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ESTIMATES OF THE MEAN FIELD EQUATIONS

WITH INTEGER SINGULAR SOURCES:

NON-SIMPLE BLOWUP

Ting-Jung Kuo & Chang-Shou Lin

Abstract

Let M be a compact Riemann surface, αj > −1, and h (x) a
positive C2 function of M . In this paper, we consider the following
mean field equation:

Δu (x)+ρ

(
h (x) eu(x)∫
M

h (x) eu(x)
−

1

|M |

)
= 4π

d∑
j=1

αj

(
δqj −

1

|M |

)
in M .

We prove that for αj ∈ N and any ρ > ρ0, the equation has
one solution at least if the Euler characteristic χ (M) ≤ 0, where
ρ0 = max

M

(2K −Δ lnh + N∗), K is the Gaussian curvature, and

N∗ = 4π
∑

d

j=1 αj . This result was proved in [10] when αj = 0.
Our proof relies on the bubbling analysis if one of the blowup
points is at the vortex qj . In the case where αj /∈ N, the sharp
estimate of solutions near qj has been obtained in [11]. However,
if αj ∈ N, then the phenomena of non-simple blowup might occur.
One of our contributions in part 1 is to obtain the sharp estimate
for the non-simple blowup phenomena.

1. Introduction

In this paper, we consider the following mean field equation of Liou-
ville type:

(1.1)

{
Δu (x) + ρ h(x)eu(x)∫

M
h(x)eu(x)dx

= 4π
∑d

j=1 αjδqj in Ω

u (x) = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain in R2, αj > −1, δqj is the Dirac

measure at qj , and ρ ∈ R+, or
(1.2)

Δu (x) + ρ

(
h (x) eu(x)∫

M h (x) eu(x)dx
−

1

|M |

)
= 4π

d∑
j=1

αj

(
δqj −

1

|M |

)
in M,
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where (M,g) is a compact Riemann surface and |M | is the area. Here,
Δ stands for the Beltrami–Laplacian operator on (M,g). Throughout
the paper, we always assume h (x) to be a positive C2 function either on
Ω̄ or on M and u|∂Ω = 0 for (1.1) or

∫
M udx = 0 for (1.2), respectively.

Equations (1.1) and (1.2) have arisen in many different areas in math-
ematics and physics. For example, we consider the following singular
Liouville equation:

(1.3) Δu + eu = ρδ0 on T,

where T is a flat torus. By integration, equation (1.3) becomes a mean
field type equation

Δu + ρ

(
eu∫
T eu

−
1

|T |

)
= ρ

(
δ0 −

1

|T |

)
on T .

In geometry, equation (1.3) comes form a prescribed curvature prob-
lem. In general, for a compact Riemann surface (M,g) with constant
Gaussian curvature, we may consider the following equation:

(1.4) Δw (x) + h (x) ew(x) − 2k = 4π
d∑

j=1

αjδqj ,

where k is the constant Gaussian curvature of the given metric g and
h (x) is a positive function on M . For any solution w (x) to (1.4), equa-
tion (1.4) is equivalent to saying that the new metric g̃ := evg (where

v = w − ln 2) has Gaussian curvature k̃ (x) = h (x) outside those q′js.
By integrating the equation, the function w (x) satisfies the equation

(1.2) with ρ = 2k + 4π
∑d

j=1 αj . Thus, equation (1.2) can be viewed

as a generalization of (1.4). Since equation (1.4) has singular source at
qj, the conformal metric evg is degenerate at qj and is called a metric
on M with conic singularity at those q′js. In particular, when M = S2

and αj = 0 ∀j, equation (1.4) is related to the well-known Nirenberg
problem.

For equation (1.3), there is another application to the complex Monge–
Ampère equation

(1.5) det

(
∂2w

∂zi∂z̄j

)d

i,j=1

= e−w on (T\ {0})d ,

the dth Cartesian product of T\ {0}. For any solution u to equation

(1.3), the function w (z1, . . . , zd) = −
∑d

i=1 u (zi) + d log 4 satisfies (1.5)
with a logarithmic singularity along the normal crossing divisor D =

T d\ (T\ {0})d. In particular, bubbling solutions to (1.3) will give some
examples of bubbling solutions to the complex Monge–Ampère equation
(1.5). Those examples might be useful in the study of geometry related
to the degenerate complex Monge–Ampère equations.
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In physics, equation (1.2) can be derived from the mean field limit of
point vortices of the Euler flow, as studied by Caglioti et al. [13, 14], and
Chanillo and Kiessling [8]. Recently, it has drawn a lot of attention due
to its application to many physics models, including the Chern–Simons–
Higgs theory, see Jackiw and Weinberg [18], and the electroweak theory,
(see Ambjorn and Olesen [1]). In the electroweak theory of Glashow,
Salam, and Weinberg, Ambjorn and Olesen found that periodic vortices
could be realized as solutions of a self-dual Bogomol’nyi type equation,
which can be further reduced to

(1.6)

{
Δu + 4g2eu + g2ew = 4π

∑m
�=1 n�δp� in T,

Δw − 2g2eu − g2

2 cos2 θ

(
ew − ϕ2

0

)
= 0,

where ϕ0, θ, g are constants. By integration, we have

4g2
∫
T

eu =
4πN − g2ϕ2

0 |T |

sin2 θ

and

g2
∫
T

ew =
g2ϕ2

0 |T | − 4π cos2 θN

sin2 θ
,

where N =
∑m

�=1 n�. The necessary condition for solvability of (1.6) is
that N must satisfy

(1.7) g2ϕ2
0 <

4πN

|T |
<

g2ϕ2
0

cos2 θ
.

The conjecture proposed in [29] is to ask whether (1.7) is also sufficient
for the solvability of (1.6) or not. This conjecture has been partially
proved in [12] by applying the degree theory for the mean field equation.

Theorem A. Assume

4πN − g2ϕ2
0 |T |

sin2 θ
/∈ 8πN.

Then (1.7) is a necessary and sufficient condition for the existence of a

self-dual vortex solution of (1.6).

However, the conjecture is still open when
4πN−g2ϕ2

0|T |
sin2 θ

∈ 8πN (the

critical case) and the study of the equation (1.2) at αj ∈ N and ρ ∈ 8πN
might be useful to the conjecture in this critical case.

Since the RHS of equation (1.1) or (1.2) contains some singular terms,
in order to eliminate the singularity, we introduce the Green function
G (x, y) on M :

(1.8)

{
ΔG (x, y) = −δy (x) + 1 on M∫
M G (x, y) dx = 0

,

where we assume |M | = 1. Also, we set γ (x, y) = G (x, y)+ 1
2π ln |x − y|,

the regular part of G (x, y). Let γ (x) = γ (x, x). Then γ (x) is well
defined in M and γ (x) ≡constant if g is the standard metric of constant
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curvature. In terms of the Green function, a solution u (x) of (1.2) can
be written as

u (x) = w (x) + ln

∫
M

heudx + u0 (x) ,

where

u0 (x) = −4π

d∑
j=1

αjG (x, qj)

and we still use u (x) to denote w (x). Then u (x) satisfies

(1.9) Δu (x) + ρ
(
h∗ (x) eu(x) − 1

)
= 0 in M,

where

(1.10) h∗ (x) = h (x) eu0(x).

Throughout this paper, we shall consider equations (1.2) and (1.9)
equivalent, where h∗ and h are connected by (1.10).

For the last several decades, equations (1.1) and (1.2) have been ex-
tensively studied, we refer [21, 22, 23, 26, 27, 28, 29] and references
therein for the recent development of this subject. Let aj > −1, and
define the critical set Λ by

Λ =

⎧⎨⎩8πk +
∑
j∈A

8π (1 + αj)

∣∣∣∣∣∣ k ∈ N+ ∪ {0} , A ⊂ {1, · · ·, d}

⎫⎬⎭ .

It has been proved that when ρ �∈ Λ, solutions of either (1.1) or (1.2)
are uniformly bounded outside of those vortex points {q1, . . . , qd}. See
[2] for the case of all αj = 0, and [3, 4] for the general case. Thus,
the topological Leray-Schauder degree dρ for the equation (1.1) or (1.2)
can be well defined. In a series of papers, the counting formula for dρ
has been proved by Chen and Lin. See [9, 10]. A consequence of the
degree-counting formulas is that equation (1.1) or (1.2) has a solution if
αj ∈ N and ρ �∈ Λ and Ω or M are not simply connected. Among others,
Chen and Lin proved the following.

Theorem B ([12]). Let αj ∈ N ∀j, χ (M) ≤ 0 and, h (x) a positive

C1 function. If ρ /∈ Λ, then the topological degree dρ > 0 and equation

(1.2) has a solution. Here, χ (M) = 2 − 2g is the Euler characteristic

number of M .

So, (1.1) or (1.2) have been understood well if ρ �∈ Λ. In this series
of papers, we want to extend Theorem A and Theorem B to cover the
case with the parameter ρ in 8πN. Among others, we prove the following
theorem.
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Theorem 1. Let αj ∈ N ∀j, χ (M) ≤ 0, and h (x) a positive C2

function. Then there exists ρ0 > 0 such that for any ρ > ρ0 equation

(1.2) has a solution.

Theorem 1 has been proved in [10] for αi = 0 ∀i. Our method to
prove Theorem 1 is to show the following results.

Theorem 2. Let αj > −1, and let ρ0 be defined by

(1.11) ρ0 = max
M

(2K −Δ lnh + N∗) ,

where K is the Gaussian curvature of (M,g) and N∗ = 4π
∑d

j=1 αj . If

uk is a sequence of solutions to (1.2) with

lim
k→∞

ρk = ρ∞ ∈ Λ, ρ∞ > ρ0,

and

ρk > ρ∞ for large k,

then uk is uniformly bounded in C2
loc (M\ {q1, . . . , qd}).

This apriori bound was established in [3, 4] when all αj are not pos-
itive integers. When one of αj is a positive integer, some additional
difficulties arise. One of them is that the phenomenon of non-simple

blowup might happen. In the literature, there are no sharp estimates for
bubbling solutions near a non-simple blowup point. The main contribu-
tion of this article is to prove such sharp estimates near a non-simple
blowup point.

We prove the apriori bound by contradiction. Suppose there is a se-
quence of bubbling solutions uk of (1.2) with ρk and limk→∞ ρk = ρ∞ ∈
Λ and blowup at {p1, . . . , pm}. The sharp estimate of uk near their
blowup points has been done for pj /∈ {q1, . . . , qd}, or pj ∈ {q1, . . . , qd}
with αj /∈ N in [9] and [11], respectively. However, the analysis is more
complicated when pj ∈ {q1, . . . , qd} and αj is a positive integer.

For each pj , we choose r0 > 0 such that in B2r0 (pj) \ {pj}, uk has no
blowup points. Let

(1.12) α (pj) =

{
0 if pj /∈ {q1, . . . , qd}
αj if pj ∈ {q1, . . . , qd}

.

We put
(1.13)

ρk,pj = ρk

∫
Br0(pj)

h∗eukdx and ρ∞,pj = lim
k→∞

ρk,pj = 8π (1 + α (pj)) ,

(1.14) uk (pk,j) = max
Br0 (pj)

uk (x) = λk,pj ,

where pk,j is the local maximum point of uk near pj . There are two
fundamental questions that will be addressed in the present paper and
the second paper of this series:
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(i) Are the heights of the bubbles at different blowup points comparable

to each other?

(ii) What is the asymptotic formula of ρk,q − ρ∞,q in terms of the

height of the bubble at q?
Here, q is one of the vortex points with α (q) ∈ N and ρk,q, ρ∞,q are

defined by (1.13). We shall answer the first question completely in this
paper. Hereafter, the notation Ak = O (Bk) for any two sequences of
numbers means that there exists C > 0, independent of k such that
|Ak| ≤ C |Bk|. Similarly, Ak = o (Bk) means that Ak

Bk
→ 0 as k → +∞.

Our first main result is the following theorem.

Theorem 3. Let αj > −1, and let h (x) be a C1 positive function on

M . Suppose uk is a sequence of blowup solutions to (1.9) and p1, . . . , pm
are the blowup points. Then

(i)

(1.15) |λk,i − λk,j| = O (1) ∀i �= j.

(ii)

(1.16) uk (x) = −λk,i + O (1) ∀x ∈ ∂Br0 (pi) ,

where O (1) is independent of k.

The crucial step of Theorem 3 is to prove (1.16); then (1.15) follows
immediately. When α (pj) = 0 or α (pj) = αj /∈ N, (1.16) is a conse-
quence of simple blowup property. Simple blowup property means that
uk can be locally well controlled by an entire solution of its limiting
problem. More precisely, let vk (y) be

vk (y) = uk

(
εk,pjy + pj

)
−λk,j for |y| ≤

1

εk,pj
, where εk,j = e

− λk,j

2(1+α(pj)) .

Then after scaling, a subsequence of vk would converge to U in C2
loc

(
R2
)
,

where U is an entire solution to

(1.17)

{
ΔU + |y|2α eU = 0 in R2

maxU = 0
.

In [24], Parajapat and Tarantello have completely classified all solutions
of (1.17), that is,

(1.18) U (y; a) = −2 ln
(
1 +
∣∣y1+α − a

∣∣2)
for some a ∈ C, where y1+α is the (1 + α)-th power of complex number
y = y1 + iy2. Clearly,

(1.19) a = lim
k→+∞

(
pk,j − pj

εk,pj

)1+α

.
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In particular, for α = 0 or α /∈ N, we have

pk,j − pj
εk,pj

→ 0.

That is,
a = 0.

We say that uk satisfies the simple blowup property at pj if

|vk − U (y)| ≤ C for |y| ≤
r0

εk,pj

for some positive C independent of k and y. When α (pj) is not a positive
integer, the simple blowup property for pj has been proved by Y.Y. Li
in [19] for α (pj) = 0 and by Bartolucci, Chen, Lin, and Tarantello in [3]
for 0 �= αj /∈ N. Obviously, this simple blowup property implies (1.16).

When a blowup point pj is one of the vortex points, that is, pj = qj.
The simple blowup property may not be true if α (qj) = αj ∈ N. Two
cases may occur if αj ∈ N.

Case 1: |pk,j − qj| = O
(
εk,qj

)
, εk,qj = e

− λk,j

2(1+αj) .

For αj ∈ N, in general, a �= 0, and then U (z; a) is no longer radially
symmetric. The non-symmetry of U (z; a) would cause a lot of troubles
in the bubbling analysis of uk. Even so, we still could prove that uk is
simply bubbling at qj for Case 1, that is,

(1.20) |vk (y)− U (y; a)| ≤ C for |y| ≤
r0

εk,qj
.

Inequality (1.20) implies (1.16) for Case 1. For a proof of (1.20), see
Appendix A.

Case 2: limk→+∞
|pk,j−qj|

εk,qj
= +∞

In this case, we see that uk is not simply blowing up at qj. The
method for this case would be different from Case 1. This is a new
phenomenon that might occur only at the case when αj ∈ N. However,
this phenomenon also appears in the study of the SU (3) Toda system.
Studying this non-simple blowup phenomenon for the scalar equation
should be very useful for the system case. In Case 2, we could also prove
the estimate (1.16). We briefly discuss it here. Let

(1.21) |pk,j − qj | = δk,j.

After scaling by

ûk (y) = uk (δk,jy + qj) + 2 (1 + αj) ln δk,j,

ûk (y) would blow up at
{
e1, e2, . . . , e1+αj

}
with e�+1 = qj + e

i 2π�
1+αj . Let

(1.22) μ̂k,j = λk,j + 2 (1 + αj) ln δk,j
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and

(1.23) σk,j = e−
μ̂k,j

2 .

Then we can prove that

(1.24) ûk (y) = −μ̂k,j −

1+αj∑
�=1

4 ln |y − e�|+ O (1)

uniformly for all y ∈ B 1
δk,j

(0) \ ∪
1+αj

�=1 Br0 (e�). This implies that (1.16)

holds in Case 2. See Theorem 8 and (2.16).

Next, we turn to the question (ii), that is ρk,j − ρ∞,j. Let ρk,j be the
local mass defined by (1.13) at pj. By Theorem 3, we have

(1.25) ρk − ρ∞ =

m∑
i=1

[ρk,i − 8π (1 + α (pi))] + O
(
e−λk

)
,

where

λk = max
j

λk,j

and

ρ∞ = 8π
m∑
i=1

(1 + α (pi))

and α (pi) is defined in (1.12). Hence, our second question is how to find
asymptotic formulas of ρk,i − 8π (1 + α (pi)).

When α (p) = 0 (i.e., p �∈ {q1, . . . , qd}), there is a function Q (x) (see
definition in Section 2) such that ∇Q (p) = 0. With this property, Chen
and Lin proved:

Theorem C ([9]). Let (uk, ρk) be a sequence of solutions of (1.9)
that blows up at {p1, . . . , pm}. Suppose α (p) = 0. Then we have

ρk,p − 8π =
16π

ρ∞h0 (p)
(Δ lnh (p)− N∗ + ρ∞ − 2K (p)) ε2k,p |ln εk,p|+ O

(
ε2k,p
)
,

where K (x) denotes the Gaussian curvature and N∗ = 4π
∑d

j=1 αj.

When one of the vortex points is a blowup point—say, p = q and
α (q) /∈ N—∇Q (p) may not be 0. With the help of a = 0 in (1.18),
Chen and Lin also proved:

Theorem D ([11]). Let (uk, ρk) be a sequence of solutions of (1.9)
that blows up at {p1, . . . , pm}. Suppose α (p) = α (q) /∈ N∪{0} . Then

we have

ρk,q − 8π
(
1 + α(q)

)
= d
(
q, α(q)

)(
Δ lnh(q)− N∗

+ ρ∞ − 2K(q)
)
ε2k,q + o(1)ε2k,q,

where d (q, α (q)) is a positive constant depending on q and α (q).
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For the case p = q and α (q) ∈ N, again, we also have two cases that
need to be considered, simple blowup and non-simple blowup.

Case 1 (Simple blowup):
In this case, a and ∇Q (q) both may not be 0. The situation here

is more complicated than before, and we need to solve an associated
linearized problem. Even so, we could also have following sharp estimate.

Theorem 4. Let (uk, ρk) be a sequence of solutions of (1.9) that blows
up at {p1, . . . , pm}. Suppose pi = qi and (1.19) holds. Then we have

ρk,i−8π (1 + αi) = F1 (a;αi) (Δ lnh (qi)− N∗ + ρ∞ − 2K (qi)) ε
2
k,i+o (1) ε2k,i,

where F1 (a;αi) is a positive constant depending on a and αi.

Because the proof is technical and also related to existence of some
linearized problem, we will give the proof of Theorem 4 in the second
paper of this series.

Case 2 (Non-simple blowup):
The sharp estimate for non-simple blowup is the main concern in the

present paper, and to obtain the sharp estimate of ρk,i−8π (1 + α (pi)),
different estimates in different regions are needed. More precisely, we
use the simple blowup property in each bubbling region, Br0 (e�) , � =
1, · · ·, (1 + α (q)), and the estimate (1.24) outside the bubbling regions,

B 1
δk,i

(0) \ ∪
1+α(q)
�=1 Br0 (e�). Then we have the following.

Theorem 5. Let Case 2 hold for pi = qi. Then

ρk,i − 8π (1 + αi) =
32 (1 + αi)π

ρ∞hi (qi)

(
Δ lnh (qi)− N∗

+ ρ∞ − 2K (qi)
)
δ2k,iσ

2
k,i |lnσk,i|+ O

(
δ2k,iσ

2
k,i

)
where δk,i and σk,i are defined by (1.21) and (1.23).

By Lemma 9 in Section 4, we have

δ2k,i = Cμ̂k,ie
−μ̂k,i (1 + o (1)) , for some C > 0,

and thus

(1.26) 2 ln δk,i = −μ̂k,i + O (ln μ̂k,i) .

Recall (1.22) that

μ̂k,i = λk,i + 2 (1 + αi) ln δk,i.

Then by (1.26), we have

(1.27) μ̂k,i =
λk,i

(2 + αi)
(1 + o (1)) .

From (1.23) and (1.27), we have the following corollary.
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Corollary 1.

O
(
δ2k,iσ

2
k,i |lnσk,i|

)
= O

(
μ̂2
k,ie

−2μ̂k,i

)
= O

(
λ2
k,ie

− 2
2+αi

λk,i

)
.

This estimate is new and is obtained through delicate application of
the Pohozaev identity. Compared with the case of simple blowup (see
Theorem 4), the order of non-simple blowup is relatively much smaller
than that of simple blowup.

Actually, Theorem 2 is an application of Theorem 4 and Theorem 5.
We explain it as follows. Let ρ0 be the number defined in (1.11). Suppose
(uk, ρk) is a sequence of bubbling solutions with ρk → ρ ∈ 8πN. Let p be
any blowup point of uk. When p �= q (i.e., α (p) = 0), from Theorem B,
we have ρk,p−8π > 0 provided ρ > ρ0. When p = qi (i.e. α (p) = αi ∈ N),
from Theorem 4 and Theorem 5, we also have ρk,qi − 8π (1 + αi) > 0
provided ρ > ρ0. Thus, from (1.25), we have

ρk − ρ > 0

for any ρ > ρ0 and ρ ∈ 8πN. For any ρ ∈ 8πN and ρ > ρ0, we choose
ρk < ρ and ρk → ρ as k → ∞. By Theorem B, there is a sequence of
solutions uk of (1.2) with ρk for each k. Then by the above results, uk

is uniformly bounded in C2
loc (M\ {q1, . . . , qd}). Therefore, after passing

limit, uk converges to a solution u∞ of (1.2) with ρ ∈ 8πN and Theorem
1 and Theorem 2 follows.

For (1.1) with the Dirichlet problem, we also have the following the-
orem.

Theorem 6. Let αj ∈ N ∀j, Ω be a non-simply connected domain in

R2, and let h (x) be a positive C2 function on Ω. Suppose that

Δ lnh (x) > N∗.

Then equation (1.1) always possesses a solution for all ρ > 0.

The organization of this paper is as follows: In Section 2, we introduce
those notations and definitions stated in our main theorems and discuss
the property (1.16) for both cases. In Section 3, we prove Theorem 8,
which implies (1.16) for the non-simple blowup case. In Section 4, we
will prove Theorem 5. In Appendix A, we give a proof of Theorem 7,
which implies (1.16) for the simple blowup case.

2. Preliminary

2.1. Definitions and Notations. In this section, we shall introduce
some notation that is stated in our main theorems. Recall that, in terms
of the Green function, equation (1.2) is equivalent to the following equa-
tion:

(2.1) Δu (x) + ρ
(
h∗ (x) eu(x) − 1

)
= 0 in M,
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where

(2.2) h∗ (x) = h (x) eu0(x).

Note that near qi, h∗ (x) has the form in a local coordinate

h∗ (x) = hi (x) |x − qi|
2αi in |x − qi| ≤ r0 for some small r0 > 0,

where

(2.3) hi (x) = h (x) e−4παiγ(x,qi)e−
∑d

j �=i 4παjG(x,qj) > 0 in |x − qi| ≤ r0.

For the simplicity of notation, we write hi (x) ≡ h∗ (x) in a neighborhood
of p if p /∈ {q1, . . . , qd}. Then we have

∇ lnhi (pi) =

{
∇ lnh (pi)−

∑d

j=1 4παj∇G (pi, qj) if pi /∈ {q1, . . . , qd}

∇ lnh (qi)−
∑

d

j �=i
4παj∇G (qi, qj)− 4παi∇γ (pi) if pi = qi

and

Δ lnhi (x) = Δ lnh (x)−
d∑

j=1

4παj .

Let (uk, ρk) be a sequence of bubbling solutions of (2.1) that blows
up at {p1, . . . , pm}. Then it is known that

ρkh (x) euk(x) →
m∑
i=1

8π (1 + α (pj)) δpi ,

where α (pi) is defined in (1.12). This fact follows from work by Brezis
and Merle [2], Li and Shafrir [20], and Bartolucci and Tarantello [4].
Furthermore, pi can be determined a priori. Let Qi (x) defined by

Qi (x) = lnhi (x) + 8π (1 + α (pi)) γ (x, pi) +
m∑
j �=i

ρ∞,jG (x, pj) .

Then we have

(2.4) ∇Qi (pi) = 0 provided that α (pi) = 0, i.e., pi /∈ {q1, . . . , qd} .

See [9] for the proof. Note that at pi = qi, ∇Qi (qi) may not be 0.
When αi ∈ N, we will see later that this would cause a lot of additional
difficulties in the bubbling analysis.

The estimate ρk,i− ρ∞,i is our major concern in this paper. Theorem
4 and Theorem 5 say that ρk,i − ρ∞,i can be expressed by some local
terms. Since it is local in principle, for simplicity we assume that M has
a flat metric near a neighborhood of each blowup point. For the general
case, our method presented here can be modified easily as in [9, 10].
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2.2. Simple blowup. In order to compare heights of any two bubbles
of uk, the first step is to prove (1.16) near each blowup point p. As
discussed before, if p /∈ {q1, . . . , qd} or p = qi with α (qi) /∈ N, then
(1.16) was proved in [9, 19], and [3]. In this section, we may assume
p = q = 0 and α = α (0) ∈ N. Without loss of generality, we can always
assume that uk (x) satisfies

(2.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δuk (x) + ρkh0 (x) |x|

2α euk(x) = 0 in B1 (0)∣∣∣uk (x)− uk

(
x
′

)∣∣∣ ≤ c for |x| =
∣∣∣x′∣∣∣ = 1

ρk,0 :=
∫
B1(0)

ρkh0 (x) |x|
2α euk(x) → 8π (1 + α)

0 is the only blowup point for uk (x) in B1 (0)

,

where c is a constant and h0 is defined in (2.3).
Set

λk,0 = uk (pk,0) = max
x∈B1(0)

uk (x) , and εk = e
− λk,0

2(1+α) .

For Case 1, we assume

(2.6) lim
k→∞

(
pk,0
εk

)1+α

= a ∈ R2.

Under (2.6), we can show that uk has a simple blowup at 0; that is,
the following estimate holds.

Theorem 7. Let uk be a solution of (2.5). Suppose that (2.6) holds

true. Then there exists r0 > 0 and C > 0 such that

(2.7) |uk (x)− Uk (x)| ≤ C for all x ∈ Br0 (0) ,

where

Uk (x) = λk,0 − 2 ln

(
1 +

ρkh0 (0)

8 (1 + α)2
eλk,0

∣∣∣x1+α − p1+α
k,0

∣∣∣2) .

The proof will be given in Appendix A. Obviously, on the boundary
|x| = r0, (2.7) implies (1.16).

2.3. Non-simple blowup. Next, we consider the case when (2.6) fails,
that is,

(2.8) lim
k→∞

|pk,0|

εk
= ∞.

In this case, 0 is no longer a simple blowup point. In fact, we shall prove
uk has α + 1 local maximum points. Let uk (x) satisfy (2.5) and set

δk = |pk,0| .

Define

(2.9) ûk (y) = uk (δky) + 2 (1 + α) ln δk for |y| ≤
1

δk
.
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Then

(2.10)

⎧⎨⎩ Δûk (y) + ρk |y|
2α h0 (δky) e

ûk(y) = 0 in B 1
δk

(0)∣∣∣ûk (y)− ûk

(
y
′

)∣∣∣ ≤ C for y, y
′

∈ ∂B 1
δk

(0)
,

and by (2.8) we have

(2.11) ûk

(
pk,0
|pk,0|

)
= μ̂k = λk,0 + 2 (1 + α) ln δk → ∞.

Hence e1 = limk→∞
pk,0

|pk,0|
is a blowup point of ûk. By the Brezis–Merle

theorem, ûk blows up at a finite set S = {e1, . . . , e1+n}. Moreover, from
Green’s representation formula, we have

(2.12)
∣∣∣ûk (y)− ûk

(
y
′

)∣∣∣ ≤ C for y, y
′

∈ ∂B1 (e�) , 1 ≤ � ≤ 1 + n.

See Lemma 1 in Section 3 for the proof. By (2.12), we conclude that ûk

is simply bubbling at each e�. In Section 3, we will prove that ûk does
not blow up at 0. Thus, by (2.4), {e1, . . . , e1+n} satisfies

(2.13) 2α
e�

|e�|
2 =

1+n∑
j �=�

ei − e�

|ei − e�|
2 for � = 1, . . . , (1 + n) ,

and we have the following important estimate for non-simple blowup.

Theorem 8. Let ûk be defined in (2.9). Then n = α, and

(2.14) ûk (y) = −μ̂k −
1+α∑
�=1

4 ln |y − e�|+ O (1) for |y| ≤
1

δk
.

By using potential analysis, we could prove the estimate

ûk (y) = −μ̂k −
ρk,0
2π

ln |y|+ O (1)

for ln 1
δk

< |y| < 1
δk
. See Lemma 4. However, the crucial step to obtain

estimate (2.14) is to prove

|ρk,0 − 8π (1 + α)| = O

((
ln

1

δk

)−1
)

,

which is an application of the Pohozaev identity. See Lemma 6. The
proof of Theorem 8 will be given in the Section 3.

By Theorem 8, on ∂B 1
δk

(0) we have

(2.15) ûk (y) = −μ̂k + 4 (1 + α) ln δk + O (1) for |y| =
1

δk
,

and by transferring back to uk (x), we conclude that for |x| = 1

uk (x) = ûk (y)− 2 (1 + α) ln δk(2.16)

= −λk,0 + O (1) .
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This proves (1.16) for p = q where uk is non-simple blowup.

3. Proof of Theorem 8

In this section, we are going to prove Theorem 8. Recall that uk (x)
satisfies (2.5) and

(3.1) ρk,0 =

∫
B1(0)

ρk |x|
2α h0 (x) e

uk(x)dx → ρ∞,0 = 8π (1 + α) .

Let ûk (y) = uk (δky)+ 2 (1 + α) log δk for |y| ≤ 1
δk
, where δk is given by

(1.21). Then⎧⎨⎩ Δûk (y) + ρk |y|
2α h0 (δky) e

ûk(y) = 0 in B 1
δk

(0)∣∣∣ûk (y)− ûk

(
y
′

)∣∣∣ ≤ C1 for y, y
′

∈ ∂B 1
δk

(0)
.

In order to prove Theorem 8, we need several lemmas borrow the ideas
from [3].

Notice that e1 = lim
k→∞

pk,0

|pk,0|
is a blowup point of ûk. Applying re-

sults of Brezis and Merle [2] or Bartolucci and Tarantello [4], since∫
B 1

δk

(0) ρk |y|
2α h0 (δky) e

ûk(y) ≤ C, there exists a finite blowup set S =

{e1, e2, . . . , e1+n} and ûk → −∞ uniformly on any compact subset of
R2\S and

ρk |y|
2α h0 (δky) e

ûk(y) →
1+n∑
�=1

m�δe� ,

where

m� = lim
k→∞

mk,� = lim
k→∞

∫
B1(e�)

ρk |y|
2α h0 (δky) e

ûk(y).

In order to determine m�, we have to prove the bounded oscillation of
ûk near each e�.

Lemma 1.

(3.2)
∣∣∣ûk (z)− ûk

(
z
′

)∣∣∣ ≤ C

for z, z
′

∈ ∂Br0 (e�), and e� ∈ S.

Proof. Let r0 > 0 such that e� is the only blowup point of ûk (z) in
B4r0 (e�). By Green’s formula, for any z ∈ B 1

δk

(0), we have

ûk (z) =

∫
B 1

δk

(0)

ρk |y|
2α

h0 (δky) e
ûk(y)Gk (y, z)dy+φk (z)+2 (1 + α) ln δk+dk

where Gk (y, z) is the Dirichlet Green function in B 1
δk

(0) and φk (y) is

the harmonic function with φk|∂B 1
δk

= uk (δky)−dk, dk = 1
2π

∫
∂B1

ukdσ.
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More precisely,
(3.3)

Gk (x, y) = −
1

2π
ln |x − y|+

1

2π
ln

∣∣∣∣δk |y|x −
1

δk

y

|y|

∣∣∣∣ for x, y ∈ B 1
δk

(0) .

For z, z
′

∈ ∂Br0 (e�), we have∣∣∣φk (z)− φk

(
z
′

)∣∣∣ ≤ sup
y1,y2∈∂B 1

δk

(0)
|φk (y1)− φk (y2)| ≤ C

and

ûk (z)− ûk

(
z

′
)
=

∫
B 1

δk

(0)

ρk |y|
2α h0 (δky) e

ûk(y)
(
Gk (y, z)− Gk

(
y, z

′
))

dy

+ φk (z)− φk

(
z

′
)

= −
1

2π

∫
B 1

δk

(0)

ρk |y|
2α

h0 (δky) e
ûk(y) ln

|y − z|

|y − z′ |
dy + O (1) .

For y ∈
{
|y − e�| <

r0
2

}
∪{|y − e�| > 2r0}, we have

∣∣∣∣ln |y−z|
|y−z′ |

∣∣∣∣ ≤ c1, and

this implies that∫
{|y−e�|< r0

2 }∪{|y−e�|>2r0}
ρk |y|

2α h0 (δky) e
ûk(y) ln

|y − z|

|y − z′ |
dy = O (1) .

On the other hand, for y ∈
{
r0
2 ≤ |y − e�| ≤ 2r0

}
, we have ûk (y) → −∞

uniformly as k → ∞. Thus, we can conclude that∣∣∣ûk (z)− ûk

(
z
′

)∣∣∣ ≤ C for z, z
′

∈ ∂Br0 (e�) .

q.e.d.

From the property of (3.2), Li [19] and Bartolucci and Tarantello
[4] proved that m� = 8π if e� �= 0 and m� = 8π (1 + α) if e� = 0,
respectively. Therefore, we have the following Corollary 3.2.

Corollary 2. 0 /∈ S.

Proof. Suppose the contrary holds. Then we have

(3.4) lim
k→∞

∫
Br0 (0)

ρk |y|
2α h0 (δky) e

ûk(y)dy = 8π (1 + α) .



392 T.-J. KUO & C.-S. LIN

Since e1 is also a blowup point of ûk (y), by (3.4), we have

8π (1 + α) = lim
k→∞

∫
B1(0)

ρk |x|
2α h0 (x) e

uk(x)dx

= lim
k→∞

∫
B 1

δk

(0)
ρk |y|

2α h0 (δky) e
ûk(y)dy

≥ lim
k→∞

(∫
Br0 (0)

ρk |y|
2α h0 (δky) e

ûk(y)dy

+

∫
Br0 (e1)

ρk |y|
2α h0 (δky) e

ûk(y)dy

)
= 8π (1 + α) + 8π.

This leads a contradiction to (3.1). Thus, 0 cannot be a blowup point
of ûk. q.e.d.

Now, we prove that the locations of e� are the partitions of the unit
circle.

Lemma 2.

n = α

and

e�+1 = exp

(
i

2π

1 + α
�

)
, � = 0, . . . , α.

Proof. From Lemma 1, ûk is simply bubbling at each e�. By (2.4), e�
satisfies

2α
1

e�
= 4

1+n∑
j �=�

1

e� − ej
for � = 1, . . . , (1 + n) ,

and hence

α = 2

1+n∑
j �=�

e�
e� − ej

.

Then

(1 + n)α =

1+n∑
j=1

α = 2

1+n∑
j=1

1+n∑
j �=�

e�
e� − ej

= 2
(1 + n)n

2
.

Hence n = α, that is, ûk blows up at S = {e1, · · ·, e1+α}. To solve ej , we
let I = {e1, . . . , e1+α}, I� = I\ {e�} and I�,j = I\ {e�, ej}. We introduce
the following notation:(

I

k

)
=

∑
j1<...<jk

ej1 . . . ejk , where ej′s ∈ I for k = 1, . . . , 1 + α
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and (
I�
k

)
=

∑
j1<···<jk

ej1 · · · ejk , where ej′s ∈ I� for k = 1, . . . , α.

Since

α = 2
1+α∑
j �=�

e�
e� − ej

we have

(3.5) α Π
j∈I�

(e� − ej) = 2e�

1+α∑
j �=�

Π
m∈I�,j

(e� − em) .

Then expanding (3.5), we have

α

(
eα� +

α−1∑
k=1

(−1)k
(

I�
k

)
eα−k
� + (−1)α

(
I�
α

))

= 2αeα� +

α−1∑
k=1

(−1)k 2 (α − k)

(
I�
k

)
eα−k
� .(3.6)

Multiplying e� on both sides of (3.6), we obtain
(3.7)

αeα+1
� +

α−1∑
k=1

(−1)k (α − 2k)

(
I�
k

)
eα+1−k
� + α (−1)1+α e1e2 . . . e1+α = 0.

In particular, (3.7) can be rewritten as

αeα+1
� +

α−1∑
k=1

(−1)k (α − k) (1− k)

(
I

k

)
eα+1−k
� +α (−1)1+α e1e2 . . . e1+α = 0.

Thus, for each e�, we have

eα+1
� +

α−1∑
k=1

(−1)k
(α − k) (1− k)

α

(
I

k

)
eα+1−k
� +(−1)1+α e1e2 . . . e1+α = 0.

This implies that e�, � = 1, . . . , 1 + α are the solutions of

z1+α+

α−1∑
k=1

(−1)k
(α − k) (1− k)

α

(
I

k

)
z1+α−k+(−1)1+α e1e2 . . . e1+α = 0.

Thus,

(z − e1) · · · (z − e1+α) = z1+α +

α−1∑
k=1

(−1)k
(α − k) (1− k)

α

(
I

k

)
z1+α−k

+ (−1)1+α e1e2 . . . e1+α.(3.8)
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On the other hand, by direct expansion, we have
(3.9)

(z − e1) . . . (z − e1+α) = z1+α+

α−1∑
k=1

(−1)
k

(
I

k

)
z1+α−k+(−1)

1+α
e1e2 . . . e1+α.

Comparing (3.8) and (3.9), we have(
I

k

)
= 0 for k = 1, . . . , α − 1,

and hence

(z − e1) . . . (z − e1+α) = z1+α + (−1)1+α e1e2 . . . e1+α.

Since e1 = 1, we have

(−1)1+α e1e2 . . . e1+α = −1.

Thus, {e1, . . . , e1+α} are solutions of

z1+α − 1 = 0,

and this implies that

e�+1 = exp

(
i

2π

1 + α
�

)
, � = 0, . . . , α.

q.e.d.

To prove Theorem 8, we need to prove following decay estimate of
ûk.

Lemma 3. For every small θ > 0 there exists Rθ > 1 and kθ ∈ N

such that ∀ |z| > 2Rθ and k ≥ kθ; then we have

ûk (z) ≤ −μ̂k −
(ρk,0
2π

− 2θ
)
ln |z|+ O (1) .

Proof. By the simple blowup property of ûk, we have

ûk (y) = −μ̂k + O (1) for y ∈ B2 (0) \ ∪
1+α
�=1 Br0 (e�) .

In particular,

ûk (0) = −μ̂k +O (1) .

By Green’s formula, for any z ∈ B 1
δk

(0) \ ∪1+α
�=1 Br0 (e�), we have

ûk (z) =

∫
B 1

δk

(0)

ρk |y|
2α

h0 (δky) e
ûk(y)Gk (y, z)dy+φk (z)+2 (1 + α) ln δk+dk.

Thus,

ûk (0) =

∫
B 1

δk

(0)

ρk |y|
2α

h0 (δky) e
ûk(y)
k

Gk (y, 0) dy+φk (0)+2 (1 + α) ln δk+dk.
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Since

|φk (z)− φk (0)| ≤ sup
z,z′∈∂B 1

δk

(0)

∣∣∣φk (z)− φk

(
z
′

)∣∣∣ ≤ C1,

we have

ûk (z) =

∫
B 1

δk

(0)

ρk |y|
2α

h0 (δky) e
ûk(y) (Gk (y, z)− Gk (y, 0)) dy + ûk (0) + O (1)

= −μ̂k +

∫
B 1

δk

(0)

ρk |y|
2α

h0 (δky) e
ûk(y) (Gk (y, z)− Gk (y, 0)) dy + O (1) .

Notice that

Gk (y, z) = −
1

2π
ln |y − z|+

1

2π
ln

∣∣∣∣δk |y| z −
1

δk

y

|y|

∣∣∣∣
= −

1

2π
ln |y − z|+

1

2π
ln

1

δk
+

1

2π
ln

∣∣∣∣δ2k |y| z −
y

|y|

∣∣∣∣
and

Gk (y, 0) = −
1

2π
ln |y|+

1

2π
ln

1

δk
.

Since y ∈ B 1
δk

(0), we have

1

2π
ln

∣∣∣∣δ2k |y| z −
y

|y|

∣∣∣∣ = O (1) ,

and hence

|Gk (y, z)− Gk (y, 0)| =
1

2π
ln

|y|

|y − z|
+ O (1) .

Thus, ∫
B 1

δk

(0)
ρk |y|

2α h0 (δky) e
ûk(y) (Gk (y, z)− Gk (y, 0)) dy

=
1

2π

∫
B 1

δk

(0)
ρk |y|

2α h0 (δky) e
ûk(y) ln

|y|

|y − z|
dy + O (1) .

Hence, we have

ûk (z) = −μ̂k+
1

2π

∫
B 1

δk

(0)

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy+O (1) .

For a small θ > 0, we can choose Rθ > 1 and kθ large such that for
k ≥ kθ we have

1

2π

∫
|y|≤Rθ

ρk |y|
2α h0 (δky) e

ûk(y)dy ≥

(
ρk,0
2π

−
θ

α + 2

)
.
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Taking |z| > 2Rθ and k ≥ kθ, then we decompose

1

2π

∫
B 1

δk

(0)

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

=
1

2π

∫
|y|≤Rθ

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

+
1

2π

∫
Rθ≤|y|≤ |z|

2

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

+
1

2π

∫
B
|z|
2

(z)

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

+
1

2π

∫
B
′

k

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy,

where B
′

k = B 1
δk

(0) \
(
B |z|

2

(0) ∪ B |z|

2

(z)
)

. Since ln |y|
|y−z| ≤ C in{

Rθ ≤ |y| ≤ |z|
2

}
∪ B

′

k, we have

1

2π

∫
Rθ≤|y|≤ |z|

2

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy = O (1)

and

1

2π

∫
B
′

k

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy = O (1) .

Next, set Dα = B |z|

2

(z) ∩
{
|y − z| < |z|−(1+α)

}
∫
B
|z|
2

(z)

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

=

∫
Dα

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

+

∫
B
|z|
2

(z)\Dα

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

≤

∫
Dα

(
ln

1

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

+ (α + 2)

∫
B
|z|
2

(z)
ρk |y|

2α h0 (δky) e
ûk(y)dy ln |z|+ O (1) .
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Since ûk (y) is a simple blowup in each Br0 (e�), we have ûk (y) < 0 in
B 1

δk

(0) \ ∪1+α
�=1 Br0 (e�). Thus, ûk (y) < 0 in Dα, and we have∫
Dα

(
ln

1

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy

≤ C |z|2α
∫
{|y−z|<|z|−(1+α)}

(
ln

1

|y − z|

)
dy = O (1) .

By the choice of θ and |z| > 2Rθ, we have

(α + 2)

∫
B
|z|
2

(z)
ρk |y|

2α h0 (δky) e
ûk(y)dy ln |z| ≤ θ ln |z| .

Hence, for |z| > 2Rθ, we have

ûk (z) ≤ −μ̂k +
1

2π

∫
|y|≤Rθ

(
ln

|y|

|y − z|

)
ρk |y|

2α
h0 (δky) e

ûk(y)dy

+ θ ln |z|+ O (1)

≤ −μ̂k +
1

2π
ln

2Rθ

|z|

∫
|y|≤Rθ

ρk |y|
2α

h0 (δky) e
ûk(y)dy + θ ln |z|+ O (1)

≤ −μ̂k −
(ρk,0
2π

− 2θ
)
ln |z|+ O (1) .

This completes the proof. q.e.d.

From Lemma 3 and ρk,0 → 8π (1 + α), we have

(3.10)

∫
B 1

δk

(0)
|ln |y|| |y|2α h0 (δky) e

ûk(y)dy ≤ C

and

(3.11)

∫
B 1

δk

(0)
|y| |y|2α h0 (δky) e

ûk(y)dy ≤ C.

With the help of (3.10), we can refine the decay estimate.

Lemma 4. ∀y ∈ B 1
δk

(0) \Bln 1
δk

(0), and so we have

(3.12) ûk (y) = −μ̂k −
ρk,0
2π

ln |y|+ O (1) .

Proof. Let r̃0 > 0 be a fixed small positive number. Define

ρ̃k,0 (z) =

∫
|y|≤r̃0|z|

ρk |y|
2α h0 (δky) e

ûk(y)dy.
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Then by Lemma 3, for ln 1
δk

≤ |z| ≤ 1
δk
, we have

|ρ̃k,0 (z)− ρk,0| =

∫
r̃0|z|<|y|≤ 1

δk

ρk |y|
2α h0 (δky) e

ûk(y)dy

(3.13)

≤ C

∫
r̃0 ln

1
δk

<|y|≤ 1
δk

|y|2α e
−μ̂k−

(
ρk,0
2π

−2θ
)
ln|y|+O(1)

dy

= O

((
ln

1

δk

)−2

e−μ̂k

)

and
(3.14)∫

r̃0|z|<|y|≤ 1
δk

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy = O

((
ln

1

δk

)−1
)

.

Hence, by (3.10), (3.13), and (3.14), we have

ûk (z) = −μ̂k +
1

2π

∫
B 1

δk

(0)

(
ln

|y|

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy + O (1)

= −μ̂k +
1

2π

∫
|y|≤r̃0|z|

(
ln

1

|y − z|

)
ρk |y|

2α h0 (δky) e
ûk(y)dy + O (1)

= −μ̂k −
1

2π
ρ̃k,0 (z) ln |z|+

1

2π

∫
|y|≤r̃0|z|

(
ln

|z|

|y − z|

)
ρk

|y|2α h0 (δky) e
ûk(y)dy + O (1)

= −μ̂k −
ρk,0
2π

ln |z|+ O (1) .

q.e.d.

To use the Pohozaev identity, we need to estimate the gradient of ûk

in B 1
δk

(0) \Bln 1
δk

(0).

Lemma 5. ∀y ∈ B 1
δk

(0) \Bln 1
δk

(0), and so we have

(3.15) ∇ûk (y) = −
ρk,0
2π

y

|y|2
+ O

(
1

|y|2

)
.
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Proof. By Green’s formula, we have

∇ûk (z) +
ρk,0
2π

z

|z|2
=

1

2π

∫
|y|≤ 1

δk

{
z

|z|2
−

z − y

|z − y|2

}
|y|2α h0 (δky) e

ûk(y)dy

=
1

2π

∫
{
|y|≤ 1

δk

}
∩{|y−z|≥ |z|

2 }

{
z

|z|2
−

z − y

|z − y|2

}
|y|2α h0 (δky) e

ûk(y)dy

+
1

2π

∫
{|y−z|≤ |z|

2 }

{
z

|z|2
−

z − y

|z − y|2

}
|y|2α h0 (δky) e

ûk(y)dy

First, by mean the value theorem, for any |z| > 1, we have∣∣∣∣ z

|z|2
−

z − y

|z − y|2

∣∣∣∣ ≤ 4
|y|

|z|2
, ∀y ∈

{
|y − z| ≥

|z|

2

}
.

On the other hand,∣∣∣∣ z

|z|2
−

z − y

|z − y|2

∣∣∣∣ ≤ 2

|z − y|
, ∀y ∈

{
|y − z| ≤

|z|

2

}
.

Hence,

∣∣∣∣∣∇ûk (z) +
ρk,0
2π

z

|z|2

∣∣∣∣∣ ≤ 2

π |z|2

∫
{
|y|≤ 1

δk

}
∩{|y−z|≥ |z|

2 }
|y| |y|2α h0 (δky) e

ûk(y)dy

(3.16)

+
1

π

∫
{|y−z|≤ |z|

2 }

1

|z − y|
|y|2α h0 (δky) e

ûk(y)dy.

By (3.11), we have

(3.17)
2

π |z|2

∫
{
|y|≤ 1

δk

}
∩
{
|y−z|≥ |z|

2

} |y| |y|2α h0 (δky) e
ûk(y)dy ≤

C

|z|2
.

To estimate the second integral, by Lemma 3, we may fix Rθ >> 1 and
kθ ∈ N sufficiently large such that

(3.18) |y|2α h0 (δky) e
ûk(y) ≤ |y|−

7
2 , for |y| ≥ Rθ and k ≥ kθ.

Since y ∈
{
|y − z| ≤ |z|

2

}
, this implies that |z|

2 ≤ |y| ≤ 3|z|
2 . Thus,∫

{
|y−z|≤ |z|

2

}
1

|z − y|
|y|2α h0 (δky) e

ûk(y)dy(3.19)

≤

∫
{
|y−z|≤ |z|

2

}
1

|z − y|
|y|−

7
2 dy

≤
C

|z|
7
2

∫
{
|y−z|≤ |z|

2

}
1

|z − y|
dy ≤

C
′

|z|
5
2

.
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Combining (3.16), (3.17), and (3.19), we obtain∣∣∣∣∇ûk (z) +
ρk,0
2π

z

|z|2

∣∣∣∣ = O

(
1

|z|2

)
.

q.e.d.

From (3.12) and (3.15), for δk ln
1
δk

≤ |x| ≤ 1, we have

(3.20) uk (x) = −λk +
(ρk,0
2π

− 4 (1 + α)
)
ln δk −

ρk,0
2π

ln |x|+ O (1)

and

(3.21) ∇uk (x) =
−ρk,0
2π

x

|x|2
+ O

(
δk

|x|2

)
.

(3.20) and (3.21) will be used in the boundary terms of the following
Pohozaev identity.

Lemma 6.

|ρk,0 − 8π (1 + α)| = O

((
ln

1

δk

)−1
)

.

Proof. Apply Pohozaev identity in the region Bk = Bδk ln 1
δk

(0), to

obtain

∫
Bk

(
2ρk |x|

2α h0 (x) + ρkx · ∇
(
|x|2α h0 (x)

))
euk(x)dx

(3.22)

=

∫
∂Bk

r

[(
∂uk

∂ν

)2

−
1

2
|∇uk|

2

]
dσ +

∫
∂Bk

rρk |x|
2α h0 (x) e

ukdσ.

Then, inserting (3.20) and (3.21) into both sides of (3.22), we have

∫
Bk

(
2ρk |x|

2α
h0 (x) + ρkx · ∇

(
|x|2α h0 (x)

))
euk(x)dx

(3.23)

=

∫
Bk

2 (1 + α) ρk |x|
2α h0 (x) e

uk(x)dx +

∫
Bk

ρk (x · ∇h0 (x)) |x|
2α euk(x)dx

= 2 (1 + α) ρk,0 + O (1)

∫
B1\Bk

|x|2α euk(x)dx +

∫
Bk

ρk (x · ∇h0 (x)) |x|
2α

euk(x)dx.
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For the last integral, by the scaling x = δky, we have

∫
Bk

ρk (x · ∇xh0 (x)) |x|
2α euk(x)dx

=

∫
Bk

ρkO (|x|) |x|2α euk(x)dx

=

∫
|y|≤ln 1

δk

ρkδkO (|y|) |y|2α eûk(y)dy

=

1+α∑
�=1

∫
Br0 (e�)

ρkδkO (|y|) |y|2α eûk(y)dy

+

∫
BRθ

(0)\∪1+α
�=1 Br0(e�)

ρkδkO (|y|) |y|2α eûk(y)dy

+

∫
Rθ≤|y|≤ln 1

δk

ρkδkO (|y|) |y|2α eûk(y)dy.

Since

∣∣∣∣ûk (y)− ln eμ̂k

(1+eμ̂k |y−e�|2)

∣∣∣∣ = O (1) for |y − e�| ≤ r0, we have

(3.24)∫
Br0 (e�)

ρkδkO (|y|) |y|2α eûk(y)dy = δkO (1)

∫
Br0 (e�)

eûk(y)dy = O (δk) .

Again, since ûk (y) = −μ̂k + O (1) in BRθ
(0) \ ∪1+α

�=1 Br0 (e�), we have

(3.25)

∫
BRθ

(0)\∪1+α
�=1 Br0 (e�)

ρkδkO (|y|) |y|2α eûk(y)dy = δkO
(
e−μ̂k

)
.

Next, by Lemma 3, we have

∫
Rθ≤|y|≤ln 1

δk

ρkδkO (|y|) |y|2α eûk(y)dy(3.26)

≤ ρkδk

∫
Rθ≤|y|≤ln 1

δk

O (|y|) |y|2α e
−μ̂k−

(
ρk,0
2π

−2θ
)
ln|y|+O(1)

dy

= δkO
(
e−μ̂k

)
.
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Then by (3.24), (3.25), (3.26), and (3.20), we have∫
Bk

(
2ρk |x|

2α h0 (x) + ρkx · ∇
(
|x|2α h0 (x)

))
euk(x)dx

= 2 (1 + α) ρk,0 + O (1)

∫
B1\Bk

|x|2α euk(x)dx + O (δk)

= 2 (1 + α) ρk,0 + O (1)

∫
B1\Bk

|x|2α e
−μ̂k+

(
ρk,0
2π

−2(1+α)
)
ln δk

−
ρk,0
2π

ln |x|+ O (1) dx + O (δk)

= 2 (1 + α) ρk,0 +

(
ln

1

δk

)− ρk,0
2π

+2(1+α)

e−μ̂k + O (δk) as k → ∞.

For the boundary term, by (3.20) and (3.21), we have∫
∂Bk

r

[(
∂uk

∂ν

)2

−
1

2
|∇uk|

2

]
dσ +

∫
∂Bk

rρk |x|
2α h0 (x) e

ukdσ(3.27)

=
ρ2k,0
4π

+ O

((
ln

1

δk

)−1
)

as k → ∞.

From (3.23) and (3.27), we have

|ρk,0 − 8π (1 + α)| = O

((
ln

1

δk

)−1
)

.

q.e.d.

Proof of Theorem 8:

First, we claim that

ûk (y) = −μ̂k − 4 (1 + α) ln |y|+ O (1) for R ≤ |y| ≤
1

δk
,

where R is chosen such that (3.18) holds true. By (3.12) and Lemma 6,
we have

(3.28) ûk (y) = −μ̂k − 4 (1 + α) ln |y|+ O (1) for |y| ≥ ln
1

δk
.

Thus, we need to prove (3.28) for R ≤ |y| ≤ ln 1
δk
. By considering

f± (y) = ûk (y) + μ̂k + 4 (1 + α) ln |y| ∓
(
4c1 − c1 |y|

− 1
2

)
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on Bln 1
δk

(0) \BR (0), we have

Δf+ (y) = Δûk (y) +
1

4
c1 |y − e�|

− 5
2

= −ρk |y|
2α h0 (δky) e

ûk(y) +
1

4
c1 |y − e�|

− 5
2

≥ − |y|−
7
2 +

1

4
c1

1+α∑
�=1

|y − e�|
− 5

2 .

Thus, by choosing a suitable constant c1, we have

Δf+ (y) > 0

and

f+ (y) < 0 on ∂

(
Bln 1

δk

(0) \BR (0)

)
.

Hence, by the maximum principle, we have

ûk (y) ≤ −μ̂k − 4 (1 + α) ln |y|+ O (1) ,

and, similarly, we also have

ûk (y) ≥ −μk − 4 (1 + α) ln |y|+ O (1) .

Thus, we obtain

(3.29) ûk (y) = −μ̂k − 4 (1 + α) ln |y|+ O (1) in Bln 1
δk

(0) \BR (0) .

By (3.29) and (3.28), for |y| ≥ R, we have

ûk (y) = −μ̂k − 4 (1 + α) ln |y|+ O (1)(3.30)

= −μ̂k −
1+α∑
�=1

4 ln |y − e�|+ O (1) .

Again, by considering

f̂± (y) = ûk (y) + μ̂k +

1+α∑
�=1

4 ln |y − e�| ∓

(
4ĉ1 − ĉ1

1+α∑
�=1

|y − e�|
− 1

2

)
on BR (0) \ ∪1+α

�=1 Br0 (e�), we have

Δf̂± (y) = Δûk (y)±
1

4
ĉ1

1+α∑
�=1

|y − e�|
− 5

2

= −ρk |y|
2α h0 (δky) e

ûk(y) ±
1

4
ĉ1

1+α∑
�=1

|y − e�|
− 5

2

= −ρk |y|
2α h0 (δky) e

−μk+OR(1) ±
1

4
ĉ1

1+α∑
�=1

|y − e�|
− 5

2 ,
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where we have used the property that ûk = −μ̂k +O (1) inside BR (0) \
∪1+α
�=1 Br0 (e�). Thus, by choosing a suitable constant ĉ1, we have

Δf̂+ (y) > 0

and
f̂+ (y) < 0 on ∂

(
BR (0) \ ∪1+α

�=1 Br0 (e�)
)
.

Hence, by the maximum principle, we have

ûk (y) ≤ −μ̂k −
1+α∑
�=1

4 ln |y − e�|+ O (1) for y ∈ BR (0) \ ∪1+α
�=1 Br0 (e�) ,

and, similarly, we also have

ûk (y) ≥ −μk −
1+α∑
�=1

4 ln |y − e�|+ O (1) for y ∈ BR (0) \ ∪1+α
�=1 Br0 (e�) .

This implies that
(3.31)

ûk (y) = −μ̂k −
1+α∑
�=1

4 ln |y − e�|+ O (1) for y ∈ BR (0) \ ∪1+α
�=1 Br0 (e�) .

Combining (3.30) and (3.31), we obtain

ûk (y) = −μ̂k −
1+α∑
�=1

4 ln |y − e�|+ O (1) for y ∈ B 1
δk

(0) \ ∪1+α
�=1 Br0 (e�) .

This completes the proof. q.e.d.

4. Sharp Estimates: Non-simple blowup

In this section, we are going to prove Theorem 5. Recall that uk is a
sequence of bubbling solutions of

(4.1) Δuk + ρk (h
∗ (x) euk − 1) = 0 in M

that blows up at {p1, . . . , pm}. Let λk = maxj λk,j, α = maxj α (pj).
Then by Theorem 3(i), we have

(4.2) λk,j = λk + O (1) ∀j = 1, . . . ,m.

Define

εk = e
− λk

2(1+α) and εk,j = e
− λk,j

2(1+α(pj)) .

Then
εk = max

j
εk,j.

Set ωk (x) to be the error term outside the blowup points defined by

(4.3) ωk (x) = uk (x)− ūk −
m∑
j=1

ρk,jG (x, pj) on M\ ∪m
j=1 B r0

2
(pj) ,



NON-SIMPLE BLOWUP 405

where ūk is the average of uk, that is,

(4.4) ūk =
1

|M |

∫
M

uk (x) dx

and ρk,j is the local mass defined in (1.13).
First, we have following error estimate of ωk.

Lemma 7. |ωk (x)|+ |∇ωk (x)| = O (εk) on M\ ∪m
j=1 B r0

2
(pj).

Proof. By Green’s formula and (4.2), we have

uk (x)− ūk(4.5)

=

∫
M

ρk

(
h∗ (z) euk(z) − 1

)
G (x, z) dz

=

m∑
i=1

ρk,iG (x, pi) +

m∑
i=1

∫
B r0

2
(pi)

ρkh
∗ (z) euk(z)

(
G
(
x, z
)

− G
(
x, pi

))
dz + O

(
e−λk

)
.

where G (x, y) is defined in (1.8). Thus, we need to estimate∫
B r0

2
(pi)

ρkh
∗ (z) euk(z) (G (x, z)− G (x, pi)) dz.

First, for those pi with α (pi) = 0, this estimate has been done in [9].
So we have
(4.6)∫
B r0

2
(pi)

ρkh
∗ (z) euk(z) (G (x, z)− G (x, pi)) dz = O

(
λk,ie

−λk,i

)
= o (εk) .

For pi = qi with α (pi) = αi, we have two cases we need to disscuss: (i)
For Case 1 (simple blowup), by Theorem 7, we have

∫
B r0

2
(pi)

ρkh
∗ (z) euk(z) (G (x, z)− G (x, qi)) dz

(4.7)

=

∫
B r0

2
(pi)

|z − qi|
2αi eUk,i(z)O (|z − qi|) dz = O

(
e
− λk,i

2(1+αi)

)
= O (εk) ,

where

Uk,i (z) = λk,i−2 ln

(
1 +

ρkhi (qi)

8 (1 + αi)
2 e

λk,i

∣∣∣(z − qi)
1+αi − (pk,i − qi)

1+αi

∣∣∣2) .
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(ii) For Case 2 (non-simple blowup), by scaling z = δk,iy + qi, we have∫
B r0

2
(pi)

ρkh
∗ (z) euk(z) (G (x, z)− G (x, qi)) dz

=

∫
B r0

2δk,i

(0)
ρk |y|

2αi hi (y) e
ûk(y) (G (x, δk,iy + qi)− G (x, qi)) dy.

Since x ∈ M\ ∪m
j=1 B r0

2
(pj), we have

G (x, δk,iy + qi)− G (x, qi) = O (δk,i |y|) .

Thus, ∫
B r0

2δk,i

(0)
ρk |y|

2αi eûk(y) (G (x, δk,iy + qi)−G (x, qi)) dy

=

∫
B r0

2δk,i

(0)
ρk |y|

2αi eûk(y)O (δk,i |y|) dy

=

1+αi∑
�=1

∫
Br1 (e�)

ρk |y|
2αi eûk(y)O (δk,i |y|) dy

+

∫
B r0

2δk,i

(0)\∪1+αi
�=1 Br1 (e�)

ρk |y|
2αi eûk(y)O (δk,i |y|) dy.

Since ûk (y) is a simple blowup inside each Br1 (e�), we have∣∣∣ûk (y)− Ûk,� (y)
∣∣∣ ≤ C for y ∈ Br1 (e�) , 1 ≤ � ≤ 1 + αi,

where

Ûk,� (y) = μ̂k − 2 log

(
1 +

ρkh
∗ (qi + δk,ie�)

8
eμ̂k |y − e�|

2

)
.

Thus, we have∫
Br1 (e�)

ρk |y|
2αi eûk(y)O (δk,i |y|) dy(4.8)

=

∫
Br1 (e�)

ρk |y|
2αi eÛk,�(y)O (δk,i |y|) dy = O

(
δk,ie

−μ̂k,i

2

)
.
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By Theorem 8, we have

∫
B r0

2δk,i

(0)\∪1+αi
�=1 Br1(e�)

ρk |y|
2αi eûk(y)O (δk,i |y|) dy

(4.9)

=

∫
B r0

2δk,i

(0)\∪1+αi
�=1 Br1 (e�)

ρk |y|
2αi e−μ̂k,i−

∑1+αi
�=1 4 ln|y−e�|+O(1)O (δk,i |y|) dy

= O
(
δk,ie

−μ̂k,i

)
Hence, by (4.8) and (4.9), we have∫
B r0

2δk,i

(0)
ρk |y|

2αi eûk(y) (G (x, δk,iy + pi)− G (x, pi)) dy = O
(
δk,ie

−μ̂k
2

)
.

Since

μ̂k = λk,i + 2 (1 + αi) ln δk,i,

we have

δk,ie
− μ̂k

2 = εk,i

(
εk,i
δk,i

)αi

= o (εk) .

Therefore, we obatin

(4.10)

∫
B r0

2
(pi)

ρkh
∗ (z) euk(z) (G (x, z)− G (x, pi)) dz = o (εk) .

Hence, from (4.5), (4.6), (4.7), and (4.10), we conclude that

|ωk (x)| = O (εk) ,

and similar for |∇ωk (x)|. q.e.d.

Next, we want to compute the difference of ρk,i − 8π (1 + αi) under
the assumption

lim
k→+∞

|pk − q|

εk,q
= +∞.

Since this is a local estimate, we may assume p = q = 0 for simplicity
and adapt the flat metric near the blowup point 0. We also use ρk,0,
δk,. . . etc. to denote ρk,i and δk,i, . . . etc. To compute the difference of
ρk,0 − 8π (1 + α), we will apply the method in [9]. Now, we localize the
problem as follows:

Define

(4.11) G∗
k (x) = ρk,0γ (x, 0) +

∑
pj �=0

ρk,jG (x, pj) ,

where G (x, y) is defined by (1.8). Let

ũk (x) = uk (x)− (G∗
k (x)− G∗

k (0)) in B1 (0) .
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In order to eliminate the boundary oscillation, we introduce a harmonic
function φk satisfying {

Δφk = 0 in B1 (0)
φk|∂B1(0) = ũk − mk

,

where

mk =
1

2π

∫
∂B1(0)

ũk.

By mean value property, we have φk (0) = 0. Let

≈
uk = ũk − φk in B1 (0) .

Then⎧⎨⎩ Δ
≈
uk + ρk |x|

2α ĥ0 (x) e
≈

uk =
(
ρk −

∑m
j=1 ρk,j

)
= O

(
e−λk

)
in B1 (0)

≈
uk = 1

2π

∫
∂B1(0)

ũk on ∂B1 (0) ,

where

(4.12) ĥ0 (x) = h0 (x) e
φk(x)+G∗

k
(x)−G∗

k
(0) and ĥ0 (0) = h0 (0) .

Notice that

φk (x) = ωk (x)−
1

2π

∫
∂B1

ωk (x) dσ for |x| = 1,

where ωk (x) is given by (4.3). By Lemma 7 and the maximum principle,
we have that

|φk (x)| = |∇φk (x)| = O (εk) for |x| ≤ 1.

Let

ûk (y) =
≈
uk (δky) + 2 (1 + α) ln δk in B 1

δk

(0) .

Then ûk (y) satisfies⎧⎨⎩ Δûk (y) + ρk |y|
2α ĥ0 (δky) e

ûk(y) = O
(
e−λk

)
in B 1

δk

(0)

ûk (y) = mk + 2 (1 + α) ln δk on ∂B 1
δk

(0)
.

As we have discuessed in Section 2, ûk (y) blows up simply at

{e1, e2, . . . , e1+α} with e�+1 = exp
(
i 2π�
1+α

)
, 0 ≤ � ≤ α. Let r0 > 0.

Define

μ̂ki = max
Br0 (ei)

ûk (y) = ûk (eki)

and

ρik,0 =

∫
Br0 (eki)

ρk |y|
2α ĥ0 (δky) e

ûk(y)dy → 8π, 1 ≤ i ≤ 1 + α.
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Now, we define the error term ω̂k (y) outside the bubbling region by

(4.13) ω̂k (y) = ûk (y)− (mk + 2 (1 + α) ln δk)−
1+α∑
i=1

ρik,0Gk (eki, y)

for y ∈ B 1
δk

(0) \ ∪1+α
i=1 Br0 (eki), where Gk (x, y) is defined by (3.3).

Let

(4.14) Ûki (y) = μ̂k − 2 ln
(
1 + cke

μ̂k |y − eki|
2
)

, ck =
ρkĥ0 (δkeki)

8
,

and

Ĥki (y) = ρik,0γk (y, eki) +
1+α∑
j �=i

ρjk,0Gk (y, ekj) ,

where γk (x, y) is the regular part of Gk (x, y). We also define the error
term η̂ki (y) inside the bubbling region by

η̂ki (y) = ûk (y)− Ûki (y)−
(
Ĥki (y)− Ĥki (eki)

)
in Br0 (eki) .

Then η̂ki satisfies

(4.15) Δη̂ki (y) + ρkĥ0 (δkeki) e
Ûki(y)D̂k (y, η̂ki (y)) = 0 in Br0 (eki) ,

where

D̂k (y, η̂ki (y)) = eη̂ki(y)+Q̂ki(y)−Q̂ki(eki) − 1,

(4.16) Q̂ki (y) = 2α ln |y|+ ln ĥ0 (δky) + Ĥki (y) .

By (4.16), (4.12), and (4.11), we have

ΔQ̂ki (eki) = Δ ln ĥ0 (δkeki) = δ2k

⎡⎣Δ lnh0 (δkeki) +
m∑
j=1

ρk,j

⎤⎦(4.17)

= δ2k [Δ lnh0 (0) + ρk] + o
(
δ2k
)
.

Moreover, since ûk is simply bubbling at each e�, we have

|μ̂ki − μ̂kj| = O (1) .

Let

μ̂k = max
1≤i≤1+α

μ̂ki.

Then we have the following estimate. See the proof in [9].

Lemma 8 ([9]).

(4.18)
∣∣∣∇Q̂ki (eki)

∣∣∣ = O
(
e−μ̂k

)
, for 1 ≤ i ≤ 1 + α,

(4.19) |ω̂k (y)| = O
(
e−μ̂k

)
∀y ∈ B 1

δk

(0) \ ∪1+α
i=1 Br0 (eki) ,
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(4.20)

−mk+2 (1 + α) ln δk = μ̂k+2 ln
ρkĥ0 (δkeki)

8
−

1+α∑
j �=i

4 ln |eki − ekj |+O
(
μ̂ke

−μ̂k
)
,

(4.21) ρik,0 − 8π =
16π

ρkĥ0 (δkeki)
ΔQ̂ki (eki) μ̂ke

−μ̂k + O
(
e−μ̂k

)
,

η̂ki (y) = −
8

ρkĥ0(δkeki)

ΔQ̂ki (eki) e
−μ̂k

[
ln
(
e

μ̂k
2 |y − eki|+ 2

)]2
(4.22)

+ O
(
ln
(
e

μ̂k
2 |y − eki|+ 2

))
e−μ̂k in Br0 (eki) .

Next, we want to compare the order of δk and e−μ̂k . In fact, we could
have the following estimate.

Lemma 9.

δ2k = Cμ̂ke
−μ̂k +O

(
e−μ̂k

)
for some constant C > 0.

Proof. Without loss of generality, we may assume e1 = 1. Let u∗
k (y) =

ûk (y + 1). Then

Δu∗
k (y) + ρk |y + 1|2α ĥ0 (δk (y + 1)) eu

∗

k
(y) = 0 in Br0 (0) .

Let ξ be a constant unit vector and apply the Pohozaev identity; we
then obtain ∫

∂Br0 (0)
(ν · ∇u∗

k) (ξ · ∇u∗
k)−

1

2
(ν · ξ) |∇u∗

k|
2 dσ(4.23)

+

∫
∂Br0 (0)

(ν · ξ) ρk |y + 1|2α ĥ0 (δk (y + 1)) eu
∗

kdσ

=

∫
Br0 (0)

ρkĥ0 (δk (y + 1))
[
ξ · ∇ |y + 1|2α

]
eu
∗

kdy

+

∫
Br0 (0)

ρk |y + 1|2α
[
ξ · ∇ĥ0 (δk (y + 1))

]
eu
∗

kdy.

For simplicity, we use {l.o.t.} to denote those terms whose order is
O
(
δkμ̂ke

−μ̂k
)
after integrating over Br0 (0). By Taylor expansion, we
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have

ĥ0 (δk (y + 1))
[
ξ · ∇ |y + 1|2α

]
= ĥ0 (δk (y + 1)) |y + 1|2α

[
ξ · ∇ ln |y + 1|2α

]
= 2αξ1ĥ0 (δk (y + 1)) |y + 1|2α + αĥ0 (δk (y + 1)) |y + 1|2α[

ξ · ∇
(
ln |y + 1|2 − 2y1

)]
= 2αξ1ĥ0 (δk (y + 1)) |y + 1|2α + αĥ0 (δk (y + 1)) |y + 1|2α[

2ξ1

(
y1 + 1

|y + 1|2
− 1

)
+ 2ξ2

y2

|y + 1|2

]
= 2αξ1ĥ0 (δk (y + 1)) |y + 1|2α − 2αξ1ĥ0 (δk (y + 1)) |y + 1|2(α−1) |y|2

+ {l.o.t.} .

Therefore, we have∫
Br0 (0)

ρkĥ0 (δk (y + 1))
[
ξ · ∇ |y + 1|2α

]
eu
∗

kdy

= 2αξ1

∫
Br0 (0)

ρk |y + 1|2α ĥ0 (δk (y + 1)) eu
∗

kdy

− 2αξ1

∫
Br0(0)

ρkĥ0 (δk (y + 1)) |y + 1|2(α−1) |y|2 eu
∗

kdy + O
(
δkμ̂ke

−μ̂k

)
= 2αρ1k,0ξ1 − 2αξ1

∫
Br0(0)

ρkĥ0 (δk (y + 1)) |y + 1|2(α−1) |y|2 eu
∗

kdy

+ O
(
δkμ̂ke

−μ̂k

)
.

Similarly, since

|y + 1|2α
[
ξ · ∇ĥ0 (δk (y + 1))

]
= ĥ0 (δk (y + 1)) |y + 1|2α

[
ξ · ∇ ln ĥ0 (δk (y + 1))

]
= ĥ0 (δk (y + 1)) |y + 1|2α

[
ξ1∂1 ln ĥ0 (δk (y + 1)) + ξ2∂2 ln ĥ0 (δk (y + 1))

]
= ĥ0 (δk (y + 1)) |y + 1|2α ξ1[

∂1 ln ĥ0 (0) δk + ∂11 ln ĥ0 (0) δ
2
k (y1 + 1) + ∂12ĥ0 (0) δ

2
ky2

]
+ ĥ0 (δk (y + 1)) |y + 1|2α ξ2[

∂2 ln ĥ0 (0) δk + ∂22 ln ĥ0 (0) δ
2
ky2 + ∂12 ln ĥ0 (0) δ

2
k (y1 + 1)

]
+ {l.o.t.}

= ĥ0 (δk (y + 1)) |y + 1|2α
[
ξ · ∇ ln ĥ0 (0)

]
δk

+ ĥ0 (δk (y + 1)) |y + 1|2α
[
ξ1∂11 ln ĥ0 (0) + ξ2∂12 ln ĥ0 (0)

]
δ2k + {l.o.t.} ,
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we have∫
Br0

(0)

ρk |y + 1|2α
[
ξ · ∇ĥ0 (δk (y + 1))

]
eu

∗
kdy

=

∫
Br0

(0)

ρkĥ0 (δk (y + 1)) |y + 1|2α eu
∗
kdy
[
ξ1∂11 ln ĥ0 (0) + ξ2∂12 ln ĥ0 (0)

]
δ2k

+

∫
Br0

(0)

ρkĥ0 (δk (y + 1)) |y + 1|2α eu
∗
kdy
[
ξ · ∇ ln ĥ0 (0)

]
δk + O

(
δkμ̂ke

−μ̂k
)

=

∫
Br0

(0)

ρkĥ0 (δk (y + 1)) |y + 1|2α eu
∗
kdy
[
ξ1∂11 ln ĥ0 (0) + ξ2∂12 ln ĥ0 (0)

]
δ2k

+ ρ1
k,0ξ · ∇ ln ĥ0 (0) δk + O

(
δkμ̂ke

−μ̂k
)
.

Then we obtain

∫
Br0

(0)

ρkĥ0 (δk (y + 1))
[
ξ · ∇ |y + 1|2α

]
eu

∗
kdy

(4.24)

+

∫
Br0

(0)

ρk |y + 1|2α
[
ξ · ∇yĥ0 (δk (y + 1))

]
eu

∗
kdy

= −2αξ1

∫
Br0

(0)

ρkĥ0 (δk (y + 1)) |y + 1|2(α−1) |y|2 eu
∗
kdy

+

∫
Br0

(0)

ρkĥ0 (δk (y + 1)) |y + 1|2α eu
∗
kdy
[
ξ1∂11 ln ĥ0 (0) + ξ2∂12 ln ĥ0 (0)

]
δ2k

+ 2αρ1
k,0ξ1 + ρ1

k,0ξ · ∇ ln ĥ0 (0) δk + O
(
δkμ̂ke

−μ̂k
)
.

Finally, we consider the boundary term in (4.23). By Theorem 8, we
have

(4.25)

∫
∂Br0 (0)

(ν · ξ) ρk |y + 1|2α ĥ0 (δk (y + 1)) eu
∗

kdσ = O
(
e−μ̂k

)
.

On the other hand, by (4.16), (4.18), and (4.19), we have∫
∂Br0 (0)

(ν · ∇u∗
k) (ξ · ∇u∗

k)−
1

2
(ν · ξ) |∇u∗

k|
2 dσ(4.26)

= −ρ1k,0ξ · ∇Ĥk1 (e1) + O (|ω̂k|)

= 2αρ1k,0ξ1 + ρ1k,0ξ · ∇ ln ĥ0 (0) δk + O
(
e−μ̂k

)
.

Combining (4.24), (4.25), and (4.26), we have

− 2α

∫
Br0 (0)

ρkĥ0 (0) |y + 1|2(α−1) |y|2 eu
∗

kdyξ1

+

∫
Br0 (0)

ρk |y + 1|2(α−1) eu
∗

kdy
[
∂11ĥ0 (0) ξ1 + ∂12ĥ0 (0) ξ2

]
δ2k

= O
(
e−μ̂k

)
+O

(
δkμ̂ke

−μ̂k

)
.
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This implies that

δ2k = Cμ̂ke
−μ̂k + O

(
e−μ̂k

)
+ O

(
δkμ̂ke

−μ̂k

)
,

and hence

δ2k = Cμ̂ke
−μ̂k + O

(
e−μ̂k

)
.

q.e.d.

To compute the difference ρk − 8π (1 + α) accurately, we need to
improve the estimate (2.14). Let Ωk = B 1

δk

(0) and Ωki ⊂ Ωk such that

Ωk =
1+α
∪
i=1

Ωki, Ωki ∩ Ωkj = ∅ and Br0 (eki) ⊂ Ωki. Then we have the

following estimate.

Corollary 3. For y ∈ Ωki\Br0 (eki), we have

ûk (y) = −μ̂k − 2 ln
ρkĥ0 (δkeki)

8
+ 4

1+α∑
i �=j

ln |eki − ekj|

− 4

1+α∑
i=1

ln |y − eki|+ O
(
μ̂ke

−μ̂k

)
.(4.27)

Proof. By (4.13) and (4.19), we have

ûk (y) = mk + 2 (1 + α) ln δk +

1+α∑
i=1

ρik,0Gk (eki, y) + O
(
e−μ̂k

)
.

From (3.3), we have

Gk (eki, y) = −
1

2π
ln |y − eki|+

1

2π
ln

1

δk
+

1

2π
ln

∣∣∣∣δ2k |y| eki − y

|y|

∣∣∣∣
= −

1

2π
ln |y − eki|+

1

2π
ln

1

δk
+ O

(
δ2k
)
.

By (4.20), (4.21), and Lemma 9, we have

ûk (y) = −μ̂k − 2 ln
ρkĥ0 (δkeki)

8
+ 4

1+α∑
i �=j

ln |eki − ekj|

− 4

1+α∑
i=1

ln |y − eki|+ O
(
μ̂ke

−μ̂k

)
.

q.e.d.

Now, we are at the stage to prove Theorem 5.
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Proof of Theorem 5: Let Ω
′

k = B 1
δk

(0) \ ∪1+α
i=1 Br0 (eki) and recall

σk = e−
μ̂k
2 . Then

ρk,0 =

∫
Ωk

ρk |y|
2α

ĥ0 (δky) e
ûk(y)dy

(4.28)

=

1+α∑
i=1

∫
Br0

(eki)

ρk |y|
2α

ĥ0 (δky) e
ûk(y)dy +

∫
Ω

′

k

ρk |y|
2α

ĥ0 (δky) e
ûk(y)dy,

and
1+α∑
i=1

∫
Br0 (eki)

ρk |y|
2α ĥ0 (δky) e

ûk(y)dy(4.29)

=
1+α∑
i=1

∫
Br0 (eki)

ρkĥ0 (δkeki) e
Ûki(y)dy

+
1+α∑
i=1

∫
Br0 (eki)

ρkĥ0 (δkeki) e
Ûki(y)D̂k (y, η̂ki (y)) dy

= 8π (1 + α)−
1+α∑
i=1

∫
R2\Br0 (eki)

ρkĥ0 (δkeki) e
Ûki(y)dy

+
1+α∑
i=1

∫
Br0(eki)

ρkĥ0 (δkeki) e
Ûki(y)D̂k (y, η̂ki (y)) dy.

First, by (4.14), we have

−

∫
R2\Br0 (eki)

ρkĥ0 (δkeki) e
Ûki(y)dy(4.30)

=
64

ρkĥ0 (eki)

∫
R2\Br0 (eki)

−1

|y − eki|
4dyσ

2
k + O

(
σ4
k

)
,

Let ϕ̂ki (y) = −1+ 2
1+cke

μ̂k |y−eki|2
, ck = ρkĥ0(δkeki)

8 . Then ϕ̂ki (y) satisfies

(4.31) Δϕ̂ki (y) + ρkĥ0 (δkeki) e
Ûki(y)ϕ̂ki (y) = 0.

By (4.15), we have∫
Br0 (eki)

ρkĥ0 (δkeki) e
Ûki(y)D̂k (y, η̂ki (y)) dy

=

∫
Br0 (eki)

ϕ̂ki (y)Δη̂ki (y)− η̂ki (y)Δϕ̂ki (y) dy

−

∫
∂Br0 (eki)

(1 + ϕ̂ki)
∂

∂ν
η̂kidσ +

∫
∂Br0 (eki)

η̂ki
∂

∂ν
ϕ̂kidσ.
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From (4.22), for the boundary term we have

−

∫
∂Br0 (eki)

(1 + ϕ̂ki)
∂

∂ν
η̂kidσ +

∫
∂Br0 (eki)

η̂ki
∂

∂ν
ϕ̂kidσ = O

(
|lnσk|σ

4
k

)
.

Note that

D̂k (y, η̂ki (y))− η̂ki (y) = D̂k (y, 0) + η̂ki (y) D̂k (y, 0) + O
(
|η̂ki (y)|

2
)

.

By (4.31) and (4.22), we get∫
Br0 (eki)

ϕ̂ki (y)Δη̂ki (y)− η̂ki (y)Δϕ̂ki (y) dy

= −

∫
Br0 (eki)

ρkĥ0 (δkeki) e
Ûkiϕ̂ki (y)

(
D̂k (y, η̂ki (y))− η̂ki (y)

)
dy

= −

∫
Br0 (eki)

ρkĥ0 (δkeki) e
Ûkiϕ̂ki (y) D̂k (y, 0) dy + O

(
σ4
k

)
.

From the definition of ϕ̂ki (y), we have

∫
Br0

(eki)

−ρkĥ0 (δkeki) e
Ûkiϕ̂ki (y) D̂k (y, 0)dy

(4.32)

=

∫
Br0

(eki)

ρkĥ0 (δkei) e
ÛkiD̂k (y, 0)dy − 2

∫
Br0

(eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0)

1 + ckeμ̂k |y − eki|
2 dy.

By Taylor expansion, we obtain

D̂k (y, 0)

(4.33)

= eQ̂ki(y)−Q̂ki(eki) − 1

= ∇Q̂ki (eki) (y − eki) +
1

2
∇2Q̂ki (eki) (y − eki)

2 +
1

6
∇3Q̂ki (eki) (y − eki)

3

+
1

2

[
∇Q̂ki (eki) (y − eki) +

1

2
∇2Q̂ki (eki) (y − eki)

2

]2
+

1

6

[
∇Q̂ki (eki) (y − eki)

]3
+ O

(
|y − eki|

4
)

.

By (4.18), (4.33), and the symmetry, we have∫
Br0 (eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0)

1 + ckeμ̂k |y − eki|
2 dy = O

(
|lnσk|σ

4
k

)
.
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For any θ > 0, we have

∫
Br0 (eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0) dy

=

∫
Bθ(eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0) dy

+

∫
Br0(eki)\Bθ(eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0) dy

=
32π

ρkĥ0 (δkeki)
ΔQ̂ki (eki) σ

2
k |lnσk|+

32π

ρkĥ0 (δkeki)
ΔQ̂ki (eki) (ln θ)σ2

k

+

∫
Br0(eki)\Bθ(eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0) dy + oθ (1) σ

4
k + O

(
|lnσk|σ

4
k

)
,

where oθ (1) → 0 as θ → 0. Moreover, from (4.33) and the symmetry,
we get

∫
Br0 (eki)\Bθ(eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0) dy

=
64

ρkĥ0 (δkeki)

∫
Br0 (eki)\Bθ(eki)

eQ̂ki(y)−Q̂ki(eki) − 1

|y − eki|
4 dyσ2

k + O
(
|lnσk|σ

4
k

)
.

From (4.16), we have

64

ρkĥ0 (eki)

∫
Br0 (eki)\Bθ(eki)

eQ̂ki(y)−Q̂ki(eki) − 1

|y − eki|
4 dyσ2

k

=
64Π1+α

i �=j |eki − ekj|
4

ρkĥ0 (δkeki)

∫
Br0 (eki)\Bθ(eki)

|y|2α eln ĥ0(δky)−ln ĥ0(δkeki)

Π1+α
�=1 |y − ek�|

4 dyσ2
k

−
64

ρkĥ0 (δkeki)

∫
Br0 (eki)\Bθ(eki)

1

|y − eki|
4 dyσ2

k + O
(
|lnσk| σ

4
k

)
,
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and thus∫
Br0 (eki)

ρkĥ0 (δkeki) e
ÛkiD̂k (y, 0) dy(4.34)

=
32π

ρkĥ0 (δkeki)
ΔQ̂ki (eki)σ

2
k |lnσk|

−
64

ρkĥ0 (eki)

∫
Br0(eki)\Bθ(eki)

1

|y − eki|
4dyσ

2
k

+
64

ρkĥ0 (δkeki)

∫
Br0(eki)\Bθ(eki)

Π1+α
i �=j |eki − ekj|

4 |y|2α eln ĥ0(δky)−ln ĥ0(δkeki)

Π1+α
�=1 |y − ek�|

4 dyσ2
k

+
32π

ρkĥ0 (δkeki)
ΔQ̂ki (eki) (ln θ)σ2

k + O
(
|lnσk|σ

4
k

)
+ oθ (1) σ

4
k.

By (4.27), we have

∫
Ω

′

k

ρk |y|
2α

ĥ0 (δky) e
ûk(y)dy

(4.35)

=

1+α∑
i=1

∫
Ωki\Br0

(eki)

64Π1+α

i�=j
|eki − ekj |

4

ρkĥ (δkeki)

|y|2α eln ĥ0(δky)−ln ĥ0(δkeki)

Π1+α

�=1 |y − ek�|
4 dyσ2

k + O
(
σ4
k

)
.

Combining (4.28), (4.29), (4.30), (4.34), and (4.35), we obtain

ρk,0 − 8π (1 + α)

=
1+α∑
i=1

⎡⎢⎢⎣
64

ρkĥ0(δkeki)

∫
R2\Bθ(eki)

−1
|y−eki|

4 dy

+ 64
ρkĥ0(δkeki)

∫
Ωki\Bθ(eki)

Π1+α

i�=j
|eki−ekj |

4|y|2αe
ln ĥ0(δky)−ln ĥ0(δkeki)

Π1+α
�=1

|y−ek�|
4 dy

+ 32π

ρkĥ0(δkeki)
ΔQ̂ki (eki) (ln θ)

⎤⎥⎥⎦ σ2
k

+

1+α∑
i=1

32π

ρkĥ0 (δkeki)
ΔQ̂ki (eki)σ

2
k
|lnσk|+ O

(
|lnσk|σ

4
k

)
+ oθ (1)σ

4
k
.

Notice that

eln ĥ0(δky)−ln ĥ0(δkeki)

(4.36)

= 1 +∇ ln ĥ0 (δkeki) δk (y − eki) +
1

2
∇2 ln ĥ0 (δkeki) δ

2
k (y − eki)

2

+
1

2

[
∇ ln ĥ0 (δkeki) δk (y − eki)

]2
+ O

(
δ3k |y − eki|

3
)

.
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Then by using (4.36) and (4.17) and letting θ → 0, we have

lim
θ→0

1+α∑
i=1

⎡⎢⎢⎣
64

ρkĥ0(δkeki)

∫
R2\Bθ(eki)

−1
|y−eki|

4 dy

+ 64

ρkĥ0(δkeki)

∫
Ωki\Bθ(eki)

Π1+α
i�=j

|eki−ekj |
4|y|2αe

ln ĥ0(δky)−ln ĥ0(δkeki)

Π1+α
�=1

|y−ek�|
4 dy

+ 32π

ρkĥ0(δkeki)
ΔQ̂ki (eki) (ln θ)

⎤⎥⎥⎦σ2
k

= lim
θ→0

64

ρkĥ0 (δkeki)[
1+α∑
i=1

∫
R2\Bθ(eki)

−1

|y − eki|
4 dy +

∫
R2\∪1+α

i=1
Bθ(eki)

Π1+α

i�=j
|eki − ekj |

4 |y|2α

Π1+α

�=1 |y − ek�|
4 dy

]
σ2
k

+ O
(
δ2
k
σ2
k

)
.

Recall that e� = ei
2π(�−1)

1+α , and by direct computation we have

lim
θ→0

[
1+α∑
i=1

∫
R2\Bθ(ei)

−1

|y − ei|
4dy +

∫
R2\∪1+α

i=1 Bθ(ei)

Π1+α
i �=j |ei − ej |

4 |y|2α

Π1+α
�=1 |y − e�|

4 dy

]
= 0.

Therefore, we obtain

ρk,0−8π (1 + α) =
32 (1 + α) π

ρkh0 (0)
ΔQ̂ki (eki)σ

2
k |lnσk|+O

(
|lnσk| σ

4
k + δ2kσ

2
k

)
.

Then by Lemma 9 and (4.17), we get

ρk,0−8π (1 + α) =
32 (1 + α) π

ρkh0 (0)
(Δ lnh0 (0) + ρ∞) δ2kσ

2
k |lnσk|+O

(
δ2kσ

2
k

)
.

This completes the proof. q.e.d.

Appendix A. Simple blowup

Here, we are going to prove Theorem 7. Let us recall that uk (x)
satisfies

(A.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δuk (x) + ρkh0 (x) |x|

2α euk(x) = 0 in B1 (0)∣∣∣uk (x)− uk

(
x
′

)∣∣∣ ≤ c for |x| =
∣∣∣x′∣∣∣ = 1∫

B1(0)
ρkh0 (x) |x|

2α euk(x)dx → ρ∞,0 = 8π (1 + α)

0 is the only blowup point for uk (x) in B1 (0)

.

Let vk (z) = uk (εkz)− λk. Then

(A.2)

⎧⎪⎪⎨⎪⎪⎩
Δvk (z) + ρkh0 (εkz) |z|

2α evk(z) = 0 in B 1
εk

(0)∣∣∣vk (z)− vk

(
z
′

)∣∣∣ ≤ c for |z| =
∣∣∣z′∣∣∣ = 1

εk

vk (z) ≤ 0

.

Define

ρk,0 =

∫
B1(0)

ρkh0 (x) |x|
2α euk(x)dx.
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Proof of Theorem 7: Set Vk (z) = −2 ln
(
1 +

ρ
∞,0h0(0)

8(1+α)2

∣∣z1+α − ak
∣∣2).

Then V (z) satisfies

(A.3)

⎧⎪⎪⎨⎪⎪⎩
ΔVk (z) + ρ∞,0h0 (0) |z|

2α eV (z) = 0 in R2

Vk

(
a

1
1+α

k

)
= 0∫

R2 ρ∞,0h0 (0) |z|
2α eVk(z)dz = 8π (1 + α)

.

Notice that

|uk (x)− Uk (z)| ≤ C in B1 (0) if and only if |vk (z)− Vk (z)| ≤ C in B 1
εk

(0) .

Now we divide the proof into several steps as follows:
Step 1: vk (z) → V (z) in C2

loc

(
R2
)
, where V (z) = limk Vk (z) =

−2 ln
(
1 +

ρ
∞,0h0(0)

8(1+α)2

∣∣z1+α − a
∣∣2).

Since vk (z) ≤ 0 and vk

(
a

1
1+α

k

)
= uk (pk) − λk = 0, by applying

results of Brezis and Merle [2] or Bartolucci and Tarantello [4], we
conclude that vk (z) is convergent in C2

loc

(
R2
)
to v∞ (z) and v∞ (z)

satisfies

(A.4)

{
Δv∞ (z) + ρ∞,0h0 (0) |z|

2α ev∞(z) = 0 in R2∫
R2 ρ∞,0h (0) |z|2α ev∞(z)dz = 8π (1 + α)

.

By the classification of entire solution of (A.4), we have

v∞ (z) = ln
μ(

1 +
ρ
∞,0h0(0)μ

8(1+α)2
|z1+α − b|2

)2
for some μ > 0 and b ∈ C. Next, we have to determine μ and b. Notice

that a
1

1+α

k is the maximum point of vk and ak → a with |a| < ∞.

Since vk → v∞ in C2
loc

(
R2
)
, a

1
1+α is the maximum point of v∞ and thus

b = a. Furthermore, since vk

(
a

1
1+α

k

)
= 0, we have v∞

(
a

1
1+α

)
= 0. This

implies that μ = 1. That is, v∞ (z) = V (z). This completes the proof
of Step 1.

By Step 1, we have

(A.5) vk (0) = O (1) .

Then by Green’s formula and (A.5), we have
(A.6)

vk (z) =
1

2π

∫
|y|≤ 1

εk

(
ln

|y|

|z − y|

)
ρk |y|

2α h0 (εky) e
vk(y)dy + O (1) .

Step 2: |vk (z) + 4 (1 + α) ln |z|| ≤ C for ln 1
εk

≤ |z| ≤ 1
εk
.
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Note that when |z| is sufficient large, Vk (z) is controlled by−4 (1 + α) ln |z|.
Thus,

|vk (z)− Vk (z)| ≤ C if and only if |vk (z) + 4 (1 + α) ln |z|| ≤ C

as |z| is large enough. Notice that

|vk (z) + 4 (1 + α) ln |z|| =
∣∣∣vk (z) + ρk,0

2π
ln |z|+

(
4 (1 + α)−

ρk,0
2π

)
ln |z|

∣∣∣(A.7)

≤
∣∣∣vk (z) + ρk,0

2π
ln |z|

∣∣∣+ ∣∣∣(4 (1 + α)−
ρk,0
2π

)
ln |z|

∣∣∣ .
Thus, we have to estimate

∣∣vk (z) + ρk,0
2π ln |z|

∣∣ and ∣∣(4 (1 + α)−
ρk,0
2π

)
ln |z|

∣∣
for ln 1

εk
≤ |z| ≤ 1

εk
.

From (A.6) and the same argument as Lemma 3, we have the follow-
ing.

Estimate 1: For any θ > 0, there exist Rθ > 1 and kθ ∈ N such that
for |z| ≥ 2Rθ and k ≥ kθ, we have

(A.8) vk (z) ≤ −
(ρk,0
2π

− 2θ
)
ln |z|+ O (1) .

From (A.8) and ρk,0 = 8π (1 + α) + o (1), it follows that

(A.9)

∫
|y|≤ 1

εk

|ln |y|| |y|2α h0 (εky) e
vk(y)dy ≤ C1

and

(A.10)

∫
|y|≤ 1

εk

|y| |y|2α h0 (εky) e
vk(y)dy ≤ C2.

By a similar argument as in Lemma 4 and Lemma5, we have the
following.

Estimate 2: For ln 1
εk

≤ |z| ≤ 1
εk
, we have

(A.11) vk (z) = −
ρk,0
2π

ln |z|+ O (1)

Estimate 3: For ln 1
εk

≤ |z| ≤ 1
εk
, we have

(A.12)

∣∣∣∣∇vk (z) +
ρk,0
2π

z

|z|2

∣∣∣∣ ≤ C

|z|2
.

By (A.11) and (A.12), we have, for εk ln
1
εk

≤ |x| ≤ 1,

(A.13) uk (x) = −
ρk,0
2π

ln |x|+
(ρk,0
2π

− 2 (1 + α)
)
ln εk + O (1)

and

(A.14) ∇uk (x) = −
ρk,0
2π

x

|x|2
+ O

(
εk

|x|2

)
.
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Estimate 4: |ρk,0 − 8π (1 + α)| = O

((
ln 1

εk

)−1
)

.

Applying the Pohozaev identity in the region Bk =
{
|x| ≤ εk ln

1
εk

}
,

we obtain∫
Bk

(
2ρk |x|

2α h0 (x) + ρkx · ∇
(
|x|2α h0 (x)

))
euk(x)dx(A.15)

=

∫
∂Bk

r

[(
∂

∂ν
uk

)2

−
1

2
|∇uk|

2 + ρk |x|
2α h0 (x) e

uk(x)

]
dσ,

where r = |x|. Substituting (A.13) and (A.14) into both sides of (A.15),
we find that∫

∂Bk

r

[(
∂

∂ν
uk

)2

−
1

2
|∇uk|

2 + ρk |x|
2α h0 (x) e

uk(x)

]
dσ

=
ρ2k,0
4π

+ O

((
ln

1

εk

)−1
)

as k → ∞

and∫
Bk

(
2ρk |x|

2α h0 (x) + ρkx · ∇
(
|x|2α h0 (x)

))
euk(x)dx

= 2 (1 + α) ρk,0 + O (1)

∫
B1(0)\Bk

|x|2α euk(x)dx

+

∫
Bk

ρk (x · ∇h0 (x)) |x|
2α euk(x)dx

= 2 (1 + α) ρk,0 + O (1)

(
ln

1

εk

)− ρk,0
2π

+2(1+α)

+ O

(
εk ln

1

εk

)
as k → ∞.

Therefore,

(A.16) ρk,0 = 8π (1 + α) +O

((
ln

1

εk

)−1
)

.

Then Step 2 follows from (A.7), (A.11), and (A.16).

Step 3: |vk (z) + 4 (1 + α) ln |z|| ≤ C for R ≤ |z| ≤ ln 1
εk
, where R is

a fixed but large number.
We choose R > 1 such that |z|2α h0 (εkz) e

vk(z) ≤ 1

|z| 72
for |z| ≥ R.

Then we construct two functions w± (z) as follows:

w± (z) = −4 (1 + α) ln |z| ±
(
c1 − c1 |z|

− 1
2

)
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with a suitable choice of c1. Then

Δw+ (z) = −
1

4
c1 |z|

− 5
2

Δw− (z) =
1

4
c1 |z|

− 5
2

for |z| > R. By considering (w+ (z)− vk (z)), we have

Δ (w+ (z)− vk (z)) = −
1

4
c1 |z|

− 5
2 + ρk |z|

2α h0 (εkz) e
vk(z) ≤ 0

for |z| > R. Now, choose c1 > 0 such that w+ (z) ≥ vk (z) on |z| = R and
|z| = ln 1

εk
. Thus, by the maximum principle, we have vk (z) ≤ w+ (z)

for R ≤ |z| ≤ ln 1
εk
. Similarly, we also have vk (z) ≥ w− (z) for R ≤ |z| ≤

ln 1
εk
.

From Step 1 to Step 3, we complete the proof of Theorem 7. q.e.d.
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