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Abstract. Most of the tidal energy dissipation in the ocean occurs in shallow seas, as 
has long been recognized. However, recent work has suggested that a significant fraction 
of the dissipation, perhaps 1 TW or more, occurs in the deep ocean. This paper builds 
further evidence for that conclusion. More than 6 years of data from the TOPEX/Poseidon 
satellite altimeter are used to map the tidal dissipation rate throughout the world ocean. 
The dissipation rate is estimated as a balance between the rate of working by tidal forces 
and the energy flux divergence, computed using currents derived by least squares fitting of 
the altimeter data and the shallow water equations. Such calculations require dynamical 
assumptions, in particular about the nature of dissipation. To assess sensitivity of dissipation 
estimates to input assumptions, a large suite of tidal inversions based on a wide range of 
drag parameterizations and employing both real and synthetic altimeter data are compared. 
These experiments and Monte Carlo error fields from a generalized inverse model are used 
to establish error uncertainties for the dissipation estimates. Owing to the tight constraints 
on tidal elevation fields provided by the altimeter, area integrals of the energy balance 
are remarkably insensitive to required dynamical assumptions. Tidal energy dissipation is 
estimated for all major shallow seas (excluding individual polar seas) and compared with 
previous model and data-based estimates. Dissipation in the open ocean is significantly 
enhanced around major bathymetric features, in a manner consistent with simple theories 
for the generation of baroclinic tides. 

1. Introduction 

The problem of how and where the tides dissipate their 

energy was listed by Wunsch [1990, p. 69] as one of four 

"significant hard problems [in physical oceanography] to be 

solved in the next century." The problem certainly has a long 

and frustrating history. That it continues to attract attention 

is a reflection of both its intrinsic fascination and its impor- 

tance. The geophysical implications are far-reaching, rang- 

ing from the history of the Moon [Hansen, 1982] to the mix- 

ing of the oceans [Munk, 1997]. 

In a recent short paper [Egbert and Ray, 2000] (here- 

inafter referred to as E-R] we addressed the problem in light 

of accurate global estimates of tidal elevations made avail- 

able by the TOPEX/Poseidon (T/P) satellite altimeter. That 

paper concludes that approximately 1 terawatt (TW), or 25- 

30% of the global total, is dissipated in the deep oceans. The 

present paper reexamines the subject with considerably more 

thorough analysis of both data and methods, and it builds 
further evidence for the basic conclusions in E-R. Like our 
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earlier work the present paper addresses the questions of 

"how much" and "where" tidal energy is dissipated, but not 

"how." Yet the answer to "where" holds some obvious sug- 
gestions as to "how." 

The total amount of tidal energy being dissipated in the 

Earth-Moon-Sun system is now well determined. The meth- 

ods of space geodesy--altimetry, satellite laser ranging, lu- 

nar laser ranging--have converged to 3.7 TW, with 2.5 TW 

(for more precision and error bars, see below) for the prin- 

cipal lunar tide M2 [Cartwright, 1993; Ray, 1994; Kagan 

and Sandermann, 1996]. Certainly, the bulk of this energy 

dissipation occurs in the oceans. And within the oceans the 

principal sink is most likely bottom boundary layer dissi- 

pation in shallow seas, the traditional explanation since the 

work of Jeffreys [1920]. There is much evidence to support 

this view [Munk, 1997], including long experience with hy- 

drodynamic models [Le Provost and Lyard, 1997] and our 

own recent estimates from satellite altimetry (E-R). Another 

possible energy sink, conversion of energy into internal tides 

and other baroclinic waves, has long attracted attention but 

has proven extremely difficult to quantify [Wunsch, 1975]. 

Baines [1982; see also Huthnance, 1989] concluded that 

generation of internal tides at the continental slopes is an 

insignificant sink (approximately 12 GW for M2 over the en- 
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tire globe). But scattering by deep-ocean bottom topography 
may be more important than generation at continental slopes 

[Sj6berg and $tigebrandt, 1992; Morozov, 1995]. The possi- 

ble importance of this mechanism to deep-ocean mixing has 
recently been discussed by Munk and Wunsch [ 1998]. 

As is well known [e.g., Lambeck, 1977; Platzman, 1984], 

global charts of tidal elevations suffice to determine the 

global rate of working of tidal forces on the ocean (see also 

section 2). To deduce localized estimates of energy fluxes 
and energy dissipation requires corresponding charts of tidal 

some work and flux terms from first principles. Section 4 
provides a brief overview of th e methods used for estimat- 
ing tidal currents from the T/P elevations. In section 5 we 

provide estimates of energy fluxes, work terms, and dissipa- 
tion derived from a number of T/P tidal solutions, including 
a complete tabulation of estimates of energy fluxes into all 

shallow seas, and dissipation i n selected deep-ocean areas. 
In this section we also consider in detail the sensitivity of 

our results to the prior assumptions about dissipation and 
bathymetry required to estimate currents. Section 6 com- 

current velocities. Direct measurements of currents are, of pares our estimates of shallow-sea dissipation to empirical 

course, inadequate to the task; they are to o sparse, gener- 
ally too noisy, and often contaminated by baroclinic effects. 

To make progress, one must invoke dynamics to infer cur- 
rents from elevations, and this unfortunately means making 

assumptions about dissipation. The problem appears inher- 
ently circular. 

Assessing the degree to which dissipation estimates can 

be made insensitive to dynamical assumptions is the heart 
of the problem. It should be clear that simply fitting a nu- 
merical tide model to satellite measurements and evaluating 

the model's dissipative terms is too simplistic an approach. 
The resulting dissipation would be overly sensitive to model 
assumptions and parameterizations. For example, using the 

typical bottom drag dissipation (parameterized as quadratic 

in velocity) would force all dissipation into shallow seas for 

any plausible specification of friction coefficients. 

The basic approach taken in E-R and here is to esti- 

mate currents by fitting the dynamical equations and the 

T/P elevations using weighted least squares, calculat e en- 
ergy fluxes, and then form a balance between the rate of 

working of tidal forces and the flux divergence. In general, 

the results Of this calculation will not equal the dissipation 

in the assumed dynamical model, because the tidal eleva- 

tions are tightly constrained to satisfy the satellite observa- 
tions and therefore cannot, in general, also exactly satisfy 

the model equations. The implied "dynamical residuals" 
are in some sense an additional forcing term whose work- 

ing corrects the assumed dissipation to be consistent with 
the altimetrically constrained elevations (see below) [Zahel, 
1995; Egbert, 1997]. We show here that with sufficiently 

tight elevation constraints and rational weighting of the mo- 
mentum and mass conservation equations, dissipation maps 

computed with this approach are robust to a wide range of 
dynamical assumptions. The near-global tidal observations 
by T/P thus provide a powerful framework for addressing the 
dissipation problem. 

These ideas are discussed at length in section 5, where 

the main results are given. Sections 2-4 establish necessary 

preliminaries. Section 2 reviews the data and theories that 
constrain the total energy dissipation rate in the ocean; any 

localized dissipation estimates must integrate to these well- 
determined global totals. Section 3, following primarily 
Hendershott [•972], forms energy balance equations used 
for localized dissipation estimates, and it reviews how vari- 

ous terms simplify when inserted into surface integrals. Be- 
cause of the wide variety of energy balance equations that 
have been used in the past, we find it useful to reexamine 

and model estimates from a number of previous authors. The 
geophysical implications of our results are briefly explored 
in section 7. 

As in E-R, discussion is limited to the principal lunar con- 
stituent M2. The principal solar constituent S2 is confounded 

by insolation and atmospheric effects that considerably com- 
plicate the main issue, while the major diurnal tides are less 
well determined. As noted above, M2 accounts for approxi- 
mately two thirds of the total tidal dissipation. 

2. Global Dissipation Rate for Earth and 
Oceans 

The primary purpose of this paper is to determine empiri- 
cally the distribution of tidal energy dissipation in the world 
ocean. The present section is a prologue, acting to establish 

the total disgipation rate within the entire planet and the par- 
tition of this total among the solid Earth, oceans, and atmo- 

sphere. We review what kinds of measurements or theories 
constrain the partition and what the current uncertainties are, 
The partitioning is not as accurately known as the planetary 
total. 

2.1. Planetary Dissipation Rate 

The theory of the planetary tidal dissipation was laid out 

in comprehensive and elegant form by Platzman [1984]. We 
take it as axiomatic that the mean planetary dissipation rate 

equals the mean rate of working by tidal forces throughout 
the planet. Platzman showed that this rate of working can be 
expressed as a simple surface integral involving the primary 
astronomical potential cI) and the secondary (induced) poten- 
tial cI)', the latter resulting from tidal displacements within 

the solid and fluid components of the Earth. For any semidi- 
Urnal tide like M2 the integral takes the following form: 

D,o• = Wt,• = (5/4rcGR) fs (• O•'/Ot) dS, (1) 

where G is the gravitational constant and R is the mean 
radius of the Earth which forms the surface $. The angle 

brackets denote averaging in time over a tidal cycle. As 

Platzman points out, the simplicity of (1) is somewhat de- 
ceptive, because disentangling and understanding the com- 
ponents of • requires a mixture of theory and accurate 
global measurements which, although much improved since 
Platzman's work in 1984, are still in some measure inade- 

qua te to the task. 
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We suppose that both potentials ß and •t refer to M2 
only. Then cI> is a degree 2, order 2 spherical harmonic 
[Cartwright and Tayler, 1971] 

cI>(0, 99, t) = g•/(5/96rr) P22(cos 0) cos(rot q- 2rp), 

where (0, qo) are spherical polar coordinates, g is the accel- 

eration of gravity, P22 is an associated Legendre function, ro 
is the M2 frequency (1.405 x 10 -4 s-l), and • is the M2 
potential amplitude in length units (63.194 cm). Because 4> 
takes this form, time averaging in (1) and the orthogonality 

of spherical harmonics imply that evaluation of Dtota• requires 
only the degree 2, order 2 component of 4>' that is in quadra- 
ture to cI> [cf. Hendershott, 1972; Lambeck, 1977; Platzman, 

1984]. 

The most direct route to determining cI> ' is by analyzing 
the orbital perturbations of artificial satellites, which result 

from forcing by the entire planetary potential. The order 2 
terms of cI> •, which include the one of interest here, are es- 

pecially well determined for semidiurnal tides, because they 

induce long-period perturbations that are easily observable 

with present tracking systems [Lambeck, 1977]. 

Although cI> • is a combined (solid + ocean + air) effect, 
nearly all published orbit analyses parameterize cI> • as if it 
arises from a strictly elastic body tide and a small residual 

ocean tide [e.g., Christodoulidis et al., 1988]. This parame- 

terization, although formally incorrect, does reflect the dom- 

inant tidal forces on a satellite, and it provides a fully satis- 

factory estimate of cI> • needed for evaluating (1) numerically. 
The potential due to the ocean tide is usefully expressed in 

terms of a series of waves, each a spherical harmonic com- 

ponent of some unique degree and order. As noted above, 

we require here only one of these waves: the degree 2, order 

2 prograde ("prograde" meaning moving in the direction of 
the Moon). Then for our purposes cI> ' reduces to 

ß ' = k2• + (4rr/5)GRp(1 + k•) x 

22(cosø) cos(ot + 2v - (2) 

The first term on the right is the potential induced by de- 

formations of the body tide, the second by deformations of 

the ocean tide and its load. Here k2 is the body tide Love 

number, k} is the degree 2 loading number, and p is the den- 
sity of seawater. Nominal, real values for k2, k 2 are assumed 
in most orbit analyses, with the effect of anelasticity of the 

solid Earth (as well as all atmospheric tides) absorbed into 

the ocean tide amplitude D•2 and phase lag •2 through fit- 
ting to the tracking data. Inserting (2) with real k2, k• into 
(1) and setting g R 2 = G M where M is the mass of the Earth 
yields 

Dto•a• = p(1 q- k})ooGM•(24:r/5)l/2D•2 sin gt•2, (3) 

an expression allowing evaluation of the planetary dissipa- 

tion rate from satellite tracking estimates of D•2, •2' 
A set of six recent estimates of D•2, •b•2 for M2, deduced 

by several different groups using data from a variety of satel- 

lites, has recently been compiled by Ray et al. [2001]. After 

accounting for differences in certain geodetic and astronom- 
ical constants and in mathematical formulations used by the 

different groups, the weighted mean estimates are found to 
be 

D•2 = 3.295 4- 0.016 cm •2 = 128'69ø 4- 0'280, 

implying 
D•o• = 2.536 4- 0.016 TW (4) 

for the planetary M2 dissipation rate. 

If similar analyses are made for all other lunar tides, in- 

cluding the lunar parts of K1 and K2, then the total may be 
compared with estimates from lunar laser ranging, which 
accurately measures the Moon's secular acceleration as in- 

duced by tidal friction. This has been done [e.g., Cartwright, 

1993; Ray, 1994], and the results are in reasonably good 

agreement. Note that the lunar ranging measurements can- 

not establish the rate for M2 alone, although some progress 
has been made in separating diurnal from semidiurnal tidal 
contributions [Williams et al., 1992]. The lunar acceleration 

is also sensitive to a small, but somewhat uncertain, contri- 

bution from tidal friction in the Moon itself [Williams et al., 

2001]. 

2.2. Partition Among Solid and Fluid Tides 

As has been known for decades, "most" of the 2.54 TW 

of the M2 tide is dissipated in the oceans [Munk and Mac- 

Donald, 1960], but establishing an exact solid/fluid partition 

(accurate to the 4-0.016 TW uncertainty of the total) is not 

yet possible. Let us consider each of the major nonoceanic 

components. 

The M2 atmospheric tide dissipates about 10 GW = 0.01 

TW, according to Platzman [1991]. This estimate is based 

on observational data, namely, surface barometer measure- 

ments at 104 meteorological stations, which were gridded 

and subjected to spherical harmonic analysis by Haurwitz 

and Cowley [1969]. A similar estimate, relying exclusively 

on numerical simulations, was made by Kagan and Shkutova 

[1985], who arrive at 17 GW. Evidently, the atmosphere ac- 

counts for less than 1% of the M2 planetary dissipation rate. 

Dissipation by the Earth's body tide (i.e., the part of the 

solid tide forced only by the astronomical potential) has been 

estimated in various ways by a number of authors. Platzman 

[1984] obtained an estimate of 32 GW based on the com- 

plex Love number k2 as calculated by Zschau [1978]. But 

Zschau had employed a solid earth Q appropriate to seismic 

frequencies. A complex k2 computed recently by B. Buf- 

fett and P.M. Mathews (personal communication, 1999, but 

cited by McCarthy [1996]) assumes a solid Q proportional 

to co d where a = 0.15, which appears to be supported by 
nutation measurements; their k2 = 0.3010 - 0.0013 i, im- 

plying a body tide dissipation of 130 GW. In another ap- 

proach, Zschau [1986] used observations of the Chandler 

Wobble Q to bound the dissipation to the interval [70, 140] 

GW with "most probable" value of 120 GW. In yet another 

approach, Ray et al. [1996] combined altimetry and track- 

ing estimates of D•2 sin •P•2 to arrive at a figure recently up- 
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Table 1. Global Ocean Tide Energy Integrals 

Model D•2, cm •P•2, deg Wtou,, TW 

TPXO.4a 3.223 4- 0.017 129.99 4- 0.30 2.435 4- 0.017 

TPXO.4b 3.211 129.86 2.430 

TPXO.4c 3.229 130.06 2.437 

GOT99.0 3.200 129.57 2.432 

CSR4.0 3.229 129.41 2.460 

dated to 110 q- 25 GW [Ray et al., 2001 ]. From this evidence 

it appears safe to conclude that the M2 body tide dissipation 
rate is well less than 10% of the planetary rate and probably 
close to 5%. 

Dissipation in the solid earth load tide is more difficult to 

determine because it depends on all spherical harmonic com- 
ponents of the ocean tide through complex loading numbers 
k} [Platzman, 1984]. Platzman concludes that the dissipa- 
tion is an order of magnitude smaller than the body tide, and 
we are aware of no evidence to dispute this. Some empirical 
bounds on the imaginary components of k} would be highly 
desirable. 

In summary, a process of elimination suggests that the 
ocean tide must account for roughly 95% of the M2 plan- 
etary dissipation rate of 2.54 TW. Although it is perhaps not 
as well determined as one would like, the nonoceanic dis- 

sipation is clearly small. In a discussion of local oceanic 

energy balances, which is our main topic, errors are suf- 
ficiently large that consideration of the small nonoceanic 

component becomes an unnecessary complication. There- 

fore throughout the remainder of this paper we ignore any 
nonoceanic components of energy loss and take all Love 

and loading numbers to be real. Under that assumption 
the total oceanic dissipation rate, equaling the total rate of 
working on the ocean by both gravitational and mechanical 

(solid fide) forces, can be expressed by the same formula (3) 
given above for the planetary rate [cf. Hendershott, 1972; 

Cartwright and Ray, 1991] but with the parameters D•2 and 
•2 determined by satellite altimetry. Table 1 lists the global 
M2 rate for the primary ocean tide models used extensively 
below. The quoted uncertainty for the inverse model is based 
on the error covariances described in section 4; this uncer- 

tainty is slightly too small, since it does not account for the 

small systematic error from assuming k2 and k• are strictly 
real. 

3. Tidal Energy Balance: Theory 

This discussion requires a number of different tidal height 
variables, which are best summarized at the beginning: 

( the usual ocean tide height as measured by a tide 
gauge. It has a spherical harmonic decomposition 

given by • = En •n. 
(•, the body tide height. 

(l the load tide height. 

(s the solid Earth tide height: (s = (t, + (t. 

(Eo the equilibrium ocean tide height (allowing for the 
body tide "reduction factor"). 

•^,• an equilibrium-type tide as induced by self- 
attraction and loading. 

We assume that the barotropic ocean tide satisfies the tidal 
equations of Laplace, modified to include effects of an elas- 

tic Earth and a self-gravitating ocean. Writing these equa- 
tions in terms of volume transports U (= uH where u is the 
depth averaged velocity and H is water depth) offers certain 
advantages. The equations then take the form 

0U 

•)t 
+ f x U = -gHV([ -[m - [s•) - f', (5) 

• = -V. U (6) 
Ot ' 

where the gradient and divergence operators are assumed 
two dimensional, and the Coriolis parameter f is assumed 

oriented to the local vertical, g is gravity, and •' is a generic 
frictional or dissipative stress, including possibly a Reynolds 
stress through some turbulent viscosity scheme. The equilib- 
rium tides •m and • are given by 

(m = •'2•/g 

= •'nOtn•n 
n 

3 

an = 2n + 1 Pe' 
where •'2 = (1 q- k2 - h2) and •,• = (1 q- k} - h•) for Love 
numbers h2, k2 and loading numbers h•, k•, and where p, Pe 
are the mean densities of seawater and Earth, respectively. 
Aside from the (as yet unspecified) dissipation term, (5) is 
linear. At least one of the models discussed below employs 
additional terms in (5)-(6), including advection and turbu- 

lent horizontal viscosity, but these features are peripheral to 
the main discussion of energetics in the open ocean where 
• << H and so are excluded from the equations above. 

Equation (5) is sometimes written [Hendershott, 1972] 

0U 

+ f x U = -gHV(( + (s - r/g) - y, (7) 
•t 

where F is the complete tidal potential, corresponding to 
both astronomical and induced forcing: 

F = (1 + k2)(I> + E(1 + k;)gOtn•'n. 
n 
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That is, F comprises four parts: the astronomical potential 

ß , a perturbation k2• induced by the body tide, a pertur- 

bation • k•ngOtn•'n induced by the load displacements and 
a perturbation • gOtn•'n from self-attraction. Equation (7) 
follows from (5) because 

g(•m + •s^L) = (1 + k2)• + g E(1 + ktn)Otn•n - 

h2cI> - g E h'nan•'n 

= F - g(b -- g(l - F - 

Notice that •' + •'s in (7) is the geocentric (ocean + Earth) 
tide. 

Equations (5) and (6) give expressions for the local bal- 

ance of momentum and mass. These equations may be com- 

bined in any number of different ways to form an energy bal- 

ance equation that describes the trade-off between terms that 

may be identified with work, flux, and dissipation at a given 

location [e.g., Hendershott, 1972; Zahel, 1980; Le Provost 

and Lyard, 1997]. The different forms of energy balance 

that are found in the literature reflect omission of supposed 

secondary terms like tidal loading and self-attraction, and 

different definitions for work and flux, which do not have an 

obvious form when allowance is made for a nonrigid Earth. 

Of course, all correct balance equations must arrive at equiv- 

alent dissipations. 

A derivation of an energy balance equation from first prin- 

ciples was given by Taylor [1919], who wrote down expres- 

sions for potential and kinetic energy in a fixed Eulerian vol- 

ume of ocean and then used the principal of energy conserva- 

tion to derive the balance between work done by body forces 

and forces acting on the boundary, advection of energy into 

the volume, and dissipation. In the next section we use a sim- 

ilar approach to clarify the proper definition of work and flux 

terms on a nonrigid Earth. After dropping small terms, con- 

sistent with the approximations leading to (5) and (6), equa- 

tions identical to those given by Hendershott [1972, 1977] 
are obtained. Because several of the terms take an unfamiliar 

form (and because of some typographical errors in the origi- 

nal papers), it is worth considering this derivation in further 
detail. 

3.1. Potential Energy and Flux on an Elastic Earth 

The following discussion briefly repeats the analysis of 

Taylor [1919] for potential energy and energy fluxes, but al- 

lowing for elastic tidal deformations of the Earth. 

The usual expression for the potential energy density is 

derived by integrating pgz over the water column [e.g., Gill, 

1982, p. 80]. When the seabed is also moving vertically, 
•'s = •'b -Jr- (l must be added to z to account for the addi- 

tional potential energy associated with vertical displacement 
of the entire water column. Following Taylor, we thus take 

the extended potential energy density to be 

PE -- pg (z + (s) dz = «pg((2 _ H 2 + 2((s + 2H(s). 
H 

(8) 

After subtracting the rest state potential energy -«pgH 2, 
the mean potential energy density over a tidal cycle is 

(PE) = «pg ((•2)+ (2•s)). (9) 
This expression agrees with Hendershott [1972]. 

Consider now the vertically integrated time-averaged en- 
ergy flux P at a point where the tidal current velocity is u. 
Again following Taylor, the energy flux across a fixed (Eu- 
lerian) surface ,_q bounding a column of water is the sum of 

the work done on the water mass by the hydrostatic pressure 
p of the surrounding ocean, and the energy (potential (PE) 
and kinetic (KE)) advected into the volume 

P.fidl = (pu).fidzdl+ 
H 

$((PE+KE)u). fidl. (10) 
In (10) fi is the outward directed normal to the surface ,_q, 

and PE and KE are vertically integrated potential and ki- 
netic energy densities. The advected kinetic energy term can 
be neglected because it involves third powers in the current 

velocity [Taylor, 1919]. The mean pressure throughout the 

water column is « pg(H + •), so the first term on the right 
side of (10) is «pg(H + •)2u. fl. Combining this with the 
potential energy from (8), the mean energy flux is 

e = ,og(u (• '2 +(H +((s +(sH)) (11) 
• pg (U(( + _Cs)), 

assuming, as usual, that H >> •. This too agrees with Hen- 
dershott. The flux P computed using (11) is plotted below 
in Figure 1. 

3.2. Energy Balance Equation 

Equations (6) and (7) are readily combined to form a mean 
energy balance of the form [Hendershott, 1972, 1977] 

Gravitational work Bottom flux Horizontal flux Dissipation 

W - F - V. P = D. (12) 

An expression for P is given in (11). The mean rate of work- 

ing of tidal gravitational forces (including the self-attraction 
forces) is 

w = p (u. vr) 

= pV. (FU) +p (ra•/at), 

(13) 

the last line from substituting (6). The term -F represents 
mechanical working by the solid tide against the ocean, or 

equivalently [Platzman, 1985] F is a flux of energy from the 
ocean into the solid Earth. This flux is given by the pressure 
fluctuation pg• times the downward velocity of the ocean- 
solid interface 

F = -{pg• O•s/Ot) = (Pg•s O•/Ot). (15) 

Note that our use of F and W follows Platzman [1985] (ex- 
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cept that his variables denote global integrals); our (W - F) 
is equivalent to the (Wt) of Hendershott [1972]; and the 
global integral of our (W - F) is equivalent to the W of 

Cartwright and Ray [ 1991 ]. 

The work terms in (12) can be decomposed as W = Wa + 
Wb and F = Fa + Fb, where 

Wa = p (U. V(1 +k2)cI)) (16) 

Wb = p (U. V En(1 + k;)gan•'n) (17) 
Fa = pg (•'b Or/at) (•8) 

Fb = pg (•'t 3•'/3t). (19) 

Thus Wa and Fa arise from the large-scale astronomical po- 

tential and body tide, while Wb and Fb arise from the load- 

ing and self-attraction effects. These terms are individually 

evaluated and plotted below in Plate 1. 

In principle, evaluation of the quantities W, F, and P 

in (12) provides a method for mapping the dissipation D 

throughout the ocean, regardless of the physical mechanism 

of that dissipation. The complications arise from the un- 

avoidable errors in estimating these quantities, which depend 

on tidal volume transports throughout the ocean. 

3.3. Energy Balance Over Patches 

One can anticipate that the spatial resolution of dissipation 
estimates derived from T/P tidal elevations will be limited, 

both by noise and by the incomplete data coverage. How- 

ever, the integral of D over a large ocean patch might be 

reliably estimated even when the small-scale details of D in 

the same area are poorly determined. There are several ways 

in which these patch integrals can be calculated, and some 

care is warranted. To make this explicit, let an overbar de- 

note area integration, so that the dissipation in some closed 

region is given by D = W - F - V. P. By expressing W 

via (14), rather than as p (U ß VI'), all terms in D involving 

U are surface integrals of divergences, and may thus be re- 

placed by line integrals in which knowledge of U is required 

only along open boundaries of the patch. These boundaries 

may be conveniently placed to avoid shallow seas and re- 

gions of complex topography where the currents are more 

likely to be poorly determined. 

Substituting explicit expressions from (11), (14), and (15), 

and simplifying yields 

• = Pg ff ((ro + rs,) or/at) dS - 
Pg f ((•' - •'m - •'s^L) U. fi) dg, (20) 

where fi is a unit vector directed normal to the open bound- 

ary and away from the region of interest. These integrals 

may be interpreted as a direct work integral minus a bound- 

ary flux integral (although the terms do not correspond to 

our W and P). The flux-like integral includes the so-called 

equilibrium flux of Garrett [1975], extended to include the 

self-attraction and loading effects. Garrett points out that 
Taylor [1919], and many others since Taylor, left out the •'m 
term from the flux; some authors continue to do so, but at 

least in Taylor's case it was probably permissible because 
in the Irish Sea is much greater than the equilibrium tide. 

3.4. Energy Balance Over the Globe 

As is well known [Hendershott, 1972; Platzman, 1985], 

further simplification of the balance equation occurs when 
the spatial integration is taken over the entire globe. All di- 
vergence terms of form V. (UX), when integrated to im- 

permeable coasts, drop out. In addition, all terms involving 
k• or h• drop out because they lead to factors of the form 
(•'n O•'n/Ot) = 0. We are left with 

• = Pg f• (•'m (O•'/Ot)) dS. (21) obe 

Of all the surface harmonics •n •'n forming •', only the n - 
2 term in quadrature with the equilibrium tide •'• contributes 
to this integral. The result, along with the Saito-Molodensky 

! 

relation k 2 = k2 - h2, leads directly back to (3). 

4. Estimates of Tidal Volume Transports 

4.1. General Considerations 

To map barotropic tidal energy dissipation using (11)- 
(15), we require the ocean and solid Earth tidal elevations 

•' and •'s, the complete tidal potential F, and volume trans- 

ports U. T/P altimetry data provide direct constraints on the 

elevations, and a number of nearly global maps of •' are now 
available. Given •', calculation of the tidal loading and self- 

attraction parts of F and •'s are straightforward [Ray, 1998]. 

The primary challenge is estimation of the volume transports 
U in the open ocean. 

With elevations already specified (from the altimetry data) 
the momentum equations essentially involve two unknown 

fields: U and .•'. Given .•', or strong enough assumptions 
about this dissipation term, it would be straightforward to 
directly solve for U. For example, assuming that 

.•' = rU/H, (22) 

with the linear drag coefficient r known, volume transports 
can be estimated by substituting •' into (5) and solving the 
resulting 2 x 2 linear system for U at each point in the do- 

main. This is the approach (with r = 0) used by Cartwright 
and Ray [ 1989] in their estimate of dissipation on the Patago- 
nian shelf from Geosat altimeter data. This simple approach 
requires only a local calculation and is thus easily imple- 

mented, but the explicit assumptions about energy dissipa- 
tion required might be expected to bias estimates of dissipa- 
tion computed from the resulting U. 

More importantly, this simple approach completely ig- 

nores the continuity equation, so the estimated volume trans- 

ports will not in general conserve mass [e.g., Cartwright et 

al., 1980]. In fact, (6) provides a powerful constraint on 

U, independent of any assumptions about dissipation. It ef- 

fectively provides the additional equations needed to extract 

meaningful information about both .•' and U from knowl- 

edge of •' and hence to map dissipation. Enforcing (6) also 

leads to smoother estimates of volume transports which are 

less affected by noise in the tidal elevation fields. As we 
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shall show below, estimates of dissipation computed with- 

out explicitly enforcing mass conservation are too noisy to 
be useful. 

Our strategy is to estimate the currents by fitting both (5) 
and (6) in a least squares sense. Since (6) is a simple state- 

ment of mass conservation that does not depend on any un- 

known parameters, fit to this equation should be emphasized. 
Based on comparison of a number of global tidal solutions to 
pelagic and island tide gauges, Shum et al. [1997] estimate 
errors in T/P constrained open ocean elevation fields to be 
of the order of 1 cm or so. Fit to (6) should be consistent 

with this level of accuracy. If misfit to the continuity equa- 

tion is significantly larger in the open ocean, the estimated 

transports are not truly consistent with the altimetrically con- 
strained elevations. On the other hand, the momentum con- 

servation equations (5) entail several approximations and de- 

pend on imperfectly known bathymetry as well as the dissi- 
pative term •c. Most of the misfit between the dynamics and 
the altimeter data should thus be accommodated by these 

equations. 

The least squares fitting approach still requires us to make 

a priori assumptions about dissipation in order to complete 
the definition of the momentum equations. To verify that 

these assumptions do not unduly influence the results we 
use a large suite of tidal elevation models (both T/P and syn- 
thetic) with a wide range of assumptions about •c. We also 

use two distinct approaches for estimating U: the variational 
data assimilation scheme of Egbert et al. [1994] (hereinafter 

referred to as EBF) and a scheme based on least squares fit- 

ting of the shallow water equations to gridded tidal elevation 
•'•o 2001] For completeness and to •'• ;'; • t,,,•y, ß ,•c,,t,te sub• 

sequent discussion, we briefly summarize the two methods 
here. 

4.2. Data Assimilation 

By assimilating the T/P altimetry data into the shallow 

water equations, tidal elevation and volume transport fields 
can be estimated simultaneously. For this study, new M2 

tidal solutions have been computed using a refinement of the 
variational assimilation scheme described in EBF [see Eg- 

bert and Bennett, 1996; Egbert, 1997; Egbert and Erofeeva, 

2001]. Briefly, the method requires minimizing a quadratic 

penalty functional formally expressed as 

if[w] = (Lw - d)*E• 1 (Lw - d) + 

(Sw- a)* E•-l(Sw- a), (23) 

where w represents the tidal fields (•' and U), S repre- 
sents the shallow water equations (including boundary con- 

ditions), a represents the forcing, and d = Lw q- ea repre- 
sents the altimetry data. Ee and Ef are covariances which 

tions and volume transports Simultaneously and already al- 
lows for misfit between the estimated •' and the alfimetry 
data. 

To allow for nonlinearity in the shallow water equations, 
(23) is minimized with a two-step procedure. In the first step 
a prior model is calculated by time stepping a finite differ- 
ence approximation to the nonlinear shallow water equations 
on a 1/4 ø nearly global (80øS-80øN) grid. At the northern 
limit, elevations derived from the FES94.1 model of LeP- 

rovost et al. [1994] are used for boundary conditions. The 
forcing includes the four dominant constituents, M2, S2, K1, 

O1, with tidal loading and ocean self-attraction (i.e., •s^L in 

($)) calculated as described by Ray [1998] using elevations 
from the TPXO.3 global solution of Egbert [1997]. Bottom 
friction is assumed to be quadratic in velocity 

.•' = coUv/H, (24) 

where v is the total water speed (including all tidal con- 
stituents), and the nondimensional parameter co = 0.003. 
Advection, the nonlinear term in the continuity equation, 
and a horizontal eddy viscosity term HAh V2u, with Ah = 
103 m 2 are also included in the prior model calculation, 

although the effect of these additional terms appears to be 
minimal. In the second step we linearize the dissipation us- 
ing the spatially varying velocities from the prior solution, 
omit other nonlinear terms from the shallow water equa- 
tions, and use the reduced basis representer approach of EBF 
to approximately minimize (23). See EBF and Egbert and 
Erofeeva [2001] for further details on the computational ap- 
proach 

For the inverse solutions described here we fit T/P data 

for 232 orbit cycles, including data from all crossover points 
and one point between each crossover. Because of computa- 
tional limitations the final inverse solution was computed on 

a 3/4 ø grid, instead of the 1/4 ø grid used for the purely hydro- 
dynamic prior model. To assess the sensitivity of dissipation 
estimates to assumptions about the dynamical errors, inverse 
solutions are computed with three different assumed forms 
for El. In the following we refer to these inverse solutions as 
TPXO4a, b, and c. Further details on the error covariances 

used are given in EBF and in section 5.3. 

The assimilation approach allows us to calculate formal 
error bars on the tidal fields and on the estimates of tidal en- 

ergy flux and dissipation. These error bars of course depend 
on the assumed a priori error structure (i.e., El) and should 
be interpreted in conjunction with other measures of solu- 

tion stability and validation data. The posterior errors for the 
inverse solutions are computed by a Monte Carlo method. 
First, a realization of the random forcing error is generated 
with covariance •f. The corresponding error in the tidal 

express a priori beliefs about the magnitude and correlation model •W i is then found by solving the linearized shallow 
structure of errors in the data (ca) and the assumed dynami- water equations. The realization of the random tidal fields is 
cal equations, respectively. As in EBF we assume a nonlocal then given by wi = w0 q- tSwi, where w0 is the same prior 
dynamical error covariance Ef with spatially varying am- model used for the inverse solution (i.e., the solution to the 
plitudes, and a globally constant decorrelation length scale, astronomically forced nonlinear shallow water equations). 
generally 5 degrees. The continuity equation (6) is assumed The solution is sampled with the spatial and temporal pat- 
exact, since the assimilation approach estimates the eleva- tern of the altimeter, random data errors are added, and the 
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resulting synthetic data vector •s inverted for x•i. The differ- 
ence wi -•9i is then a realization of the error in the estimated 

tidal fields. If a number of realizations wi, i = 1,..., I are 

calculated, actual and estimated dissipation maps D i, l•i can 
be computed for each of wi and •9i, and error bars for D (or 
area integrals of D) can be calculated. By adjusting the scale 

of the assumed dynamical error covariance Ef we can ensure 

that the dynamical residuals for the synthetic tidal fields used 

in the error calculation have amplitudes and spatial structure 

consistent with the actual dynamical residuals required to fit 

the data. Further details on the posterior error calculation 

are given by Dushaw et al. [1997] and Egbert and Erofeeva 

[2OOl]. 

4.3. Least Squares Inversion of Elevation Solutions for 

Volume Transports 

Using the weighted least squares procedure described by 

Ray [2001], volume transports, and hence estimates of en- 

ergy dissipation, can be computed from any of the global 

T/P tidal elevation solutions. Given a gridded tidal elevation 

field •, U is estimated by minimizing the weighted misfit to 

the equations (5)-(6), 

A4u[U, r] + wrA4r[U, r]. (25) 

Here .A4u and A//r give the squared misfits to the two equa- 
tions, and the weight wr controls the relative degree of fit 
to each equation. In the limit of large wr, continuity is en- 
forced exactly, while in the limit of small wr the momentum 
equations will be satisfied exactly. As Ray [2001] shows, in 
the open ocean currents estimated by solving this large least 
squares problem are quite similar to those obtained by the 
assimilation method discussed above and show good agree- 

ment with reciprocal acoustic tomography and current meter 
data. Further details, including treatment of coastal bound- 

ary conditions and computational procedures are given by 
Ray [20011. 

In addition to w c, the least squares solution will depend 
on the assumed form for the bottom drag term in the momen- 

tum equations. To keep the least squares problem linear, the 

linear parameterization of bottom drag (22) is used in (5), 
with r varied over a wide range. 

5. Results 

Both the data assimilation and the least squares proce- 

dures result in elevation and volume transport fields which 
can be substituted into (11)-(19) to yield estimates of time- 

averaged fluxes, work terms, and dissipation. Some numer- 

ical details of these calculations are given in the Appendix. 

E-R presented dissipation maps derived in this way for two 

different tidal solutions: GOT99, an empirical correction 

by Ray [1999] to the FES95.2 solution of Le Provost et 

al. [1998], with currents computed using the weighted least 

squares approach of section 4.3, and the TPXO.4 inverse so- 

lution described in section 4.2. Based on these maps, E-R 
concluded that about 25-30% of the M2 tidal dissipation oc- 
curred in the open ocean, mostly in areas of rough bottom 

topography. Here we consider these results in much greater 

detail, and we demonstrate the robustness of these empiri- 

cal dissipation estimates to details in the T/P tidal solutions, 

prior dynamical assumptions and weightings, and errors in 

bathymetry. 

5.1. Energy Fluxes and Rates of Working 

We begin with a brief examination of the individual terms 

in the energy balance equation (12). As these are almost 

indistinguishable for the full range of solutions considered, 

results are shown for only TPXO.4a. The mean barotro- 

pic energy flux for the M2 constituent is shown in Figure 1. 

These fluxes immediately suggest that certain shallow seas 

are important energy sinks. Large fluxes are observed en- 

tering the European shelf, the Norwegian, Greenland, and 
Labrador Seas, the Yellow, East China, and Timor Seas, and 

the Patagonian Shelf. The very substantial flux of energy 

passing from the South Atlantic into the North Atlantic is 

astonishing, amounting to 420 GW (although this is about 

200 GW less than the hydrodynamic estimate of Le Provost 

and Lyard [1997], even after accounting for differences in 

the definition of flux). Other features to note include the 

60' 

30' 

0 ø 

30' 

60' 

Figure 1. Energy flux vectors P for M2 derived using elevations and currents from the assimilation 
solution TPXO.4a. 
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pronounced counterclockwise flux of energy around New 

Zealand, and the flux paralleling the west coast of North 

America. The pattern of energy flux inferred from the T/P 

data is generally similar to that obtained by Le Provost and 

Lyard [ 1997] from the finite element hydrodynamic solution 
FES94.1. 

Plate 1 shows the cycle averages of the work terms Wa, 

Wb, -F a, and -Fb defined in (16)-(19), their sum, and the 

energy flux divergence V. P. Note the difference in color 

scales: the terms associated with the large-scale potential 

and body tides (Wa and -Fa) are an order of magnitude 

larger than the terms associated with loading and self attrac- 

tion (Wb and -Fb). Wa (the work done by the body forces 

associated with the large-scale potential) is large only in the 

deep open ocean where volume transports are significant. It 

is generally positive, with large areas of energy input in the 
South Atlantic and Southwest Indian Oceans, but there are 

also areas where the ocean locally does work on the Moon 

(and the solid Earth). The global integral of Wa for TPXO.4a 
is 4.566 TW. 

The work term associated with the body tide (-Fa) has 

a magnitude comparable to Wa but a very different appear- 

ance. There is significant work done by the ocean on the 

solid Earth in a series of large (blue) spots around the equa- 

tor. At midlatitudes the situation is reversed, with a tendency 

for the body tide to cio work on the oceans. The body tide 

also does significant work on the ocean around Australia and 

in the north Indian Ocean. Fa nearly balances the part of Wa 

due to work by the body tide gravitational potential on the 

ocean. In contrast to Wa, Fa is not obviously affected by the 

bathymetry (e.g., note the smoothness of this term) and can 

be quite large in shallow water. 

The loading and self-attraction terms Wb and--Fb have 

smaller amplitude and tend to be dominated by smaller scale 

features (especially Wb). Although Wb is also integrated 

over the water column and obviously affected by bathym- 

etry, it is still large in some shallow seas where large tidal 

elevations and short spatial scales can result in large ampli- 

tudes for the gradients of •n(1 + k'n)gOtn•'n. For example, 
note the large amplitude of Wb on the European, North Aus- 

tralian, and Patagonian shelves, and near the Gulf of Maine 

on the east coast of North America. The work done by the 

load tide on the ocean (-F•,) is the smallest of the terms 

considered. Magnitudes peak in shallow seas and along the 

edges of continents. The global integrals of Wt, and Ft, are 

0.009 and -0.001 TW, respectively. The two terms should in 

principle integrate to zero globally, since we have assumed 

real Love numbers. The small discrepancies arise from sev- 

eral sources: (1) combining loading and self-attraction cal- 
culated from TPXO.3 tidal elevations with tidal elevations 

and currents from a different inverse tidal solution, TPXO.4, 

(2) nonvanishing of currents on the coastal boundaries in 

TPXO.4a, and (3) incomplete global coverage of the tidal 

solution. These factors also lead to small discrepancies be- 

tween the global totals for work (Table 1) and dissipation 
(Table 2) for each of the solutions. 

The most striking aspect of Plate 1 is the almost identi- 

cal appearance of the net work done on the ocean by all 

body forces and the moving seafloor (W - F) and the di- 

vergence of the energy flux V ß P. Thus, for example, most 

of the energy input to the ocean in areas of positive net work 

(red areas in Plate 1 e) propagates away as barotropic waves. 

Plate 1 underscores the difficulty of estimating dissipation, 

which is the difference between the two very similar terms 

D = (W - F) - V. P. Evidently, great care must be ex- 

ercised in all phases of these calculations. In particular, al- 

though tidal loading and self attraction are small compared 

with the total work W - F, they cannot be neglected and, in 

fact, must be calculated as accurately as possible. 

5.2. Localized Dissipation Estimates 

Before discussing dissipation maps estimated from the 

T/P data, we briefly consider dissipation in the purely hy- 
drodynamic prior solution used as the prior or first guess for 

all of the assimilation solutions. The prior was computed 
by time stepping the nonlinear shallow water equations on a 
1/4 o grid, and then averaging the elevations (0 and transports 
U0 onto the 3/4 ø grid used for assimilation of the T/P data. 

Dissipation was then estimated using (11)-(15). The result 

is plotted in Plate 2a. Note the occurrence of both negative 

(blue) and positive (red) dissipation. Negative dissipation 
is, of course, physically implausible and is indicative of the 

level of noise in the empirical dissipation maps. Consistent 

with the parameterization of bottom drag with the quadratic 
law of (24), for which dissipation is cubic in current speed, 
significant energy sinks in the prior solution are restricted to 
shallow seas and broad continental shelves where tidal ve- 

locities are greatest. 

In addition to showing where dissipation by bottom drag 
is expected to be large, Plate 2a illustrates some of the arti- 

facts that can contaminate empirical dissipation maps. The 

plot has a slightly noisy appearance with numerous small 

spots of negative and positive dissipation in the open ocean 
(e.g., in the North Atlantic, the western Pacific around New 

Zealand, the western Indian Ocean near Madagascar, around 

the Hawaiian Islands, and the Kerguelan Plateau). Noise in 

Plate 2a (which is derived from a purely numerical model) 

results primarily from averaging of the 1/4 ø solution onto a 

coarser grid in which some bathymetric details are no longer 

resolved. Other contributing factors include the inexact can- 

cellation in the energy equation of the Coriolis terms on the 

C grid and noise in the loading and self attraction terms due 

to truncation of the spherical harmonic expansion used for 

their computation. In general, the small blue spots of neg- 
ative dissipation occur in tandem with red spots of positive 
dissipation. The clearest example is provided by the Hawai- 
ian Ridge, which appears red on the north side and blue on 

the south. The Azores, and Canary and Cape Verde Islands 
in the eastern north Atlantic, Somoa and Fiji in the south 

Pacific, the Galapagos Islands, and the Mascerene Islands 

in the Indian Ocean have a similar appearance. Compari- 
son with Figure 1 reveals that in all cases the blue patches 
occur on the "downstream" side of the unresolved islands, 

relative to the direction of tidal energy flux. These features 

result primarily from residuals in the dynamical equations 
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Figure 2. Shallow seas and deep ocean areas used for integrated dissipation computations. Areas outlined 
with solid lines, numbered 1-28, include all of the shallow seas where significant dissipation due to bottom 
boundary layer drag would be expected. In particular, essentially all of the dissipation in the prior model 
(Plate 2a) occurs within these areas. Areas outlined with dashed lines and labeled A-I are deep-water 
areas which show enhanced dissipation in the T/P estimates of Plate 2. 

which simulate the interaction of the barotropic tide with to- 

pographic features present in the fine grid but not resolved 

by the coarser grid. The pairing of red and blue spots around 

this unresolved topography implies that these residuals on 

average do no net work around any particular feature. We 

demonstrate this more explicitly below by computing area 

integrals of dissipation for the prior solution. Because the 

real ocean has topography that will not be resolved in the 

dynamical equations used to estimate currents, we should 

expect similar sorts of noise (and areas of negative dissipa- 
tion) in all of our estimates of D. 

The remaining three panels of Plate 2 show dissipation 

maps based on three tidal solutions representative of the dif- 

ferent approaches used to estimate tides from T/P data: for- 

mal assimilation methods, empirical corrections to a hydro- 
dynamic model, and purely empirical solutions. The first 

two of these maps (Plates 2b and 2c) are the TPXO.4a and 

GOT99hf estimates presented in E-R. The third approach, 

a purely empirical solution with no explicit reliance on any 

dynamical assumptions, is represented by the DW95 solu- 
tion of Desai and Wahr[ 1995] (Plate 2d). For the GOT99hf 

and DW95 solutions, volume transports were computed us- 

ing the least squares approach of section 4.2, with the lin- 

ear friction parameter of (22) set to a relatively high value 

(r = 0.03), and the weight w c of (25) chosen so that 

-V. U/iro agrees with the tidal elevation •' to within about 

1 cm over most of the open ocean [Ray, 2001 ]. 

The dissipation map from TPXO.4a has the cleanest ap- 

pearance, while the map from the purely empirical DW95 

solution is noisiest, with significant areas of negative dissi- 

pation throughout the ocean. However, all three maps have 

many features in common. The areas of intense dissipation 

expected due to bottom boundary layer drag in the shallow 

seas (e.g., Patagonian Shelf, Yellow Sea, northwest Aus- 

tralian Shelf, European Shelf) are clearly evident in all cases 

(compare to the prior solution of Plate 2a). The areas of 

enhanced open ocean dissipation discussed in E-R are also 

seen in maps for all three T/P-constrained solutions (but not 

for the prior solution). For example, dissipation is clearly 

enhanced in the Pacific over the Hawaiian Ridge, the Tu- 
amotu archipelago, and over the back arc island chains ex- 

tending from Japan southward to New Zealand. The west- 

ern Indian Ocean around the Mascerene Ridge and south of 
Madagascar also exhibits enhanced dissipation in all three 

of the maps. The Mid-Atlantic Ridge shows up most clearly 
in the assimilation estimate but is evident also in the other 

two estimates. In all three cases there is substantial dissi- 

pation throughout much of the North Atlantic. All of these 

areas where dissipation is consistently enhanced are charac- 

terized by significant bathymetric variation, generally with 

Plate 1. Terms in the time averaged energy balance equation (12), derived from the assimilation solution 
TPXO.4a. In Plates la through ld the work terms are subdivided as in (16)-(19). (a) The work done on 
the ocean by the large-scale gravitational potential, and (b) the work done by potential terms associated 
with loading and self-attraction. (c) and (d) Work done by the moving bottom on the ocean, associated 
with the body tide •'b, and load tide •'t, respectively. (e) The sum of the four work terms plotted in Plates la 
through ld, and (f) the divergence of the energy flux V ß P. Note that Plates le and I f nearly cancel; the 
difference is used to estimate the oceanic tidal energy dissipation rate. 
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elongated features such as ridges and island chains oriented 

perpendicular to tidal flows. 

Dissipation maps computed for other T/P-constrained tid- 

al solutions are grossly similar. Rather than plot all of these 

maps, we compute integrals of D over discrete patches of 

ocean to compare more quantitatively the large-scale pat- 

terns of dissipation. E-R presented estimates of M2 tidal 

dissipation for major shallow sea sinks and selected deep 
ocean areas for TPXO.4a, GOT99hf, and several variants on 

these solutions which we consider in greater detail in the 

next section: TPXO.4b,c (computed with a different dynam- 

ical error covariance El') and GOT99nf (based on currents 

estimated with "no friction," i.e., r = 0 ). Here we present 

more complete results for a larger set of tidal solutions, in- 

cluding integrated dissipation estimates for all shallow seas 
and continental shelves. These are divided into 28 areas with 

boundaries indicated by the solid lines in Figure 2. The ar- 

eas chosen roughly follow the compilation of Miller [ 1966], 

though we have merged some adjacent small or low dissipa- 
tion shelf areas (e.g., the narrow shelf along the west coast of 

North America is treated as one area for our computations). 

We also compute the area-integrated dissipation for 11 open 

ocean patches, outlined by dashed lines and labeled A-I in 

Figure 2. These have been chosen to correspond to the gen- 

eral areas of enhanced dissipation seen in Plate 2. In contrast 
to the shallow seas, none of these areas should contribute 

significantly to dissipation by bottom drag (see Plate 2a). 
Tidal currents are unlikely to be well constrained by al- 

timeter data in shallow seas or in areas with small islands 

or other topographic complications. However, by comput- 

ing the dissipation integrals using (20) we require volume 

transports only on the open ocean boundaries. By drawing 

these boundaries in deep water and avoiding areas of com- 

plex topography, reasonable estimates of dissipation can be 

computed even for shallow seas. This is also the approach 

used by Miller [1966], who relied on a very sparse and only 

partly reliable set of tidal elevation and current observations 

in his estimates of shallow seas dissipation. 

Results are given in Table 2 and Plate 3 for the five so- 

lutions considered by E-R (TPXO.4a,b,c, GOT99hf, nf), for 

TPXO.3 (an older version of the inverse solution, described 

by Egbert [1997]), and for a selection of additional tidal so- 
lutions derived from T/P altimeter data: DW95, CSR3.0, 

SR96, and FES95.2. For all of these additional solutions 

(which are summarized by Shum et al. [1997]), volume 

transports were computed using the least squares scheme 

with r = 0.03, and wc chosen to emphasize fit to the con- 
tinuity equation. Table 2 also gives the area-integrated dis- 

sipation computed for the regridded prior model of Plate 2a, 

and error bars for the TPXO.4a solution, computed using the 

Monte Carlo procedure outlined above. For comparison we 

also include two previously published estimates of shallow 

sea dissipation in Table 2; these will be discussed in sec- 
tion 6. 

For all of the T/P estimates the dominant sinks of energy 
are in a small number of shallow seas and broad continen- 

tal shelves. The largest (greater than about 100 GW each) 

are around Hudson Bay (including the Labrador Sea, Baffin 

Bay, and Canadian Arctic straits), the European shelf (in- 
cluding the North Sea), the Yellow and East China Seas, 

the northwest coast of Australia, the Patagonian shelf, and 
the northeast coast of Brazil in the area around the Ama- 

zon Cone. Other shallow seas with significant dissipation 
(greater than about 50 GW each) include the South China 

Sea, the St. Lawrence Seaway and Gulf of Maine (including 
the Bay of Fundy), the Andaman Sea, East Africa (includ- 

ing the Mozambique Channel), New Guinea and northeast- 

ern Australia, and Antarctica. The dissipation in the Arctic 

Ocean and Norwegian Sea is also significant (together nearly 

100 GW), but because the T/P data do not extend beyond 
66øN latitude, we do not attempt to divide dissipation be- 
tween these seas. The total, which is determined primarily 
by the energy flux out of the northeast Atlantic (in an area 

of good T/P data coverage), is similar for all of the T/P solu- 

tions and thus appears to be reasonably well constrained. 
For almost all of these major shallow sea sinks the TPXO 

and GOT99 dissipation estimates (red and blue symbols in 

Plate 3) agree within approximately 10-15%. Better agree- 
ment is obtained for isolated shallow seas that can be cleanly 
separated from other possible sinks (e.g., the Patagonian 
Shelf (5), the St. Lawrence Seaway/Gulf of Maine (9), and 

the Bering and Okhotsk Seas (15) and (17)). Note that for 

these areas the error bars computed for the TPXO.4a solu- 
tion are small. Dissipation estimates based on the other T/P 

solutions (green symbols in Plate 3) show more scatter, but 

except for a few outliers most estimates are still within about 

20% of the average. It should be noted that these other tidal 

solutions are based on much less T/P data and are generally 
of lower quality than the more recent TPXO and GOT99 so- 

lutions [e.g., Ray, 1999]. There is also generally excellent 

agreement among all solutions in areas of minimal dissipa- 

tion (e.g., the west coast of South America, the east coast of 

North America (south of the Gulf of Maine), the west coast 

of Africa, and the coast of Australia (excluding the north- 
west coast and Coral Sea). 

The area of greatest disagreement between solutions is 

around Indonesia. Division of dissipation between the var- 
ious patches in these areas is problematic, since boundaries 

must be drawn in shallow areas with complex bathymetry 
where our estimates of volume transports are most question- 
able. Agreement between all estimates is much better for the 

total dissipation in the three areas which share boundaries in 

this area of complex topography (4, 8 and 19, the northwest 
Australian shelf, the South China Sea, and Indonesia, re- 

spectively). For this total the TPXO and GOT99 solutions 

again agree to within about 15% (see Table 2). 

Summed over all shallow seas, all of the T/P dissipation 
estimates come up well short of the required total of 2.4 TW. 
With the exception of DW95 (which is a bit of an outlier, 

even for the global total), all of the additional T/P solutions 
considered here are consistent with the TPXO and GOT99 

results presented by E-R, with total shallow sea dissipation 
around 1.6-1.8 TW. The remaining dissipation, required to 
match the well-determined global total must occur in the 
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deeper ocean. For the T/P based dissipation estimates this 
amounts to about 0.6-0.8 TW, or about 25-30% of the total. 

The breakdown into some of the major areas of deep 

ocean dissipation is given in the second part of Table 2. The 

most significant areas (each accounting for approximately 

100 GW in all estimates) are Micronesia and Melanesia in 

the western Pacific, the western Indian Ocean, and the Mid- 

Atlantic Ridge. The first of these areas contains a num- 

ber of significant elongated topographic features including 

the Kermedec, Tonga, Lau, and Norfolk Ridges north of 

New Zealand. All of these are prominent in the dissipa- 

tion maps of Plate 2. The second area includes the Ma- 

scerene and Southwest Indian Ridges and the Madagascar 

Plateau. These specific topographic features again generally 

show up as areas of enhanced dissipation in Plate 2. Other 

deep-ocean areas of note include the Hawaiian Ridge (con- 

sistently estimated to account for about 18-20 GW of dissi- 

pation), Polynesia (including the Tuamotu Ridge; about 40 

GW), and the South Honshu Ridge (about 50 GW). There 

is also a significant amount of dissipation (generally around 

200-300 GW) spread around the remaining open ocean. In 

fact, some of this remaining area (e.g., the North Atlantic 
between the northwest coast of Africa and the Mid-Atlantic 

Ridge) has moderately rough bottom topography and ex- 

hibits consistently elevated dissipation levels. Areas A-I of 

Figure 2 clearly do not contain all of the rough topography 

in the deep ocean. Note that the open ocean dissipation for 

the prior model is indeed very near zero, demonstrating that 

the noise associated with topographic features has little net 

effect on dissipation integrated over larger patches of ocean. 

We conclude from the comparisons of Table 2 and Plate 3 

that the large-scale pattern of tidal dissipation does not de- 

pend strongly on details in the estimated tidal elevations, 

provided the fit to the T/P data is sufficiently good. 

5.3. Sensitivity to Assumed Dynamics 

To demonstrate the insensitivity of dissipation to prior dy- 

namical assumptions, E-R compared results from five of the 
estimates summarized in Table 2 and Plate 3, TPXO.4a,b,c 

and GOT99hf, nf. These comparisons showed that the re- 

sults are only weakly dependent on the assumed form for 

the friction 3 v and the prior dynamical error covariance. We 

expand on these issues here, providing further details and 

discussion. We also address more explicitly the importance 

of proper weighting of the continuity equations for estima- 

tion of volume transports and consider possible effects of 

errors in the assumed bathymetry. 

5.3.1. Sensitivity to assumed 3 v. The most obvious area 

of concern is that both the assimilation and weighted least 

squares methods require some sort of prior assumption about 

the dissipative term f' in (5). To keep the problem linear 

for the weighted least squares approach, we restricted 3 v to 
the simple linear drag law (22). By varying r one can eas- 

ily test sensitivity of results to the assumed drag coefficient. 

Plate 4a shows dissipation estimates for the GOT99nf solu- 

tion, computed by applying the least squares approach with 

r = 0.0 (i.e., no friction). The dissipation map is very simi- 

lar to that obtained with the large friction parameter r = 0.03 

(Plate 2c), although there is a slight tendency toward smaller 

open ocean dissipation in some areas (such as the North At- 
lantic) for the no-friction case. The similar appearance is 

confirmed more quantitatively by the area-integrated dissi- 

pation estimates of Table 2. Based on this comparison, and 
further experiments with intermediate values of r, we con- 
clude that estimates of dissipation are relatively insensitive 
to the assumed linear friction coefficient over a wide range. 

In fact, the two values explicitly considered here are extreme 

and certainly bracket any plausible value of r. 
The similarity of the GOT99 dissipation maps to those ob- 

tained with the assimilation approach provides further ev- 

idence for the insensitivity of our conclusions to prior as- 

sumptions about 3 v. For TPXO.4a we have assumed the 

quadratic drag law of (24). With this quadratic parameter- 
ization, energy dissipation by bottom drag can be large in 
shallow seas where current speeds are large, but is small in 

the open ocean (Plate 2a). Although the spatial distribution 
of dissipation resulting from this parameterization is quite 
different from that implied by a linear drag law with any 

value of r, essentially the same pattern of tidal energy dissi- 

pation is obtained when the T/P data are fit adequately. 
5.3.2. Work done by errors in f'. For the TPXO.3 as- 

similation solution used by Egbert [1997], purely linear dy- 
namics were used with the bottom drag again parameterized 

as (22) with r = 0.03. This relatively crude treatment of 
bottom drag was found to be the dominant source of error 

in the dynamics assumed by EBF, especially in open ocean 
areas where the linear drag law resulted in excessive dissi- 

pation [Egbert, 1997]. To correct for this deficiency in the 

prior model, and bring the elevations into agreement with the 

T/P data, significant misfit to the momentum balance equa- 
tion (5) was required. The residuals •u to this equation can 
be viewed formally as an extra forcing term, which depends 

on the explicit assumed form for f'. If we evaluate dissipa- 
tion directly using the estimated currents and the assumed 

dissipation parameterization 

Do = pu..?, (26) 

then the work done by these residuals 

WE = pu.•u (27) 

must be included in the energy balance equation (12). If 
misspecification of 3 v is the dominant error in the energy 

balance equation, then the true dissipation is approximately 

D = Do- WE. (28) 

Equation (28) clarifies how the dissipation estimates can be 
so insensitive to prior assumptions about the frictional stress: 

the dynamical residuals do work to effectively correct the 
assumed parameterized dissipation and bring the modeled 

elevations into agreement with the T/P data. 

For TPXO.3. where the dissipation computed with the 

assumed parameterization (Do) was too large in the open 

ocean, the work done by the dynamical residuals (WE) was 
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Plate 3. Plot of area-integrated dissipation estimates computed for the 10 tidal solutions of Table 2. Red 
symbols are used for the TPXO assimilation estimates, computed with three different dynamical error 
covariances. Blue symbols are used for the GOT99hf and GOT99nf estimates, computed with linear 
friction coefficients of r -- 0.03 and r -- 0, respectively. Green symbols are used for the other tidal 
solutions. The weighted least squares procedure with r -- 0.03 was used to estimate volume transports 
for these other solutions (except for TPXO.3). Error bars were computed for the assimilation solution 
TPXO.4a using the Monte Carlo procedure described in the text. 
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Plate 5. Work done by the dynamical residuals in the assimilation solutions. (a) For TPXO.3 a linear 
parameterization of bottom drag • = rU/H was used with r = 0.03, making the assumed energy 
dissipation in the dynamical model too large in the deep ocean. To fit the altimeter data, residuals are 
required in the momentum equations. In this case these do work in the deep ocean to overcome the 
excessive drag. (b) For TPXO.4a a quadratic parameterization of • was used, so a priori there is little 
dissipation in the deep ocean. Now the residuals to the momentum equation do work in the opposite sense 
to increase dissipation almost everywhere in the open ocean. 
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generally positive, as illustrated in Plate 5a. In contrast, with 

the quadratic drag law used for the new TPXO.4a solution, 

Do in the open ocean is now very small and W• is almost 

always negative in deep water, especially over rough topog- 

raphy (Plate 5b). Starting from two extremes for Do (min- 

imal and excessive open ocean dissipation), very different 

dynamical residuals, which do work in opposite senses, are 

required to fit the altimeter data. However, very similar es- 

timates of dissipation D are obtained for both cases, pro- 

viding very strong evidence that significant open ocean dis- 

sipation is required by the T/P altimeter data. Note that a 

similar analysis could be applied to the two weighted least 

squares dissipation estimates discussed in section 5.3.1. For 

the case r = 0, Do = 0 and all dissipation in the final esti- 

mate arises from work done by the dynamical residuals. For 

the r = 0.03 case, the dynamical residuals in the open ocean 

generally do work in the opposite sense. 

Between the assimilation and least squares approaches we 

have considered a very broad range of prior assumptions 

about the frictional dissipation •, including both quadratic 

and linear drag laws with a wide range of drag coefficients. 

The generally good agreement between all of the dissipa- 

tion maps demonstrates convincingly that our results are not 

unduly biased by prior assumptions about the nature of dis- 

sipation. 

5.3.3. Sensitivity to assumed covariance. A second 

area of possible concern is the effect of the assumed prior 

error covariance on the estimated dissipation. This is most 

easily explored with the assimilation approach where the co- 

variances are explicit. 

For TPXO.4a a prior estimate of the magnitude of errors 

in the momentum equations (5) was obtained following the 

general analysis of EBF, but with allowance for the improve- 

ment we have made to the dynamics. For the solutions con- 

sidered here the dynamical error variance is dominated by 

errors in the bathymetry and the effects of unresolved topog- 

raphy. As a result we have assumed a priori that errors in 

the dynamics are largest in places like the Hawaiian ridge or 

the western Pacific, where many islands and seamounts are 

not resolved by our coarse numerical grid. Although these 

prior assumptions about momentum equation errors may be 

reasonable, it is also possible that they bias our dissipation 

estimates. Away from topographic complications dynamical 

errors are assumed to be smaller, so that dynamical errors, 

and hence any required excess dissipation, will tend to be 

larger over rough topography. To assess this possibility we 

consider two variants on the preferred dynamical error co- 
variance. 

For the first case (TPXO.4b) we assume a spatially uni- 

form dynamical error variance. As for TPXO.4a, decorrela- 

tion length scales are assumed to be 5 degrees. The result- 

ing dissipation map is given in Plate 4b. Compared with 

TPXO.4a the dissipation estimates are slightly smoother, 

with features like the Hawaiian Ridge less distinct. How- 

ever, the overall pattern is very similar, and all significant 

areas of enhanced dissipation remain. For the second case 

(TPXO.4c) we reduce the decorrelation length scale for the 

dynamical error covariance from 5 to 2.5 degrees. We also 
slightly modify the dynamical error variances from that used 
for TPXO.4a to increase error variances for individual grid 

cells containing significant fine scale variations in bottom 
topography. This modified error covariance Ef tends to put 
large errors (and thus potentially larger deviations of dissipa- 
tion from the prior) in areas with topographic complications. 
The result (Plate 4c) is as expected, with topographic fea- 
tures such as ridges and island chains more sharply resolved 
(and also somewhat noisier). However, the general pattern 

remains essentially the same as for the other two cases. More 

quantitatively, Table 2 and Plate 3 show that details in the as- 

sumed dynamical error covariance Zf have very little effect 
on the large-scale pattern of dissipation. 

5.3.4. Importance of mass conservation. We next con- 

sider the effect of relaxing the fit to the continuity equation. 
As noted in section 3, if the continuity equation is ignored 

and a linear drag parameterization is assumed, U can be es- 

timated locally by solving two linear equations in two un- 
knowns (i.e., (5)) at each point in the domain. In the least 

squares approach this entails setting the weight w c -- 0 in 
(25). The resulting dissipation estimates are extremely noisy 
(Plate 4d). The reason is not hard to understand. The flux 

divergence may be written 

V. P = pgV. (U(( + (29) 

= pg ((• + Cs) v. u) + pg (u. v(c + Cx)). (30) 

Since computation of U already requires differentiation of 

the estimated elevation fields (, direct evaluation of V. U 

requires computing second derivatives of a measured field, 

which necessarily magnifies noise. However, if the continu- 

ity equation is enforced exactly, then 

V. U = -iw(, 

and the divergence of U need not be computed by actual dif- 

ferentiation. Second derivatives are thus completely avoided 

when (6) is fit exactly (as for the assimilation estimates) and 

significantly stabilized when only a small misfit is allowed 

(as for the least squares estimates). 

As we have argued above, there are good a priori argu- 

ments for taking the continuity equation as a very strong 

constraint in deriving estimates of volume transports. The 

re•u,t• o• t-,ate •ct, and" argument of (29)-(30) shows that tile 

there are also good practical numerical reasons for enforcing 
mass conservation. 

5.4. Inversion of Synthetic Data 

As a definitive test of the ability of the T/P elevation 

data to constrain tidal dissipation, we applied the assimila- 

tion procedure to data generated from synthetic model runs. 
First, the nonlinear shallow water equations were solved by 

time-stepping on a 1/4 ø grid, with several different input as- 
sumptions about friction and bathymetry. The tidal eleva- 
tion fields were then sampled with a spatial and temporal 
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pattern equivalent to the altimeter, noise was added, and the 
inverse approach was used to compute transports and esti- 
mate dissipation. Since the synthetic tidal currents at the 
original 1/4 ø resolution are available, we can compare the 
actual dissipation in the numerical model with the inversion 
results. The procedure is essentially identical to that used for 

the Monte Carlo error bar calculation, except that instead of 

specifying random forcing and boundary conditions for the 

synthetic calculations, we ran the forward model with mod- 

ified dynamics. In all cases for inversion of the synthetic 

data, we used the same 3/4 ø grid, with the bathymetry, dis- 
sipation, and dynamical error covariance used for TPXO.4a. 

By computing the synthetic "truth" with different bathyme- 

try we can assess the importance of this additional source of 

uncertainty. 

For the first set of synthetic runs the bathymetry was taken 
from the GTOPO30 database of Smith and Sandwell [1997] 

averaged onto a 1/4 ø grid. The bathymetry for these syn- 
thetic runs was thus of higher resolution but otherwise con- 

sistent with that used for the inversion. Dissipation was mod- 

ified from the quadratic drag law used for the prior inverse 

solution in several ways. Starting from the prior solution, 

we computed a spatially varying linear drag coefficient that 

would produce the same dissipation as the quadratic law (for 

the prior solution currents). We then modified the drag co- 
efficient in selected areas and reran the forward model with 

this modified linear friction. Plate 6 compares the actual syn- 

thetic and estimated dissipation maps for two variants on this 

procedure. For the first case (Plate 6a) all dissipation was 
confined to shallow seas, but the drag coefficient in some 

seas was modified (e.g., by setting it to 10% or 200% of 

the level calculated from the prior solution). For the second 

case (Plate 6b) dissipation was added to deeper ocean ar- 

eas. To do this we followed the theory of Sjiiberg and Stige- 

brandt [1992] to estimate an approximate linear drag coeffi- 

cient that accounts for conversion of barotropic tidal energy 

to baroclinic modes. The required buoyancy frequency was 

computed from the climatology of Levitus [1999] and ba- 
thymetry (on a 5 t resolution grid) was taken from Smith and 
Sandwell [ 1997]. Details of the calculation (which are some- 

what involved but follow the development of Sjiiberg and 

Stigebrandt [ 1992] closely) are not important for our discus- 

sion here. For this synthetic run there is significant dissipa- 

tion over areas of rough topography in the open ocean where 

the theory predicts larger linear drag coefficients (Plate 6b). 
Estimates of dissipation from inversion of the synthetic 

data are shown for the two cases in Plates 6c and 6d. The in- 

version results appear somewhat blurred, with some areas of 

negative dissipation, and a tendency to be noisiest in areas of 
rough topography. However, the overall agreement between 

actual (synthetic) and estimated dissipation is quite good for 
both cases. In particular, there is no significant dissipation 

in the deep ocean for the first case (Plates 6a and 6c). For 
the second case (Plates 6b and 6d) the areas of assumed deep 

ocean dissipation are reasonably captured in the estimates. 

Figure 3 compares dissipation in the synthetic forward 

and inverse solutions for all of the shallow and deep sea 

areas of Figure 2. For reference we also show the dissipa- 

tion computed for the prior solution (which was used as the 

"first guess" for inversion of the synthetic data). As can be 

seen, the modified linear drag coefficients result in signif- 

icant changes in dissipation in some seas. After inversion 

of the synthetic data the estimates track the actual distribu- 

tion of dissipation closely, with typical errors of the order of 

5-10%. Fits are somewhat poorer for the North Australian 
Shelf, the China Sea, and Indonesia, which share boundaries 

in an area of complex bottom topography. However, the sum 

of dissipation in these areas for the synthetic run (490 GW) 

is quite close to the estimate from the inversion (497 GW). 

This behavior of the dissipation estimates is consistent with 

what we have seen with actual data for this complex area: 

although the total dissipation is well constrained, the parti- 

tion between individual seas is not. Figure 3a confirms the 

impression of Plate 6, that there is little deep-ocean dissipa- 
tion in the inverse estimate for the first case. The totals for 

all deep areas in Figure 3a are 38 GW for the actual syn- 
thetic solution, and -1 GW for the inverse estimate. For the 

second case of Figure 3b (where we have increased the drag 

coefficient in deep water) the deep-ocean totals are 484 GW 

for the synthetic, and 505 GW for the inverse estimate. 

To test the effect of errors in bathymetry on dissipation es- 

timates, we modified the bathymetry used for the synthetic 

calculations, while still using the standard bathymetry for 

the inversion. Results for two variants on this experiment 

are shown in Figure 3c and 3d. The spatially varying drag 
coefficient used for these runs is identical to that used for 

Figure 3a. For Figure 3c uncorrelated Gaussian errors with 

standard deviation 20% of the water depth were added to 

the standard 1/4 ø bathymetry. This makes the synthetic ba- 
thymetry quite rough, with a substantial number of extra 

seamounts everywhere in the ocean. For Figure 3d smooth 

random errors (with a decorrelation length scale of 5 de- 

grees) were added to the standard bathymetry. For this ex- 

periment the relative perturbations to the bathymetry were a 

function of depth as follows: 25% for H < 100 m; 15% for 
100 < H < 200 m; 10% for 200 < H < 1000 m; 6% for 

1000 < H < 3000 m; 3% for H > 3000. These relative er- 

ror levels approximate the depth dependence of the statistics 
of differences between the older ETOPO5 [National Geo- 

physical Data Center, 1992] database and GTOPO30 [Smith 

and Sandwell, 1997], and probably provide an upper bound 

on the magnitude of large-scale errors in the bathymetry we 

have used for the T/P dissipation estimates. 

Uncorrelated errors in the bathymetry (i.e., with length 

scales below the grid resolution used for the inversion) have 

very little effect on the dissipation estimates (Figure 3c). In 

fact, results for this case are slightly better than when the in- 

version is done with the correct bathymetry (i.e., Figure 3a). 

The major improvement occurs for the three adjacent areas 

noted above (North Australian Shelf, China Sea, and Indone- 

sia) and has most likely arisen by chance. The larger scale 

errors in the bathymetry used for Figure 3d lead to somewhat 
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Figure 3. Comparison of actual (solid lines) and estimated (dashed lines) dissipation in shallow seas and 
deep ocean areas of Figure 2 for four synthetic runs. Symbols give dissipation for the prior hydrodynamic 
solution. (a) Modified linear drag, restricted to shallow seas (corresponding to the dissipation maps of 
Plates 6a and 6c). (b) Modified linear drag, with drag over rough topography in the deep ocean estimated 
following Sj•iberg and Stigebrandt [1992] (Plates 6b and 6d). (c) As in Figure 3(a), but with 20% random 
errors in bathymetry (no spatial correlation). (d) As in Figure 3(a), but with spatially correlated (5 degree 
length scale) errors in bathymetry (amplitudes as given in text). 

larger errors in the inverse estimates of dissipation. How- from our hydrodynamic prior solution, and from the finite 
ever, agreement between actual and estimated dissipation re- element hydrodynamic solution FES94.1 [Le Provost and 
mains excellent. Lyard, 1997]. Note that for FES94.1 only the major sinks 

We have run experiments with additional variations in and the global integral were given in the original reference. 
drag laws and errors in bathymetry and boundary conditions Dissipation in shallow seas computed from the purely hy- 
in various combinations. The results presented here are typi- drodynamic prior model tends to be larger than in the T/P 
cal. We conclude that the sampling pattern of the T/P data is estimates. The most significant differences are for the Eu- 
sufficient to extract accurate estimates of the spatial localiza- ropean Shelf and in the Arctic/Norwegian Sea, where dissi- 
tion of dissipation, with a resolution of 5 ø or so, even if the pation in the prior solution is large, and about 50% above 
true bathymetry is only imperfectly known. The synthetic the empirical estimates. More generally, shallow sea dissi- 
modeling results also suggest that small-scale unresolved to- pation in the prior and T/P solutions is similar, with a slight 
pographic features do not substantially affect dissipation in tendency to larger values in the prior. Agreement between 
either the synthetic runs or the inverse solutions. the T/P estimates and the hydrodynamic calculations of Le 

6. Comparison to Other Dissipation Estimates 

In Table 2 we include estimates of energy flux into shal- 
low seas from Miller [1966] (regrouped where appropriate 
to correspond to the division of shallow seas of Figure 2), 

Provost and Lyard [1997] is similar, also with a tendency 
toward larger shallow sea dissipation in the finite element 

model. The largest difference between the TPXO.4 prior so- 
lution and FES94.1 is in the Arctic/Norwegian Sea, which 
is 157 GW in the prior and only 21 GW for FES94.1. At 

least some of the difference between the hydrodynamic mod- 
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Figure 4. Magnitude of the vertically integrated body force resulting from flow of the barotropic tide over 
ocean bathymetry, estimated using the linear theory of Baines [1982]. This gives a qualitative indication 
of where forcing of internal tides is likely to be largest, which indeed is similar to areas of open-ocean 
energy dissipation in Plates 2 and 4. 

els probably reflects differences in the shallow sea bound- 

aries used for our calculations (Figure 2), and those used 
by Le Provost and Lyard [1997]. The total shallow sea dis- 

sipation for the two hydrodynamic models is in remarkably 
good agreement, at around 2.01 TW, well below the required 
global total of 2.4 TW. 

Agreement between the T/P dissipation estimates and the 
energy flux estimates of Miller [1966] is poorer. Some areas 
that Miller estimated to be major sinks (the Bering Sea and 
Sea of Okhotsk, each estimated to be over 200 GW) are rel- 

atively insignificant (only 30-40 GW each) in all of our esti- 

mates. Some other significant sinks in Miller's compilation 
are also consistently reduced by a factor of 2 or more in the 
T/P estimates (the west coast of North America, shallow seas 

around India, Japan, the Andaman Sea). At the same time, 

Miller's estimates of flux into Hudson Bay and the Yellow 
Sea, two major sinks in all of the T/P estimates, are low by a 
factor of 2. Somewhat remarkably, given some of the large 
disagreements in specific areas, Miller's [1966] estimate for 

the total shallow sea dissipation falls neatly within the range 
1.6-1.8 TW which brackets most of the shallow sea dissipa- 
tion estimates in Table 2. 

Since Miller's [1966] compilation, dissipation estimates 
have been published for a number of shallow seas. Most 

of these have been based on local hydrodynamic modeling, 
rather than actual in situ current and elevation data, as Miller 

used. For example, Sandermann [1977] used tide gauge data 
from the Aleutian arc to provide boundary conditions for a 
numerical model of the Bering Sea. His dissipation estimate 
for this area (29 GW) was significantly less than earlier esti- 
mates [Jeffreys, 1920; Miller, 1966]. The T/P estimates (for 
a slightly larger area) are in good agreement (29-47 GW for 
the TPXO and GOT99 solutions). 

Unfortunately, there is rarely sufficient in situ data to ade- 

quately define open boundary conditions for the sort of large 
shallow sea or shelf areas considered here, so recourse must 

be made to a larger scale model. As a recent example of 

this sort of modeling study, Glorioso and Flather [1997] 
used open boundary conditions extracted from Schwiderski 

[1978] to model tides on the Patagonian shelf. For M2 they 
estimated the dissipation to be 228 GW, in good agreement 
with the 245 GW estimate by Cartwright and Ray [1989] 
based on Geosat altimeter data, but more than twice the T/P 

estimates, all of which are near 115 GW. We suggest that 
the T/P estimates are preferable. Cartwright and Ray [1989] 
estimated dissipation using an approach similar to ours, but 
with currents computed without the extra constraint of mass 
conservation (6). As a result, these estimates should be ex- 

pected to be very noisy, as indicated by Plate 4d. Simi- 

larly, there are also reasons to question the hydrodynamic 
results. Glorioso and Flather [1997] increased boundary 
amplitudes from the Schwiderski [1978] solution by 60% 
to obtain a better fit to coastal tide gauges, an amount that 
appears excessive given known crrors in Schwiderski's so- 

lution [Schrama and Ray, 1994]. Based on experience with 
local finite element calculations for the Yellow Sea, Lefevre 
et al. [2000] concluded that regional dissipation estimates 
are very sensitive to the assumed open boundary conditions, 
which strongly influence energy flux into the model domain. 

In the Yellow Sea study open boundary conditions were 

taken from the FES94.2 solution. Tuning of the quadratic 
bottom drag coefficient used in the hydrodynamic model had 
very little effect on total dissipation, which remained close 
to the 182 GW found by Le Provost and Lyard [1997] for 
this area (Table 2; note that this is also close to the T/P 

estimates). Since boundary conditions for most published 
regional scale hydrodynamic models have been taken from 

older global solutions of relatively limited accuracy, conclu- 
sions from these numerical studies should be treated very 
cautiously. For the Patagonian Shelf the T/P dissipation 
estimates are probably more reliable, especially given the 
extremely good agreement between different tidal solutions 

and estimation approaches, and the small error bars. 

By far the most careful empirical estimates of tidal ener- 
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getics for a major si.nk are by Cartwright et al. [1980] for 

the European shelf area, including the North Sea and En- 

glish Channel. Based on measurements from bottom pres- 
sure gauges and current moorings, this study estimated the 

flux onto the European shelf to be 250 GW. The part of 
the shelf considered roughly coincides with our shallow area 
2. Our dissipation estimates are all somewhat lower, around 

200 GW for the TPXO.4 and GOT99 solutions, but these al- 

low for work done by the Moon and by the solid Earth. For 
TPXO.4a these work terms sum to -11 GW, and the actual 

flux into area 2 is 219 GW. More generally, about 10 GW 

should be added to the area 2 dissipation estimates of Table 2 

for comparison to the energy flux estimates of Cartwright et 
al. [1980]. Allowing for the differences in the work terms, 

the altimetric estimates are thus consistently about 15% less 
than those obtained from the in situ data. The error bars for 

the TPXO.4a dissipation estimates are fairly large for this 
area (31 GW), and the uncertainty associated with the in situ 

estimates must be comparable, given the sparseness (espe- 
cially in depth) of the current measurements. Allowing for 
these error bars, we conclude that the in situ and satellite 

estimates of energy flux are reasonably consistent. 

Cartwright et al. [1980] also provided dissipation esti- 

mates of this area with finer geographic resolution. Flux into 

the southern part of the European Shelf, between Ireland and 
the Brittany coast, was estimated to be 190 GW. The flux 

through the English Channel into the North Sea was esti- 

mated to be 17 GW (with minimal flux north out of the Irish 

Sea), for a net flux into the English Channel and Irish Sea of 

173 GW. The comparable net flux estimates obtained with 

TPXO solutions are in reasonably good agreement, rang- 
ing from 153-156 GW for the three covariances. However, 

agreement for the GOT99 solutions is poorer: 107 GW for 

GOT99hf and 138 for GOT99nf. The dissipation maps in 
this area are quite noisy (see Plate 2) and even coarse de- 

tails in the bathymetry of this area are very poorly resolved 

in these global solutions. For example, England and Ire- 

land are not even resolved as separate islands on these grids. 
The relatively poorer consistency of the T/P solutions among 

themselves, and with the in situ data, at this higher resolution 

is thus not surprising. The resolution of our global dissipa- 

tion maps is really quite coarse, probably no better than 5 ø 

or so. This presents us with difficulties in comparing our 

dissipation estimates to local data-based studies of tidal en- 

ergetics. With the exception of the Cartwright et al. [1980] 

study, these have been restricted to small geographic areas 

which are not reasonably resolved by our global scale study. 

7. Discussion 

Through experiments with real and synthetic data we have 

shown that T/P altimeter data provide sufficiently strong 

constraints on M2 elevations to yield useful information 

about the global distribution of tidal energy dissipation. Pro- 

vided the altimeter data and the continuity equation are fit 

sufficiently well when estimating volume transports, mean- 

ingful dissipation maps can be computed as the balance of 

barotropic energy flux divergence and local working by body 

and surface forces. Large-scale features in these maps de- 
pend only weakly on the specific T/P tidal elevation model 

used, prior assumptions about the nature of dissipation, de- 
tails of prior covariances, and errors in the assumed bathym- 
etry. All of the T/P dissipation estimates considered are 

in close agreement on the distribution of dissipation among 
shallow seas, and all exhibit similar large-scale patterns in 
the open ocean. Experiments with synthetic data reinforce 

the conclusion that the coverage and accuracy of the al- 
timeter data are sufficient to allow accurate estimation of 

smoothed dissipation fields, even if the true bathymetry is 
not known or completely resolved. We stress again that mass 

conservation must be strongly enforced when estimating U 
to obtain these stable and reproducible results. 

Results from all of our experiments strongly support the 
conclusion of E-R that approximately 25-30% of the M2 en- 

ergy dissipation (0.7 4- 0.15 TW) occurs in the deep ocean. 

In these areas, tidal velocities are too low for energy loss 
by bottom drag to be significant, at least with the traditional 

quadratic parameterization. Zahel [1980] has suggested that 

turbulent horizontal viscosity may also play an important 
role in tidal energetics. We have not explicitly included this 

term in our energy balance equation, but dissipation by this 
mechanism is implicitly accounted for in our generic stress 
f'. Synthetic calculations of the sort considered in section 

5.4 show that even with the very large (and perhaps implau- 
sible) values for the coefficient of horizontal viscosity as- 
sumed by Zahel [1980] (Ah = 2x 10 5 m 2 s-l), little dissipa- 
tion would be expected in the deep ocean, so this mechanism 

also cannot account for the observed deep ocean dissipation. 
While our estimates of barotropic energy balance can- 

not directly constrain dissipation mechanisms, the consistent 

spatial pattern in the deep ocean is highly suggestive. Much 

of the deep ocean dissipation is concentrated in areas of 

rough bottom topography, particularly over ridges and island 

arcs oriented perpendicular to barotropic tidal flows. This is 

exactly what would be expected if the energy loss from the 

barotropic tide is from generation of baroclinic modes as the 

stratified ocean is carried over steep topography. 

It is instructive to compare our dissipation maps to a sim- 

ple linear theory for generation of internal tides. Baines 

[ 1982] assumes linear equations for a rotating stratified in- 

viscid fluid, and writes the tidal velocity as the sum of a baro- 

tropic component and a baroclinic perturbation u = Ul q- ui, 

and the perturbation of density from the local static profile 

(/5) as p = Pl q- Pi, where Pl is the density perturbation 

caused by the barotropic motion. Linear equations for the 

internal wave motions ui, Pi are then readily derived: 

OtUi q- f X U i q- p0 -1 (Vpi q- PigS) = F, (31) 

where the depth-dependent body force F can be computed 

from the barotropic transport field (U = Hul) and bathym- 

etry H as 

F = U. [ito-lN2zV(1/H)]•, (32) 

where N = (-gOzlS/po) 1/2 is the buoyancy frequency. 
Equation (32) gives a simple expression for the barotropic 
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forcing of the baroclinic tide, which we have calculated us- 

ing bathymetry from Smith and Sandwell [1997] averaged 

onto a 5 • grid, with N 2 estimated from the Levitus [1999] 
climatology, and volume transports from the TPXO.3 solu- 

tion [Egbert, 1997]. 

The body force depends on the position in the water col- 

umn z but has a constant phase at any location. To get some 

idea where the body force is large, we compute the inte- 

gral over depth of IF'l. The resulting map of body force 

amplitude, plotted in Figure 4, is only a qualitative indica- 

tor of where conversion from barotropic to baroclinic modes 

should be energetically significant, since the actual conver- 

sion efficiency at any point will depend on the shape of the 

topography in a larger area. In particular, conversion should 

be most efficient where bottom slopes are tangent to the rays 

or characteristics of the internal waves [e.g., Baines, 1982]. 

Nonetheless, there is a good qualitative agreement between 

maps of dissipation and internal tide body force magnitude 

over most of the open ocean. Almost all of the areas where 

significant forcing of internal tides are predicted by the sim- 

ple linear model indeed exhibit enhanced dissipation, and 

conversely. 

The spatial pattern of dissipation mapped from the T/P 

data is also reasonably consistent with the calculations of 

conversion of barotropic tidal energy to baroclinic modes 

computed by Sjdiberg and Stigebrandt [1992] using a sim- 

ple theoretical model. We used formulae derived from this 

model to estimate linear drag coefficients due to topographic 

interactions in the open ocean for the synthetic model run of 

Plate 6b. The resulting pattern of dissipation is quite similar 

to the empirical T/P maps of Plates 2 and 4. The agreement 

of these maps with the synthetic inversion result of Plate 6d 
is even more striking. Morozov [ 1995] also estimated energy 
conversion to internal waves in the deep ocean, using a com- 

bination of the theory of Baines [1982] and direct measure- 

ments of internal tidal currents and vertical displacements. 

His maps are less detailed than those of Sjdiberg and Stige- 
brandt [1992], but most of the areas where Morozov [1995] 

infers significant conversion also show up in the empirical 
dissipation maps. 

The global total for the energetics of M2 baroclinic con- 
version estimated by Sjdiberg and Stigebrandt [1992] was 

1.3 TW and by Morozov [1995] was 1.1 TW. This is rather 

higher than the roughly 0.7 TW estimate we obtain from the 

T/P data. We should note, however, that our estimates may 

be somewhat conservative. To avoid topographic complica- 

tions, we have drawn boundaries for shallow seas well out 

in the deep ocean. At least some conversion to baroclinic 

modes may occur in the areas we have classified as shal- 

low. This may particularly occur along continental shelves 

where submarine canyons and other along-shelf variations 

edge (e.g., Plates 2b, 2c, 4a, and 4c), just where Figure 4 

predicts large forcing of internal tides. 

Many of the areas where we have mapped significant open 
ocean dissipation are also known generators of internal tides. 

Low-mode internal tides phase-locked to the barotropic tide 
can be seen as small modulations in amplitude and phase 
in along-track estimates of M2 harmonic constants from T/P 

data [Ray and Mitchum, 1996, 1997]. Particularly clear ex- 

amples are seen around the Hawaiian Ridge and the Tuamotu 

archipelago in the Pacific. Numerical modeling of the inter- 
nal tide near Hawaii by Merrifield and Holloway [2000] is 

able to reproduce the surface pattern of low-mode internal 

tides quite well. Their estimated baroclinic energy flux is 
9.7 GW. For the first baroclinic mode alone they obtain 6.0 

TW, in reasonable agreement with 5.4 GW obtained by Kang 

et al. [2000] with a simple two-layer model. Our estimates 

of total barotropic dissipation in this area are exceptionally 
well constrained (presumably due to the isolation from other 

sinks and the lack of nearby topographic complications) to 
around 18-20 GW in all cases (Plate 3 and Table 2). Al- 

though larger than the estimated baroclinic radiation, the 

T/P estimates are not inconsistent, as the additional 10 GW 

of barotropic dissipation may generate local turbulence and 
mixing, rather than low-mode radiated internal waves. 

Our results have obvious implications for how energy 
should be dissipated in numerical tidal models. More im- 

portantly, our finding that a significant fraction of tidal dissi- 

pation occurs over rough topography in the open ocean could 
have profound implications for vertical mixing in the abyssal 
ocean and possibly even for long-term variations in climate 
[Munk and Wunsch, 1998]. 

Munk [1966] and Munk and Wunsch [1998] estimate that 

a globally averaged diapycnal diffusivity of 10 -4 m 2 s -1 
is required to maintain the observed abyssal stratification. 

Without this degree of vertical mixing they argue that the 
meridional overturn circulation would shut down. Typical 
background diffusivities in the pelagic ocean estimated from 
ocean microstructure [Gregg, 1989] or tracer release data 

[Ledwell et al., 1993] are of the order of only 10 -5 m 2 s -1, 
but much of the required mixing across isopycnals may oc- 
cur in localized hot spots which have been poorly sampled 
[Munk, 1966; Armi, 1978]. Recent in situ observations sup- 
port this hypothesis [e.g., Polzin et al., 1997; Lueck and 
Mudge, 1997; Ledwell et al., 2000], with diffusivities as 

large as 10 -3 m 2 s -1 observed in specific areas over rough 
topography. Ledwell et al. [2000] have further shown that 

measured turbulent energy dissipation rates are positively 
correlated with spring/neap variation in barotropic tidal ve- 
locities, suggesting that tides may provide at least some of 
the needed forcing. 

Munk and Wunsch [1998] calculate that approximately 2 

in bathymetry may significantly enhance local generation of TW of mechanical energy must be provided to stir the ocean 
internal tides [e.g., Cummins and Oey, 1997; Petruncio et and maintain the observed stratification. As the working of 
al., 1998], relative to the predictions of the two-dimensional the winds on the ocean surface is estimated to account for 

model of Baines [1982]. The Andaman Sea (area 10 in Fig- only about 1 TW [Wunsch, 1998], they further suggest that 
ure 2) provides an example of a shallow sea where there ap- tides may provide about half the needed power. Extrapolat- 

pears to be significant dissipation specifically near the outer ing our results for M2 to all other lunar and solar constituents 
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does yield about 1 TW, so the tides could indeed conceivably 

provide the additional power. 
Calculations of Samelson [1998] and Marotzke [1998] 

suggest that the large-scale ocean circulation may be very 

sensitive to the spatial distribution of vertical mixing. An un- 

derstanding of where and how this mixing occurs may thus 
be critical to realistic numerical modeling of long-term pro- 

cesses such as climate change. A more detailed understand- 

ing of the processes by which tidal energy is transfered to 
turbulent fluctuations in the deep ocean may thus turn out to 

be necessary for sensible modeling of climate. More specu- 

latively, maintenance of stratification may depend on tidally 
forced mixing through a process that in turn depends on the 
stratification. Such an interaction between tides and strati- 

fication may be an important, but neglected, factor in long- 

term climate fluctuations. Further experimental and theoret- 

ical studies will be required to clarify the role of the tides, 

long seen as too periodic and regular to be interesting, in 

driving or modifying slower and more irregular ocean pro- 
cesses. 

Appendix' Discrete Energy Balance 
Calculations 

Harmonic constants of volume transport and elevation 

fields are defined on a discrete C grid, with • defined at 
the center of each cell, and U and V defined on the verti- 

cal and horizontal cell edges, respectively. Because the indi- 

vidual field components are defined at different grid nodes, 

and because we work in spherical coordinates, some care is 

required to estimate dissipation using (11)-(19). 

The discrete gradient and divergence operators in spheri- 

cal coordinates are defined in the usual way for the C grid. 

Thus the gradient operator maps naturally from the • nodes 

(cell centers) to the U/V nodes (cell edges). The energy flux 

vector P = gp • H u involves the product of fields defined at 

both edge and center nodes. To compute P, we thus first av- 

erage • laterally and vertically onto the cell edges and then 

compute products. The components of P are then defined 

on the U/V nodes, and the divergence of P can be calcu- 

lated (on the • nodes) in the natural way. The calculation of 

the work done by the tide generating force (W) involves the 

dot product of U and VF, two fields which are defined on 

the U/V nodes. We compute such dot products by summing 

the average of the U node products from each side of the 

cell and the V node products from the top and bottom, with 

weights determined by the metric terms appropriate for the 

sphere: 

(U (1) . U(2))i,j i, j q- S i(+l )l , j , j 

q- cos(Oyj)/ cos(0ff j)1/(1)I/.(2.) , , i,j t,j 

q- cos(Of j+l) / cos(Off j)V (1) I/(2) , , i,j+l i,j+l ]/2, 

With these conventions for calculation of the discrete dot 

product, and of products between scalar (½) and vector (U) 
fields, scalars are always defined at the centers of the grid 
cells, and vector fields at the edges. It is readily verified that 
the usual vector identities such as V. ((pu) = (pv.u+u.v(p 
hold exactly with these conventions. This guarantees exact 
equivalence between the surface and line integrals discussed 
in the text when these are evaluated numerically using the 
obvious metric terms. 

Notation 

Unless otherwise noted, the following values for various 

geophysical constants are employed throughout this paper 
(see main text for definitions). 
GM 3.9860 x 10 TM m 3 s -2. 

R 6.371 x 106m. 

H 0.63194m (M2). 

co 1.4052 x 10 -4 s -1 (M2). 
f2 7.2921 x 10 -5 s-1. 

p 1035 kg m -3. 
Re 5515 kg m -3. 
h2 0.609. 

k2 0.302. 

h•, k• are from Farrell [1972]. 
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