# Lawrence Berkeley National Laboratory 

Lawrence Berkeley National Laboratory
Title
ESTIMATES OF INTERMITTENCY, SPECTRA, AND BLOWUP IN DEVELOPED TURBULENCE
Permalink
https://escholarship.org/uc/item/3458b4vs

## Author

Chorin, Alexandre Joel
Publication Date
1981-02-01

## Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

## Physics, Computer Science 8 Mathematics Division

To be submitted for publication

ESTIMATES OF INTERMITTENCY, SPECTRA, AND BIOOW-UP IN DEVELOPED TURBULENCE

Alexandre Joel Chorin

February 1981

## TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call
Tech. Info. Division, Ext. 6782

## DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

# ESTIMATES OF INTERMITTENCY, SPECTRA, AND BLOW-UP 

IN DEVELOPED TURBULENCE*

Alexandre Joel Chorin

Department of Mathematics and Lawrence Berkeley Laboratory University of California Berkeley, California 94720

February 1981

This manuscript was printed from originals provided by the author.
*Supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Engineering, Mathematical, and Geosciences Division of the U.S. Department of Energy under contract W-7405-ENG-48 and by the Office of Naval Research under contract N00014-76-0-0316.

# ESTIMATES OF INTERMITTENCY, SPECTRA, AND BLOW-UP <br> IN DEVELOPED TURBULENCE* 

Alexandre Joel Chorin<br>Department of Mathematics and Lawrence Berkeley Laboratory University of California<br>Berkeley, California 94720

ABSTRACT

We apply a vortex method to the analysis of the inertial range in fully developed, spatially periodic turbulence. We find that the highly stretched vorticity collects itself into a body of decreasing volume; the numerical results are compatible with the conjecture of Mandelbrot and Frisch et al. that this body has Hausdorff dimension $\sim 2.5$. We find an inertial range spectrum of the form $E(k) \sim k^{-(1+\beta)}$, with $\beta=0.84 \pm 0.03$, a value compatible with experimental data. The calculations suggest that the solutions of Euler's equations in three dimensions blow up in a finite time.

[^0]The inertial range has been the object of many experimental and theoretical investigations since its existence was postulated by Kolmogorov. Kolmogorov's theory and its successors, based mainly on scaling arguments, can be made to fit the experimental data (for reviews, see [8],[16],[23]). However, no analysis of the properties of the inertial range based on the equations of fluid flow has been successfully performed to date. The goal of the present paper is to fill this gap at least in part by computing properties of the inertial range numerically with a vortex method.

Vortex methods are natural candidates for the analysis of flow at high Reynolds number because they place no lower bound on the magnitude of resolvable scales (see e.g., [7],[9], and the review paper [19]). Our method does not differ in any essential way from earlier vortex methods. We use some labor saving devices but make sure the results are independent of these devices. Numerical innovations are introduced mainly in the analysis of the outcome of the calculations.

The energy $E$ ass a function of scale $r$ (= "the structure function") has, in the inertial range, the well known form

$$
\begin{equation*}
E(r)=\text { constant } \times r^{\beta}, \quad \beta=\text { constant } \tag{1}
\end{equation*}
$$

$\beta$ is the inertial range exponent. The corresponding energy spectrum can be found by Fourier transformation,

$$
E(k)=\text { constant } \times k^{-(1+\beta)},
$$

where $k$ is the wave number. Kolmogorov's original theory predicted $\beta=2 / 3$; it is now believed that $\beta>2 / 3$; we find $\beta=0.84$ with a standard
deviation of 0.03 . This value is compatible with recent experimental values (see the discussion in [12]).

We find that the vorticity stretches unevenly, and that the highly stretched vorticity collects itself into a body with a shrinking volume. The numerical results are compatible with the conjectures of Mandelbrot [20], [21] and Frisch et al [12] that this body approximates a set with Hausdorff dimension $\sim 2.5$. From the point of view of applications, this may be our most important result (see [10]).

Our calculations also suggest that if the flow can be described by Euler's equation, the vorticity becomes infinite in a finite time for all but special initial data. The time at which the blow-up occurs can be estimated, and the estimates are apparently consistent with recent estimates of Morf et al [24] for the Green-Taylor problem. A stronger statement cannot be made because we could not afford to solve the Green-Taylor problem and had to be content with simpler initial data.

Finally, the calculations support the assumptions in yorticity-based closures for the Navier-Stokes equations introduced by the author [8] and by P. Bernard [3], [4].

## §2 THE EQUATIONS OF MOTION

We shall be solving the incompressible Euler equations in vorticity form,

$$
\begin{align*}
& \partial_{t} \underline{\xi}+(\underline{u} \cdot \nabla) \underline{\xi}-(\underline{\xi} \cdot \nabla) \underline{u}=0  \tag{2a}\\
& \underline{\xi}=\operatorname{curl} \underline{u}, \quad \operatorname{div} \underline{u}=0 \tag{2b,c}
\end{align*}
$$

where $\underline{u}$ is the velocity, $\underline{\xi}$ the vorticity, $t$ the time, and $\underline{\nabla}$ the differentiation vector. These equations are to be solved in a unit cube with periodic boundary conditions. Note that the dissipation term of the Navier-Stokes has been dropped. We are interested in the inertial range of turbulence, i.e., in the limiting behavior of solutions of the NavierStokes equation as the viscosity tends to zero and the scale tends to zero, in that order. The first limit is assumed to have been reached. The mathematical question which must be answered is whether the solutions of the Navier-Stokes equations tend, as the viscosity tends to zero, to the solutions of Euler's equations (2) fast enough for the inertial range properties to be the same (for example, convergence in $L_{1}$ will do, see [6]). The appropriate theorems in three-dimensional space have not been proved. However, the analogous theorems have been proved in two dimensions [1], and in one dimension for Burgers' equation even when neither the data nor the solution are smooth [17]. Numerically, viscosity is easily added to the algorithms below (see [7] or [9]) and does not modify any of the results. We shall therefore be content with equations (2). In a related problem involving boundaries [10] we shall use the full Navier-Stokes equations.

We assume that at time $t=0$ the vorticity field can be written as a sum of $N$ closed vortex filaments; the circulation of the $i$-th filament is $\Gamma_{i}$. We shall be interested mostly in those asymptotic properties of the solutions which are independent of the data, and there is no need to describe here in what sense the filaments approximate the initial data. Let $\underline{r}(t)$ denote a point on one of the filaments. The motion of that point as determined by equations (2) can be found from the Biot-Savart law ([18])

$$
\begin{equation*}
\frac{d \underline{-}}{d t}=-\frac{1}{4 \pi} \sum_{i=1}^{N} \int_{\substack{i-t h}} \frac{\underline{a} \times d \underline{s}}{a^{3}} \tag{3}
\end{equation*}
$$

where $\underline{s}=\underline{s}\left(r^{\prime}\right)$ is the unit tangent to the i-th filament at $\underline{r}^{\prime}$, $d s=d s\left(r^{\prime}\right)$ is the arc length along a filament, $d \underline{s}=s d s, \underline{r}^{\prime}$ is a coordinate vector along a filament, $a=\underline{r}-\underline{r}^{\prime}$, and $a$ is the length of a. Equation (3) will be our main equation.

A THREE-DIMENSIONAL VORTEX METHOD

We shall approximate equations (3) by the simplest possible vortex method; for more accurate methods, see $[2],[9],[13],[19]$. We sha 11 have a comment on the reasons for the success of this method in the concluding section.

Place $N_{i}$ points on the $i$-th vortex; let their coordinates be

$$
\underline{r}_{j}^{i}=\left(x_{j}^{i}, y_{j}^{i}, \dot{z}_{j}^{i}\right), \quad j=1, \ldots, N_{i}, \quad i=1, \ldots, N
$$

Denote the segment $\overline{r_{j}^{i} r_{j}^{i}}, \quad j^{\prime}=(j+1) \bmod N_{i}, \quad$ by $S_{j}^{i}$. Assume all the segments have lengths less than a predetermined small number $h$. Let $\underline{r}_{j}^{i, n}={\underset{-}{j}}_{i}^{i}(n k)$, where $n$ is an integer, $k$ is a time step, and $t=n k$ is the time. The simplest approximation to (2) is

$$
\begin{equation*}
r_{j}^{i, n+1}-r_{j}^{i, n}=-\frac{k}{4 \pi} \sum_{k=1}^{N} \sum_{\ell=1}^{N_{j}} \frac{\underline{a} \times \Delta s}{\phi(a)} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta \underline{s} & =\underline{r}_{\ell}^{k}-\underline{r}_{\ell}^{k} \\
\underline{a} & =\frac{1}{2}\left(\underline{r}_{\ell}^{k}+\underline{r}_{\ell}^{k}\right)-\underline{r}_{i}^{j}, \\
a & =\text { length of } \underline{a},
\end{aligned}
$$

and

$$
\phi(a)=\left\{\begin{array}{ll}
a^{3} & \text { if } a \geqslant h \\
h^{2} a & \text { if } a<h
\end{array} .\right.
$$

The introduction of $\phi(a)$ has the effect of smoothing the self-induction of the vortex lines and the interaction of lines close to each other. More elaborate smoothing was tried without affecting the results. The time step is chosen so that

$$
\begin{equation*}
\max _{i, j}\left|r_{i}^{j, n+1}-\underline{r}_{i}^{j, n}\right| \leqslant K k, \tag{5}
\end{equation*}
$$

where $K$ is a moderate constant.
As the flow evolves, the vortex lines become stretched. If a segment $S_{i}^{j}$ becomes longer than $h$, it is broken up into two segments, each of half the original length. If need be, the procedure is repeated. The new points are found by linear interpolation. Here again, a more elaborate procedure is unnecessary.

The stretching of the vortex lines is carefully tracked. Each segment $S_{i}^{j}$ is assigned a tag $q_{i}^{j}$. If $S_{i}^{j}$ is broken up into two segments, the tag assigned to each has twice the value of $q_{i}^{j}$ for the unbroken segment. In this way, the stretching (and therefore change in cross section) of each vortex element during the evolution of the flow is remembered.

If a is large, the interaction of the corresponding segments is small. We set that interaction to zero if $a \geqslant R, R$ constant. This is
equivalent to setting $1 / \phi=0$ in (4) if $a \geqslant R$. We shall have to verify that the results obtained are independent of $R$ for $R$ large enough.

In the spatially periodic initial value problem, we construct the initial vortices as integral lines of the vorticity field

$$
\begin{align*}
& \xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \\
& \xi_{1}=\sin (2 \pi x) \cos (2 \pi y) \sin (2 \pi z) \\
& \xi_{2}=-\cos (2 \pi x) \sin (2 \pi y) \sin (2 \pi z)  \tag{6}\\
& \xi_{3}=-2 \cos (2 \pi x) \cos (2 \pi y) \cos (2 \pi z)
\end{align*}
$$

where $\underline{r}=(x, y, z)$ is the coordinate vector. This vorticity field coincides, except for the scaling of $\underline{r}$, with the initial vorticity field of the Green-Taylor problem [25]. The circulations of the vortices are $\Gamma_{i}=1$ for all i. The tag $q_{j}^{i}$ assigned to each segment is inversely proportional to the length of the vorticity vector given by (6) near that segment. We used few vortex filaments (usually between 1 and 5).

In a periodic flow, each point is affected not only by each segment but also by an infinite set of images of that segment. However, if the long range cut-off $R$ satisfies $R \leqslant \frac{1}{2}$, in a periodic box of side 1 , only one of these interactions is non-zero.

The algorithm has been carefully checked by using it to solve simple problems whose solution is known (e.g., a circular vortex or a helical vortex moving at constant speed).

## §4

## INTERMITTENCY

It has long been known that highly stretched vorticity occupies a volume much smaller than the total volume available to the flow; this phenomenon is known as "intermittency". Mandelbrot [20],[21] suggested that the highly stretched vorticity collect itself into a body of non-integer Hausdorff dimension D, D<3 (For definitions, see [15],[24]; the heuristics of such objects, including graphics, can be found in [21].) Mandelbrot [20] and Frisch et al [12] have presented heuristic theories which relate $D$ to the exponent $\beta$ in (1); their relation is

$$
\begin{equation*}
\beta=2 / 3+(3-D) / 3 . \tag{7}
\end{equation*}
$$

Experimental measurements of $\beta$ suggested to them a value $D \sim 2.5$.
There is a class of objects whose Hausdorff dimension is easily ascertainable. Consider an object with some finite volume. Divide the object into $N$ smaller objects of equal volumes, and throw out all but $M \geqslant 2$ of these smaller objects. Perform the same operations on the remaining volume, and keep on repeating the process. The remainder has Hausdorff dimension $\log \mathrm{M} / \log \sqrt[3]{\mathrm{N}}=3 \log \mathrm{M} / \log \mathrm{N}$ ([15],[21]).

Consider the vorticity distribution produced at a fixed time $t$ by the algorithm of the preceding section. Our goal is to characterize the volume occupied by highly stretched vorticity. Let $a, b$ be positive numbers, $b>1$. Consider the set of segments $s_{i}^{j}$ such that

$$
\begin{equation*}
a b^{n-1} \leqslant q_{i}^{j} \leqslant a b^{n} . \tag{8}
\end{equation*}
$$

Call this set $B_{n}$. Assume that in some remote past all the $S_{i}^{j}$ had the same cross section 1. By conservation of volume, the volume of each
segment is now proportional to $1 / q_{j}^{j}$, if one assumes that they have approximately equal lengths. The volume occupied by the segments in $B_{n}$ is

$$
\Delta V_{n} \cong h \sum_{B_{n}} \frac{1}{q_{i}^{j}}
$$

Let $V_{n}=\sum_{i=n}^{\infty} \Delta V_{i}$. (The sum is finite since we have a finite number of segments.)

Imagine that all the segments in the $B_{m}, m=n, n+1, \ldots$, are compressed and are now temporarily in $B_{n}$. The volume they occupy is $\sim V_{n}$. This volume could be divided among $M_{n}$ segments, each with volume approximately equal to $h / a b^{n-1}, M_{n} \sim V_{n} a b^{n-1} / h$. Now stretch anew all the segments which do not belong to $B_{n}$. Their volume could be distributed among $M_{n+1}$ pieces of equal volume $\sim h / a b^{n-1}$, where $M_{n+1} \sim V_{n+1} a^{n-1} / h$. Now stretch anew all the segments which do not belong to $B_{n+1}$ and evaluate $M_{n+2}$. In a finite number of steps, this restretching rebuilds the vorticity distribution at the given fixed time. At each step of the restretching, we start with $M_{i}$ objects of equal volume, $i \geqslant n$, and, if we are interested only in the highly stretched vorticity, we leave all but $M_{i+1}$ behind. Define the number $D_{i}=3 \log M_{i+1} / \log M_{i}$. The number $\left(3-D_{i}\right)$ is a measure of the reduction in the volume occupied by stretched vorticity. If the $D_{i}$ are all equal to a number $D$, the stretched vorticity will end up in an object of Hausdorff dimension D.

In particular runs, the number of segments is finite, and thus we can have at best an approximation to an object of non-integer Hausdorff dimension. This is consistent with the discussion in the section on blow-up
where it will be shown that the time at which a singularity can first appear in the solution is never reached in our runs.

We allow the computed vorticity to contain at most $N_{\max }$ segments. When this limit is reached, we restart the calculation. However, we do not wish to lose whatever convergence to an asymptotic distribution of the $q_{j}^{i}$ had occurred. To prevent the loss, we proceed as follows: the cube is divided into 8 cubes of side $1 / 2$. Seven of these are thrown out. The remaining vortex lines are reconnected, and the new connecting segments are assigned appropriate $q$ 's (usually, $q=a$ from (8)). The smaller cube . is then stretched to fill the original cube. This operation should reduce the number of segments by approximately a factor of 4 , without disturbing unduly the distribution of the q's.

As the segments stretch, the $\Delta V_{i}$ 's which correspond to smaller values of $q$ become zero, and the corresponding $D_{i}$ 's are $D_{i}=3$. The parameter $a$ in (7) should be chosen so that these empty sets do not interfere with the calculation. There are a number of easy ways to do that (visual inspection is one); we found heuristically that the following strategy was effective: at $t=0$ set $a=1$. Double a each time $\Delta V_{1}<\Delta V_{2}<\Delta V_{3}$. The excuse for this strategy is that the $\Delta V_{j}$ provides a rough measure of the energy in the corresponding scales, and if that energy is increasing we are not in the inertial range.

We picked $N_{\max }$ between 300 and 500. With such values of $N_{\max }$, it turns out that if $b$ in (8) is larger than 2, there are too few $D_{i}$ 's for $a$ trend to be discernible; if $b<1.6$, the number of $B_{i}$ 's increases so much that the fluctuations in the $D_{i}$ become too large.

In the runs we made, there were on the average about 20 segments per $B_{i}$, and thus a fluctuation of about $\sqrt{20}$ can be expected in their
distribution, and thus in $M_{i}$, and therefore a fluctuation of about $1 / \sqrt{20} \sim 20 \%$ is the value of the $D_{i}$. In Table I we present values of $D_{i}$ obtained in successive steps, with $N_{\max }=400, K=1$ (which determines $k$ through (5)), $b=1.8, R=0.3$. The initial conditions consist of three vortex lines passing through three points picked at random. We start the table with step 20 which allows the distribution of the $q$ 's to have reached some equilibrium. After step 27, several steps are omitted because the calculation was restarted and there were too few segments for the results to be meaningful. If $M_{i}$ or $M_{i+1}$ is zero, $D_{i}$ is not defined. We omit the last defined value of $D_{i}$ which is greatly affected by the void that follows it.

The distribution of the $D_{i}{ }^{\prime} s$ is not detectably affected by the value of $R$ as long as $R \geqslant 0.3$, by the value of $K$ if $K \leqslant 1.2$, by $N_{\max }$ if $N_{\max } \geqslant 300$, by $h$ if $h \leqslant 0.15$, or by the initial conditions. If the computed values of $D_{i}$ are viewed as independent estimates of a fixed number $D$, then the usual estimation method yields $D=2.55$ with a standard deviation of 0.05 . Intermittency is clearly present. We can conclude that the vorticity collects itself into a body which approximates an object with Hausdorff dimension $\sim 2.5$ only if the $D_{i}$ are indeed estimates of a fixed quantity. An inspection of Table I shows that the data are consistent with such a conclusion, and thus with the Mandelbrot conjecture.

It is not clear to me what the relationship is between the present calculation and recent work regarding the Hausdorff dimension of the singular set of the solutions of the Navier-Stokes equation [11],[24]. However, this singular set should be contained in the body of stretched vorticity. It is interesting to note that Foias and Temam [11] obtained 2.5 as an upper bound for the Hausdorff dimension of the singular set.

| Step 20 | Step 21 | Step 22 | Step 23 |
| :---: | :---: | :---: | :---: |
| 2.67 | 2.57 | 2.60 | 2.65 |
| 2.28 | 2.46 | 2.63 | 2.75 |
| 2.66 | 2.79 | 2.89 | 2.87 |
| 1.18 | 1.88 | 2.02 | 2.27 |
|  | 1.90 | 2.21 | 1.69 |
|  |  |  | 2.66 |
| Step 24 | Step 25 | Step 26 | Step 27 |
| 2.74 | 2.84 | 2.87 | 2.64 |
| 2.80 | 2.83 | 2.86 | 2.58 |
| 2.85 | 2.53 | 2.61 | 2.84 |
| 2.48 | 2.47 | 2.54 | 2.30 |
| 2.29 | 2.80 | 2.86 | 2.31 |
| 2.72 | 1.76 | 2.05 |  |
| 2.45 | 2.54 | 2.41 |  |
| Step 30 | Step 31 | Step 32 | Step 33 |
| 2.28 | 2.58 | 2.74 | 2.78 |
| 2.92 | 2.95 | 2.97 | 2.98 |
| 2.16 | 1.97 | 2.25 | 2.48 |
| 2.72 | 2.74 | 2.52 | 2.40 |
| 2.45 | 2.60 | 2.73 | 2.73 |
|  | 2.09 | 2.36 | 2.47 |
|  |  | 1.52 | 2.93 |
|  |  |  | 1.93 |

The Hausdorff dimension of the stretched vorticity set plays a major role in a numerical method used to solve problems involving inhomogeneous turbulence [10].

ENERGY AND VORTICITY SPECTRA

We now attempt to ascertain the exponent $\beta$ in equation (1). It is of course out of the question to perform a Fourier transform on our velocity field and evaluate $E(k)$ directly. An alternate physical space argument for determining $\beta$ (see [8],[12]) involves the notion of energy per scale of energy containing eddy, which is too vague to be quantifiable. However, the analogous notion of mean square vorticity per scale of vorticity containing eddy is sufficiently well defined. The vorticity spectrum $Z(k)$ is related to $E(k)$ by

$$
Z(k)=\text { constant } \times k^{2} E(k),
$$

while the vorticity structure function (mean square vorticity as a function of scale) is given by

$$
\begin{equation*}
Z(r)=\text { constant } \times r^{\beta-2} \tag{9}
\end{equation*}
$$

(see e.g., [8]). We shall evaluate $Z(r)$.
We assume that the vortex filaments remain tube-like, i.e., two of their dimensions shrink as they are stretched, and the ratio of these dimensions remains bounded by some moderate number. The energy transfer to higher wave numbers is a reflection of the vortex stretching process. The cross section of a vortex segment $S_{j}^{i}$ is inversely proportional to its
length $\ell_{j}^{i}$ multiplied by its tag $q_{j}^{i}$, as a consequence of the conservation of volume. The corresponding length scale is $L_{j}^{i}=1 / \sqrt{\ell_{j}^{i} q_{j}^{i}}$. If $\Gamma_{i}=1$, and at some remote past all the $q$ 's were equal to 1 , then by conservation of circulation the vorticity in $S_{j}^{i}$ is $\ell_{j}^{i} q_{j}^{i}$, and the vorticity squared integrated over the segment is approximately equal to $\left(l_{j}^{i}\right)^{2} q_{j}^{i}$.

Let $c, d$ be two positive numbers, $d>1$. Consider the segments such that

$$
c d^{n-1} \leqslant\left(L_{j}^{i}\right)^{-1} \leqslant c d^{n} \quad, \quad n \text { integer }
$$

Call this set of segments $C_{n}$. The vorticity in $C_{n}$ is

$$
z_{n}=\sum_{C_{n}}\left(\ell_{j}^{i}\right)^{2} q_{j}^{\mathbf{i}}
$$

Note that we explicitly use the $\ell_{j}^{i}$ in the construction of this section, while in the analogous construction of the previous section we were content with the (correct) assumption that the $\ell_{j}^{i}$ were $O(h)$. The reason for the change is that numbers $\ell_{j}^{i} q_{j}^{i}$ are marginally more smoothly distributed than the numbers $q_{j}^{i}$ alone, not enough to make a difference in the earlier calculation but enough to make a difference here. If $Z_{n}, Z_{n+1}$ are not zero, and $Z(r)=$ constant $\times r^{-\gamma}$, then the following quantity is an estimate of $\gamma$ :

$$
\begin{equation*}
\gamma_{n}=\frac{\log \left(z_{n+1} / Z_{n}\right)}{\log d} \tag{10}
\end{equation*}
$$

It is easy to see that an average of $\gamma_{n}$ 's is also an estimate of $\gamma$. The corresponding estimates of $\beta$ can be deduced from the relation $\beta=2-\gamma$ which follows from (9).

The $Z_{n}$ are noisy quantities and the estimates $\beta_{n}=2-\gamma_{n}$ are sensitive functions of the $Z_{n}$; some statistical analysis has to be performed. At each time step, we exclude the estimate $\beta_{n}$ which corresponds to the highest $n$ (because it cannot be associated with an equilibrium). We average the other $\beta_{n}$ 's and consider the outcomes at different time steps to be independent estimates of $\beta$. We exclude those $\beta$ which result from averaging a list of values of $\beta_{n}$ which contain fewer than $N_{\beta}$ entries (typically, $N_{B}=6$ or 8 ), because such lists tend to be dominated by non-equilibrium conditions at the end of the range of $n$ 's. We also avoid averaging $\beta_{n}$ 's from ranges of $n$ where many of the $Z_{n}$ 's are zero.

The same problems arise with the choices of $c$ and $d$ as arose with the choices of $a$ and $b$ in the last section. We double $c$ if the list of $\beta_{n}$ 's at a given time step is too long or if the $\Delta V$ 's are increasing at the beginning of the list. We pick $c$ so that we have a list of sensible length to average (between 6 and 30 entries). With $N_{\max }$ in the neighborhood of $300-400$, a reasonable choice of $d$ is $d=1.2$ or $d=1.25$. The results are insensitive to the choices of these parameters as well as to the other parameters already discussed in the preceding section. The same restarting procedure was used as in the preceding section.

In Table II we exhibit part of a typical list of $Z_{n}$ 's and the corresponding $\beta_{n}{ }^{\prime}$ s. In Table III we exhibit part of a list of estimates of $\beta$ from successive time steps. We made runs with a variety of initial data and numerical parameters. Four runs with $K=1, h=0.1, N_{\max }=350$, $R=0.3, N_{\beta}=6, d=1.2$ but differing initial conditions yielded an average value of $\beta$ equal to 0.845 with a standard deviation of 0.03 . Other runs were compatible with this result, i.e., were within one standard deviation of this computed mean. A typical run contained about 200 steps; at the end

TABLE II. Typical vlaues of $Z_{n}$ and $\beta_{n}$ at a fixed time, $d=1.25$.

| $Z_{n}$ | $\beta_{n}$ |
| :---: | :---: |
| 4.957 | undefined |
| 4.972 | 1.97 |
| 4.41 | 2.54 |
| 11.73 | -2.39 |
| 12.34 | 1.78 |
| 17.90 | 0.33 |
| 5.19 | 7.55 |
| 11.62 | -1.61 |
| 72.20 | -6.18 |
| 125.06 | -0.46 |
| 257.18 | -1.23 |
| 19.70 | 13.51 (omitted in averaging) |
| 0 | undefined |
|  |  |

TABLE III. Successive estimates of $\beta$ at different time steps.

| - Step | Estimate of $\beta$ |
| :---: | :---: |
| 18 | -- |
| 19 | 1.37 |
| 20 | 1.02 |
| 21 | 0.83 |
| 22 | 0.50 |
| 23 | 0.17 |
| 24 | 0.74 |
| 25 | 0.43 |
| 26 | 0.59 |
| 27 | 0.42 |
| 28 | 0.20 |
| - ${ }_{59}{ }^{\text {a }}$ | $\cdots{ }^{-} \cdot{ }^{-6 .}$ |
| 60 | 1.12 |
| 61 | 0.99 |
| 80 | 1.04 |
| 81 | 0.54 |
| 82 | 1.69 |
| 83 | 1.50 |
| 84 | 1.68 |

of such a run, some segments had been stretched by a factor of $\sim 10^{10}$, not counting the stretching due to the restarting procedure. Runs could not be continued ad infinitum because of the problems with overflow in the computer.

The value of $\beta$ is compatible with the experimental estimate $\beta=0.82$ from which Frisch et al deduced that $D \simeq 2.5$, in particular with equation (7). It is significantly higher than the Kolmogorov result $\beta=0.66$.

Note that the constnuction of the present section is compatible with the coherent structure model of the inertial range (see [6],[8]). In [16], Kraichnan argued that such a model is unlikely because it would require a core structure for each vortex with an unphysical cusp. However, once it is realized that the core structure does not have to be constant along a vortex line and that parts of a filament can be stretched more than others, this difficulty disappears.

FINITE TIME BLOW-UP FOR EULER'S EQUATIONS

We now turn to the question: does the amount of vorticity in our cube become infinite in a finite time when the flow is described by Euler's equations? The question is of significance in turbulence theory (see e.g. [6]). No analytical answer is available. An affirmative answer based on a tentative turbulence model has been given by Brauer et al [5]. Morf et al [22] have given an affirmative answer for the Green-Taylor initial data (6), on the basis of a numerical analytical continuation method; they predicted a blow-up time $t_{*} \sim 5.2 / 4 \pi^{2}$ in our units. (The factor $4 \pi^{2}$ appears because of the difference in non-dimensionalization between their paper and the present paper.)

It is, of course, impossible to watch the vorticity until it becomes infinite in a numerical calculation, since the amount of labor also becomes infinite. We proceed indirectly: assume that the details of the interaction of vortex segments at a substantial distance from each other do not affect the issue of blow-up. Start the calculation at time $t=0$ with a time step $k$. When the number of segments exceeds $N_{\text {max }}$, delete all but a corner of the cube, reconnect the vortex lines, stretch the corner into the cube and restart the calculation, as was done above. Since the cube has periodic boundary conditions, the omitted parts of the cube are replaced by a periodic continuation of the corner which is retained.

Can the restarted calculation be viewed as a continuation of the earlier part of the calculation? The restarting process focuses attention on a corner of the original cube. We assume that the replacement of the missing parts of the cube by a periodic continuation of the retained part has little effect on the overall stretching process. The stretching of the corner into the whole cube doubles the length scale in the corner. Let the energy in the cube before the restarting process be $E_{0}$, and let $E_{1}$ be the energy in the cube after the restarting process. Because of intermittency and numerical fluctuations, there is no simple relationship between $E_{1}$ and $E_{0}$. A typical velocity in the original cube is $\sqrt{E_{0}}$, and in the reconstituted tube, $\sqrt{E_{1}}$. The time scale must now be reduced by a factor $2 \sqrt{E_{0} / E_{1}}$ (as can easily be seen from the fact that a vortex filament must now travel twice as far to reach a given configuration, and has $E_{0} / E_{1}$ less energy for doing so). On the new time scale, the restarted calculation can be viewed as a continuation of the old calculation,
with attention focused on a part of the original domain. If the time is advanced by $k$ in the restarted calculation, real time is advanced by $k / 2 \sqrt{E_{0} / E_{1}}$; after the next restarting process, real time will be advanced by $k /\left(4 \sqrt{E_{0} / E_{1}} \sqrt{E_{0}^{\prime} / E_{1}^{\prime}}\right)$, where $E_{0}^{\prime}, E_{1}^{\prime}$ are the corresponding energies at the beginning and the end of the next restarting procedure; this process can be continued ad infinitum. The sequence of new starts focuses attention on ever decreasing scales of motion.

Suppose the sum of the real time increments (sum of the k's divided by the appropriate scaling factors) converges to a time $t_{*}$. Then the conclusion must be that the at time $t_{*}$ the vorticity in the original cube becomes infinite.

The energies $E_{0}, E_{1}$ for use in the scaling can be estimated by the formula for the energy of a vortex system (see e.g. [18])

$$
\begin{equation*}
E=\sum_{i=j}^{N} \sum_{j=1}^{N} \Gamma_{i} \Gamma_{j} \int \frac{d \underline{s}^{N} \cdot d \underline{s}^{\prime}}{r} \tag{11}
\end{equation*}
$$

where as before, $\underline{s}$ is the unit normal to a vortex, ds is the arc length along a vortex, $d \underline{s}=\underline{s} d s, r$ is the distance between the locations of $d s$ and $d s^{\prime}, \Gamma_{i}$ is the circulation of the $i$-th vortex line, and $N$ is the number of yortex lines. The integral in (11) must be approximated and a short range cut-off for $r$ must be used in a manner similar to the manner in which equations (3) were approximated. We omit the details. The resulting. values of $E_{0}$ and $E_{1}$ are quite approximate (in particular, formula (11) does not take into account the changes in the cores of the vortices, which are important in earlier arguments); numerical experiment shows that the ratio $E_{0} / E_{j}$ is computed with an error of about $10 \%$, which is adequate for the purpose of the present qualitative argument. Only the vorticity in the cube is taken into account, since energy of translation does not affect the stretching process.
-21-

TABLE IV.

| Number of steps <br> between restarts | Scaling factors <br> $2 \sqrt{E_{0} / E_{1}}$ |
| :---: | :---: |
| 12 | 1.79 |
| 2 | 2.00 |
| 8 | 2.03 |
| 8 | 1.75 |
| 4 | 0.49 |
| 1 | 3.95 |
| 6 | 3.18 |
| 10 | 3.43 |
| 11 | 4.48 |
| 10 | 2.30 |
| 5 | 1.27 |
| $\vdots$ | $\vdots$ |

In Table IV, we display the number of steps between restarts in a run with $h=0.1, K=1, N_{\max }=350, R=0.3$, and initial data consisting of three vortex filaments placed at random. The number of steps is irregular (mainly because of intermittency) but exhibits no increasing or decreasing trend. We also display the corresponding factors $2 \sqrt{E_{0} / E_{\eta}}$. The series of real time increments is seen to converge roughly like $\sum_{i=1}^{\infty}(1 / 2)^{i}$. This rate of convergence is compatible with equation (1) if $\beta \sim 1$.

In fact, the series of real time increments converged for all initial data we picked, except for initial data which consisted of a single straight line, a single circle or a single helix under conditions where the periodic images did not affect the motion and even then only if round-off errors were sharply controlled. The limit time $t_{*}$ is, of course, dependent on the initial conditions; in particular, if the initial vortices all have the same circulation $\Gamma$, one can see from (3) that $t_{*}$ is proportional to $1 / \Gamma$.

For a fixed set of initial data, $t_{*}$ was found to be quite independent of the numerical parameters, in particular of $N_{\max }$ (which controls the frequency of restarts). For example, with three vortices passing through the points $(0.47,0.51,0.53),(0.97,0.52,0.47),(0.46,0.96,0.43)$, and following integral lines of the Green-Taylor vorticity field (6), with $\Gamma_{1}=r_{2}=\Gamma_{3}=1$, we found $4 \pi^{2} t_{*}=1.74$ with $N_{\max }=350,4 \pi^{2} t_{*}=1.79$ with $N_{\max }=400,4 \pi t_{*}=1.73$ with $N_{\max }=450$.

In order to compare our results with the results of Morf et al, we have to approximate the Green-Taylor data by vortex filaments. This requires a substantial number of filaments, more than we can afford. However, we can make the following very approximate argument: the mean length of the vorticity vector in the Green-Taylor data (6) is 0.77 .

If those data were approximated by vortex filaments, the sum of their circulations would be approximated by 0.77. In the calculation just described, the sum of the circulations is 3 . Since $t_{*}$ is inversely proportional to the circulation, $4 \pi^{2} t_{*}$ for the Green-Taylor problem should be roughly $1.75 \times 3 / 0.77=6.82$, a value quite comparable with the value $4 \pi^{2} t_{*}=5.2$ of Morf et al. The trouble with this argument is that it is very unreliable; with different initial data and similar reasoning we have obtained values of $4 \pi^{2} t_{*}$ for the Green-Taylor problem which varied between 4 and 8; all these values are, however, of the same order of magnitude as the value of Morf et al, lending credence both to their conclusion and to ours.

## §7. CONCLUSIONS

We have used a vortex method to calculate properties of the inertial range in turbulence. We have in particular approximately verified well known conjectures regarding these properties; these conjectures will be used elsewhere in the process of solving problems with inhomogeneous turbulence [10].

It is interesting to note that the computed results are insensitive to numerical parametres, and in particular to the value of the long range cut-off R. Related conclusions have been reached in a two-dimensional problem solved by a vortex method [14]. This fact is consistent with one's intuitive notion that phenomena as ubiquitous as the power law inertial spectrum, and which have been found experimentally in a wide variety of physical situations, should be independent of the very fine details in the
equations of motion. Similar conclusions have been reached in the theory of critical phenomena (see e.g. [23]). The independence of $R$ for $R$ large enough is also consistent with the widespread belief that the energy cascade is fairly localized in space (see e.g. [16]) and also with the assumption that vorticity patches at some distance from each are statistically independent. This assumption is crucial to coarse-grained vorticity closures for inhomogeneous turbulence ([3],[4],[8]).

A listing of the program used in the calculations of this paper is available from the author. The calculations were performed on a VAX computer at the Lawrence Berkeley Laboratory.
[1] T.Beale and A.J.Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations, to appear in Math. Comp., (1981).
[2] T.Beale and A.J.Majda, Vortex methods. I: Convergence in three dimensions, to appear.
[3] P.S.Bernard, A numerical investigation of confined turbulent shear flow, Ph.D. thesis, University of California, Berkeley (1976).
[4] P.S.Bernard, A method for computing two-dimensional turbulent flow, SIAM J. Appl. Math. 38, 81-92 (1980).
[5] C.M.Brauer, P.Penel and R.Temam, Sur une equation d'évolution. non-linéaire liée à la théorie de la turbulence, Annali Scuola Normale Superiore di Pisa 9, 101-128 (1977).
[6] A.J.Chorin, Computational aspects of the turbulence problem, Second Int. Conf. Num. Math. Fluid Mech., 285-290 (1970).
[7] A.J.Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57, 785-795 (1973).
[8] A.J.Chorin, Lectures on Turbulence Theory, Publish/Perish, Boston (1975).
[9] A.J.Chorin, Vortex models and boundary layer instability, SIAM J. Sci. Stat. Comp. 1, 1-24 (1980).
[10] A.J.Chorin, Numerical study of turbulent boundary layer structure, in preparation.
[11] C.Foias and R.Temam, Some analytic and geometric properties of the solutions of the Navier-Stokes equations, to appear in J. Math. Püres et Appliquées.
[12] U.Frisch, P.L.Salem and M.Nelkin, A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87, 719-736 (1978).
[13]] 0.Hald, The convergence of vortex methods, II. SIAM J. Numer. Anal. 10, 726-755 (1979).
[14] M.Hoover, T.Chen and J.Laitone, Numerical experiments in a turbulent mixing layer, Manuscript, Univ. of Michigan (1981); also, J.Laitone, private communication.
[15] J.P.Kahane and R.Salem, Ensembles parfaits et series trigonometriques, Hermann, Paris (1963).
[16] R.H.Kraichnan, On Kolmogorov's inertial range theories, J. Fluid Mech. 62, 305-330 (1974).
[17] N.N.Kuznecov and S.A.Volosin, On monotone difference approximations to first order quasi-linear equations, Soviet Math. Doklady 17, 1203-1206 (1976).
[18] H.Lamb, Hydrodynamics, Dover, London (1960).
[19] A.Leonard, Vortex methods for flow simulations, J. Comput. Phys. 37, 289-335 (1980).
[20] B.Mandelbrot, Intermittent turbulence and fractal dimension, in "Turbulence and the Navier-Stokes Equations," R.Temam, editor, Springer (1976).
[21] B.Mandelbrot, Fractals: Form; Choice and Dimension, Freeman, San Francisco (1977).
[22] R.Morf, S.A.Orszag and U.Frisch, Spontaneous singularity in three-dimensional incompressible flow, Physical Review Letters 44, 572-575 (1980).
[23] D.A.Rose and P.L.Sulem, Fully developed turbulence and statistical mechanics, Jour. de Physique 39, 441-484 (1978).
[24] V.Schaffer, Hausdorff dimension and the Navier-Stokes equations, Comm. Math. Physics 55, 97-112 (1977).
[25] G.I.Taylor and A.E.Green, Mechanism of the production of small eddies from large ones, Proc. Roy. Soc. A 158, 499-521 (1937).


[^0]:    *Supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Engineering, Mathematical, and Geosciences Division of the U.S. Department of Energy under contract W-7405-ENG-48 and by the Office of Naval Research under contract N00014-76-0-0316.

