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Estimates of the changing age-burden of
Plasmodium falciparum malaria disease in
sub-Saharan Africa
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Estimating the changing burden of malaria disease remains difficult owing to limitations in

health reporting systems. Here, we use a transmission model incorporating acquisition and

loss of immunity to capture age-specific patterns of disease at different transmission

intensities. The model is fitted to age-stratified data from 23 sites in Africa, and we then

produce maps and estimates of disease burden. We estimate that in 2010 there were 252

(95% credible interval: 171–353) million cases of malaria in sub-Saharan Africa that active

case finding would detect. However, only 34% (12–86%) of these cases would be observed

through passive case detection. We estimate that the proportion of all cases of clinical

malaria that are in under-fives varies from above 60% at high transmission to below 20% at

low transmission. The focus of some interventions towards young children may need to be

reconsidered, and should be informed by the current local transmission intensity.
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I
n recent years, the burden of disease due to malaria has fallen
in many parts of sub-Saharan Africa, often coinciding with the
introduction of more effective treatments and the scale-up of

long-lasting insecticide-treated net ownership and use1. Patterns
of clinical disease vary by age and transmission intensity: in
highly endemic areas, the disease burden is greatest in infants and
young children, while in areas of lower transmission many cases
also occur in older children and adults2. With declining
transmission, there have been shifts in cases to older ages. For
example, in south-western Senegal, a 30-fold drop in malaria
incidence between 1996 and 2010 was accompanied by a shift in
the age distribution of cases, with 34% of cases in the under-fives
in 1996 falling to B5% in 2010 (ref. 3). Similarly, in western
Gambia, a rapid fall in the proportion of malaria admissions
between 2003 and 2007 was accompanied by an increase in the
mean age of paediatric malaria admissions from 3.9 years to 5.6
years4. This changing distribution of cases is most likely due to
the slower development of naturally acquired immunity.
Understanding and predicting these changes is important to
ongoing control. As the case distribution shifts towards older
ages, there is a need to re-assess age-targeted control to ensure
that those at the highest risk of developing clinical disease and its
sequelae are sufficiently protected.

Monitoring changes in disease burden remains difficult,
however. Not all cases seek care at public clinics5, and in many
countries with the highest burden, health reporting systems are
insufficient to accurately capture trends. Even in research studies,

a variety of approaches have been adopted to assess burden.
Active case detection (ACD) is the most sensitive but expensive
approach, where households are visited at a predefined frequency,
asked to report any fevers and blood tests are used to identify
high parasite densities. Other studies rely on passive case
detection (PCD) via local health clinics. It is generally
acknowledged that the former gives a more accurate picture of
the true burden of disease, although with frequent intervention
and treatment, ACD may also modify transmission patterns6.

Given the limitations of disease reporting, alternative
approaches to estimate disease burden have been sought. Current
WHO methodology uses an estimate of the disease incidence by
age group and endemicity level to obtain estimates of disease
burden in countries in which the health reporting system is
considered insufficient to rely on clinic-based case reports7.
Alternative disease burden estimates have been obtained by using
an empirical statistical model to capture the relationship between
disease incidence and parasite prevalence and combine this with
spatially stratified prevalence estimates into disease burden
estimates8. One advantage of the latter approach is that it uses
the rich set of parasite prevalence estimates that are available
rather than more limited data on clinical disease, and in addition,
it can potentially be used to assess the changing disease burden
over time. However, the relationship between parasite prevalence
and disease incidence was obtained for the population as a whole,
and so the method does not capture changing patterns in the age
distribution of cases. A third approach has been adopted to

Table 1 | Summary of clinical incidence studies included in the model fitting.

Country Location Study
reference

Study
period

Case
detection
method

Age
range for
incidence

Age range
for parasite
prevalence
(years)

Parasite
prevalence
in 2–10
year olds
(%)

Prior
mean
per
cent
treated

EIR
estimate
(infectious
bites per
year)

EIR uncertainty
category for
Supplementary
Table 1

EIR
reference

Burkina Faso Nouna 32 2003–
2004

Weekly
ACD

6 months
to 5
years

— — 45 230 5 45

Cameroon Ebolakonou,
Koundou

38 1997–
1998

Daily
ACD

All All 63.3; 69.1 60 17.7; 176.1 1 46

Ghana Kassena-
Nankana

29 2000–
2004

PCD 2 months
to 2
years

— — 60 418 2 47

Ivory Coast Northern
savannah

37 1997–
1998

Daily
ACD

All All 87.0; 84.0;
79.0

35 158; 139;
155

4 37

Kenya Chonyi, Ngerebya 35 1999–
2001

Weekly
ACD

All 0–10 40.4; 25.0 40 38; 10 1 35

Mali Doneguebougou,
Sobuta

24 1999–
2000

Weekly
ACD

0–20
years

0–20 53.6; 11.1 40 142; 8 1 24

Mozambique Manhiça 25 1996–
1999

Weekly
ACD

0–11
years

All 27.9 10 15 1 48

Mozambique Matola 36 1994–
1995

Daily
ACD

All All 38.0 10 12 1 36

Mozambique Manhiça 30 2003–
2005

PCD 0–15
years

— — 15 38 1 49

Senegal Dakar Central,
South

27,28 1996–
1997;
1994–
1995

Weekly
ACD

All; 0–15
years

All 1.4; 0.4 25 0.05 5 28,50

Senegal Dielmo, Ndiop 34 1990–
1993

Daily
ACD

All — — 90 200; 20 1 34

Tanzania Ifakara 31 1998 PCD 0–6
years

0–6 34.4 55 100 4 45,51

Tanzania Ifakara 26 2000–
2001

Weekly
ACD

0–5
years

0–5 21.3 60 100 4 45,51

Tanzania Mgome, Ubiri,
Magamba

33 2001 PCD 0–20
years

0–20 90.8; 25.8;
7.4

60 163; 3.9;
0.2

5 52,53
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capture the shifting age distribution using mathematical models9.
However, that study only considered three data sets from Senegal
and Tanzania, meaning the extent to which the results can be
extrapolated to other endemic settings is unclear.

Here we fit a mathematical model of malaria transmission to
data from a wide range of studies in Africa, which report parasite
prevalence and disease incidence. The model explicitly includes
key aspects of malaria biology, notably the acquisition and loss of
immunity, and therefore can capture the observed dependence of
the age distribution of cases on transmission intensity. Further-
more, we stratify our analysis by case detection methods (namely
ACD and PCD). We then combine our results with spatially
stratified estimates of parasite prevalence to obtain age-stratified
disease burden estimates for sub-Saharan Africa, which can be
compared with both previous ACD-derived estimates and those
derived using PCD. More generally, our method provides a
framework for assessing the changing age distribution of cases
and so can be used with any underlying estimates of parasite
prevalence at a range of spatial scales to improve estimates of the
population at the highest risk from malaria, and hence better
inform age-targeted control.

Results
Data. Data were extracted from 23 sites reported in 14 studies on
the relationship between parasite prevalence or entomological
inoculation rate (EIR) and the incidence of disease: the studies
are summarized in Table 1. Eleven sites had a contemporary
EIR estimate. A summary of the estimates of clinical incidence in
0–5 year olds is plotted against microscopy-determined pre-
valence in 2–10 year olds in Fig. 1. As previously reported, there is
wide variation in clinical incidence estimates at similar under-
lying levels of transmission10. For example, in areas where
parasite prevalence in 2–10 year olds is measured at B20%, the
reported clinical incidence varies from 0.15 to 1.35 episodes per
child per year while in areas with prevalence above 60%, it varies
from 0.68 to 4.5 episodes per year. Case-reporting methods
capture some of the variation, with higher rates of disease
incidence reported via ACD compared with PCD.

Fitted model. We fitted an extended version of a previously
published transmission model to the data11. The fit of the model
to the individual studies is shown in Fig. 2. The model captures
the peak of disease incidence in young children observed in some
high transmission settings (Fig. 2r–u) as well as the widening of
the distribution of cases to include older ages at lower
transmission (Fig. 2g–n), although the magnitude and location
of the peak is sometimes missed. While some of the variation
between studies in similar transmission areas is explained by
reporting, a substantial study-level random effect (coefficient of
variation of 1.17) was also estimated reflecting an unexplained
variation in the data. Some variation beyond what the model
predicts in the shape of the curve of incidence against age was
observed. For example, the data in Fig. 2f show a markedly
different shape from other moderate transmission settings, with
high incidence extending to 15 years of age.

The fitted model predicts a monotonically increasing clinical
case incidence with prevalence (Fig. 3a,b). However, there is wide
uncertainty around the relationship, particularly at high pre-
valence. Under alternative model assumptions, the predicted
incidence can decrease at higher prevalences (Supplementary
Fig. 1). For prevalences below 50%, the curve for all ages for daily
ACD is somewhat higher than that obtained with the empirical
statistical model of Patil et al.10 (Fig. 3b), which estimated
incidence as detected by weekly ACD, although there is a
substantial overlap in the uncertainty intervals for both models.

As expected, clinical incidence is highest in the under-five age
group. Supplementary Fig. 2 shows that the model-predicted
incidence in under-fives is modified somewhat by seasonally
varying transmission, but that the magnitude and direction of the
change depend on assumptions about how immunity to disease is
acquired in response to exposure, which are difficult to quantify.

Age profile of disease. Figure 3c shows how age at which cases
occur is predicted to change with declining transmission inten-
sity. At high transmission (60% parasite prevalence in 2–10 year
olds), 57% (95% CrI: 51–64) of cases are predicted to be in
children under 5 years of age. At lower transmission, there is a
gradual shift so that at a parasite prevalence of around 20% in
2–10 year olds, only 21% (95% CrI: 17–25) of cases are in
children under 5 years of age with another 22% in children aged
5–10 years (95% CrI: 20–23). At low transmission (parasite
prevalence of 5% in 2–10 year olds), 61% (95% CrI: 58–63) of
cases are in children over 15 years of age, against 10% (95% CrI:
9–11) in under-fives.

Reporting method. Figure 3d demonstrates how reported clinical
incidence can vary according to case-reporting methods.
Assuming that daily ACD picks up the true incidence in the
population, we estimate that 72% (95% CrI: 46, 92) of cases are
detected through weekly ACD and 34% (95% CrI: 12, 86) through
PCD, although the estimate for weekly ACD is primarily influ-
enced by the prior distribution (Supplementary Table 1). As our
definition of PCD includes research studies, the true proportion
of cases reported through the health system via PCD may be
substantially lower than this estimate.

Burden of disease. Combining our model with spatially stratified
estimates of parasite prevalence from 2010, we obtain an overall
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Figure 1 | Incidence of clinical malaria in 0–5 year olds plotted against
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estimate of 252 million (95% CrI: 171–353 million) cases of
malaria in Africa in 2010 that would be detected with daily ACD
or 178 million (95% CrI: 108–274 million) cases under weekly

ACD (Table 2). These all-age estimates are a little lower than
those reported by Hay et al.8, which are based on the empirical
incidence–prevalence relationship estimated by Patil et al.10 and
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on prevalence estimates for 2007. Note that there is a substantial
overlap between this study and ours in the data used to define the
incidence–prevalence relationship, and in the parasite prevalence
data. Conversely, our estimates are somewhat higher than those
estimated using the WHO methodology in 2009, although in both
cases there is a substantial overlap in the uncertainty intervals.

A much lower number of cases (85 million, 95% CrI: 31–213
million) are predicted to be captured under PCD, explaining part

of the discrepancy between burden estimates and figures reported
by countries. Overall, we estimate that 48% (95% CrI: 45–52) of
cases in 2010 were in children under 5 years of age, although
this average figure masks wide spatial heterogeneity (Fig. 4).
Reflecting the decrease in malaria transmission that has occurred
over the past decade, our estimates suggest that only in parts of
west and central Africa and northern Mozambique, along with
smaller pockets elsewhere, is the burden of disease now
concentrated in the under-fives. In contrast, in areas in which
burden has been reduced or has always been low (such as Kenya,
much of Tanzania and the Horn of Africa), fewer than 20% of
cases are in under-fives, and the remainder are spread across all
ages. The proportion of cases in school-age children is less
variable, usually between 20 and 40%, being highest in areas of
medium transmission (Fig. 4b). It should be noted that
uncertainty in the underlying parasite prevalence data leads to
substantial uncertainty in the age distribution of cases in any
given location (Supplementary Figs 3 and 4).

Changing transmission. These estimates assume stable endemic
transmission, whereas in fact in many areas prevalence has
recently declined. Figure 5a,b shows our model-predicted rela-
tionship between incidence in under-fives, the proportion of cases
that occur in under-fives and prevalence in 2–10 years olds, if
transmission has recently declined. The blue line is the equili-
brium solution from Fig. 3a. The other lines show a linear
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Figure 3 | Fitted incidence and age distribution of cases plotted against prevalence. (a) The estimated relationship between parasite prevalence in

2–10 year olds and clinical incidence of disease in 0–5 years olds. The shaded areas represent the 95% credible intervals. (b) The estimated relationship

between parasite prevalence in 2–10 year olds and overall clinical incidence (red solid line). The green dashed line shows the relationship estimated in

Patil et al.10 (c) The shifting age-burden of disease at different levels of endemicity. The figure shows the estimated proportion of cases in each age

group plotted against prevalence. (d) The estimated relationship between prevalence and clinical disease incidence in 0–5 year olds by detection method:

blue—daily ACD; dark green—weekly ACD; orange—PCD. Lines are model predictions; solid symbols are observed incidence and prevalence;

hollow symbols are observed incidence and model-fitted prevalence (based on the prior EIR).

Table 2 | Estimates of the annual number of cases of clinical
malaria due to P. falciparum in Africa.

Source Cases of clinical malaria (millions)

Estimate 95% Uncertainty interval

Our estimates for 2010
With daily ACD 252 171, 353
With weekly ACD 178 108, 274
With PCD 85 31, 213

Cibulskis et al.7

Estimate for 2009* 173 107, 243

Hay et al.8

Estimate for 2007w 271 241, 301

*Estimates for sub-Saharan Africa excluding Sudan, south Sudan, Somalia and Djibouti.
wEstimate for Africaþ region, covering Africa and the Arabian Peninsula.
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decrease in EIR over the previous 10 years, reducing by a max-
imum of 90%. Figure 5c illustrates what these reductions in EIR
mean in terms of reduced prevalence. If prevalence has recently
declined, then the incidence is lower for a given current pre-
valence because of pre-existing immunity. For the same reason,
the proportion of all cases that occur in under-fives is higher, if
transmission has recently declined. However, these results are
dependent on the duration of naturally acquired immunity, which
is not well understood.

Discussion
By fitting a transmission model to data collected from sites
covering a wide range of transmission intensities, we have
obtained a biologically motivated functional relationship between
prevalence of Plasmodium falciparum infection and incidence of
uncomplicated disease. This allows for changing age patterns of
disease to be characterized. Our results show a similar relation-
ship between parasite prevalence and disease incidence to
previous work, with disease incidence increasing with increasing
prevalence9,10. We do not predict a decrease in disease incidence
at high transmission intensity, but sparse and noisy data for high
prevalence settings mean that the relationship becomes more
uncertain in this regime. Hence, a plateau or slight decrease at
high prevalence cannot be ruled out. Indeed, all of our estimates
have a high degree of associated uncertainty, in part owing to
unexplained variation between studies.

Our results illustrate that the method of case detection (active
or passive) and frequency of active detection have an important
impact on the incidence estimates. It has been argued that
estimates of true burden should be based on ACD rather than
PCD12. Our results suggest that PCD may only detect B34%
(95% CrI: 12, 86) of cases that would be detected through daily
ACD and 49% (95% CrI: 16, 127) of cases detected through
weekly ACD. Although there is a high degree of uncertainty in
these sensitivity estimates, they are comparable to a published
estimate of 27% obtained by comparing ACD with PCD
in geographically well-defined catchment areas in Kenya13.
Furthermore, it is estimated in the World Malaria Report 2011
that confirmed malaria cases comprise 11% of the total incidence
in the African region14. Being able to provide estimates of disease
burden based both on ACD and PCD could be beneficial in
understanding the variation between burden estimates and the
case numbers reported by countries. However, even the PCD
estimates used here are from carefully monitored cohort studies,
and so may well reflect detection of a higher proportion of cases
than might be reported via existing health systems. Furthermore,
there was substantial remaining variation in disease incidence
between the studies that was not explained by the case detection
method. We did not account for the possibility that daily ACD
may itself affect transmission, as it is difficult to know what effect
this could have. It may be that such close monitoring and likely
high treatment rates will lead to a lower prevalence and
thus higher incidence for a given prevalence. Although we
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Figure 4 | Age distribution of cases across Africa. (a) 0–5 years old; (b) 5–15 years old; (c) over 15 years old.
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incorporated the effect of routine treatment-seeking on
transmission, the data on access to treatment are uncertain
being based on estimates of the proportion of all fevers in under-
fives treated with an antimalarial drug. Hence, uncaptured
variation in treatment rates could explain some of the
additional variability in the data.

An advantage of using a mechanistic model of malaria
transmission is that we can estimate how the age pattern of
clinical disease varies with transmission intensity. If transmission
is stable, cases are concentrated in the first few years of life at high
endemicity, but in older ages at lower endemicity. Our model
captures this peak shift, enabling an estimate to be made of the
incidence in each age group for any level of endemic transmis-
sion. However, in some settings, we were unable to capture the

magnitude or age of the observed peak. This may be due to
variation in reporting between studies, including variation by age,
or to seasonality in exposure that was not included in the model
fitting for computational ease, but which may modify the rate of
acquisition of immunity. An additional limitation is that only
14 studies were analysed, with varying study designs, including
different definitions for an episode of malaria. Estimates of
disease burden could be improved by fitting to larger data sets
from a range of transmission settings. In particular, a standar-
dised design and definition could substantially reduce the residual
uncertainty in the relationship between transmission intensity
and disease incidence. One possible source of such data is from
the control arm of trials that are increasingly undertaken in
multiple sites. We did not account for dynamically changing
conditions, but instead treated the current prevalence as if it were
the endemic prevalence, both in the model-fitting estimates and
in the burden estimates. As our fitted transmission model
incorporates the acquisition and loss of naturally acquired
immunity, and can be linked to a wider existing suite of
intervention models11, it can be used to estimate how the burden
and age pattern of disease incidence may change in the future as
scale-up of interventions is sustained and enhanced. Our results
demonstrate that if transmission has recently declined rapidly
and naturally acquired immunity is long-lived, the majority of
cases may still be in the young, and the model-predicted
incidence will be lower for a given prevalence than if
transmission is in equilibrium. As immunity is gradually lost,
we would then predict a shift in these cases to older ages such that
eventually the age distribution of cases would match those
presented in the main text. Predicting when this shift would occur
is difficult as the time-scale and magnitude of any rebound
in incidence as immunity wanes following a reduction in
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transmission are poorly understood, and thus estimates of impact
must be interpreted with this uncertainty in mind.

Capturing the changing age pattern of disease as transmission
declines is important in estimating the burden of clinical disease.
Of the principal methods currently used to calculate burden, only
that used by the WHO takes into account age, although it does
not incorporate dynamic shifts in the age distribution of disease
resulting from declining transmission. Age-based estimates of
death rates attributable to malaria have also been published based
on verbal autopsy data, with a controversially large estimate for
the burden in adults that does not appear to be borne out in case
reports15–17. One possible reason for this may be that the method
used in the Global Burden of Disease study does not account for
changing immunity in the population, and hence deaths in adults
could be predicted in large areas of sub-Saharan Africa in which
transmission has recently declined rapidly but in which, in reality,
the adult population still remains highly immune. However,
deaths from malaria typically occur at a younger age than
uncomplicated cases, and hence are not directly comparable to
our estimates of clinical disease burden.

The age distribution of clinical cases is also important when
targeting interventions. For example, seasonal malaria chemo-
prevention is currently recommended for children aged from
3 months to 5 years based on trial data from areas with high
seasonal endemic transmission18, but it may also be beneficial for
older children in areas where transmission has been reduced,
as has recently been shown in Senegal19. Other interventions,
including access to free treatment, long-lasting insecticide-treated
net distribution and the new RTS,S vaccine, are frequently or will
be targeted at children under 5 years of age20–22, although
universal coverage of LLINs is now promoted.

Our results suggest that in much of Africa, there has been or
will be a shift in cases to older children and adults, but that there
is wide between- and within-country variability in the age groups
at the highest risk. Hence, age-targeted policies may increasingly
need to be refined between and even within countries. To
underpin such decisions, and thereby make the best use of the
limited resources available, country control programmes need
estimates of the age distribution of cases. In some countries case
reporting will be sufficient. However, because the population
accessing the public sector is heterogeneous and often only
represents a minority of total cases5, and treatment-seeking
behaviour may vary with age23, in other countries case reports
may not give a reliable picture of the true age-burden of disease.
The methodology and estimates presented here therefore add to
the information that can be used at country level to aid such
decision-making.

Methods
Clinical incidence data. We extracted data on the incidence of clinical disease due
to P. falciparum and, where recorded, parasite prevalence, stratified by age in
sub-Saharan Africa in the period 1990–2005 from two recent review papers2,10.
We restricted our analysis to studies that included data in children and where the
numbers of person-years at risk and cases in each age group were reported or could
be calculated. The majority of studies reported incidence data over a whole number
of years. Where they did not we adjusted the time at risk using the time of the
malaria season as reported in each paper. For example, if a study lasted for 6
months and covered an entire transmission season, we multiplied the reported time
at risk by two, assuming that for the other 6 months the incidence would be low.

A variety of definitions of clinical malaria were reported, falling into two
groups: malaria symptoms (fever and sometimes other symptoms) plus any
parasitaemia24–31; or malaria symptoms plus parasite density above a certain
threshold. The threshold was either fixed32; dependent on transmission intensity,
increasing at higher transmission33; or dependent on age, with the thresholds
decreasing with age, except possibly in the first year of life34–37. In one study that
had both a fixed and an age-dependent threshold, we used the former38.

Those studies using ACD were categorized into daily or weekly ACD. Studies
with less frequent active detection were excluded, hence in the remainder of the
studies cases were recorded on presentation at the health facility (PCD). We took
the true incidence to be that given by daily ACD. The data sources for clinical

incidence are summarized in Table 1. Additional data on parasite prevalence
stratified by age were incorporated in the model fitting. This included those studies
previously used in our transmission model fitting11, the Garki data stratified by
clusters of villages39 and prevalence data reported at the same site and time as the
clinical disease data (Table 1). We ignored seasonal variation in parasite
prevalence, but excluded studies where it was clear that data were only collected
in the high season.

Transmission model. A flow diagram of the model is shown in Fig. 6, and further
details are given in the Supplementary Methods. In brief, susceptible individuals
(state S) become infected at a rate L determined by the EIR, and following a latent
period either develop disease with probability f or else develop asymptomatic
patent infection (state A), where the probability f is modified by clinical immunity.
Those that develop disease can become treated (state T) and enter a protected state
P to reflect the protective effect of the first-line therapy, or enter state D and then
recover naturally to progress to asymptomatic infection. Asymptomatic individuals
move from patent infection A to subpatent infection U before recovering to the
susceptible state. Superinfection is possible from the asymptomatic states. All states
are stratified by age and level of exposure to mosquitoes.

We have refined the representation of immunity in the model compared with
the version published previously11. First, we modified the effect of antiparasite
immunity. Previously its action had been modelled as reducing the duration of
patent infection, but we instead model it as modifying the slide detectability of
patent infection, as suggested by recent analyses of genotyping data40. Second, we
constrained the effect of anti-infection immunity to give a reduction in infection
risk of no more than 50% of that experienced by a non-immune person, based on
RTS,S vaccine trials22. Finally, to allow a more flexible relationship between EIR
and clinical incidence, the probability of clinical disease was allowed to be less than
one in the absence of immunity, whereas we previously assumed that all new
infections cause acute disease in people without prior exposure to malaria. These
changes improve the fit to the clinical incidence data, but do not substantially
change the dynamics of the transmission model compared with the previously
published version.

Model fitting. The endemic equilibrium of the non-seasonal model was fitted
using Bayesian methods to the prevalence and incidence data. To incorporate the
variation seen in the incidence of disease between different studies in areas with
similar EIR, we included study-level random effects for the clinical incidence and
prevalence data. In the model, only one episode of clinical disease can occur with
each new infection. This is then fitted to the clinical incidence data as measured
using each study’s definition of an episode of clinical malaria. Data on human
infectiousness to mosquitoes according to age were also included in the model
fitting, plotted in Supplementary Fig. 5.

For each study site, we sought an estimate of the EIR, from the same study year
and location if available, otherwise from the same region of the country. We
accounted for uncertainty in EIR estimates by assuming the prior uncertainty in
EIR increased with the spatial or temporal distance between the locations at which
the EIR was measured and where the corresponding incidence or prevalence data
were collected. Supplementary Table 2 lists the prior s.d.s chosen. We also used
informative prior distributions for the treatment rates for each study (Table 1).
Data on treatment rates by country were obtained from the relevant Demographic
Health Surveys and Malaria Indicator Surveys41. Prior distributions for the other
parameters in the model are similar to those previously reported11. Full details of
all prior distributions, model likelihoods and parameter estimates are given in the
Supplementary Methods and Supplementary Table 1. Estimates of all quantities are
posterior medians, with 95% credible intervals.

Burden estimation. We combined our estimate of the relationship between
parasite prevalence and the incidence of clinical disease with published spatially
stratified estimates of the parasite prevalence in 2–10 year olds in 2010 (ref. 42) to
obtain spatially stratified estimates of the incidence of disease by age and case
detection methods. In each 5 km2, we calculated the clinical incidence rate in 5-year
age groups, taking account of the uncertainty both in our model estimates and in
the parasite prevalence in that square. We then multiplied the incidence rate by an
estimate of the population in 2010 in each age group to obtain an estimate of the
overall incidence in each age group. The 2010 population was derived from three
sources: landscan estimates of the population at 5 km resolution in 2007 (ref. 43);
country-specific estimates of the age distribution from the UN; and population
growth rates from the World Bank. The end result is a posterior distribution of the
number of cases and the proportion in each age group, both at 5 km resolution and
aggregated across Africa. The aggregate estimates do not account for correlation in
the estimates of parasite prevalence between neighbouring locations, hence the
uncertainty is likely to be underestimated, as shown in (ref. 44). For model
predictions and burden estimation we assumed a treatment rate of 40%, informed
by the Demographic Health Surveys data. Results with different treatment rates are
given in Supplementary Table 3 and Supplementary Fig. 6.
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