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Natural scenes, like most all natural data sets, show considerable redundancy. Although many forms of redun-
dancy have been investigated (e.g., pixel distributions, power spectra, contour relationships, etc.), estimates of
the true entropy of natural scenes have been largely considered intractable. We describe a technique for esti-
mating the entropy and relative dimensionality of image patches based on a function we call the proximity
distribution (a nearest-neighbor technique). The advantage of this function over simple statistics such as the
power spectrum is that the proximity distribution is dependent on all forms of redundancy. We demonstrate
that this function can be used to estimate the entropy (redundancy) of 3�3 patches of known entropy as well
as 8�8 patches of Gaussian white noise, natural scenes, and noise with the same power spectrum as natural
scenes. The techniques are based on assumptions regarding the intrinsic dimensionality of the data, and al-
though the estimates depend on an extrapolation model for images larger than 3�3, we argue that this ap-
proach provides the best current estimates of the entropy and compressibility of natural-scene patches and
that it provides insights into the efficiency of any coding strategy that aims to reduce redundancy. We show
that the sample of 8�8 patches of natural scenes used in this study has less than half the entropy of 8�8
white noise and less than 60% of the entropy of noise with the same power spectrum. In addition, given a finite
number of samples ��220� drawn randomly from the space of 8�8 patches, the subspace of 8�8 natural-scene
patches shows a dimensionality that depends on the sampling density and that for low densities is significantly
lower dimensional than the space of 8�8 patches of white noise and noise with the same power spectrum.
© 2007 Optical Society of America
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1. INTRODUCTION
To be efficient, any coding strategy must take into account
the statistical redundancy of the signals that are to be en-
coded. Whether the purpose is to compress an image or to
encode an image to facilitate recognition, it can be argued
that one must take advantage of the redundant structure
of the data. Recent studies of both the visual and auditory
systems of vertebrates have argued that these sensory
systems make use of the statistical redundancy of natural
signals in an attempt to maximize coding efficiency1–4

(see Ref. 5 for a review). However, in general, measuring
the true entropy of a signal class has proved computation-
ally intractable for all but extremely simple data sets.
Without knowledge of this redundancy, it remains an
open question of how the absolute efficiency of these sen-
sory systems, or of any compression system, should be
quantified.

Natural scenes have been studied extensively over the
past two decades, and these studies have revealed that
such images have a large number of statistical regulari-
ties. Kersten3 was able to provide an upper bound on the
entropy of coarse quantized images based on the ability of
human observers to guess the values of missing pixels.
However, there was no assumption that this approach

converged on the true entropy. A variety of other efforts
have measured particular forms of redundancy, including
pairwise statistics as described by the power spectra and
autocorrelation function (see Ref. 1) as well as a variety of
other structures, including the contour structure (e.g.,
Ref. 6), the pairwise relations between nonlinear trans-
forms of the image,7,5 and the low-order pixel statistics.8

Lee et al.9 provided a detailed analysis of the statistical
structure of 3�3 high-contrast patches of natural scenes.
Although they did not provide a measure of entropy, they
demonstrated that most of their natural-scene patches oc-
cupied only a small fraction of the measured space.

Sparse coding techniques (e.g., Ref. 10) and related in-
dependent components analysis (ICA) techniques (e.g.,
Ref. 11) search for solutions that attempt to minimize the
dependencies between basis vectors. If such dependencies
could be removed, then the response histograms of the
vectors (the marginals) could be used to determine the en-
tropy. However, despite the name, the independent com-
ponents produced by ICA are far from independent. Simi-
larly, compression techniques such as Joint Photographic
Experts Group (JPEG)12 and JPEG-200013 employ a dis-
crete cosine transform (DCT) and discrete wavelet trans-
form (DWT), respectively, to attempt to minimize depen-
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dencies. The DCT–DWT basis coefficients are then
processed by a Huffman or arithmetic encoding stage that
attempts to remove redundancy and thus yield a highly
compressed stream. Indeed, one can provide an estimate
of entropy based on the average bit rate of this com-
pressed stream for a particular class of input. However,
such an approach assumes that the compression strategy
is ideal, and thus the compressed stream is maximally
compressed. In reality, the basis coefficients show marked
statistical dependencies across space, scale, and orienta-
tion; and the majority of encoders cannot take into ac-
count all of these dependencies. As a result, current com-
pression algorithms provide only an upper bound on the
true image entropy.

This paper describes a technique to estimate entropy of
a complex data set and applies this estimate to natural
scenes. Although we focus on natural scenes, we empha-
size that the techniques described here are by no means
limited to visual signals; the methodology can be applied
to any data that behave according to a specific assump-
tion (described shortly).

The major difficulty in computing entropy is that the
standard approach generally requires knowledge of the
full probability distribution from which the data are real-
ized. Consider, for example, a source that emits 8
�8 pixel images X= �X1 ,X2 , . . . ,X64� in which each pixel
Xi takes on one of l=256 shades of gray. In this case, there
are l64=25664=2512 possible 8�8 pixel patterns (equiva-
lent to approximately 10154 or 1054 googol of images and
roughly 1069 times the estimated 1085 estimated particles
in the universe). To directly compute the entropy of a set
of 8�8 natural images via the standard entropy equa-
tion, one must therefore obtain enough images to deter-
mine the probability distribution px over all 2512 images
and then use this probability distribution to calculate the
entropy.

In most cases, estimates of the entropy consider only
the first-and sometimes second-order entropy of a particu-
lar population. Fourier spectral analysis, in particular,
has proved useful for analyzing pairwise pixel-value rela-
tionships and has given rise to well-accepted properties
such as the 1/ f2 power spectrum (f=spatial frequency) of
natural scenes.1,14,15 In addition, marginal probability
distributions of DCT and DWT coefficients are typically
well modeled by using a leptokurtotic generalized Gauss-
ian density, which has served as a cornerstone in the de-
sign of quantization and rate-control mechanisms of mod-
ern image compression standards.12,13,16 Indeed, several
investigators have shown correspondences between corti-
cal simple-cell receptive fields and the basis functions
achieved when one attempts to jointly optimize kurtosis–
statistical independence and reconstruction accuracy.
However, regardless of the (linear) basis set used to rep-
resent the data, unless the basis coefficients are truly in-
dependent (i.e., the joint distribution can be factorized
into a product of marginal distributions), computing the
redundancy of the data based on these marginals will
lead to an overestimate of entropy (underestimate of re-
dundancy). Although attempts have been made to model
the dependencies that exist between basis
coefficients,4,6,7,17 the somewhat intractable combinator-
ics involved in such an approach limits the numbers of co-

efficients that can be used to derive the joint distribu-
tions. Indeed, we cannot determine the efficiency of any
particular coding or compression algorithm without
knowing the true entropy. And, without this estimate, we
cannot determine how much of the redundancy has been
exploited by any particular coding or compression algo-
rithm.

In this paper, we take an alternative approach to esti-
mating the redundancy of natural scenes that does not re-
quire a direct computation of the probability distribution
of the data. Instead, the technique we employ borrows
heavily from nearest-neighbor-based techniques that
have previously been used to estimate entropy of rela-
tively low-dimensional data.18–20 We note the fact that im-
ages drawn from the natural environment are not random
patterns; rather, natural scenes typically occupy a sub-
space of the space of all possible images.1 The redundancy
of the data is determined by the size of this subspace21

(see also Ref. 22, Theorems 3.1.1 and 15.7.1; Ref. 23). Ac-
cordingly, we apply nearest-neighbor-based techniques to
estimate the relative density of the space of natural
scenes by measuring the distances between images as the
sample size is increased. We extend the previous method-
ology to data with larger dimensionality and use this to
calculate two properties of images:

1. The entropy, which specifies the effective (log) size of
the subspace;

2. The relative dimensionality (RD), which specifies the
dimensionality that the subspace appears to have given a
limited number of samples.

This entropy measure can be likened to a kind of “re-
verse birthday problem.” In the birthday problem, one es-
timates the probability �p� that two people have the same
birthday given a group of people of size N and l=365 pos-
sible birthdays. With N�23, the probability p�0.5 that
any two people will have the same birthday24 (see also
Ref. 25). In the reverse problem, one estimates the num-
ber of birthdays l from the probability of obtaining a pair
of matching birthdays given a group of size N. This gen-
eral approach has a long history and was used as far back
as Ref. 26 to estimate the population of fish in a lake from
samples taken from the lake. For our purposes, the argu-
ment is that the relative probability of co-occurrences can
provide not only an estimate of the size of the population
but also the entropy of the population. Indeed, the ap-
proach reveals the size of the population only if one has a
known distribution (e.g., see Ref. 27); however, without
knowledge of the distribution, the approach (as we will ar-
gue) can still provide a measure of entropy.

Furthermore, extending the reverse birthday problem
by relaxing the perfect-match criterion to a match of

within D days requires sampling only �1.2�365/ �2D+1��
=24 people24 to estimate the number of birthdays. In gen-
eral, given N samples with sufficiently large N and two
average nearest-neighbor distances DA and DB for data
sets A and B, respectively, if DA�DB we expect the en-
tropy of A to be greater than the entropy of B. This is the
basic technique that we employ: Given samples from a
data set, we estimate the entropy of the data based on
nearest-neighbor matches in which D is defined as the
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Euclidean distance. This process is illustrated in Fig. 1 for
samples consisting of natural-scene patches.

As shown in Fig. 1, images from a given data set were
randomly divided into two groups: Group T, which con-
sisted of images whose patches served as the to-be-
matched “target” samples, and group N, which consisted
of images whose patches served as the target’s neighbors.
The images were divided into r�r patches, and then for
each target patch in group T, an exhaustive search was
performed to find the corresponding patch in group N

closest in Euclidean distance to the target patch.
Following from the work by Kozachenko and

Leonenko18 and Victor,19 we introduce a function that we
call the “proximity distribution,” which specifies the aver-
age (log) nearest-neighbor distance as a function of the
number of samples (see Figs. 5, 6, 9, and 10 later in this
paper). Our primary assumption is that given a sufficient
number of samples, the proximity distribution behaves as
a linear function of the (log) number of samples (i.e., the
function has a fixed slope); this assumption holds for any
data set that is subject to noise (e.g., digitized natural
scenes). Thus, with a sufficient number of samples, Koza-
chenko and Leonenko18 and Victor19 argue that the prox-
imity distribution can lead to an estimate of the entropy
of the data. Even in cases in which only a portion of the
proximity distribution function can be measured, we ar-
gue that rational extrapolations can be made that allow a

reasonable estimate of entropy and that comparisons be-
tween entropy estimates of different image types (e.g.,
natural scenes versus noise with a 1/ f2 power spectrum)
can provide insights into the contributions of various
forms of redundancy to the entropy.

As we demonstrate in Subsection 2.D, nearest-
neighbor-based techniques can estimate the entropy of 3
�3 natural images using fewer than 218=262,144
samples. Furthermore, we present in Section 4 extrapola-
tions of the proximity distribution functions that can be
used to estimate entropy of 8�8 images using only 218

samples. We demonstrate that this approach estimates
the entropy of 8�8 patches drawn from natural scenes to
be less than half the entropy of 8�8 patches of Gaussian
white noise and less than 60% of the entropy of noise with
the same power spectrum as natural scenes.

In addition to estimating entropy, there exists a wide
body of research developed to estimate the dimensionality
of a data set28–34 (see Ref. 35 for a review). Examples of
such techniques include projection-based dimensionality-
reduction methods such as principal components analy-
sis, nonlinear methods based on local topology such as
Isomap33 and locally linear embedding (LLE),34 and a va-
riety of techniques based on nearest neighbors.28–32 It
should be emphasized that the definition of “dimension”
varies in the literature; a number of dimensions have
been reported, including correlation dimension, Hausdorff

Fig. 1. Diagram of the procedure used in the experiments. Images from a given class were randomly divided into two groups: Group T

containing the to-be-matched “target” samples, and group N containing the samples from the population. Patches of size r�r pixels were
then extracted from the images in a nonoverlapping fashion. For each target patch in group T, an exhaustive, brute-force search proce-
dure was performed to find the patch in group N with the minimum Euclidean distance to the target patch (minimum L2-norm of the
difference). The average log nearest-neighbor distance was then estimated by computing the sample mean of the minimum Euclidean
distances over all target patches; this process was then repeated for increasing numbers of samples to compute the average log nearest-
neighbor distance as a function of the number of samples (the proximity distribution). See Figs. 5, 6, 9, and 10 later in this paper for
examples of proximity distribution functions.

924 J. Opt. Soc. Am. A/Vol. 24, No. 4 /April 2007 D. M. Chandler and D. J. Field



dimension, pointwise dimension, and quantization dimen-
sion; see Ref. 36 for a review. Here, we borrow from these
nearest-neighbor-based approaches and use our proximity
distributions to estimate dimensionality. However,
whereas the majority of dimensionality estimation tech-
niques aim to estimate the intrinsic dimensionality of the
data, here we do not focus on the intrinsic dimensionality
for two reasons: (1) digitized natural images are both
quantized and subject to noise, and we argue that the in-
trinsic dimensionality is equivalent to the dimensionality
of the space in which the data are embedded (e.g., the in-
trinsic dimensionality is given by the number of pixels for
digitized natural scenes); (2) real sensory systems cannot
encode input signals in an error-free manner, and thus
the error puts a limit on the entropy and dimensionality
that is relevant to the sensory system. Accordingly, in this
paper, we focus on the RD, defined as the dimensionality
that the data appear to have, given a limited number of
samples (the sampling density). As has been noted previ-
ously (see Ref. 35), and as we will confirm, the RD
changes as a function of the sampling density. We empha-
size that this dependence on sampling density can pro-
vide insights into the geometry of the data space (the
manifold of natural scenes).

The RD is analogous to the dimensionality estimates
given by techniques such as Isomap33 and LLE.34 How-
ever, the emphasis here is that the dimensionality is de-
pendent on the number of samples and that this depen-
dence can provide insight into the data space. For
example, Fig. 2(a) depicts the classical Swiss roll data33 to
which Gaussian white noise has been added. Without the
addition of noise, the data would have an intrinsic dimen-
sionality of two; i.e., the data would lie on the two-

dimensional surface (manifold) shown as a wireframe in
Fig. 2(a), and thus with a proper transformation that “un-
rolls” the data, any data point could be described with
only two coordinates. The addition of the noise, however,
increases the intrinsic dimensionality of the data to three
(three coordinates are required to specify any data point).

Clearly, with enough samples, one can readily visualize
the intrinsic dimensionality of the data. However, given
only a coarse sampling, the data might appear to have a
vastly different dimensionality—a dimensionality that is
relative to the number of samples and that may thus pro-
vide insight into the geometry of the space. For example,
Figs. 2(b)–2(d) depict the noisy swiss roll data given only
8, 80, and 800 random samples, respectively. In Fig. 2(b),
there is no clear geometry to the data; thus, given only 8
samples, one would estimate that the data are three di-
mensional �RD=3�. In Fig. 2(c), given 80 samples, the
swiss roll geometry begins to emerge, and one might
guess that the data fall on this two-dimensional, swiss
roll manifold �RD=2�. In Fig. 2(d), given 800 samples, it
becomes apparent that there is actually a thickness to the
swiss roll, and thus the RD is equivalent to the intrinsic
dimensionality of three.

Now consider the data shown in Fig. 3(b), which corre-
sponds to an unrolled version of the noisy Swiss roll data.
As with the noisy Swiss roll data, these unrolled data
have an intrinsic dimensionality of three. However, be-
cause the data have been unrolled, as shown in Fig. 3(b),
RD=2 given only eight samples. Similarly, given 80
samples [Fig. 3(c)], there are still an insufficient number
of samples to discover the thickness of the plane �RD=2�.
At 800 samples [Fig. 3(d)], one begins to discover the third
dimension �RD=3�.

Thus, even though the noisy Swiss roll data and the un-
rolled version of the data have the same intrinsic dimen-
sionality and entropy, the data sets have markedly differ-
ent geometries. Accordingly, each data set gives rise to a
different vector of RDs: [3, 2, 3] and [2, 2, 3] for the rolled
and unrolled versions, respectively, given 8, 80, and 800
samples, respectively. In Subsection 2.D and Section 3, we
use nearest-neighbor-based techniques to measure the

Fig. 2. (a) Swiss roll data to which Gaussian white noise has
been added (here, showing 3200 samples), (b) eight random
samples of the noisy Swiss roll data; here, there are too few
samples to discern any particular geometry �RD=3�, (c) 80 ran-
dom samples of the noisy Swiss roll data; here, there are enough
samples to begin to see a two-dimensional Swiss roll manifold
�RD=2�, (d) 800 random samples of the noisy Swiss roll data;
here, there are enough samples to see that the roll actually has a
thickness �RD=3�.

Fig. 3. (a) Unrolled version of the noisy Swiss roll data in Fig. 2.
(b) Eight random samples of the unrolled data; here, there are
too few samples to clearly expose the third dimension �RD=2�; (c)
80 random samples of the unrolled data; here, there are still too
few samples to clearly expose the third dimension �RD=2�; (d)
800 random samples of the unrolled data; here, there are enough
samples to see that the plane has a thickness �RD=3�.
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RD given 1–218 samples of 3�3 and 8�8 images, respec-
tively. We show that in this range of sample sizes the RD
of natural-scene patches is significantly lower than the
RD of Gaussian white-noise patches and that this differ-
ence in RD increases for larger patch sizes.

This paper is organized as follows: Section 2 describes
the general methods used in the experiments performed
to investigate entropy and RD, including details of the ex-
perimental stimuli and the theory behind the methods.
Results and analyses of the experiments are provided
throughout Sections 3–5. A discussion is provided in Sec-
tion 6. General conclusions are provided in Section 7.

2. GENERAL METHODS

This section describes the experimental stimuli and pro-
cedures used in the experiments, an overview of the
theory underlying the techniques, a derivation of the
theory for Gaussian white noise, and a verification of the
theory on 3�3 patches.

Three experiments were performed to estimate the en-
tropy and dimensionality of various types of images.
First, nearest-neighbor distances were measured for 8
�8 patches cropped from images of various types; this ex-
periment was designed to investigate the entropy and RD
of a typical 8�8 image patch (Subsection 3.A). Next,
nearest-neighbor distances were measured for 8�8
patches in which each patch was normalized for mean in-
tensity and root-mean-square (RMS) contrast; this experi-
ment was designed to investigate the entropy and RD of
the pattern of a typical 8�8 image patch (Subsection
3.B). Finally, nearest-neighbor distances were measured
for 16�16 patches to provide an estimate of how entropy
and RD scale with patch size (Section 5).

A. Experimental Stimuli
Stimuli used in this study were r�r pixel patches
cropped from 8-bit R�R pixel digitized and natively digi-
tal images37 with pixel values in the range 0–255. Five
types of images were used:

1. Gaussian white noise, in which each pixel was drawn
independently from a common Gaussian distribution;

2. 1/ f noise (amplitude spectrum), in which each Fou-
rier component was drawn independently from a Gauss-
ian distribution with standard deviation inversely propor-
tional to the spatial frequency of the Fourier component;

3. 1/ f2 noise (amplitude spectrum), in which each Fou-
rier component was drawn independently from a Gauss-
ian distribution with standard deviation inversely propor-
tional to the squared spatial frequency of the Fourier
component;

4. Spectrum-equalized noise, in which each Fourier
component was drawn independently from a Gaussian
distribution with variance proportional to the sample
variance measured using a collection of natural scenes;

5. Natural scenes obtained from the van Hateren
database.38

The (real-valued) pixels of all images were quantized to
8 bits (256 levels) of gray-scale resolution, as necessary,
via uniform scalar quantization39 in which real-valued

pixel X was mapped to its quantized (discrete-valued) ver-

sion X� via X�= ⌊X+ 1
2 ⌋, where ⌊·⌋ denotes the floor operator.

The details of the image-generation process are as follows
(experiment-specific details are provided throughout Sec-
tions 3 and 5).

Gaussian white noise: The Gaussian white noise im-
ages were generated by drawing R�R independent real-
izations from the following Gaussian distribution:

f�x� =
1

��2�
e−��x − ��2/2�2�, �1�

where the mean � and standard deviation � were set as
described in Sections 3 and 5. The pixel values of the re-
sulting images were quantized to 8 bits. Figure 4(a) de-
picts one of the white-noise images used in this study.

1/ f and 1/ f2 noise: The 1/ f noise images were generated
by first creating an R�R Gaussian white-noise image via
Eq. (1) and then filtering that image with a digital, finite-
impulse response filter with the following frequency re-
sponse:

H�u,v� = �
1 u = v = 0

1

�u2 + v2
else � , �2�

where u ,v� �0,R−1�. The 1/ f2 noise images were gener-
ated in a similar fashion by creating an R�R Gaussian
white-noise image [Eq. (1)], followed by filtering with a
digital filter with the following frequency response:

H�u,v� = �
1 u = v = 0

1

u2 + v2
else � , �3�

where u, v� �0,R−1�. The filtering was performed in the
frequency domain by means of the discrete Fourier trans-
form (DFT) and multiplication of frequency responses
(DFT coefficients). The pixel values of the resulting im-
ages were offset and scaled to span the range 0–255 and
then quantized to 8 bits. Figures 4(b) and 4(c) depict, re-
spectively, sample 1/ f and 1/ f2 images used in this study.

Spectrum-equalized noise: The spectrum-equalized
noise images were generated in a fashion similar to that
used for the 1/ f and 1/ f2 noise images except that the fil-
tering was applied separately to each r�r pixel patch and
was performed by using an empirical H�u ,v� determined
based on the spectra of a large collection of r�r pixel
patches. Specifically, a Gaussian white-noise image was
created via Eq. (1), and then frequency-domain filtering
was performed by multiplying the spectrum of each r�r

pixel patch with the following r�r element frequency re-
sponse:

H�u,v� = ��
R

2 �u,v� + �
I

2�u,v�, �4�

where u, v� �0,r−1�, and where �R�u ,v� and �I�u ,v� de-
note the sample standard deviations of the real and
imaginary components, respectively, of the DFT coeffi-
cient corresponding to frequency u, v; the sample stan-
dard deviations �R�u ,v� and �I�u ,v� were measured
based on a collection of r�r patches from 71 natural
scenes (described next). The pixel values of the resulting
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images were quantized to 8 bits. Figure 4(d) depicts one of
the spectrum-equalized noise images used in this study.

Natural scenes: Seventy-one digitized natural scenes
were selected at random from the van Hateren
database.38 The original images were of size 1536�1024
and contained 16-bit pixel values. A 1024�1024 section
was cropped from each image, and then the pixel values of
that 1024�1024 section were converted to a floating-
point representation. The pixels were then offset, scaled
to span the range 0–255, and quantized to 8 bits. Refer-
ence 40 provides further details regarding the specific im-
ages used in this study. Figure 4(e) depicts one of these
images. We wish to emphasize that our estimates of en-
tropy and RD are dependent on the particular class of im-
ages used here, and thus the results should not be consid-
ered universal for all natural scenes. The van Hateren
database is attractive owing to its widespread use; how-
ever, factors such as camera blur, scene content, and noise
all have a significant impact on the results.

B. Experimental Procedures
Let DN

* denote the Euclidean distance between a patch
and its nearest neighbor among N neighbors. The average
log nearest-neighbor distance E�log2 DN

* 	 was estimated
by using an exhaustive, brute-force search procedure.
Each set of R�R images from each image class was ran-
domly divided into two groups: Group J, which consisted
of images whose patches served as the to-be-matched
“target” samples, and group N, which consisted of images
whose patches served as the target’s neighbors. This divi-
sion into targets and neighbors was used to avoid comput-
ing nearest-neighbor distances between patches from the
same image. Patches of size k=r�r pixels were cropped

from each R�R image in a nonoverlapping, sequential
raster-scan order starting from the top-left corner of the
image.

For each target patch in group J, an exhaustive search
was performed to find the corresponding patch in group N

closest in Euclidean distance to the target patch. This
procedure is illustrated in Fig. 1 and is formally defined
as follows: Let X�Jt�, t� �1,T�, denote the tth target patch,
and let X�Nn�, n� �1,N�, denote one of its neighbors. For
each patch in group J and each value of N, the search pro-
cedure yields the Euclidean distance DN,t

* between X�Jt�

and its nearest neighbor among N neighbors via

DN,t
* = min

n��1,N�

X�Jt� − X

�Nn�
L2

= � min
n��1,N�

�
i=1

k

�X
i

�Jt� − X
i

�Nn��2��1/2

, �5�

where Xi denotes the ith pixel of X. The search procedure
was performed to compute DN,t

* for all T target patches,
and then E�log2 DN

* 	 was estimated via the sample mean
over all target patches, i.e., E�log2 DN

* 	
��1/T�t=1

T log2 DN,t
* .

In all experiments, DN,t
* was measured at power-of-two

values of N up to 2K (i.e., N=1,2,4, . . . ,2K), where K was
determined by the total number of images in group N, the
latter of which was chosen based on the patch size (see
Sections 3 and 5). This process was repeated for at least
three trials for each patch in group J. Owing to the enor-
mous memory and processing-time requirements, the to-
tal number of patches in group J was selected based on
initial runs and was varied across image classes and

Fig. 4. Example stimuli used in the experiments �R�R=1024�1024�: (a) Gaussian white noise; (b) 1/ f noise; (c) 1/ f2 noise; (d)
spectrum-equalized noise with r�r=8�8; (e) natural scene cropped from image imk04103 of the van Hateren database [note that to
promote visibility, the intensities of these images have been adjusted and (d) depicts only the top-left 256�256 section].
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patch size; further details regarding the total number of
patches in groups J and N are provided throughout Sec-
tions 3 and 5.

C. Theory
In this paper, we estimate entropy and dimensionality
based on nearest-neighbor distances. This section pro-
vides a brief outline of the mathematical theory upon
which this technique is based. The estimation of entropy
based on nearest-neighbor distances was initially pro-
posed by Kozachenko and Leonenko18 and was later ap-
plied to neural data by Victor19 and subsequently to the
estimation of mutual information by Kraskov et al.20 and
by Kybic.41 This is a so-called binless estimator of differ-
ential entropy that operates by estimating iX�x��
−log2 fX�x� via nearest-neighbor distances, where X de-
notes a (possibly vector-valued) random variable with cor-
responding probability density function fX�x�. In this for-
mulation, differential entropy, h�X�, is the expected value
of iX�x�:

h�X� � −�
x�A

fX�x�log2 fX�x�dx

=�
x�A

fX�x�iX�x�dx = E�iX�x�	 �
1

M

m=1

M

îX�xm�,

�6�

where the final relation approximates the expectation in
the third relation with the sample mean computed using
M observed samples, x1 ,x2 , . . . ,xM, drawn according to fX.
Specifically, the approximation results from (1) replacing
the integral with a sum; (2) assuming fX�x�dx�1/M,

∀xm; and (3) using îX�xm� as an estimator of iX�xm�.

The estimator îX�x� is computed based on the Euclid-
ean distance DN

* between x and its nearest neighbor
among the remaining N=M−1 observations as

îX�x� = kE�log2 DN
* 	 + log2�AkN

k
� +

�

ln 2
, �7�

where � is the Euler constant, and where Ak

=k�k/2 /	�k /2+1� denotes the surface area of a
k-dimensional hypersphere. Combining Eqs. (6) and (7),
h�X� is approximated by

h�X� �
k

M

m=1

M

log2 DN,m
* + log2�AkN

k
� +

�

ln 2
, �8�

where DN,m
* is the Euclidean distance between xm and its

nearest neighbor among the other N=M−1 observations.
For images in which the pixel values are drawn inde-

pendently from a common Gaussian distribution, the pix-
els are independently and identically distributed (iid)
Gaussian. The Gaussian distribution possess several fa-
vorable mathematical properties that facilitate an analy-
sis of its nearest-neighbor-distance behavior and entropy.
In particular, the differential entropy of a Gaussian ran-
dom variable X can be computed directly via

h�X� =
1

2
log2�2�e�2� bits, �9�

where � denotes the standard deviation of the Gaussian.
Moreover, of all distributions with a given fixed variance,
the Gaussian distribution maximizes differential entropy
(Ref. 22, Theorem 9.6.5).

In addition, for iid Gaussian realizations there exists
an analytical solution for the expected log nearest-
neighbor distance among N neighbors �E�log2 DN

* 	�. We
show this by first deriving the distribution of Euclidean
distances between two patches, and then we extend that
result to the expected minimum distance among N

patches.
Distribution of distances between two patches: Without

loss of generality, we assume that each pixel is drawn
from a zero-mean Gaussian distribution.42 Let Xi

�N�0,�2� and Yi�N�0,�2� denote the ith pixel of image X

and Y, respectively. Clearly, Xi−Yi�N�0,2�2�. Thus, we

can define a new random variable D̃= �1/2�2�i=1
k �Xi

−Yi�2, which follows a 
2 distribution with k degrees of

freedom.43 Observe that D̃ is 1/2�2 times the squared Eu-

clidean distance between X and Y. Given that D̃�
k
2, the

cumulative distribution function is given by FD̃�d�=1
−	�k /2 ,d2 /2� /	�k /2�, where 	�a ,x� and 	�a� are the up-
per incomplete and complete gamma functions, respec-
tively; and the corresponding probability density function
is given by fD̃�d�= �dk/2−1e−d/2� / �2k/2	�k /2��.

Expected nearest-neighbor distance among N patches:

Let D̃N
* denote 1/2�2 times the squared Euclidean dis-

tance between a patch and its nearest neighbor among N

neighbors. The cumulative distribution function for D̃N
* is

thus given by FD̃
N
* �d�=1− �1−FD̃�d��N, and the correspond-

ing probability distribution function is given by fD̃
N
* �d�

=N�1−FD̃�d��N−1fD̃�d�. Note that the nearest-neighbor

distance DN
* = �2�2D̃N

* �1/2 and thus log2 DN
* = 1

2 log2�2�2D̃N
* �

= 1
2 log2�2�2�+ 1

2 log2 D̃N
* . The expected log nearest-

neighbor distance E�log2 DN
* 	 is therefore given by

E�log2 DN
* 	

=
1

2
log2�2�2� +

1

2
E�log2 D̃N

* 	

=
1

2
log2�2�2� +

1

2
�

0

�

fD̃
N
* ���log2���d�

=
1

2
log2�2�2� +

N

2
�

0

�

�1 − FD̃����N−1fD̃���log2���d�

=
1

2
log2�2�2� +

N

2
�

0

� �	�k/2,�2/2�

	�k/2� �N−1

�
1

2k/2	�k/2�
�k/2−1e−�/2 log2���d�

=
1

2
log2�2�2� +

N

2k/2+1	�k/2�N
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��
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�

	�k

2
,
�2

2
�N−1

�k/2−1e−�/2 log2���d�. �10�

To verify that the experimental procedures described in
Subsection 2.B yield results that are consistent with Eq.
(10), 8�8 patches cropped from images in which the pixel
values were iid Gaussian were used as a control condi-
tion. The Gaussian white-noise images were generated as
described in Subsection 2.A via Eq. (1) with fixed mean
�=127.5, and with three different standard deviations �

=9.43, �=2.77, and �=0.77. Seventeen images of size
1024�1024 pixels were generated for each standard de-
viation, one of which was placed into group J, and the re-
maining 16 of which were placed into group N. Thus,
there were a total of �1024�1024� / �8�8�=16,384 target
patches and 16� �1024�1024� / �8�8�=262,144 potential
neighbors.

Figure 5 depicts proximity distribution functions com-
puted via Eq. (10) (computed digitally via a summation-
based approximation to the integral) and the correspond-

ing data measured experimentally. In each graph, the
vertical axis corresponds to E�log2 DN

* 	 and the horizontal
axis corresponds to the number of samples (here, N

=1,2,4, . . . ,218). Figure 5(a) depicts proximity distribu-
tion functions for a fixed dimensionality k=64 and vari-
ous values of standard deviation �. Figure 5(b) depicts
proximity distribution functions for a fixed standard de-
viation �=0.77 and various values of dimensionality k.
Notice that the theoretical and experimental results are
very much in agreement �R2�0.99�.

The trends in Fig. 5(a) demonstrate that for a fixed di-
mensionality �k=64�, decreasing the standard deviation
of the underlying Gaussian effects a downward shift in
the proximity distribution function. Indeed, this observa-
tion follows directly from Eq. (10): Notice that only the
left-hand portion of the sum depends on � and that this
portion depends only on �. The trends in Fig. 5(b) demon-
strate that when the standard deviation is fixed ��
=0.77�, changing the dimensionality effects both a down-
ward shift and a change in the slope.

D. Verification of the Theory on 3Ã3 Patches
When the slope of the proximity distribution function of a
data set has converged (i.e., the RD has converged to the
intrinsic dimensionality of the data), there are a sufficient
number of samples to estimate the entropy. Here, we
show this result experimentally by applying Eq. (8) to
nearest-neighbor distances measured for 3�3 patches.

Patches of size 3�3 pixels (r=3, k=9) drawn from
Gaussian white-noise, spectrum-equalized noise, and
natural scenes were used in this verification experiment.
The Gaussian white-noise images were generated via Eq.
(1) with �=127.5 and �=32. For the Gaussian white-noise
and spectrum-equalized noise images, 13 images of size
R�R=513�513 pixels were generated as described in
Subsection 2.A; for each image type, three images were
placed into group J, and the remaining 10 images were
placed into group N, resulting in 3� �513�513� / �3�3�

Fig. 5. Proximity distribution functions for iid Gaussian data
computed via Eq. (10) (solid curves) and measured experimen-
tally (circles). In each graph, the horizontal axis denotes the
number of samples N; the vertical axis denotes the corresponding
E�log2 DN

* 	 computed via Eq. (10). (a) Proximity distribution func-
tions for a fixed dimensionality �k=64� and various values of
standard deviation �; (b) proximity distribution functions for a
fixed standard deviation ��=0.77� and various values of dimen-
sionality k.

Fig. 6. Proximity distribution functions for 3�3 patches of
Gaussian white noise, spectrum-equalized noise, and natural
scenes. The horizontal axis denotes the number of samples N; the
vertical axis denotes the corresponding E�log2 DN

* 	 estimated via
a sample mean over all target patches. Black circles, Gaussian
white noise; light-gray circles, spectrum-equalized noise; stars,
natural scenes. The solid lines represent a slope of −1/9th; notice
that all three curves eventually converge on this slope.
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=87,723 target patches and 10� �1024�1024� / �8�8�
=292,410 potential neighbors. For the natural scenes, im-
ages of size 1024�1024 pixels were obtained as described
in Subsection 2.A, and patches were selected from the top-
left 1023�1023 portion of each image. Five images were
placed into group J, and 66 images were placed into
group N, resulting in 5� �1023�1023� / �3�3�=581,405
target patches and 66� �1023�1023� / �3�3�=7,674,546
potential neighbors.

Figure 6 depicts the resulting proximity distribution
functions; the horizontal axis denotes the number of
samples N, and the vertical axis denotes the correspond-

ing log nearest-neighbor distance averaged over all
patches in group J. RDs and estimates of entropy [com-
puted via Eq. (8)] based on these proximity distribution
data are provided in Figs. 7 and 8, respectively. The solid
gray line in Fig. 7 denotes an intrinsic dimensionality of
k=9; the solid gray lines in Fig. 8 denote the true values
of entropy as computed via Eq. (9). Note that due to the
presence of photon noise, the natural scenes also possess
an intrinsic dimensionality of k=9.

Notice from the proximity distribution functions of Fig.
6 that for a given number of samples, spectrum-equalized
noise exhibits a lower average log nearest-neighbor dis-
tance than Gaussian white noise, and natural scenes ex-
hibits a lower average log nearest-neighbor distance than
both Gaussian white noise and spectrum-equalized noise.
Similarly, notice from Fig. 7 that although the RD curves
for all three image types eventually converge to a dimen-
sionality of approximately k=9, spectrum-equalized noise
exhibits a lower RD than Gaussian white noise, and natu-
ral scenes exhibit a lower RD than both Gaussian white
noise and spectrum-equalized noise.

Because the RD curves of Fig. 7 have approximately
converged to a dimensionality of k=9 given N=217

samples, there are sufficient data to estimate entropy.
The entropy estimates shown in Fig. 8 were obtained by
using Eq. (8) with k=9. Indeed, for Gaussian white noise
and spectrum-equalized noise, the estimates of entropy
yield the correct values: 63 bits �7.0 bits/pixel� for Gauss-
ian white noise and 49 bits �5.5 bits/pixel� for spectrum-
equalized noise [the actual entropies were computed via
Eq. (9); see Ref. 44]. Here, we obtain an estimate of
35 bits �3.9 bits/pixel� for the entropy of 3�3 natural
scenes. We stress again that this result is not universal
for all natural scenes; rather, it is dependent on the par-
ticular sample of images from the van Hateren database
used here.

These results confirm that our main assumption holds
for the images used here: Given a sufficient number of
samples, the RD converges on the intrinsic dimensional-
ity of the data, and thus the entropy estimate is close to
the true entropy of the data. In the following sections, we
investigate extensions of these estimators to 8�8 patches
of various types of images for which there are an insuffi-
cient number of samples to directly apply the estimates.

3. RESULTS FOR 8Ã8 PATCHES

In Experiment 1, patches of size 8�8 pixels were used
(r=8, k=64). Each patch X= �X1 ,X2 , . . . ,X64� can thus be
viewed as a point in a 64-dimensional metric space V64

with distance function d�X ,Y�= 
X−Y
L2
=�i=1

64 �Xi−Yi�2.
In our experiments, each patch was a discrete-valued ran-
dom vector in which each pixel was limited to integer val-
ues in the range 0–255 (l=256 levels) as a result of the
8-bit quantization, and therefore the actual space is lim-
ited to L= lk=25664=2512 possibilities.

A. 8Ã8 Patches
To serve as a control condition, patches of size 8
�8 pixels were cropped from Gaussian white-noise im-
ages. Nineteen Gaussian white-noise images were gener-

Fig. 7. RD curves for 3�3 patches of Gaussian white noise,
spectrum-equalized noise, and natural scenes. The horizontal
axis denotes the number of samples N; the vertical axis denotes
the corresponding RD. Black circles, Gaussian white noise; light-
gray circles, spectrum-equalized noise; stars, natural scenes. The
solid gray line denotes the intrinsic dimensionality of k=9 for all
three data sets (the natural scenes possess an intrinsic dimen-
sionality of k=9 owing to photon noise).

Fig. 8. Entropy estimates for 3�3 patches of Gaussian white
noise, spectrum-equalized noise, and natural scenes. The hori-
zontal axis denotes the number of samples N; the vertical axis
denotes the entropy computed via Eq. (8) using the correspond-
ing value of N. Black circles, Gaussian white noise
�7.0 bits/pixel�; light-gray circles, spectrum-equalized noise
�5.5 bits/pixel�; stars, natural scenes �3.9 bits/pixel�. The solid
gray lines indicate the actual entropies of Gaussian white noise
and spectrum-equalized noise (7.0 and 5.5 bits/pixel, respec-
tively) as computed via Eq. (9); the dashed line denotes the en-
tropy estimate of 3.9 bits/pixel for natural scenes.
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ated as described in Subsection 2.A via Eq. (1) with �

=127.5 and �=36. Three images were placed into group J,
and the remaining 16 images were placed into group N,
resulting in 3� �1024�1024� / �8�8�=49,152 target
patches and 16� �1024�1024� / �8�8�=218=262,144 po-
tential neighbors.

To investigate the effects of spatial correlations on
nearest-neighbor distances, 8�8 patches cropped from
images with 1/ f and 1/ f2 amplitude spectra (1/ f2 and 1/ f4

power spectra, respectively) and from images with
spectrum-equalized patches were used. In this paradigm,
the image’s DFT coefficients form a set of independent
Gaussian random variables with standard deviations in-
versely proportional to spatial frequency. Nineteen 1/ f,
1 / f2, and spectrum-equalized noise images of size 1024
�1024 pixels were generated as described in Subsection
2.A. For each image type, three images were placed into
group J, and the remaining 16 images were placed into
group N, resulting in 3� �1024�1024� / �8�8�=49,152
target patches and 16� �1024�1024� / �8�8�=218

=262,144 potential neighbors.
In addition, to investigate the effects of the statistical

properties of natural scenes on nearest-neighbor dis-
tances, 8�8 patches cropped from images obtained from
the van Hateren database38 were used. Seventy-one natu-
ral scenes were obtained as described in Subsection 2.A,
five of which (chosen at random) were placed into group
J, and the remaining 66 of which were placed into group
N. Thus, there were a total of 81,920 target patches and a
total of 1,081,344 potential neighbors.

Figure 9(a) depicts the proximity distribution functions
for the patches taken from the 1/ f, 1 / f2, and spectrum-
equalized noise images (gray, white, and light-gray
circles, respectively) and from the natural scenes (stars),
along with the proximity distribution function for Gauss-
ian white-noise patches (black circles). The horizontal
axis denotes the number of samples N, and the vertical
axis denotes the corresponding log nearest-neighbor dis-
tance averaged over all patches in group J.

Images that possess power spectra that follow 1/ f

demonstrate greater degrees of pairwise pixel correla-
tions for increasing values of . Gaussian white-noise im-
ages, which contain uncorrelated pixels, possess an am-
plitude spectrum in which =0. The 1/ f and 1/ f2 images
possess power spectra in which =2 and =4, respec-
tively (amplitude spectra in which =1 and =2, respec-
tively). The 8�8 patches of the spectrum-equalized noise
images possess a power spectrum in which �2.8. Thus,
the proximity distribution functions of Fig. 9(a) demon-
strate that for a fixed variance, increasing pairwise corre-
lations between pixels increases the magnitude of the
slope of the proximity distribution functions, which there-
fore suggests a lower entropy state.

The data of Fig. 9(a) also show that the proximity dis-
tribution function for the patches of natural scenes lies
below the proximity distribution function for the patches
of spectrum-equalized noise, despite the fact that the
power spectra for these image types are equalized. These
data confirm that the presence of spatial correlations does
not provide a complete account for the redundancy (lower
entropy) of natural scenes.

Figure 9(b) depicts the RD curves for these images com-

puted as the magnitude of the inverse of the instanta-
neous slope between successive pairs of measured values
of E�log2 DN

* 	 [i.e., −d log2�N� /dE�log2 DN
* 	]. The horizon-

tal axis denotes the number of samples N, and the verti-
cal axis denotes the corresponding dimensionality given
N samples. Notice that for most values of N (in particular,
for N�16), 1/ f2 noise exhibits the lowest RD, natural
scenes exhibit a slightly greater RD than 1/ f2 noise,
spectrum-equalized noise exhibits an even greater RD,
followed by 1/ f noise, and then Gaussian white noise. At
N=218 samples, the dimensionalities are approximately
13, 17, 27, 34, and 45 for 1/ f2 noise, natural scenes,
spectrum-equalized noise, 1/ f noise, and Gaussian white
noise, respectively. Clearly, many more samples are
needed before these RD curves converge on the intrinsic
dimensionality of k=64, and thus N=218 is an insufficient
number of samples to produce a direct estimate of the en-
tropy via Eq. (8). In Section 4, we discuss extrapolation
techniques that attempt to overcome this limitation.

B. Mean- and Contrast-Normalized 8Ã8
Patches
Part of the redundancy in natural scenes can be attrib-
uted to the fact that natural scenes contain many low-

Fig. 9. (a) Proximity distribution and (b) RD curves for 8�8
patches. In both graphs, the horizontal axis denotes the number
of samples N. The vertical axis in (a) denotes the corresponding
E�log2 DN

* 	 estimated via a sample mean over all target patches;
the vertical axis in (b) denotes the corresponding RD. Black
circles, Gaussian white noise; gray circles, 1/ f noise; light-gray
circles, spectrum-equalized noise; white circles, 1/ f2 noise; stars,
natural scenes. The solid gray line in (b) denotes the intrinsic di-
mensionality of k=64 for all data sets.
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contrast regions (e.g., in sky), whereas noise images such
as spectrum-equalized noise only seldomly contain such
low-contrast regions. To determine whether this preva-
lence of low-contrast patches can account for the differ-
ences in the proximity distribution functions, Experiment
2 investigated the nearest-neighbor-distance behavior of
the underlying patterns by first normalizing the image
patches for absolute luminance and RMS contrast. Spe-
cifically, each patch X was adjusted to have a zero mean
and unity vector norm (L2 norm) via

1. XªX− �1/64�i=1
64 Xi,

2. Xª255X /�i=1
64 Xi

2,

where Xi denotes the ith pixel of X. Here, we limited the
analysis to those patches with variance (after Step 1,
above) of �1/64�i=1

64 Xi
2�2 to prevent both division by zero

(in Step 2, above) and amplification of noise.
The 1024�1024 images were randomly divided into

groups J (containing the to-be-matched, target patches)
and N (containing the neighbors). For the Gaussian
white-noise images, only a single standard deviation �

=36 was tested; Groups J and N consisted of 16,384 and
262,144 patches, respectively. For the 1/ f, 1 / f2, and
spectrum-equalized noise images, groups J and N con-
sisted of 49,152 and 262,144 patches, respectively. For the
natural scenes, groups J and N consisted of approxi-
mately 68,000 and 900,000 patches, respectively.

Figures 10(a) and 10(b) depict the resulting proximity
distribution and RD, respectively, curves for Gaussian
white noise (black circles), 1 / f noise (gray circles), 1 / f2

noise (white circles), spectrum-equalized noise (light-gray
circles), and natural scenes (stars). In comparison with
the proximity distribution functions in Fig. 9(a), notice
that the curves for these mean- and contrast-normalized
data all demonstrate a decrease in slope, suggesting that
more templates are needed to describe the high-contrast
patches to the same level of accuracy (vector norm of the
difference) as that achieved when patches of all contrasts
are considered. However, notice from Fig. 10(a) that the
relative nearest-neighbor-distance behavior (rank order)
of these various curves remains intact; in particular,
natural scenes still fall below spectrum-equalized noise.
Thus, the redundancy found in natural scenes cannot be

Fig. 10. (a) Proximity distribution and (b) RD curves for mean-
and contrast-normalized 8�8 patches. The horizontal axis in
both graphs denotes the number of samples N. The vertical axis
in (a) denotes the corresponding E�log2 DN

* 	 estimated via a
sample mean over all target patches; the vertical axis in (b) de-
notes the corresponding RD. Black circles, Gaussian white noise;
gray circles, 1/ f noise; light-gray circles, spectrum-equalized
noise; white circles, 1/ f2 noise; stars, natural scenes. The solid
gray line in (b) denotes the intrinsic dimensionality of k=62 for
all data sets.

Fig. 11. (a) Proximity distribution and (b) RD curves for mean-
and contrast-normalized 8�8 patches of whitened natural
scenes and of Gaussian white noise, spectrum-equalized noise,
and natural scenes (replotted from Fig. 10). In both graphs, the
horizontal axis denotes the number of samples N; the vertical
axis in (a) denotes the corresponding E�log2 DN

* 	 estimated via a
sample mean over all target patches; and the vertical axis in (b)
denotes the corresponding RD. Black circles, Gaussian white
noise; light-gray circles, 1/ f noise; black stars, natural scenes;
white stars, whitened natural scenes. The solid gray line in (b)
denotes the intrinsic dimensionality of k=62 for all data sets.
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attributed solely to the power spectrum, nor can it attrib-
uted to the combination of the power spectrum and the
prevalence of low-contrast patches.

To further investigate the effects of the power spectrum
on nearest-neighbor distances, proximity distribution
functions were measured for whitened natural scenes. To
each of the 71 natural scenes (obtained as described in
Subsection 2.A), the following whitening filter was ap-
plied:

H�u,v� = ��u2 + v2�1.38, �11�

where u ,v� �0,1023�, and where the exponent 1.38 was
measured by linearly regressing log magnitude (of the
DFT coefficients averaged over all orientations) on log fre-
quency (radial distance from zero frequency) using all 71
images. The filtering was performed in the frequency do-
main by means of the DFT and multiplication of spectra.
The pixel values of the resulting images were offset and
scaled to span the range 0–255 and then quantized to
8 bits. The images chosen for groups J and N were whit-
ened versions of the same images used for these groups in
Experiment 1 and in Subsection 3.B; thus, groups J and
N consisted of approximately 68,000 and 900,000 patches,
respectively.

Figures 11(a) and 11(b) depict the resulting proximity
distribution and RD curves, respectively, for Gaussian
white noise (black circles), spectrum-equalized noise
(light-gray circles), natural scenes (black stars), and whit-
ened natural scenes (white stars). The application of a
whitening filter serves to remove average pairwise spatial
correlations; thus, if the redundancy in the high-contrast
patches of natural scenes were due solely to these corre-
lations, we would expect the nearest-neighbor-distance
behavior of whitened natural scenes to be identical to that
of Gaussian white noise. Instead, we find the proximity
distribution function for whitened natural scenes falls be-
low the proximity distribution function for Gaussian
white noise, which indicates that fewer templates are re-
quired (on average) to describe a whitened natural scene
to the same level of accuracy as that achieved for Gauss-
ian white noise. These data further suggest that the re-
dundancy of natural scenes cannot be attributed solely to
a combination of the spectrum and the prevalence of low-
contrast patches.

4. ENTROPY EXTRAPOLATIONS
(XENTROPY)

For the 3�3 patches analyzed in Subsection 2.D, the RD
curves had converged to the intrinsic dimensionality of
the data �k=9�, whereas the RD curves shown in Fig. 9(b)
for the 8�8 patches requires a prohibitively large num-
ber of samples to converge to a dimensionality of k=64. As
a result, applying Eq. (8) using the corresponding proxim-
ity distribution data would result in a poor estimate of en-
tropy. To overcome this limitation, we explore three tech-
niques for extrapolating the proximity distribution data
and thereby estimating entropy based on the extrapola-
tions. We define the term XEntropy to denote this ex-
trapolated entropy estimate and to reinforce the notion
that these are only estimates of the entropy based on ex-
trapolations.

We use two constraints to aid in the extrapolations: (1)
The expected log nearest-neighbor distance is a monotoni-
cally decreasing function of the number of samples; and
(2) the RD curves for r�r white noise, spectrum-
equalized noise, and natural scene patches must eventu-
ally converge to the intrinsic dimensionality of k=r2. The
first constraint specifies that the proximity distribution is
necessarily a monotonically decreasing function (i.e., the
slopes must be less than zero and therefore the RD func-
tions must be greater than zero). The second constraint
specifies that for 8�8 patches, the RD curves will even-
tually converge to a value of 64. Thus, we extrapolate the
proximity distribution data by extrapolating the corre-
sponding RD data.

Figure 12 depicts the RD curves for 8�8 patches of
Gaussian white noise, spectrum-equalized noise, and
natural scenes. The RD curves for spectrum-equalized
noise and natural scenes are replotted from Fig. 9(b). The
RD curve for Gaussian white noise (indicated by the black
curve in Fig. 12) was computed via Eq. (10) for N

� �1,250�, and the remainder of the curve was fitted with
RD�N�=−�log N+b0�2 / �a2�log N�2+2a2b0 log N+a1b0−a0�,
where the parameters a2=−1/64, a1=4.13, a0=65.05, and
b0=13.02 were computed via the Nelder–Mead simplex
method.45 The form of this function is by no means opti-
mal; it was chosen (1) for its relative simplicity (it is a ra-
tional function in log N); (2) for the fact that in the limit of
large N, RD�N�=1/a2=64; and (3) because it provides de-
cent fits to all three data sets (noise, spectrum-equalized
noise, and natural scenes). However, although we believe
that this is a rational extrapolation, we also believe that
future work will allow more theoretically accurate predic-
tions. In particular, we believe that it is possible to use
the known statistics (e.g., the power spectra) to guide the
bounds of the extrapolations. The corresponding entropy
estimate for Gaussian white noise obtained by using Eq.

Fig. 12. RD curves for 8�8 Gaussian white noise (black curve),
spectrum-equalized noise (light-gray circles), and natural scenes
(stars). The RD curve for the Gaussian white noise was computed
at values of N� �1,250� via Eq. (10), and the remainder of the
curve was fitted with relativedimensionality�N�=−�log N

+b0�2 / �a2�log N�2+2a2b0 log N+a1b0−a0�, where a2=−1/64, a1

=4.13, a0=65.05, and b0=13.02 were computed via the Nelder–
Mead simplex method. The data for the spectrum-equalized noise
and natural scenes are replotted from Fig. 9(b). The solid gray
line denotes the intrinsic dimensionality of k=64 for all data
sets.
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(8) with k=64 and N=2300 yields a value of 449 bits
�7.0 bits/pixel�; the actual entropy computed via Eq. (9) is
462 bits �7.2 bits/pixel�.

In the following sections, we assume three different
forms of the RD curves of spectrum-equalized noise and
natural scenes—form A, form B, and form C—which give
rise to three corresponding techniques for extrapolating
the proximity distribution data and thereby give rise to
three entropy estimates. These extrapolated entropy esti-
mates are denoted as XEntropy A, XEntropy B, and XE-
ntropy C, respectively. We describe each of these extrapo-
lation techniques so as to make explicit how different
assumptions can lead to different estimates of entropy. Al-
though XEntropy A and XEntropy B provide useful upper
bounds with simple assumptions, we believe our best es-
timates of the true entropy are derived from XEntropy C.
However, we are also confident that future work can im-
prove on these estimates.

A. XEntropy A
Form A of the RD curves for spectrum-equalized noise and
natural scenes assumes that the curves follow a straight
line (in log N) until they reach a dimensionality of 64 and

thereafter remain at that value. Figure 13(a) depicts the
resulting RD curves under this assumption. The linear
portion of each extrapolated RD curve was obtained by fit-
ting the last five measured data points with a first-degree
polynomial in log N: RD�N�=1.13 log N+6.45 for
spectrum-equalized noise, RD�N�=0.94 log N−0.19 for
natural scenes. The resulting extrapolated proximity dis-
tribution functions are shown in Fig. 13(b).

Figure 14 shows the entropy estimate for Gaussian
white noise (449 bits; 7.0 bits/pixel) and extrapolated en-
tropy estimates (XEntropy A) for spectrum-equalized
noise and natural scenes computed by using Eq. (8) with
k=64 and N=2300. For spectrum-equalized noise, the XE-
ntropy A is 344 bits �5.4 bits/pixel�; the actual entropy is
328 bits [5.1 bits/pixel; computed via Eq. (9); see Ref. 44].
For the sample of natural scenes used here, XEntropy A is
212 bits �3.3 bits/pixel�.

B. XEntropy B
Form B of the RD curves for spectrum-equalized noise
and natural scenes assumes that the curves follow a
straight line (in log N) until they intersect with the RD
curve for Gaussian white noise, whereupon all subse-
quent RD values are equivalent to the RD values for
Gaussian white noise. Figure 15(a) depicts the resulting
RD curves under this assumption; the linear portion of
each extrapolated RD curve was obtained as described in
Subsection 4.A. The resulting extrapolated proximity dis-
tribution functions are shown in Fig. 15(b). Essentially,
XEntropy B relies on the idea that the slowest possible
falloff in the proximity distribution occurs for Gaussian
noise. Therefore, if we assume that the proximity distri-
bution for natural scenes does not decrease any faster
that that determined by the linear portion in Fig. 15(a),
then XEntropyB provides an upper bound on the entropy.
We believe this is a rational assumption and provides a
clear bound. However, as we will demonstrate in the fol-
lowing section, we believe that we can provide an extrapo-
lation that provides a more accurate estimate.

Fig. 13. (a) RD curves and (b) proximity distribution functions
for 8�8 Gaussian white noise (black curve), and (a) extrapolated
RD and (b) proximity distribution curves for spectrum-equalized
noise (gray circles) and natural scenes (stars) by assuming form
A of the RD curves. Under from A, the RD curves follow a
straight line (in log N) until they hit the dimensionality value of
64.

Fig. 14. Entropy estimate for Gaussian white noise and ex-
trapolated entropy estimates (XEn curves) assuming form A of
the RD curves (XEntropy A) for spectrum-equalized noise and
natural scenes. The entropy estimates computed by using Eq. (8)
with k=64 and N=2300 are 5.4 bits/pixel and 3.3 bits/pixel for
spectrum-equalized noise and natural scenes, respectively; the
true entropy of spectrum-equalized noise computed via Eq. (9) is
5.1 bits/pixel.
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Figure 16 shows the entropy estimate for Gaussian
white noise replotted from Fig. 14 (449 bits;
7.0 bits/pixel) and the extrapolated entropy estimates
(XEntropy B) for spectrum-equalized noise and natural
scenes computed by using Eq. (8) with k=64 and N=2300.
For spectrum-equalized noise, XEntropy B is 337 bits
�5.3 bits/pixel�; the actual entropy is 328 bits [
5.1 bits/pixel; computed via Eq. (9)]. For the sample of
natural scenes used here, XEntropy B is 206 bits
�3.2 bits/pixel�.

C. XEntropy C
While the previous two measures provide upper bounds
on the entropy, XEntropy C incorporates our best at-
tempts to extrapolate to the true entropy of the data.
Form C of the RD curves for spectrum-equalized noise
and natural scenes assumes that the curves are described
by the same functional form as the RD curve for Gaussian
white noise,

RD�N� = − �log N + b0�2/�a2�log N�2 + 2a2b0 log N + a1b0 − a0�,

�12�

Fig. 15. (a) RD curves and (b) proximity distribution functions
for 8�8 Gaussian white noise (black curve), and (a) extrapolated
RD and (b) proximity distribution curves for spectrum-equalized
noise (gray circles) and natural scenes (stars) by assuming form
B of the RD curves. Under form B, the RD curves follow a
straight line until they intersect with the RD curve for Gaussian
white noise, whereupon all subsequent RD values are equivalent
to the RD values for Gaussian white noise.

Fig. 16. Entropy estimate for Gaussian white noise and ex-
trapolated entropy estimates (XEn curves) assuming form B of
the RD curves (XEntropy B) for spectrum-equalized noise and
natural scenes. The entropy estimates computed by using Eq. (8)
with k=64 and N=2300 are 5.3 bits/pixel and 3.2 bits/pixel for
spectrum-equalized noise and natural scenes, respectively; the
true entropy of spectrum-equalized noise computed via Eq. (9) is
5.1 bits/pixel.

Fig. 17. (a) RD curves and (b) proximity distribution functions
for 8�8 Gaussian white noise (black curve), and (a) extrapolated
RD and (b) proximity distribution curves for spectrum-equalized
noise (gray circles) and natural scenes (stars) by assuming form
C of the RD curves. Under form C, the RD curves assume the
same functional form as the RD curve for Gaussian white noise
[Eq. (12)], where a2=−1/64, a1=4.13, a0=65.05, and the param-
eter b0 was adjusted to fit the measured data (b0=10.88 for
spectrum-equalized noise, b0=8.10 for natural scenes).
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where a2=−1/64, a1=4.129, a0=65.05, and the parameter
b0 was adjusted to fit the measured data. For spectrum-
equalized noise b0=10.88, and for natural scenes b0

=8.10 as determined by the Nelder–Mead simplex
method. Figure 17(a) depicts the resulting RD curves un-
der this assumption. The resulting extrapolated proxim-
ity distribution functions are shown in Fig. 17(b).

Figure 18 shows the entropy estimate for Gaussian
white noise replotted from Fig. 14 (449 bits;
7.0 bits/pixel) and extrapolated entropy estimates (XEn-
tropy C) for spectrum-equalized noise and natural scenes
computed by using Eq. (8) with k=64 and N=2300. For
spectrum-equalized noise, XEntropy C is 324 bits
�5.1 bits/pixel�, which is very close to the actual entropy
of 328 bits [5.1 bits/pixel; computed via Eq. (9)]. For the
sample of natural scenes used here, XEntropy C is
184 bits �2.9 bits/pixel�.

In summary, among the three extrapolation techniques
examined here, we believe that XEntropy C provides the
best estimate of entropy. Clearly, a goal of future research
is to improve on both the accuracy and robustness of these
estimates. Furthermore, the XEntropy C estimate of
184 bits �2.9 bits/pixel� is dependent on the particular
sample of images used here. A more extensive sample of
natural scenes will certainly give rise to a better estimate
of the entropy of natural scenes.

5. OTHER PATCH SIZES

In the previous experiments, patches of size 8�8 pixels
were used. To investigate the effects of patch size on en-
tropy, we measured proximity distribution functions for
16�16 patches of Gaussian white noise and natural
scenes. Indeed, if the 8�8 subpatches of a 16�16 patch
are independent, then one would expect the entropy of the
16�16 patches to be 4 times greater than that of the 8
�8 patches. Furthermore, if the subpatches are indepen-
dent, then we would expect the relative dimensionality
for a given proximity to increase by a factor of 4 by dou-

bling the size of the patch (e.g., the RD of 16�16 patches
at a given proximity would be 4 times the RD of 8�8
patches at that same proximity).

Figure 19(a) depicts the proximity distribution func-
tions for patches of size 8�8 (black circles) and 16�16
(white circles) selected from Gaussian white-noise images
created with �=36 (see Section 2). The proximity distri-
bution function for the 8�8 patches has been offset such
that the average log nearest-neighbor distance is 5.0 at
N=1; accordingly, the proximity distribution function for
the 16�16 patches has been offset to maintain the rela-
tive vertical displacement between curves. Also shown in
Fig. 19(a) (as solid curves) are the predicted proximity
distribution functions that would result if the 8�8 sub-
patches of the 16�16 patches were statistically indepen-
dent (i.e., requiring 4 times as many samples to achieve
the same nearest-neighbor distances as those obtained
using the 8�8 patches). Notice that the actual proximity
distribution function for the 16�16 Gaussian white-noise
patches is very much in agreement with the predicted
proximity distribution function, which confirms that the
Gaussian white-noise subpatches are indeed indepen-
dent.

Figure 19(b) depicts the proximity distribution func-
tions for patches of size 8�8 (black circles) and 16�16

Fig. 18. Entropy estimate for Gaussian white noise and ex-
trapolated entropy estimates (XEn curves) assuming form C of
the RD curves (XEntropy C) for spectrum-equalized noise and
natural scenes. The entropy estimates computed by using Eq. (8)
with k=64 and N=2300 are 5.1 bits/pixel and 2.9 bits/pixel for
spectrum-equalized noise and natural scenes, respectively; the
true entropy of spectrum-equalized noise computed via Eq. (9) is
5.1 bits/pixel.

Fig. 19. Proximity distribution functions for patches of size 8
�8 (black circles) and 16�16 (white circles). (a) Data for Gauss-
ian white noise; (b) data for natural scenes. The solid black
curves in each graph denote the proximity distribution functions
that would result if the 8�8 subpatches were statistically inde-
pendent (thus requiring 4 times the entropy of 8�8 patches to
describe a 16�16 patch). Note that the predicted curves have
been vertically offset to match their corresponding data.
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(white circles) selected from the natural scenes (see Sec-
tion 2). The proximity distribution function for the 8�8
patches has been offset such that the average log nearest-
neighbor distance is 5.0 at N=1, and the proximity distri-
bution function for the 16�16 patches have been offset to
maintain the relative vertical displacement between
curves. Figure 19(b) also shows (as solid curves) the pre-
dicted proximity distribution functions that would result
if the 8�8 subpatches were independent. Whereas in the
Gaussian noise condition where the actual proximity dis-
tribution function for the 16�16 patches was similar to
the corresponding proximity distribution function pre-
dicted assuming independence, here we see that the ac-
tual proximity distribution function is substantially lower
than the proximity distribution function predicted assum-
ing independence. These data demonstrate that the 8�8
subpatches of the 16�16 patches are not independent;
rather, natural scenes demonstrate a marked statistical
dependency across space.

Figures 20(a) and 20(b) show corresponding data mea-
sured for mean- and contrast-normalized patches (see
Subsection 3.B) of size 8�8 and 16�16 pixels. Observe in
Fig. 20(a), which depicts the results for Gaussian white-
noise patches, that the 8�8 high-contrast subpatches are
nearly independent; i.e., the actual proximity distribution
function for the high-contrast 16�16 patches (white
circles) is similar to the proximity distribution functions
predicted assuming independence (solid curves). How-
ever, as shown in Fig. 20(b), the data obtained for high-
contrast natural-scene patches give rise to a proximity
distribution function that is markedly lower than the
proximity distribution function predicted assuming inde-
pendence. These data suggest that the high-contrast pat-

terns found in natural scenes demonstrate a statistical
dependency across space.

Unfortunately, extrapolation of the proximity distribu-
tion for the 16�16 patches is more problematic than for
the 8�8 patches because the 16�16 RD curve is very far
from converging on the intrinsic dimensionality of 256.
However, if we assume that for numbers of samples be-
yond that measured ��218�, the remaining portion of the
proximity distribution for the 16�16 patches continues
as if the 8�8 subpatches were independent, then we ob-
tain an estimate of 567 bits �2.2 bits/pixel� for the en-
tropy of the 16�16 natural-scene patches. Clearly, ob-
taining sufficient numbers of samples to extrapolate the
proximity distributions for larger patches proves quite
difficult. Although we expect further reductions in the en-
tropy rate (bits/pixel) for larger patches, the ultimate en-
tropy one obtains with larger patches (e.g., 256�256) will
be a function of both the image content and the noise in
the signal.

6. DISCUSSION

In this paper, we have used proximity distributions to in-
vestigate the entropy and dimensionality of natural
scenes. In general, the technique employed here requires
far fewer samples than that required for directly estimat-
ing the probability distribution and thereby estimating
entropy. For example, for 3�3 patches that follow a uni-
form distribution, at least 272 samples would be required
to measure the probability distribution and thereby mea-
sure entropy. However, as the dimensionality grows, and
even for 8�8 patches, nearest-neighbor-based techniques
too require a prohibitively large number of samples. Al-
though we have proposed three methods of extrapolation,
verifying and improving the accuracy of the extrapola-
tions is certainly an area that requires further investiga-
tion. Still, by comparing the entropy estimates of different
image types, we can gain insight into the contributions of
various forms of redundancy to the entropy.

It is generally accepted that the intensity values of im-
ages drawn from the natural environment possess a de-
gree of statistical redundancy. Several factors contribute
to this redundancy: (1) Natural scenes typically demon-
strate 1/ f power spectra (1/ f/2amplitude spectra) where
 is typically in the range of 1.4 to 2.8. The dominance of
low spatial frequencies in natural scenes implies slow
spatial changes in intensity, and thus neighboring inten-
sity values are spatially correlated. (2) The local structure

Fig. 20. Proximity distribution functions for patches of size 8
�8 (black circles) and 16�16 (white circles) in which each patch
was mean and contrast normalized as described in Subsection
3.B. (a) Data for Gaussian white noise; (b) data for natural
scenes. The solid black curves in each graph denote the proximity
distribution functions that would result if the 8�8 subpatches
were statistically independent (thus requiring 4 times the en-
tropy of 8�8 patches to describe a 16�16 patch). Note that the
predicted curves have been vertically offset to match their corre-
sponding data.

D. M. Chandler and D. J. Field Vol. 24, No. 4 /April 2007 /J. Opt. Soc. Am. A 937



in natural scenes is non-Gaussian; rather, marginal prob-
ability distributions of discrete cosine transform and dis-
crete wavelet transform coefficients are typically well
modeled by using a leptokurtotic generalized Gaussian
density.46 (3) The local mean luminance and local lumi-
nance contrast in natural scenes follow a non-Gaussian
distribution; many of the patches drawn from natural
scenes are devoid of significant contrast.

Although these forms of redundancy have been well
studied, there remains the question of how much of the
redundancy of images is attributable to each form. Ac-
cordingly, in addition to natural scenes, we have mea-
sured the entropy of patches of Gaussian white noise and
patches of spectrum-equalized noise; and we have mea-
sured the entropy of mean- and contrast-normalized ver-
sions of all image types. This approach of normalizing the
images according to different parameters provides insight
into how these different forms of redundancy contribute
to the entropy.46

A. Effects of Spatial Correlations
Much of the redundancy in natural scenes is commonly
attributed to correlations described by the power (ampli-
tude) spectra. Clearly, data that are spatially correlated
are also redundant. However, the reverse is not true:
Data that are redundant need not be correlated; rather,
the redundancies can arise from other forms of statistical
dependence. Indeed, several investigators have shown
that the statistical dependencies in natural scenes arise
from more than just the spatial correlations.1,4,5,7,8

Here, we have measured the entropy of 3�3 patches of
Gaussian noise, 3�3 patches of natural scenes, and 3
�3 patches of Gaussian noise with a power spectrum
equivalent to that of natural scenes (spectrum-equalized
noise). In addition, we have provided an extrapolated es-
timate of entropy (XEntropy) of 8�8 patches of these
three image types. For the spectrum-equalized noise, the
real and imaginary components of each DFT coefficient of
the spectrum-equalized noise were drawn from a Gauss-
ian distribution with standard deviation equivalent to the
standard deviation measured for the corresponding Fou-
rier components of the natural scenes. Thus, the
spectrum-equalized noise and natural scenes possess the
same power spectrum, although the distributions of local
mean, contrast, and frequency components remained
unique for each image type.

For 3�3 patches of Gaussian white noise, the entropy
was estimated to be 63 bits �7.2 bits/pixel�; this entropy is
equivalent to that computed directly via Eq. (9). For 3
�3 patches of spectrum-equalized noise, the entropy was
estimated to be 49 bits �5.5 bits/pixel�, which is also
equivalent to the entropy computed directly via Eq. (9).
For 3�3 patches of the natural scenes used here, the en-
tropy was estimated to be 35 bits �3.9 bits/pixel�. These
results reveal that for the sample of natural scenes used
here, 3�3 natural scenes have approximately 71% the
entropy of 3�3 images with the same power spectra but
random phase spectra.

For 8�8 patches of Gaussian white noise, our
XEntropy C estimate was 449 bits �7.0 bits/pixel�; the ac-
tual entropy computed via Eq. (9) was 462 bits
�7.2 bits/pixel�. The XEntropy C estimate for 8�8

patches of spectrum-equalized noise was 324 bits
�5.1 bits/pixel�, which is very close to the actual entropy
of 328 bits �5.1 bits/pixel� computed via Eq. (9). The
XEntropy C estimate for 8�8 patches of natural scenes
was 184 bits �2.9 bits/pixel�. Although there are certainly
limitations to these extrapolated measures, these results
suggest that for the sample of natural scenes used here,
8�8 natural scenes have approximately 57% the entropy
of 8�8 images with the same power spectra but random
phase spectra.

B. Effects of Local Mean and Contrast
In addition to the characteristic power spectrum, natural
scenes also exhibit non-Gaussian distributions of local
mean luminance and local luminance contrast. As we
noted, patches drawn from natural scenes are often de-
void of significant contrast. These factors also contribute
to the statistical redundancy (reduced entropy) of natural
scenes. Accordingly, in Subsection 3.B, we also examined
the nearest-neighbor-distance behavior of mean- and
contrast-normalized 8�8 patches to investigate the en-
tropy of the underlying patterns found in natural scenes
without regard to the absolute luminance or RMS con-
trast.

By normalizing for RMS contrast, the absolute entropy
depends on the contrast (variance) to which the data are
normalized. Accordingly, here we report entropy esti-
mates relative to the entropy of the mean- and contrast-
normalized Gaussian white noise. By applying the XEn-
tropy C extrapolation to the mean- and contrast-
normalized proximity distribution functions, we find that
for the sample of natural scenes used here, 8�8 high-
contrast patches of natural scenes have approximately
57% of the entropy of 8�8 high-contrast patches of
Gaussian white noise, and 8�8 high-contrast patches
with the same power spectrum as that of 8�8 natural
scenes have approximately 87% of the entropy of 8�8
high-contrast patches of Gaussian white noise. Further-
more, 8�8 high-contrast patches of natural scenes have
approximately 77% of the entropy of 8�8 high-contrast
patches with the same power spectra but random phase
spectra.

C. Relative Dimensionality
As mentioned in Section 1, there exists a wide body of re-
search geared toward measuring intrinsic
dimensionality28–34 (see Ref. 35 for a review). Here, we
have emphasized the RD of the data as a function of the
sampling density. Our main assumption is that, given a
sufficiently large number of samples, the RD converges on
the intrinsic dimensionality. We have measured the RD of
3�3 and 8�8 patches of Gaussian white noise,
spectrum-equalized noise, and natural scenes, as well as
the RD of 8�8 patches of 1/ f and 1/ f2 noise.

For 3�3 patches (Subsection 2.D), the RD curves for
Gaussian white noise, spectrum-equalized noise, and
natural scenes all converge on the same (intrinsic) dimen-
sionality of 9, but the curves converge at different rates.
Specifically, for samples sizes �217, natural scenes appear
lower dimensional than both Gaussian white noise and
spectrum-equalized noise (at corresponding sample sizes),
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and spectrum-equalized noise appears lower dimensional
than Gaussian white noise (at corresponding sample
sizes).

For 8�8 patches (Subsection 3.A), our extrapolations
are derived from the assumption that the RD curves con-
verge on a value of 64 given a sufficiently large number of
samples. For samples sizes �218, 1 / f2 noise appears to be
lower dimensional than natural scenes, natural scenes
appear lower dimensional than spectrum-equalized noise,
spectrum-equalized noise appears lower dimensional
than 1/ f noise, and 1/ f noise shows lower dimensionality
than Gaussian white noise. These ranks are approxi-
mately maintained for mean- and contrast-normalized 8
�8 patches (Subsection 3.B) with the exception that
given N�210 samples, natural scenes appear lower di-
mensional than 1/ f2 noise.

In contrast to dimensionality-reduction techniques
such as principal components analysis or more recently
developed nonlinear techniques,33,34 RD does not specify a
particular technique for representing the data given a
fixed number of dimensions (e.g., unrolling the Swiss
roll), nor does it provide information regarding what the
dimensions represent. Instead, the RD of a data set speci-
fies only the dimensionality the data appear to have given
the particular sampling density (i.e., the number of
samples). Clearly, this RD depends on the technique used
to explore the data space; e.g., RD is linked to the sam-
pling method and to the metric used to measure the dis-
tance between samples. Here, we have measured RD by
using what is arguably one of the simplest approaches:
measuring the average (log) distance to the single nearest
neighbor for samples drawn randomly from the space.
Other techniques, such as using the k nearest neighbors
�k�1� or using a more uniform sampling technique, may
very well lead to different RDs.

However, regardless of the approach used to measure
RD, the primary utility of the RD curve is its ability to
specify the maximum number of samples required to re-
construct the geometry of the data space. Namely, when
the RD curve of a data set has converged to the intrinsic
dimensionality of the data, there are a sufficient number
of samples to uniquely specify the space. Performing the
actual reconstruction of the space from those samples is a
task suitable for other algorithms.33,34

D. Other Estimates of the Entropy of Natural Scenes
Previous researchers have applied different approaches to
investigate the entropy of natural images. Parks47 em-
ployed a variant of Shannon’s classical guessing game in
which human subjects were used as optimal predictors to
estimate the entropy of half-tone (binary) images; the en-
tropy of these binary images was estimated to be approxi-
mately 0.3 bits/pixel. Tzannes et al.48 used a similar tech-
nique to estimate the entropy of 3-bit images; the entropy
in Ref. 48 was estimated to be 1.6 bits/pixel. These
psychophysical-based approaches were later extended by
Kersten3 to estimate the entropy rate of 4-bit images;
Kersten estimated lower and upper bounds on entropy
rates of approximately 0.8 and 1.5 bits/pixel, respectively.

Other computational approaches have also been used
to investigate the information content in natural scenes.
Via a Voronoi tessellation of the space of zero-mean

contrast-normalized 3�3 patches, Lee et al.49 have re-
ported that both natural scenes and range images occupy
only a small fraction of the surface area of the 7-sphere.
More recently, Costa and Hero50 have developed a mea-
sure of Renyi entropy that was used to estimate the en-
tropy of images from the Yale Face Database.

Here, we have used a nearest-neighbor-based tech-
nique and an extrapolation (XEntropy C) to estimate an
entropy of 184 bits for 8�8 patches of natural scenes. Al-
though differences in patch size and luminance resolution
make it difficult to perform a direct comparison of our re-
sults with previous estimates, maximum-quality JPEG
compression (which is a block-based strategy that oper-
ates on 8�8 blocks) provides an average bit rate of
4.1 bits/pixel (263 bits per 8�8 patch) for the natural
scenes used in this study, a value which is 42% greater
than our estimate of entropy.

Of course, knowledge of the entropy of 8�8 patches
does not immediately reveal the entropy of larger-sized
images (e.g., images of size 512�512 pixels) unless the
8�8 patches within the larger-sized images are statisti-
cally independent. Still, one can use the entropy of 8�8
patches to bound the entropy of larger-sized images.
Namely, if h�X8�8� is the entropy of 8�8 patches of some
image class, then the entropy of an N�N image of that
class �N�8� is given by h�XN�N�� �N /8�2h�X8�8�, with
equality if the 8�8 patches are independent.

E. Other Applications
The application of nearest-neighbor-based techniques to
estimating entropy and dimensionality is not limited to
natural scenes. Victor19 has applied the technique to esti-
mate the entropy of neural spike trains. Kraskov et al.20

has applied a related technique to estimate the mutual in-
formation in both gene expression data and ECG signals.
Kybic41 has proposed a related estimate of mutual infor-
mation for image registration applications. We do, how-
ever, wish to note that the estimated entropy is only one
component of the analysis in this paper. We believe the
full proximity distributions described here provide impor-
tant insights into the data that go beyond the one number
described by the estimated entropy.

We are currently developing extensions of the tech-
niques presented here to investigate the amount of addi-
tional information provided by color images (in compari-
son with luminance-only images); the amount of
information provided by the phase spectrum, including
measurements of the mutual information between the
power and the phase spectra of natural scenes; and the
amount of information in natural paintings. In addition,
we are investigating the application of the techniques
presented here to other types of signals, including natural
sounds and video.

Nearest-neighbor-based techniques also have a long
history in the field of pattern classification (see Refs. 51
and 52). Indeed, the entropy of a data set is clearly re-
lated to the difficulty of classifying data from the set. We
believe the use of proximity distributions for natural
scenes will prove useful for understanding scene classifi-
cation and can provide insights into the differences be-
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tween two images classes. We are currently investigating
the use of proximity distributions for classification pur-
poses.

In theory, the techniques described here can be applied
to a wide range of data types. However, it must be
stressed that the techniques rely on the assumption that
given a sufficient number of samples, the proximity dis-
tribution converges to a linear function of the (log) num-
ber of samples; i.e., the quantity −d log2�N� /dE�log2 DN

* 	
is equivalent to the intrinsic dimensionality of the data
for sufficiently large N. Clearly, there exist forms of data
for which this assumption does not hold or for which the
notion of distance is difficult to quantify (e.g., language),
and thus a goal of future research might involve modifi-
cations of nearest-neighbor-based techniques and/or the
development of proper distance metrics for these types of
data.

7. CONCLUSIONS

This paper presented the results of three experiments
performed to investigate the entropy and dimensionality
of natural scenes. Nearest-neighbor distances were mea-
sured for a large collection of samples drawn from various
types of images, and the resulting proximity distributions
were used to examine the entropies and RDs of the image
types.

Our current results indicate that 8�8 natural-scene
patches have less than half the entropy of 8�8 Gaussian
white-noise patches. This reduction in entropy cannot be
attributed solely to the power spectrum, nor can it be at-
tributed to the prevalence of low-contrast patches. Fur-
thermore, the ratio of entropy to patch size decreases with
increasing size, suggesting that natural scenes demon-
strate a statistical dependency across space. In addition,
given N=218 samples, 8�8 natural-scene patches exhibit
a RD that is substantially less than the RD of 8�8
Gaussian white-noise patches.

The techniques presented here require far fewer
samples than that required to estimate the entropy by
first estimating the full probability distribution; however,
the presented techniques still possess several limitations.
In particular, for the images tested here, even 3�3
patches required roughly 217 samples to obtain accurate
estimates of entropy. Although 217 samples is not compu-
tationally prohibitive, often one does not have access to
this many samples. Furthermore, for 8�8 patches, ex-
trapolations of the data were required; these extrapola-
tions relied on the fact that the RD curves eventually con-
verged on the intrinsic dimensionality of the data, and
therefore the extrapolations require knowledge of this in-
trinsic dimensionality. However, even in those cases
where the data have not converged and extrapolations are
tentative, the proximity distribution provides important
insights into the underlying forms of redundancy. By com-
paring these distributions for different signal classes (e.g.,
those with the same power spectra), we can gain insights
into the relative contribution of different forms of redun-
dancy.

We certainly do not want to imply that this technique
provides a definitive answer to the entropy question. Fu-
ture research in this area will certainly lead to improved

methods of extrapolation and consequently lead to im-
proved estimates of entropy. However, we believe the re-
sult provides a new approach to estimate entropy and di-
mensionality in complex data sets. Our results have so far
been limited to relatively small patches, but we believe
that with some basic assumptions, we can estimate ratio-
nal bounds on the entropy for much larger data sets.
Overall, we hope this approach will provide insights into
both the fundamental limits of compression as well as the
question of how different statistical properties relate to
the total redundancy that exists in complex data sets.
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