT )−1B in the space H1(Ω) with norm (13) satisfies the conditions
of the asymptotic perturbation theorem ([7, Ch. 8, Par. 4, Th. 2.9]). It means that
the eigenvalue λ1(α) is a differentiable function of α. So

lim
j→∞

λ1(αj)− λ1(α)

αj − α
= λ′

1(α) (50)

for an arbitrary sequence αj → α, j → ∞, αj 6= α. Let αj → α, j → ∞, and
‖u1,αj

‖L2(Ω) = 1, u1,αj
≥ 0. Therefore, ‖u1,αj

‖H1(Ω) ≤ C8. By (11), the functions
u1,αj

satisfy

∫

Ω

(∇u1,αj
,∇v) dx + αj

∫

Γ

σu1,αj
v ds = λ1(αj)

∫

Ω

u1,αj
v dx. (51)
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Now, we can choose a subsequence u1,αj
⇀ u weakly in H1(Ω) and ‖u1,αj

−
u‖L2(Ω) → 0, ‖u1,αj

− u‖L2(Γ) → 0. It means that u ≥ 0 and ‖u‖L2(Ω) = 1.
Due to (51), u satisfies the integral identity

∫

Ω

(∇u,∇v) dx+ α

∫

Γ

σuv ds = λ1(α)

∫

Ω

uv dx. (52)

Hence, by the uniqueness of the first positive normalized eigenfunction u = u1,α and

‖u1,αj
− u1,α‖L2(Ω) → 0, j → ∞. (53)

Now, we have
∫

Ω

|∇(u1,αj
− u1,α)|2dx+ α

∫

Γ

σ(u1,αj
− u1,α)

2ds

= λ1(α)

∫

Ω

(u1,αj
− u1,α)

2dx

+ (λ1(αj)− λ1(α))

∫

Ω

u1,αj
(u1,αj

− u1,α)dx

− (αj − α)

∫

Γ

σu1,αj
(u1,αj

− u1,α)ds. (54)

It follows from (54) that

‖u1,αj
− u1,α‖2H1(Ω) ≤C9

(

|α|‖u1,αj
− u1,α‖2L2(Γ)

+ (|λ1(α)|+ 1)‖u1,αj
− u1,α‖2L2(Ω)

+ |λ1(αj)− λ1(α)| ‖u1,αj
− u1,α‖L2(Ω)‖u1,αj

‖L2(Ω)

+ |αj − α| ‖u1,αj
− u1,α‖L2(Γ)‖u1,αj

‖L2(Γ)

)

. (55)

Applying (50) and (16) with sufficiently small ε we obtain

‖u1,αj
− u1,α‖2H1(Ω) ≤ C10

(

‖u1,αj
− u1,α‖2L2(Ω) + (αj − α)2‖u1,αj

‖2H1(Ω)

)

. (56)

Due to (16), (53) and (56) we get

‖u1,αj
− u1,α‖L2(Γ) ≤ C11‖u1,αj

− u1,α‖H1(Ω) → 0, j → ∞.

Therefore,
∫

Γ

σu2
1,αj

ds →
∫

Γ

σu2
1,αds, j → ∞. (57)

Now, to obtain (9) we use the inequalities

λ1(αj)− λ1(α) = λ1(αj)− inf
v∈H1(Ω)

∫

Ω |∇v|2 dx+ α
∫

Γ σv
2 ds

∫

Ω v2 dx

≥ λ1(αj)−
∫

Ω |∇u1,αj
|2 dx+ α

∫

Γ σu
2
1,αj

ds
∫

Ω
u2
1,αj

dx
= (αj − α)

∫

Γ σu
2
1,αj

ds
∫

Ω
u2
1,αj

dx
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and

λ1(αj)− λ1(α) = inf
v∈H1(Ω)

∫

Ω |∇v|2 dx+ αj

∫

Γ σv
2 ds

∫

Ω
v2 dx

− λ1(α)

≤
∫

Ω |∇u1,α|2 dx+ αj

∫

Γ σu
2
1,α ds

∫

Ω u2
1,α dx

− λ1(α) = (αj − α)

∫

Γ σu
2
1,α ds

∫

Ω u2
1,α dx

.

Therefore, for αj > α

∫

Γ σu
2
1,αj

ds
∫

Ω u2
1,αj

dx
≤ λ1(αj)− λ1(α)

αj − α
≤

∫

Γ σu
2
1,α ds

∫

Ω u2
1,α dx

. (58)

Finally, it follows from (50), (57) and (58) that

λ′
1(α) =

∫

Γ σu
2
1,α ds

∫

Ω
u2
1,α dx

.

By ([11, Ch. 4, Par. 2, Th. 4]), u1,α ∈ H2(Ω) and it satisfies equation (1) almost
everywhere and the boundary condition in the sense of trace (the so-called strong
solution). In the case

∫

Γ σu
2
1,αds = 0, by (2) we have:

u1,α =
∂u1,α

∂ν
= 0 on Γ.

Applying the uniqueness theorem to the Cauchy problem for second-order elliptic
equations ([8, Ch. 1, Par. 3, Th. 1.46]), we get u1,α = 0 in Ω. This contradiction
proves that λ′

1(α) > 0 for all α. Taking into account (9), we have the inequality
λ1(α) < λD

1 .
By combining the result from [10] with (9) we obtain the relations

αλ′
1(α) =

α
∫

Γ σu
2
1,α ds

∫

Ω u2
1,α dx

≤
∫

Ω |∇u1,α|2 dx+ α
∫

Γ σu2
1,α ds

∫

Ω u2
1,α dx

= λ1(α) = −α2σ2
1(1 + ̺(α)), ̺(α) → 0, α → −∞.

Hence,
λ′
1(α)

−α
≥ σ2

1(1 + ̺(α)), α < 0,

and inequality (10) is proved.
This completes the proof of Theorem 2.
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