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Abstract

We characterize those homogeneous translation invariant symmetric non-local operators with positive max-

imum principle whose harmonic functions satisfy Harnack’s inequality. We also estimate the corresponding

semigroup and the potential kernel.

1 Main results and background

Let α ∈ (0, 2) and d ∈ {1, 2, . . .}. We consider an arbitrary Lévy measure on
Rd \ {0} which is symmetric, homogeneous: ν(rB) = r−αν(B), and nonde-
generate (for definitions see Section 2). ν yields a convolution semigroup of
probability measures {Pt , t > 0} on Rd. Each Pt has a smooth density pt. We
consider the corresponding potential measure V =

∫∞
0

Pt dt and the potential
kernel

V (x) =

∫ ∞

0

pt(x)dt , x ∈ Rd .

V (x) = |x|α−dV (x/|x|), but it may be infinite in some directions ([18, pp.
148-149]). It is of interest to study continuity of V on the unit sphere S in Rd

under specific assumptions on ν (see (13)).

Theorem 1 If d > α and ν is a γ-measure on S with γ > d− 2α then V
is continuous on S.
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The following partial converse shows that the threshold d− 2α is exact.

Theorem 2 If V is a κ-measure on S then ν is a (κ− 2α)-measure on S.

In particular, if V is bounded on S then ν is a (d− 2α)–measure on S.
We define an operator A on smooth functions ϕ with compact support in

Rd, ϕ ∈ C∞
c (Rd), by

Aϕ(x) =

∫
Rd

(
ϕ(x + y)− ϕ(x)− y∇ϕ(x) 1|y|<1

)
ν(dy)

= lim
ε→0+

∫
|y|>ε

(ϕ(x + y)− ϕ(x)) ν(dy) .

A is a restriction of the infinitesimal generator of {Pt} [35, Example 4.1.12], and
what we refer to as the anisotropic fractional Laplacian in the title of the paper.
In this connection we recall that in the special case of ν(dy) = c|y|−d−αdy one
obtains the fractional Laplacian ∆α/2. For properties of ∆α/2 and a discussion
of equivalent definitions of its harmonic functions we refer the reader to [15].

Harmonic functions corresponding to A, or ν, are defined by the mean
value property with respect to an appropriate family of harmonic measures,
see Section 4. The main goal of the paper is to characterize those operators A
for which Harnack’s inequality holds, i.e., there is a constant C = C(α, ν) such
that for every function u which is harmonic in the unit ball and nonnegative
in Rd

u(x1) ≤ Cu(x2) , |x1| < 1/2 , |x2| < 1/2 .(1)

To this end we use the relative Kato condition (RK) meaning that there is a
constant K such that∫

B(y,1/2)

|y − v|α−dν(dv) ≤ Kν(B(y, 1/2)) , y ∈ Rd .(2)

Theorem 3 Harnack’s inequality holds for A if and only if (RK) holds
for ν.

Theorem 3 is a strengthening of [18, Theorem 1], where an additional technical
assumption was made: ν(dy) ≤ c|y|−d−αdy, to guarantee the boundedness of
V on S. We now drop the assumption and the boundedness is obtained as the
sole consequence of (2) via Theorem 1. We also adapt some of our previous
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techniques from [18] to handle measures ν which are not absolutely continuous
with respect to the Lebesgue measure on Rd (see, e.g., (27)).

Our estimates of the semigroup in Section 3 are based in part on ideas
of [43], which concerns more complicated non-convolutional semigroups. An-
other, recent paper [53] gives involved estimates of our convolution semigroup
{Pt} in individual directions (see also [32] in this connection). Here we only
need isotropic estimates of {Pt} from above, and our considerations become
simpler than those of [53] and [43].

In Section 4, 5 and 6 we develop the methods of [18]. That (2) implies
(1) is proved by using a maximum principle for a Dynkin-type version of the
operator A to explicitly estimate its Green function G(x, v) for the unit ball,
see Proposition 1 below. Noteworthy, our proof of the estimate is exclusive to
non-local operators, of which A is an illustrative special case. In particular
it turns out that G(x, v) has the singularity at the pole comparable to that
of the Riesz kernel: |v − x|α−d. The singularity influences the magnitude of
the corresponding Poisson kernel of the ball, P (x, y), as given by the Ikeda-
Watanabe formula (27). The influence is critical if and only if (2) fails to
hold. This relates (2) to (1). Such a direct influence of the singularity of
the potential kernel on the Poisson kernel does not occur for second order
elliptic operators, which is why we can expect analogues of Theorem 3 only
for nonlocal operators.

The recent development in the study of Harnack’s inequality for general
integro-differential operators similar to A was initiated in [6], see also [17].
The class of considered operators gradually extended, see [47], [45], [4], [18],
[5], and the references given there. We note that the operators dealt with in
these papers are not translation invariant nor are they homogeneous. On the
other hand the papers focus on sufficient conditions for Harnack’s inequality
and they are restricted by certain isotropic estimates of the operator’s kernel
from below.

Our confinement to translation invariant homogeneous operators A results
in part from the fact that the problem of the construction of the semigroup
from a general nonlocal operator satisfying the positive maximum principle
does not have a final solution yet. We refer the reader to [48, 49], [35, 36], [4],
and [33]. A general survey of the subject and more references can be found in
[3, 37, 36]. We refer the reader to [29, 2] for an account of the related potential
theory of second order elliptic operators. We like to point out that while a
symmetric second order elliptic operator with constant coefficients is merely
a linear transformation of the Laplacian, the operators A and their harmonic
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functions considered here are very diverse ([18]).
The remainder of the paper is organized as follows. First definitions are

given in Section 2. In Section 3 we estimate the semigroup (see (17) below)
and the potential measure V and we prove our first two theorems. In Section 4
we give preliminaries needed for the proof of Theorem 3, which is presented
in Section 5 and 6. In Section 6 we also recall after [18] two explicit examples
to show how irregular the Lévy measure ν can be for Harnack’s inequality to
hold or to fail for A.

At the end of the paper we mention some remaining open problems.

2 Preliminaries

For x ∈ Rd and r > 0 we let |x| =
√∑d

i=1 x2
i and B(x, r) = {y ∈ Rd : |y−x| <

r}. We denote S = {x ∈ Rd : |x| = 1}. All the sets, functions and measures
considered in the sequel will be Borel. For a measure λ on Rd, |λ| denotes its
total mass. For a function f we let λ(f) =

∫
fdλ, whenever the integral makes

sense. When |λ| < ∞ and n = 1, 2, . . . we let λn denote the n-fold convolution
of λ with itself:

λn(f) =

∫
f(x1 + x2 + . . . + xn)λ(dx1)λ(dx2) . . . λ(dxn) .

We also let λ0 = δ0, the evaluation at 0. We call λ degenerate if there is a
proper linear subspace M of Rd such that supp(λ) ⊂ M ; otherwise we call λ
nondegenerate.

In what follows we will consider measures µ concentrated on S. We will
assume that µ is positive, finite, nondegenerate (in particular µ 6= 0), and
symmetric:

µ(D) = µ(−D) , D ⊂ Rd .

We will call µ the spectral measure. We let

ν(D) =

∫
S

∫ ∞

0

1D(rξ)r−1−α drµ(dξ) , D ⊂ Rd ,(3)

where 1D is the indicator function of D. Note that ν is symmetric. It is a
Lévy measure on Rd, i.e.∫

Rd

min(|y|2, 1) ν(dy) < ∞ .
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For r > 0 and a function ϕ on Rd we consider its dilation ϕr(y) = ϕ(y/r),
and we note that ν(ϕr) = r−αν(ϕ). In particular ν is homogeneous: ν(rB) =
r−αν(B) for B ⊂ Rd. Similarly, if ϕ ∈ C∞

c (Rd), then A(ϕr) = r−α(Aϕ)r.
This is the homogeneity of A. In connection with the rest of our statement
in Abstract we recall that every operator A on C∞

c (Rd), which satisfies the
positive maximum principle:

sup
y∈Rd

ϕ(y) = ϕ(x) ≥ 0 implies Aϕ(x) ≤ 0 ,

is given uniquely in the form

Aϕ(x) =
d∑

i,j=1

aij(x)Dxi
Dxj

ϕ(x) + b(x)∇ϕ(x)− c(x)ϕ(x)

+

∫
Rd

(
ϕ(x + y)− ϕ(x)− y∇ϕ(x) 1|y|<1

)
ν(x, dy) .

Here y∇ϕ is the scalar product of y and the gradient of ϕ and, for every x,
a(x) = (aij(x))n

i,j=1 is a nonnegative definite real symmetric matrix, the vector
b(x) = (bi(x))d

i=1 has real coordinates, c(x) ≥ 0, and ν(x, ·) is a Lévy measure.
This description is due to Courrége, see [33, Proposition 2.10], [49, Chapter 2]
or [35, Chapter 4.5]. For translation invariant operators A the characteristics
a, b, c, and ν are independent of x. If A is symmetric:∫

Rd

Aϕ(x)φ(x) dx =

∫
Rd

Aφ(x)ϕ(x) dx for ϕ, φ ∈ C∞
c (Rd) ,

then b = 0 and ν is necessarily symmetric (see, e.g., [35, p. 251] and [33,
Corollary 2.14]). If A is homogeneous but not a local operator ([35]) then
a = 0 and ν must be homogeneous, hence (3) holds with some α ∈ (0, 2) (note
that Aϕ(0) = ν(ϕ) if ϕ ∈ C∞

c (Rd \ {0})).
We now construct the corresponding semigroup (for a more axiomatic in-

troduction to convolution semigroups we refer the reader to [7, 35]). For ε > 0
we let ν̂ε = 1B(0,ε)cν, i.e. ν̂ε(f) = ν(1B(0,ε)cf), and we let ν̃ε = 1B(0,ε)ν. We
consider the probability measures

P̂ ε
t = exp(t(ν̂ε − |ν̂ε|δ0)) =

∞∑
n=0

tn (ν̂ε − |ν̂ε|δ0))
n

n!
(4)

= e−t|ν̂ε|
∞∑

n=0

tnν̂n
ε

n!
, t > 0 .
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Here ν̂n
ε = (ν̂ε)

n. P̂ ε
t form a convolution semigroup:

P̂ ε
t ∗ P̂ ε

s = P̂ ε
s+t , s, t > 0 .

The Fourier transform of P̂ ε
t is

F(P̂ ε
t )(u) =

∫
eiuyP̂ ε

t (dy) = exp

(
t

∫
(eiuy − 1)ν̂ε(dy)

)
, u ∈ Rd .

The measures P̂ ε
t weakly converge to a probability measure Pt as ε → 0 (this

essentially depends on (6) below). {Pt, t > 0} is also a convolution semigroup
and F(Pt)(u) = exp(−tΦ(u)), where

Φ(u) = −
∫ (

eiuy − 1− iuy1B(0,1)(y)
)
ν(dy)

= −
∫

(cos(uy)− 1) ν(dy) =
π

2 sin πα
2

Γ(1 + α)

∫
S
|uξ|αµ(dξ) .

Since µ is finite and nondegenerate,

Φ(u) = |u|αΦ(u/|u|) ≈ |u|α .(5)

We call ν the Lévy measure of the semigroup {Pt , t ≥ 0} [33, 7].
By a similar limiting procedure we construct the semigroup {P̃ ε

t , t > 0}
such that

F(P̃ ε
t )(u) = exp

(
t

∫
(eiuy − 1− iuy1B(0,1)(y))ν̃ε(dy)

)
.

Note that ∫
Rd

|y|2P̃ ε
t (dy) = t

∫
Rd

|y|2ν̃ε(dy) .(6)

The Lévy measures of {P̃ ε
t } and {P̂ ε

t } are ν̃ε and ν̂ε, respectively, and we have

Pt = P̃ ε
t ∗ P̂ ε

t .(7)

The measures Pt and P̃ ε
t have rapidly decreasing Fourier transform hence they

are absolutely continuous with bounded smooth densities denoted pt(x) and
p̃ε

t(x), respectively. Of course,

pt = p̃ε
t ∗ P̂ ε

t .(8)
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By using (5) we obtain the scaling property of {pt}:

pt(x) = t−d/αp1(t
−1/αx) , x ∈ Rd .(9)

In particular,
pt(x) ≤ ct−d/α .(10)

We define the potential measure of the semigroup {Pt}:

V(D) =

∫ ∞

0

Pt(D)dt , D ⊂ Rd .

By (10), V is finite on bounded subsets of Rd if d > α. Let

V (x) =

∫ ∞

0

pt(x)dt , x ∈ Rd ,(11)

so that

V(D) =

∫
D

V (x)dx , D ⊂ Rd .

We call V (x) the potential kernel of the stable semigroup. By (9)

V (x) = |x|α−dV (x/|x|) , x 6= 0 ,(12)

and V(rD) = rαV(D) for r > 0, D ⊂ Rd.
If d = 1 then up to a constant there is only one measure ν to consider:

ν(dy) = |y|−1−αdy, corresponding to A = c∆α/2. This case of d = 1 is not
excluded from our considerations but it is sometimes trivial. In particular,
if d = 1 ≤ α then V ≡ ∞ ([7, Example 14.30]). We refer to [19] for more
information and references on the case d = 1 ≤ α.

Constants in this paper mean positive real numbers. We often write f ≈ g
to indicate that there is c = c(α, µ), i.e. a constant c depending only on α and
µ, such that c−1f ≤ g ≤ cf .

3 Estimates of semigroup and potential mea-

sure

A general reference to the potential theory of convolution semigroups is [7]
(see also [35, 36]).

We consider an auxiliary scale of smoothness for ν.
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Definition 1 We say that ν is a γ-measure on S if

ν(B(x, r)) ≤ crγ , |x| = 1 , 0 < r < 1/2 .(13)

Since ν(drdθ) = r−1−αdrµ(dθ), it is at least a 1-measure and at most a d-
measure on S. If ν is a γ-measure with γ > 1, then µ has no atoms. ν is a
d-measure if and only if it is absolutely continuous with respect to the Lebesgue
measure and has a density function which is locally bounded on Rd \ {0}. We
refer the reader to [26] and [30] for considerations related to this case.

In the remainder of this section we fix 1 ≤ γ ≤ d and we assume that ν is
a γ-measure on S.
We will first estimate individual terms in the series in (4).

Lemma 1 There exists C = C(α, µ) such that for ε > 0 and n = 1, 2, . . .
we have

ν̂n
ε (B(x, r)) ≤ Cnrγε−(n−1)α , |x| = 1 ,(14)

provided 0 < r < max(ε/3, 1/5n).

Proof. We proceed by induction. Note that (14) holds for n = 1 by (13). Let
c0 and n be such that (14) is satisfied with C = c0. We first assume that
r < ε/3. For every x ∈ S by homogeneity of ν and (13) we have

ν̂n+1
ε (B(x, r)) =

∫
|x−y|>2ε/3

ν̂ε(B(x− y, r))ν̂n
ε (dy)

≤
∫

|x−y|>2ε/3

ν(B(x− y, r))ν̂n
ε (dy)

=

∫
|x−y|>2ε/3

|x− y|−αν(B(
x− y

|x− y|
,

r

|x− y|
))ν̂n

ε (dy)

≤ c1r
γ

∫
|x−y|>2ε/3

|x− y|−α−γ ν̂n
ε (dy)

(note that r/|x−y| < 1/2 provided |x−y| > 2ε/3). Now let ε/3 ≤ r < 1/5n+1.
Then 2r + ε < 1/5n and by induction∫

|x−y|<2r+ε

ν̂ε(B(x− y, r))ν̂n
ε (dy) ≤ |ν̂ε|ν̂n

ε (B(x, 2r + ε))
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≤ |µ|
α

ε−αcn
0 (2r + ε)γε−(n−1)α

≤ cn
0c2r

γε−nα,

for some c2 = c2(α, µ) ; and by homogeneity of ν and (13) we get∫
|x−y|>2r+ε

ν̂ε(B(x− y, r))ν̂n
ε (dy) ≤

∫
|x−y|>2r+ε

ν(B(x− y, r))ν̂n
ε (dy)

≤
∫

|x−y|>2r+ε

c1r
γ|x− y|−α−γ ν̂n

ε (dy)

≤ c1r
γ

∫
|x−y|>2ε/3

|x− y|−α−γ ν̂n
ε (dy).

From the above we have

ν̂n+1
ε (B(x, r)) ≤ c1r

γ

∫
|x−y|>2ε/3

|x− y|−α−γ ν̂n
ε (dy) + cn

0c2r
γε−nα,(15)

for all 0 < r < max(ε/3, 1/5n+1).
Let Lε = blog5(3/2ε)c. If 2ε/3 < 1/5n then we get by induction∫

2ε/3<|x−y|<1/5n

|x− y|−α−γ ν̂n
ε (dy) ≤

Lε∑
k=n

∫
1/5k+1<|x−y|<1/5k

|x− y|−α−γ ν̂n
ε (dy)

≤
Lε∑

k=n

(5k+1)α+γ ν̂n
ε (B(x, 1/5k))

≤ cn
05α+γε−(n−1)α

Lε∑
k=1

5kα

≤ cn
0c3ε

−nα ,

where c3 = c3(α, µ). Also,∫
|x−y|>1/5n

|x− y|−α−γ ν̂n
ε (dy) ≤ (5α+γ)n|ν̂n

ε |

= (5α+γ |µ|
α

)nε−nα

≤ cn
0ε

−nα,

by taking large c0. We get∫
|x−y|>2ε/3

|x− y|−α−γ ν̂n
ε (dy) ≤ cn

0ε
−nα(c3 + 1),
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and (15) yields
ν̂n+1

ε (B(x, r)) ≤ cn+1
0 rγε−nα.

Corollary 2 There exists C = C(α, µ) such that

ν̂n
ε (B(x, λε)) ≤ Cnλγ(1 + λα)εγ−(n−1)α , λ > 0 , ε > 0 , |x| = 1 .(16)

Proof. Lemma 1 yields (16) for λε < 1/5n. For λε ≥ 1/5n we have

ν̂n
ε (B(x, λε)) ≤ |ν̂n

ε | =
|µ|n

αn
ε−nα ≤ (

|µ|
α

5α+γ)nλα+γεγ−(n−1)α.

In what follows we denote P̂t = P̂ t1/α

t and P̃t = P̃ t1/α

t .

Corollary 3 There exists C = C(α, µ) such that

P̂t(B(x, λt1/α)) ≤ Cλγ(1 + λα)t1+
γ
α , λ > 0 , t > 0 , |x| = 1.

Proof. Corollary 2 yields

P̂t(B(x, λt1/α)) = e−|µ|/α

∞∑
n=0

tnν̂n
t1/α(B(x, λt1/α))

n!

≤ e−|µ|/α

∞∑
n=0

cnλγ(1 + λα)t1+
γ
α

n!

= ec−|µ|/αλγ(1 + λα)t1+
γ
α .

Corollary 4 P̂1(B(y, λ)) ≤ Cλγ(1 + λα)|y|−α−γ for y ∈ Rd and λ > 0.

Proof. Let y ∈ Rd \ {0} and x = y/|y|, t = |y|−α. By scaling and Corollary 3
we have
P̂1(B(y, λ)) = P̂t(B(x, λt1/α)) ≤ cλγ(1 + λα)|y|−α−γ .

We note that for every q > 0 we have that
∫
|y|qP̃1(dy) < ∞, because the

support of ν̃1 is bounded ([46]). A simple reasoning based on this and the
boundedness of the derivative of p̃1 yields

p̃1(y) ≤ cq(1 + |y|)−q , q > 0 , y ∈ Rd ,

see [43, Lemma 9].
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Lemma 5 For every q > 0 there exists C = C(α, µ, q) such that

P̃1(B(z, ρ)) ≤ C(1 + |z|)−qρd , ρ ≤ 1 , z ∈ Rd .

Proof. If |z| < 2 then P̃1(B(z, ρ)) =
∫

B(z,ρ)
p̃1(y)dy ≤ cρd ≤ c(1 + |z|)−qρd.

If |z| ≥ 2 then P̃1(B(z, ρ)) ≤ c(1 + |z|/2)−qρd ≤ c(1 + |z|)−qρd.
The proof of the following lemma is a simplification of the proof of [43,

Theorem 3].

Lemma 6 P1(B(z, ρ)) ≤ C|z|−α−γρd for z ∈ Rd and 0 < ρ ≤ 1.

Proof. By (7), Lemma 5, and Corollary 4

P1(B(z, ρ)) = P̃1 ∗ P̂1(B(z, ρ)) =

∫
Rd

P̃1(B(z − y, ρ))P̂1(dy)

=

∫ 1

0

P̂1({y : P̃1(B(z − y, ρ)) > s})ds

≤
∫ 1

0

P̂1({y : c(1 + |z − y|)−qρd > s})ds

≤
∫ cρd

0

P̂1(B(z, c1/qs−1/qρd/q))ds

≤ c

∫ cρd

0

(c1/qs−1/qρd/q)γ(1 + (c1/qs−1/qρd/q)α)|z|−γ−αds

= c|z|−γ−α

[
ρdγ/q

∫ cρd

0

s−γ/qds + ρd(γ+α)/q

∫ cρd

0

s−(γ+α)/qds

]
= c|z|−γ−α

[
ρdγ/q(ρd)1−γ/q + ρd(γ+α)/q(ρd)1−(γ+α)/q

]
= c|z|−γ−αρd .

The following two corollaries are our main estimates of the semigroup.
Corollary 8 is an analogue of [43, Theorem 3], while (17) corresponds to [53].

Corollary 7 P1(B(z, ρ)) ≤ C(1 + |z|)−α−γρd if 0 ≤ ρ < |z|/2.

Proof. We recall that p1(y) = P1(dy)/dy is bounded and so Lemma 6 yields

p1(y) ≤ c(1 + |y|)−γ−α , y ∈ Rd .(17)

If 0 ≤ ρ < |z|/2 then P1(B(z, ρ)) ≤ c
∫

B(z,ρ)
(1 + |y|)−γ−αdy ≤ (1 + |z|)−α−γρd .
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Corollary 8 Pt(B(x, ρ)) ≤ Ct1+
γ−d

α ρd, provided |x| = 1, t > 0, and
0 ≤ ρ ≤ t1/α.

Proof. By scaling and Lemma 6 we have Pt(B(x, ρ)) = P1(B(xt−1/α, ρt−1/α)) ≤
ct1+ γ−d

α ρd.

Proof of Theorem 1. Let |x| = 1, 0 ≤ ρ < 1/2. By scaling and Corollary 7

V(B(x, ρ)) =

∫ ∞

0

Pt(B(x, ρ))dt =

∫ ∞

0

P1(B(xt−1/α, ρt−1/α))dt

≤ cρd

∫ ∞

0

(1 + t−1/α)−γ−αt−d/αdt .

The integral is finite because −d/α < −1 and (γ + α − d)/α > −1. Let
y ∈ Rd \ {0}, x = y/|y|. By scaling, a change of variable, and (17)

V (y) =

∫ ∞

0

t−d/αp1(yt−1/α)dt = |y|α−d

∫ ∞

0

t−d/αp1(xt−1/α)dt

≤ |y|α−d

∫ ∞

0

t−d/α(1 + t−1/α)−γ−αdt ≤ c|y|α−d .

The first integral above is locally uniformly convergent on Rd \ {0} hence V is
continuous there.

We now proceed to our converse, Theorem 2. We propose a general ap-
proach based on a simple study of generator A. We first note that

pt(x) > 0 , x ∈ Rd (t > 0) ,(18)

see ([52]) or [43, Lemma 5]. In fact, (18) easily follows from (8), (4), continuity
of p̃ε

t , and the fact that supp(ν) + supp(ν) + . . . + supp(ν) (d times) equals Rd.
By (18), (12), and continuity of pt for t > 0, there is a constant c = c(α, µ)

such that
V (x) ≥ c|x|α−d, x ∈ Rd.(19)

Lemma 9 Let d > α. For all ϕ ∈ C∞
c (Rd) we have∫

Rd

Aϕ(x− y)V(dy) = −ϕ(x) , x ∈ Rd ,

where the integral is absolutely convergent.
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This is well-known (see, e.g., [36, Theorem 3.5.78]). We only note that |Aϕ(x)| ≤
c(1+|x|)−1−α. The absolute convergence follows from this and the homogeneity
of V.

Proof of Theorem 2. If d = 1 ≤ α then V ≡ ∞ and there is nothing to prove.
Thus we assume that d > α. We fix a function φ ∈ C∞

c (Rd) such that φ ≥ 0,
supp φ ⊂ B(0, 1/2) and φ = 1 on B(0, 1/3). Let r > 0. Put φr(x) = φ(x/r)
and Λr(x) = Aφr(x). Homogeneity of A yields Λr(x) = r−αΛ1(x/r). Note
that Aφ = Λ1 is bounded, hence there is a constant c such that

Λr(x) ≥ −cr−α .

If |x| ≥ r/2 then Λr(x) ≥ 0, and in fact Λr(x) ≥ ν(B(x, r/3)). Let |x| > r.
From Lemma 9 we have

0 =

∫
Rd

Λr(x− y)V(dy) ≥
∫

B(x,r/2)

Λr(x− y)V(dy) +

∫
B(0,r/4)

Λr(x− y)V(dy)

≥ −cr−αV((B(x, r/2)) +

∫
B(0,r/4)

ν(B(x− y, r/3))V(dy)

≥ −cr−αV((B(x, r/2)) + V(B(0, r/4))ν(B(x, r/12)) .

Since V(B(0, r/4)) = rαV(B(0, 1/4)) and V(B(0, 1/4)) < ∞ we get

ν(B(x, r/12)) ≤ cr−2αV((B(x, r/2)) , |x| > r .(20)

We note that similar results can also be derived from the lower bounds for
the semigroup as given in [53, Theorem 1.1].

4 Harnack’s inequality: preliminaries

The general references for this section are [22, 23], [46], [9], or [11]. The
Lévy measure ν yields a standard symmetric stable Lévy process (Xt, P

x)
with generating triplet (0, ν, 0). Namely, the transition probabilities of the
process (Xt, P

x) are P (t, x, A) = Pt(A − x), t > 0, x ∈ Rd, A ⊂ Rd, and
P (0, x, A) = 1A(x), where {Pt, t ≥ 0} is the stable semigroup of measures
introduced in Preliminaries. The process is strong Markov with respect to the
so-called standard filtration.
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The process conveniently leads to a definition of harmonic measures ωx
D,

and their properties (21) and (24) below. For an analytic definition of these,
called the fundamental family, we refer to [7] (see also [40, 10]).

For open U ⊂ Rd we denote τU = inf{t ≥ 0; Xt 6∈ U}, the first exit time of
U . We write ωx

D for the harmonic measure of (open) D:

ωx
D(A) = P x(τD < ∞ , XτD

∈ A) , x ∈ Rd , A ⊂ Rd .

By the strong Markov property

ωx
D(A) =

∫
ωy

D(A)ωx
U(dy) , if U ⊂ D .(21)

We say that a function u on Rd is harmonic in open D ⊂ Rd if

u(x) = Exu(XτU
) =

∫
Uc

u(y) ωx
U(dy) , x ∈ Rd,(22)

for every bounded open set U with the closure Ū contained in D. It is called
regular harmonic in D if (22) holds for U = D. If D is unbounded then
Exu(XτD

) = Ex[τD < ∞ ; u(XτD
)] by a convention. Under (22) it will be

only assumed that the expectation in (22) is well defined (but not necessarily
finite). Regular harmonicity implies harmonicity, and it is inherited by subsets
U ⊂ D. This follows from (21).

We denote by pD
t (x, v) the transition density of the process killed at the

first exit from D:

pD
t (x, v) = p(t, x, v)− Ex[τD < t ; p(t− τD, XτD

, v)] , t > 0 , x, v ∈ Rd .

Here p(t, x, v) = pt(v − x). For convenience we will assume in the sequel that
D is regular: P x[inf{t > 0 : Xt /∈ D} = 0] = 1 for x ∈ Dc (see [23, 22]). Then
pD

t is symmetric: pD
t (x, v) = pD

t (v, x), x, v ∈ D (see, e.g., [24]). The strong
Markov property yields

p(t, x, v) = Ex[p(t− τD, XτD
, v) ; τD < t] , x ∈ D , v ∈ Dc .(23)

In particular, pD
t (x, v) = 0 if x ∈ D, v ∈ Dc. We let

GD(x, v) =

∞∫
0

pD
t (x, v)dt ,

14



and we call GD(x, v) the Green function for D. If V is continuous on Rd \ {0},
so that V (x) ≤ c|x|α−d, then the strong Markov property yields for x, v ∈ D

GD(x, v) = V (x, v)− ExV (XτD
, v) = V (x, v)−

∫
Dc

V (z, v) ωx
D(dz) .(24)

Here V (x, v) = V (v − x). The Green function is symmetric: GD(x, v) =
GD(v, x), continuous in D ×D \ {(x, v) : x = v}, and it vanishes if x ∈ Dc or
v ∈ Dc.

Note that V (x, v) is harmonic in x on Rd \ {v}. Indeed, if x ∈ D and
dist(D, v) > 0 then by (23)

V (x, v) =

∞∫
0

Ex[p(t− τD, XτD
, v); τD < t]dt = ExV (XτD

, v) .

Similarly, the Green function v 7→ GD(x, v) is harmonic in D \ {x}.
By Ikeda–Watanabe formula [34] we have

ωx
D(A) =

∫
D

GD(x, v)ν(A− v)dv , if dist(A, D) > 0 .(25)

We note here that translation–invariance of the Lebesgue measure and Fubini–
Tonelli theorem yield∫ ∫

Φ(v)Ψ(v + z)m(dz)dv =

∫ ∫
Φ(v + z)Ψ(v)m(dz)dv ,(26)

for every symmetric measure m and nonnegative functions Φ and Ψ. In par-
ticular, taking m = ν, Φ(v) = GD(x, v) and Ψ(v) = 1A(v) we get∫

D

GD(x, v)ν(A− v)dv =

∫
A

∫
−D+v

GD(x, v − z)ν(dz)dv .

If the boundary of D is smooth or even Lipschitz then

ωx
D(∂D) = 0 , x ∈ D ,

see [50] (see also [42], [54]). In this case ωx
D is absolutely continuous with

respect to the Lebesgue measure on Dc. Its density function, or the Poisson
kernel, is given by the formula

PD(x, y) =

∫
y−D

GD(x, y − z)ν(dz) , x ∈ D .(27)
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Note that such D are regular, because of (18) and scaling. In particular the
above considerations apply to D = B(0, 1).

It follows from (9) that for every r > 0 and x ∈ Rd the Px distribution
of {Xt , t ≥ 0} is the same as the Prx distribution of {r−1Xrαt , t ≥ 0}. In
particular,

ωx
D(A) = ωrx

rD(rA) .(28)

We call (28) scaling, too. It yields that for u harmonic on D, the dilation, ur,
is harmonic on rD. A similar remark concerns translations.

By (26) we also obtain∫
B(0,1/2)

|y|α−dν(A− y)dy =

∫
A

∫
B(y,1/2)

|y − z|α−dν(dz)dy , A ⊂ Rd ,

and ∫
B(0,1/2)

ν(A− y)dy =

∫
A

ν(B(y, 1/2))dy , A ⊂ Rd .

Therefore we can express the relative Kato condition (RK) in an equivalent
form: ∫

B(0,1/2)

|y|α−dν(A− y)dy ≤ K

∫
B(0,1/2)

ν(A− y)dy , A ⊂ Rd .(29)

We remark that (RK) is a local condition at infinity: the inequality in
(2) only needs to be verified for large y ∈ Rd. In particular, if it holds for
|y| > 1 then it holds for all y ∈ Rd, possibly with a different constant, see
[18]. Noteworthy, the reverse of (2) (and (29)) always holds, so actually (RK)
means comparability of both sides of (2) (and (29)).

In what follows we let G = GB(0,1), P = PB(0,1) and we define

s(x) = ExτB(0,1) =

∫
B(0,1)

G(x, v)dv .

Explicit formulas for these functions for ν(dy) = |y|−d−αdy are known and may
give some insight into the general situation. They are essentially due to M.
Riesz, see, e.g., [16], [12], [40], [10], [28]. In particular (for isotropic ν) we have

P (x, y) = Cd
α

[
1− |x|2

|y|2 − 1

]α/2

|x− y|−d , |x| < 1 , |y| > 1 .(30)

The following two lemmas are consequences of symmetry and nondegener-
acy of the spectral measure µ. They can be proved similarly as Lemma 4 and
Lemma 10 of [18], so we skip the proofs.
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Lemma 10 There exist ε = ε(α, µ) ∈ (0, 1) and C = C(α, µ) such that

ν(B(x, 1− ε)) ≥ C ,(31)

provided 1− ε < |x| < 1.

Lemma 11 There exists C = C(α, µ) such that

s(x) ≤ C(1− |x|2)α/2 , |x| < 1.

For clarity we make the following remark on nondegeneracy of ν. If a
symmetric Lévy measure ν is concentrated on a proper linear subspace M of
Rd, and a function u is constant on x+M for every x ∈ Rd, then u is harmonic
on Rd (relative to ν). However, such functions in general violate Harnack
inequality. Thus our standing assumption of the nondegeneracy of ν is a
necessary, or non-restrictive, condition for Harnack’s inequality in Theorem 3.

5 Necessity of relative Kato condition

In this short section we assume that Harnack’s inequality (1) holds. We make
no further assumptions on ν beyond these in Section 2. In particular our
considerations do not depend on the estimates in Section 3.

Lemma 12 Harnack’s inequality implies the relative Kato condition.

Proof. We first consider the case d > α. We claim that

V (x) ≈ |x|α−d , x ∈ Rd.(32)

Indeed, for every |x| = 1, V(B(x, 1/4)) =
∫

B(x,1/4)
V (v)dv ≤ V(B(0, 2)) < ∞,

so there exists v ∈ B(x, 1/4) such that V (v) ≤ V(B(0, 2))/|B(0, 1/4)|. By
Harnack’s inequality V (x) ≤ cV (v). The estimate (32) follows from (12) and
(19).

Let g(v) = min(G(0, v), 1). We claim that

G(x, v) ≈ g(v)|v − x|α−d if |x| < 1/2 and |v| < 1 .(33)

Indeed, by (32) and (24) for small δ > 0 we have:

G(x, v) ≈ |v − x|α−d , |x| < 1/2 , |x− v| < δ .
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Harnack’s inequality yields that G(x, v) ≈ |v − x|α−d provided |x| < 1/2 and
|v| < 3/4, and also G(x, v) ≈ G(0, v) if |x| < 1/2 and |v| > 3/4. Note that g
is locally bounded from below on B(0, 1). This completes the proof of (33).

For every A ⊂ Rd the function x 7→ ωx
B(0,1)(A) is nonnegative on Rd and

regular harmonic in B(0, 1). Harnack’s inequality (1), (25), (33), and Fubini-
Tonelli yield

ω0
B(0,1)(A) ≈

∫
B(0,1/2)

ωx
B(0,1)(A) dx

≈
∫

B

∫
B(0,1/2)

g(v)|v − x|α−dν(A− v) dv dx

≈
∫

B

g(v)ν(A− v) dv .

This and (25) yield∫
B

g(v)|v|α−dν(A− v) dv ≈
∫

B

g(v)ν(A− v) dv .

To this “approximate equality” we add the following one:∫
B\B(0,3/4)

|v|α−dν(A− v) dv ≈
∫

B\B(0,3/4)

ν(A− v) dv ,

and we obtain∫
B

|v|α−dν(A− v) dv ≈
∫

B

ν(A− v) dv , A ⊂ Bc .

A change of variable: v = 2u yields (29) and (2).
In the case d ≤ α we have d = 1, and so ν(dy) = c|y|−1−αdy, which satisfies

(RK).

6 Sufficiency of relative Kato condition

In what follows we assume that (RK) holds for ν. We will also assume that
d > α unless stated otherwise.

The key step in the proof of Harnack’s inequality is the following estimate
for the Green function of the ball, which we prove after a sequence of lemmas.
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We note that it is essentially the same inequality as (33), but proved under
explicit assumptions on ν rather than by stipulating Harnack’s inequality. The
estimate was suggested by the sharp estimates of the Green function of Lips-
chitz domains [38] for the isotropic ν (see also [14]). We also refer the reader
to [39, 20] for more explicit estimates for smooth domains and to, e.g., [16] for
explicit formulas for the ball in the case of isotropic ν.

Proposition 1 G(x, v) ≈ s(v)|v − x|α−d provided |x| < 1/2 and |v| < 1.

Lemma 13 ν is a (d− α)-measure on S.

Proof. Indeed, for |x| = 1, 0 < r < 1/2 by (2) we obtain

ν(B(x, r)) ≤ rd−α

∫
B(x,1/2)

|x− z|α−dν(dz) ≤ Kν(B(0, 1/2)c) rd−α .

Theorem 1 yields that V is continuous on Rd \ {0}. Consequently, V (x) ≈
|x|α−d and G(x, y) is continuous on B ×B \ {(x, y) : x = y}.

Lemma 14 G(x, v) ≈ |v − x|α−d, if |x| < 1/2 , |v| < 3/4 .

We skip the proof as it is the same as the one of Lemma 6 in [18].
We note that lim

x→z
G(x, v) = 0 for every v ∈ B(0, 1) and every point z ∈ S

because the measures ωx
B(0,1) weakly converge to δz. This is related to the

regularity of B(0, 1), and it follows, e.g., from the estimate

ωx
B(x,1−|x|)(B(0, 1)c) ≥ c ,

which is a consequence of scaling, nondegeneracy of ν (compare (31)), and
(25).

We will employ the operator

Urφ(x) =
Exφ(XτB(x,r)

)− φ(x)

ExτB(x,r)

,

whenever the expression is well defined for given φ, r > 0 and x. We note that
Ur is implicitly used in [7, Chapter III §17]. Clearly, if h is harmonic in D,
x ∈ D, and r < dist(x, Dc), then Urh(x) = 0. We note that

Uφ(x) = lim
r↓0

Urφ(x)

is the Dynkin characteristic operator, which was used in [18] in a similar way.
We record the following observation (maximum principle).
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Lemma 15 If there is r > 0 such that Urh(x) > 0 then h(x) < sup
y∈Rd

h(y).

Lemma 16 There exists C = C(α, µ) such that

G(x, v) < Cs(v), |x| < 1/2 , 3/4 < |v| < 1 .

Proof. By the strong Markov property we have

s(v) = EvτB = Ev(τA + τB(0,1) ◦ θτA
) = EvτA + EvEXτA τB(0,1)

= EvτA + Evs(XτA
) , v ∈ Rd , A ⊂ B(0, 1),

which yields Urs(v) = −1 for v ∈ B(0, 1) and r < 1− |v|.
For n ∈ {1, 2, . . .} and x ∈ B(0, 1/2) we let g(v) = G(x, v) and gn(v) =

min(G(x, v), n). For v ∈ B(x, 1/8)c we have that G(x, v) ≤ c1|x− v|α−d hence
gn(v) = G(x, v) provided n ≥ c18

d−α. By harmonicity of g on B(0, 1) \ {x},
scaling property, (25) and (2) we obtain that for v ∈ B(0, 1) \ B(0, 3/4) and
r < min(1− |v|, 1/16) it holds

Urgn(v) = Ur(gn − g)(v)

=
1

E0τB(0,1)

∫
B(0,1)

G(0, w)

∫
(gn − g)(v + rw + z)ν(dz)dw

≥ −c2

s(0)

∫
B(0,1)

G(0, w)

∫
B(x−v−rw,1/8)

|x− v − rw − z|α−dν(dz)dw

≥ −c2K

s(0)

∫
B(0,1)

G(0, w)ν(B(x− v − rw, 1/8))dw ≥ −c3 .

If a > c3 then

Ur(as− gn)(v) = −a− Urgn(v) ≤ −a + c3 < 0.

By scaling

s(v) ≥ EvτB(v,1−|v|) = (1− |v|)αE0τB(0,1)(34)

≥ 4−αE0τB(0,1) , |v| < 3/4 .

Since gn(v) ≤ n, we see that as(v) − gn(v) > 0 for v ∈ B(0, 3/4) provided
a > n/(4−αE0τB(0,1)).
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Let a0 = max[c3, n/(4−αE0τB(0,1))] + 1 and h(v) = a0s(v)− gn(v). We have

h(v) ≥ 0 for v ∈ B(0, 3/4), h(v) = 0 for v ∈ B(0, 1)c and Urh(v) < 0 for
v ∈ B(0, 1) \B(0, 3/4), r < min(1− |v|, 1/16). Lemma 15 and continuity of h
yields h(v) ≥ 0 in B(0, 1). Since gn = g on B(0, 3/4)c, the lemma follows.

Lemma 16 and 11 yield the following conclusion:

G(x, v) ≤ C(1− |v|)α/2 , |x| < 1/2 , 3/4 < |v| < 1 .(35)

Lemma 17 There is C = C(α, µ) such that G(x, v) ≥ Cs(v) provided
|x| < 1/2 and |v| < 1.

Proof. Let x ∈ B(0, 1/2). We fix ε such that (31) is satisfied. Lemma
14 yields that G(x, v) ≥ c1 > 0 for v ∈ B(0, 1 − ε). Let n ∈ {1, 2, . . .} be
such that c1 ≥ 2/n. By (35) there is η > 0 such that G(x, v) ≤ 1/n for
v ∈ B(0, 1) \ B(0, 1− η). Let g(v) = G(x, v) and gn(v) = min(g(v), 1/n). We
have

gn(v) = g(v), v ∈ B(0, 1) \B(0, 1− η),

and
g(v)− gn(v) ≥ 2/n− 1/n = 1/n , v ∈ B(0, 1− ε) ,

hence by Lemma 10 for v ∈ B(0, 1)\B(0, 1− η) and r < min(1−|v|, (ε−η)/2)
we obtain

Urgn(v) = Ur(gn − g)(v)

=
1

s(0)

∫
B(0,1)

GB(0,1)(0, w)

∫
(gn − g)(v + rw + z)ν(dz)dw

≤ − 1

n

1

s(0)

∫
B(0,1)

GB(0,1)(0, w)ν(B(v + rw, 1− ε))dw ≤ −c2

n
.

For a > 0 we have

Ur(agn − s)(v) ≤ −c2a/n + 1 , v ∈ B(0, 1) \B(0, 1− η) .

This is negative if a > n/c2. Furthermore s(v) ≤ c3 for v ∈ B(0, 1) and gn(v) ≥
c4 > 0 for v ∈ B(0, 1−η). Thus agn(v)−s(v) ≥ ac4−c3 > 0 for v ∈ B(0, 1−η)
if only a > c3/c4. Note that our estimates do not depend on x, provided
|x| < 1/2. Let a0 = max(c3/c4, n/c2) + 1 and h(v) = a0gn(v)− s(v). We have
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h(v) ≥ 0 for v ∈ B(0, 1− η) and Urh(v) < 0 for v ∈ B(0, 1) \ B(0, 1− η). By
Lemma 15 and the continuity of h we get h(v) ≥ 0 in B(0, 1) and the lemma
follows.

Proof of Proposition 1. The estimate is a consequence of (34), Lemma 14, 16,
and 17.

Maciej Lewandowski [41] has informed us that he recently proved the con-
verse of the inequality in Lemma 11. This implies

G(x, v) ≈ (1− |v|2)α/2|v − x|α−d , |x| < 1/2 , |v| < 1 .(36)

We will not use (36) in the sequel; the less explicit estimate in Lemma 17
suffices for our purposes. Note that the asymptotic of G at the pole is different
when d = 1 ≤ α, see, e.g., [16].

Lemma 18 (RK) implies Harnack’s inequality for all d ∈ {1, 2, . . .} and
α ∈ (0, 2).

Proof. By translation and scaling invariance of the class of harmonic functions
and by a covering argument we only need to verify that

u(0) ≤ c u(x) , |x| < 1/2 ,

whenever u is nonnegative on Rd and regular harmonic on B(0, 1). For this to
hold it is sufficient to have, with the same constant c,

P (0, y) ≤ c P (x, y) , |x| < 1/2 , |y| > 1 .(37)

If d = 1, (37) follows from (30). Thus we only need to examine the case
d > α. By the decomposition B(0, 1) = B(0, 1/2) ∪ [B(0, 1) \B(0, 1/2)], (27),
Proposition 1, (2), and the fact that s is bounded away from zero on compact
subsets of B(0, 1) (comp. (34)), we obtain

P (0, y) ≈
∫

B(y,1)

s(y − v)|y − v|α−dν(dv) ≈
∫

B(y,1)

s(y − v)ν(dv)

≤ c

∫
B(y,1)

s(y − v)|y − v − x|α−dν(dv)

≈ P (x, y) , |x| < 1/2 , |y| > 1 .
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Proof of Theorem 3. See Lemma 12 and Lemma 18.

We conclude with a few remarks and open problems.
By translation and dilation invariance of the class of considered harmonic

functions, and by a covering argument Harnack’s inequality holds for every
compact subset of every connected domain of harmonicity. We note that :
(1) it does not generally hold for disconnected open sets, as the support of
y 7→ P (x, y) may be smaller than B(0, 1)c (see 25), (2) it does hold for all
open sets if ν is isotropic (this follows from (30), or see [15]).

We consider the following examples of measures ν. (RK) holds for ν1(dy) ≈
|y|−d−αdy (both sides of (2) may be explicitly estimated). Next, let ξ ∈ S,
0 < r <

√
2, and C = S ∩ [B(ξ, r) ∪ B(−ξ, r)]. (RK) holds for ν2(dy) =

1C(y/|y|)|y|−d−αdy, see [18].
On the other hand, consider balls Bn ⊂ B′

n centered at S, with radii 4−n and
2−n, respectively, and such that {B′

n} are pairwise disjoint. Let C =
⋃

n≥n0
Bn

and let ν3(dy) = 1C(y/|y|)|y|−d−αdy. If d− 1 > α then (RK) does not hold for
ν3 ([18]) even though it is bounded by ν1.

Let Bξ,r = B(ξ, r)∩ S. By integrating in polar coordinates we can give the
characterization of relative Kato condition in terms of its spectral measure µ
and Bξ,r (comp. [18]). Let d− α > 1. (RK) holds for ν if and only if∫

Bξ,r

(|η − ξ|/r)α−(d−1)µ(dη) ≤ c µ(Bξ,r) , ξ ∈ S , 0 < r < c .(38)

In the case d = 2, α = 1, (RK) is equivalent to∫
Bξ,r

log(2r/|η − ξ|)µ(dη) ≤ c µ(Bξ,r) , ξ ∈ S , 0 < r < c .(39)

In the case of d = 2 and α > 1 (RK) is always satisfied. We omit the proofs.

Corollary 19 If d− 1 < α then Harnack’s inequality holds for A.

This may be extended as follows. We will say that ν is a strict γ-measure if

ν(B(x, r)) ≈ rγ , provided x ∈ supp ν , |x| = 1 , 0 < r < 1/2 ,(40)

compare (13). Of course, if ν is a (strict) γ measure on S than µ is a (strict) (γ−
1)-measure (on S). This observation and (38) yield the following conclusion,
which we state without proof.
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Corollary 20 If ν is a strict γ-measure with γ > d−α, then Harnack’s
inequality holds for A.

The example of ν3 shows the importance of the strictness assumption. We
interpret (RK) as a property of balance or firmness of ν. As such it is close to
the reverse Hölder condition with exponent q > d/α, see [18].

If µ(ξ) > 0 for some ξ ∈ S then ν is a 1-measure only. By Theorem 2 the
potential kernel V is unbounded on S if 1 > d− 2α (in fact, if 1 ≥ d− 2α, see
[53, Theorem 1.1], [18]). That V may be infinite on rays emanating from the
origin shows that harmonic functions cannot be defined pointwise by means of
A. In general they even lack finiteness in the domain of harmonicity (but see
[15] and [44] in this connection). Thus the potential-theoretic properties of the
operators A are very diverse among considered measures ν. This is in sharp
contrast with the fact that the exponents Φ (see (5)) are all comparable and
the same is true of the corresponding Dirichlet forms ([27], see also [25]). The
boundary potential theory of A will generally be very different from that of
the fractional Laplacian (see [51, p. 199] for a simple remark on this subject).

We like to mention a number of interesting topics deserving further study:
(1) characterization of continuity and higher order regularity of V on S ([6]),
(2) the boundary Harnack principle (comp. [13, 17, 51]), the corresponding
approximate factorization of G(x, v) for all x, v ∈ B(0, 1) (comp. [14, 31, 21]
and Proposition 1 above), and related boundary problems (comp. [1, 8]),
(3) study of other Lévy measures which are in the form of a product in polar
coordinates, (4) study of similar nonlocal operatorsA which are not translation
invariant ([5, 47]).
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Statist. 20(2) (2000), 383-390.

[51] P. Sztonyk, Boundary potential theory for stable processes, Colloq. Math.,
95 (2003) no. 2, 191-206.

[52] S. J. Taylor, Sample path properties of a transient stable process, J. Math.
Mech. 16 (1967), 1229-1246.

[53] T. Watanabe Asymptotic estimates of multi-dimensional stable densities
and their applications, preprint (2004).

[54] J.-M. Wu Harmonic measures for symmetric stable processes, Studia
Math. 149 (2002), no. 3, 281–293.

K. Bogdan (corresponding author), Institute of Mathematics, Polish Academy
of Sciences, Institute of Mathematics, Wroc law University of Technology,

E-mail address: bogdan@pwr.wroc.pl

P. Sztonyk, Institute of Mathematics, Wroc law University of Technology, Wybrzeże
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