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1. Introduction

One of the most basic and most important subfamily of Lévy processes is sym-
metric stable processes. A symmetric a-stable process X on R” is a Lévy process
whose transition density p(¢,x —y) relative to the Lebesgue measure is uniquely
determined by its Fourier transform fR,, er§ p(t,x)dx = e~ 'l¢1°  Here o must be
in the interval (0, 2]. When o = 2, we get a Brownian motion running with a
time clock twice as fast as the standard one. Brownian motion plays a central
role in modern probability theory and has numerous important applications in
other scientific areas as well as in many other branches of mathematics. Thus
it has been intensively studied. In this paper, symmetric stable processes are re-
ferred to the case when 0 < o < 2, unless otherwise specified. In the last few
years there has been an explosive growth in the study of physical and economic
systems that can be successfully modeled with the use of stable processes. Stable
processes are now widely used in physics, operations research, queuing theory,
mathematical finance and risk estimation. In some physics literatures, symmetric
a-stable processes are called Lévy flights, and they have been applied to a wide
range of very complex physics issues, such as turbulent diffusion, vortex dynam-
ics, anomalous diffusion in rotating flows, and molecular spectral fluctuations.
In mathematical finance, stable processes can be used to model stock returns in
incomplete market. For these and more applications of stable processes, please
see the interesting book [14] by Janicki and Weron and the references therein
and the recent article [15] by Klafter, Shlesinger and Zuomofen. In order to
make precise predictions about natural phenomena and to better cope with these
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widespread applications, there is a need to study the fine properties of symmetric
stable processes, just as for the Brownian motion case. Although a lot is known
about symmetric stable processes and their potential theory (see [1, 2, 3, 4, 9,
10, 12, 14, 16, 17, 20, 21] and the references therein), little is known about the
counterparts to some of the deep results for Brownian motion, such as sharp esti-
mates on Green functions and Poisson kernels of bounded domains. In the special
case of balls, the explicit formulae for the Poisson kernels and Green functions
for symmetric stable processes are known. The formula for the Poisson kernel
of balls were obtained by M. Riesz and the formula for Green function of balls
were obtained by Blumenthal, Getoor and Ray in [3]. Prior to that, Kac, Polland,
Spitzer, Widom, Kesten and Kinney had obtained some results for 1-dimensional
case (cf. [3]).

Unlike the generator A of Brownian motion whose time clock is twice as
fast as the standard one, the generator of a symmetric a-stable process with
0 < a < 2 is the fractional Laplacian —(—A)*/? which is non-local. Also a
symmetric stable process is a process with discontinuous sample paths and having
heavy tails, while Brownian motion has continuous sample paths and exponential
decay tails. The transition density function p (¢, x —y) for discontinuous symmetric
a-stable process X is approximately c|x — y|~"*® when |x — y| is large. So X,
has infinite variance and when 0 < o < 1, |X;| even has infinite mean. All these
indicate the significant difference between Brownian motion and symmetric o-
stable processes.

In this paper, we will address some of these problems. More specifically, we
will derive precise estimates on Green functions and Poisson kernels of X in
bounded C!-!-smooth domains D. That D is C"! means that for every z € 9D,
there exists a r > 0 such that B(z,r) N 9D is the graph of a function whose
first derivatives are Lipschitz. These estimates are very useful in studying other
properties of symmetric stable processes. As examples of applications of these
estimates, we prove that the 3G Theorem holds for symmetric o-stable processes
on bounded C!!' domains and that the conditional lifetimes for the symmetric
a-stable processes in a bounded C!! domain are uniformly bounded.

To state the main results of this paper, let X be a symmetric a-stable process
on R" with n > 2 and 0 < a < 2. The process X is transient and we are going
to use G to denote the potential of X. We know that the Green function of X is
given by

> —a,_—1 n—o ay ! a—n
(L) Gy = [ peryy =27 zF( . )F(z) x =]

(see, for example, [2]). Here I" is the Gamma function defined by I'(\) =
Jo S t*e~"dt for A > 0. For a domain D in R", let 7p =inf{r > 0:X, ¢ D}.
Adjoin a cemetery point 0 to D and set

b X (w), if t<7p,
X (W)= )
a, if t>7p.
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XP is called the subprocess of the symmetric a—stable process X killed upon
leaving D, or simply the symmetric a—stable process in D. It is well known that
there is a continuous symmetric function Gp (-, -) defined on D x D except along
the diagonal such that for any Borel measurable function f > 0,

El [ /O f(xods} _ / G, y)f )y
D

Gp is called the Green function of X in D. Note that Gp has the following
scaling property: for a > 0,
(1.2) Gp(x,y)=a®"Gpq (x/a, y/a), x,y €D.

The main results of of this paper are summarized as follows.

Theorem 1.1. Suppose that D is a bounded C'' domain in R". Let §(x) =
d(x,0D) be the Euclidean distance between x and OD. Then there exists a
C =C(D,a) > 0 such that for x,y € D,

1

Gp(x,y) < T (1.3)
lx — |
a/2
Gp(x,y) < L,Za (1.4)
x —y[n—a/
a/2 a/2
Gplr,y) < ¢ SO0 (1.5)
lx — v
a/2
Goey) < € o) 1 (1.6)

o)/? |x —ylre
Now that since Gp is a symmetric function, so (1.6) tells that

60})@/2 1
B Tx e

Theorem 1.1 is proved by using inversion with respect to spheres along with the
explicit formulae for Green functions and exit distributions of X on balls. For
the now classical upper bounds for Green functions of Brownian motion, one
can see Zhao [23] and the references therein. Comparing with the upper bound
estimates above, the following lower bounds on the Green functions are much
more difficult to prove. The proof involves some very detailed hard analysis.
These lower bounds, in a sense, are generalizations of the results of Zhao [23]
for Brownian motions to the discontinuous symmetric stable processes.

1.7 Gplx,y) < C

Theorem 1.2. Suppose that D is a bounded C"' domain in R". Then there exists

a C =C(D,a) > 0 such that for x,y € D,

¢

=y
6(x)a/25(y)04/2

GD(X»)’) Z Civ lf|x—y|>max{5(X)75(y)}(19)
e =yl 272

GD(X»)’) Z

0x) 5@)} (1.8)

if lx —y| <
il =1 < max { 250, 23
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The above lower and upper bounds provide precise information about the
Green functions. Summarizing them up, we have

Corollary 1.3. Therefore there is a constant C = C (D, «) > 1 such that

a/2 a/2
C ~"min ! , OT00) < Gp(x,y)
lx =yl e —y[?
/2 a/2
< Cmin{ 1 , 0(x)*=6(y) }
[ =yl x =y

In the Brownian motion case, the Poisson kernel in a bounded C':! domain
is the normal derivative of the Green function. In the case of an a—symmetric
process, 0 < a < 2, this kind of relationship can not be expected to hold. For
0 < a < 2, the symmetric a-stable process has discontinuous sample paths
and therefore the exit distribution of X, under P, does not concentrate on the
boundary 0D. In fact, we have the following

Theorem 1.4. For every bounded domain D in R" satisfying uniform exterior
cone condition, there is a function Kp(x,z) defined on D x D¢ such that

E [p(X7,))] =A(n,0é)/ Kp(x,2)p(z)dz, x €D
DL‘

?0’ every @ > () on D ‘, Whe’e
a—1 o+n

2

Furthermore

Gp(x,
KD(x,z)=A(n,a)/ | p(x,y) dy, xe€D,yeD".
D

y—z |n+o¢

Recall that a domain D in R” is said to satisfy the uniform exterior cone con-
dition if there exist constants n > 0, r > 0 and a cone & = {x = (x1,...,x,) €
R" : 0 < x,,(x? + -~ +x2_)'/? < nx,} such that for every z € D, there is a
cone ¢, with vertex z, isometric to ¥ and satisfying #, N B(z,r) C D°. It is
well known that bounded C'+! domains satisfy the uniform exterior cone condi-
tion, therefore the above theorem holds in particular for bounded C L1 domains.
In principle, by using Theorem 1.4 and the bounds for the Green functions, one
could get two—sided bounds on the Poisson kernels. However, it turns out to be
a pretty challenging task.

Theorem 1.5. Suppose that D is a bounded C'-! domain in R". Then there exists
aC =C(D,a)> 1 such that forx € D and z € D",

5(x)e/? 1 -
C ()2 (1+6(2)*/? |x —z*  —

Kp(x,z)

C 5(x)*/? 1
3(z)2(1 + 6(z)*/? |x — z|*
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For the corresponding results for Brownian motion, see Zhao [22]. Using the
bounds above, we have

Theorem 1.6 ((3G Theorem)). Suppose that D is a bounded C'' domain in R".
Then there exists a C = C(D, ) > 0 such that

Go,))Gply.w) _ -
Gp(x,w) - lx — y[r=ely —w[r—e’
x,y,w € D. (1.11)
Gor, K)o ez
Kp(x,z2) T eyl g
x,yeD, zeD". (1.12)

The estimates above are very useful and have a lot of applications. As an
example of these applications, we are going to prove that the conditional lifetimes
for X in a bounded C'! domain are uniformly bounded. As another application
of our estimates we are also going to give a simple proof of the boundary Harnack
principle for nonnegative functions which are harmonic in a bounded C!'! domain
D. Recently, the boundary Harnack principle for nonnegative functions which
are harmonic in a bounded Lipschitz domain D was proved by Bogdan [4]. To
state these results, we first we need some definitions.

Definition 1.1. Let D be a domain in R”. A locally integrable function f defined
on R" satisfying the condition [, If ()| x|~ dx < oo is said to be

1) (—A)“/ 2—superharmonic in D if f is lower semicontinuous in D and for
each x € D and each ball B(x,r) with B(x,r) C D,

f(x) 2 Exf (X (TBx,r))-

2) (—A)*'*—harmonic in D if f is continuous in D and for each x € D and
each ball B(x,r) with B(x,r) C D,

f&x)= Exf(X(TB(x,r)))~

Theorem 1.7 (Boundary Harnack Principle). Suppose that D is a bounded
CY!' domain in R", V is an open set of R" and K is a compact subset of V.
Then there is a constant C = C(D,V K, &) > 0 such that for any two (—A)*/?—
harmonic functions u,v in D which are strictly positive and bounded on V N D,
and vanish on 'V N D¢, we have

ut) _ ., u0)

< , X,y €KND.
v(x) u(y)
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For fixed y € D and z € D', it is easy to check that {Gp(X?,y), A

and {KD xP,z), 7P }l>0 are nonnegative P,-supermartingales for each x € D.
So if we extend Gp(-,y) and Kp(-,z) to be zero outside D, then Gp(-,y) and
Kp(-,z) are (fA)”‘/z—superharmonic in D.

We can take the h-transform of X, where h(x) is taken to be Gp(x,y) or
Kp(x,z). For each y € D, the G(-,y)-transformed process of X is called the
y-conditioned symmetric stable process whose state space is (D \ {y}) U {0},
where O is the added cemetery point. The lifetime of the conditional process
is ¢ = 7p\{y}- We continue to use XP to denote the generic random variable
of the conditional process, but use Py and E; to denote its probability and
expectation respectively. For z € D, the K (-,z)-transformed process is called
the z—conditioned symmetric stable process whose state space is D U {0} and
its lifetime is ¢ = 7p. Its probability and expectation are denoted as P and E}
respectively. Using Theorem 1.6, one can show easily that any bounded C':!
domain is a Cranston-McConnell domain for symmetric stable process. That is,

Theorem 1.8 (Conditional Lifetimes). Suppose that D is a bounded C"' do-
main in R*. Then

sup Eil(mp) < oo and sup E} (Tp\y}) < 00.
€D, xED yeD,xeD\{y}

In [5], we apply the estimates in Theorems 1.1-1.2 and Theorem 1.5 to
show that logarithmic Sobolev inequality and intrinsic ultracontractivity hold for
symmetric a-stable processes in bounded C''! domains. We then use these to
establish the conditional gauge theorem for symmetric a-stable processes.

The rest of the paper is organized as follows. In Sect. 2 we prove the upper
bound estimates Theorem 1.1 for Green function Gp. Due to the length of its
argument, the proof for Theorem 1.2 is postponed until Sect. 6. Theorem 1.4 and
1.5 are proved in Sect. 3. The boundary Harnack principle is proved in Sect. 4,
the 3G Theorem and conditional lifetime Theorem are proved in Sect. 5.

In the sequel we use w, to denote the surface area of the unit ball in R”.
That is, w, = 27/ 2F(%)". In the proofs of this paper, constants ¢ and C, which
do not change their dependence, may change their values from line to line. The
Lebesgue measure of a Borel measurable set A will be denoted as |A|. For a
bounded domain D in R", we use dp to denote the diameter of D.

Although the main results of this paper are stated for bounded C'*! domains
only, the assumption about the connectedness of D is not really needed in the
proof. All our proofs will go through if D has a finite number of components D;
such that each D; is bounded C!! and that D; and Ej are disjoint for i # ;.

Acknowledgements. We thank Prof. W. Hansen for a very helpful comment on an earlier version of
this paper. We also thank the referee for pointing a mistake in the proof of (1.5) in an earlier version
of the paper.
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2. Upper bound estimates for Green functions

It is easy to see from the strong Markov property of X that for each y € D and
z € 56, Gp(-,y) and Kp(-, z) are superharmonic functions in D. If f and g are
superharmonic, then so is f A g. If f is superharmonic in D and f > 0 on D¢,
then f > 0 on R” by the limit theorem for supermartingales.

The following proposition follows immediately from the scaling property of
the symmetric stable processes, so we will omit the proof.

Proposition 2.1. Let D be a domain in R" and a > 0 be a constant. Then

Gp(x,y)=a®"Gp,, (x/a,y/a), x,y€D.

Lemma 2.2. There exists a constant C = C(n,«) > 0 such that for any ball
B C R" we have

Ip(x)*/20p(y)*/
=yl
where Gg is the Green function of B and dg(x) = d(x,OB).

GB(X,Y)SC ax7y€B7

Proof. We first consider the case that B = B(0, 1). It follows from [3] that
Gp(x,y)=2"% "2 (%)_2 r (%) /Oz(u + )22 gy x — y o
where z = (1 — |[x[*)(1 — |[y|*)]x — y|~2. Note that
/Z(u + D722 gy
0
= za/2/01(1+vz)_”/2va/2_ldv
(1= D2 = [y D2+ [ N2+ [y 2 =y |7 -

1
/ (1 +vz) "2 gy
0

IN

1
(/f1+m)””“”2””)2%hufﬂ%ow”%xﬂ?
0

Since

1 1
/ (1 +vz) 202 gy < / v 14y < 0o
0 0
the assertion of Lemma 2.2 holds for B = B(0, 1). For B = B(0, r) with radius

r, by Proposition 2.1, Gg,»(x,y) = r "**Gg,1H(%, %), we have

55 () 255 (y)/?

G <C
N P

, Vx,y €B.
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Lemma 2.3. There exists C = C(n,a) > 0 such that for any ball B C R" we

have
Sp(x)*/?

5 (y)*/2x — y[r=e
Proof. Let G(x,y) be the Green function of the whole space. Clearly

Gp(x,y) < C X,y €B.

GB(-x7y) S G(XJ)

Combining this with Lemma 2.2 and formula (1.1), we have

a/2 a/2
Galx,y) < G@»»A(c%“L_fﬁ))

Cop(x)/? (53@)0/2 53()))“)
S/ 2 x —y|rm \Gp(x)*/2 " |x —ylo )

If 65(y) > 285(x), then [x — y| > 5(y) — d(x) > 365(y) and so

0BG IO _ O _ e
0p(0)* /2 lx —y[* T =y T

If 6p(y) < 20p(x), then

02 G0 _ D Lap
0p(0)*/2 " [x = y[* = dp(x)e/2 T

Lemma 2.3 is thus proved. ]

Lemma 2.4. There exists a constant C = C(n,a) > 0 such that for any ball
B C R" we have

Sp(x)*/?

G <C ———
B(xvy)_ |X—y|n_a/2’

X,y €B.

Proof. Clearly Lemma 2.4 holds for x = y. For x,y € B with x #y, by Lemma
2.2 and Lemma 2.3,

C dp(x)*/ Cxﬂszéaww2>< C bp(x)*/?

Gp(x,y) < '
p(x,y) < e —y[r=a/2 \ b(y)2/2 " |x —y|e/2) T Jx — yr—al?

]

Lemma 2.5. There exists a constant C = C(n,«) > 0 such that for any
B =B(a,r) C R" we have

S5 (x)*/?

Gpe(x,y) < Cly —a|a/2ma

x,y € B¢,

where Gpge is the Green function of B€.
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Proof. In view of Proposition 2.1, we may assume that B = B(0, 1). Then from
the discussions on pages 263-265 of [16] one can easily show that

where x* = x/|x|? and y* =y /|y|*. Since
— )
ooy = B e = 2
x| [y x|
we have by Lemma 2.4 that
wya/2
Gpe(x,y) < C‘x*|n—a|y*‘n—0z op(x™)
‘x* _y*|n7a/2
K} a/2
= cppr T
x — y[r—es2

O

Now let D be a bounded C!! domain and let Gp be the Green function of
D. Tt is well known that there exists ry > 0 depending only on D such that for
any z € 0D, 0 < r < ry, there exist two balls B (r) and B;(r) of radius r such
that Bi(r) C D, B5(r) C R*\ D and {z} = OBj(r) N dB5(r). Let dp be the
diameter of D. In the following, we are going to assume that ry < %dD.

Proof of (1.4). Let xo € 9D be such that |x — xp| = d(x). Consider the ball
B = B;"(ry) = B(a, rp). From Lemma 2.5, there is a constant C = C(n,a) > 0
such that

S (x)a/2
: _gle/2 OB
GD(xay) < th(x,y)SC\y a| ‘x_yln_a/z
5(x)o¢/2

3ol

Cly —al|*/?

Proof of (1.6). From (1.3) and (1.4) we know that
1

e —ylre’
5(x)o¢/2
ey

Gpx,y) < G

GD(X7Y)

IN

Since §(y) < d(x) + |x — y|, we have 6(y)*/? < §*/2(x) + |x — y|*/2. Therefore,

SN 2Gp(x,y) < 600 Gp(x,y) + |x — y|*2Gp(x,y)

6(x)a/2 5(x)o¢/2
2
|

IN

1 x — vyl x — n—a’
y y
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Hence

5(x)*/? 1

GD(X,y) S (Cl + C2)5(y)a/2 |X 7y|n7a .

O

Proof of (1.5). If 6(y) > ro or d(y) < ro and |x — y| < 84(y), then (1.5)
follows from (1.4). So we assume that §(y) < ro and |x — y| > 8d(y). Set
r = min(|x — y|/8,r9). Let yo € OD be such that |y — yo| = d(y) and let
B(a,r) = Bly °(r). Without loss of generality, we can assume that a is at the origin
and that yp = (0,--- ,0,—r). Then B;“(r) = B(b,r) where b = (0,--- ,0,—=2r).
By the explicit formula for the Poisson kernel on the ball B(0,r) given in [3]
and the strong Markov property, we have

Gp(x,y) = EI[Gp(x,X) Dl
2 y2ya/2 1
= C/ (r > |y|2) 5 Gp(x,u)du
A8, (u|*> =7 )2 |y —ul”
d
< Co) () / — T
p\B©, ([u] = 1)2/2y —ulfx —ul"~3
du
< Cox)8(y)/? / T
o (u| = )2 u —y|*ju — x|"~%

where in the first inequality above we used (1.4) and in the last expression above
Dy is the set B(b,r)* \ B(0,r). Let u =rv, ¥ =%, § = . Then

/ du 3 i/ dv
o (ul =) 2lu =yt lu —x|"=% r Jp, (Jo| = Do = "o — %75

where D = %DO =B((0,---,0,-2),1)°\B(0, 1)). Note that || < 1 and |%| > 7.
The proof will be finished if we can show that the function

dv
F(x, )=/ =
Y= o (ol = Doy — yro — x| %

is bounded on the set

B((07 707_2)7 l)c m{|x| > 7} XB(Oa 1)0{(07 707)’:1) “Yn < 0}

by a constant depending only on D and a. In order to accomplish this, one
only has to show that the function F(x,(0,---,0,—1)) is bounded on the set
B((0,---,0,—=2), D¢ N {|x| > 7}, which can be accomplished by elementary
analysis. We omit the details here. ]
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3. Poisson kernel estimates

Let D be a bounded domain in R” and let X be the symmetric a—stable process
on R”. In this Sect. we are going to prove Theorem 1.4 first, and then we will
use Theorem 1.4 to prove Theorem 1.5. To prove Theorem 1.4, we need the
following result:

Theorem 3.1. For any Borel measurable ¢ > 0 on D¢

3.1) Eo[¢(Xs, ) Xry # Xrp ] = ¢(Z)dz/ Gox.y)
D ply—zl

Proof. 1t is known (see, e.g., page 19 of [2]) that the Lévy system (N, H) of the
a-symmetric stable process X is given by

N(x,dy) = An, o) dy, H =1,

|X _y|n+(x

where A(n, ) is given by (1.10). Extend ¢ to R" by defining it to be zero in D.
For any non-negative Borel measurable function f on R”, set

S @)o(y) dy = A(n, o) S )o(y)
R X =y pe [x —y[mre

Fx)=A(n,a)

Define
Rw,di) =) fX— @D @NE AN 1x, ()
s>0
By Theorems (73.1) and (73.4) of [19] we know that the dual predictable pro-
jection of k is given by
KP(dt) = F(X,)dt.

Since the random process 1(¢ wy.0<i<mpw)} 18 left-continuous and is therefore
predictable,

E Y fX)¢X)lx my = E / F(X,)ds
0<s<mp 0
- / G (x, )F ()dy
D
= Ao [ Gooxy) [ TN daay
D pe [y — 2]
= A, ) gb(z)dz/ M
D¢ p |y —zlme
Therefore

G
Ec (X, 0L, i, ) = Al ) / $(2)dz / Gy i0)
P P De p |y —z]

In particular,
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Gp(x, )’)

‘n+o¢

B0 )Xoy 7 Xry 1= A0 [ ot / R
O

Proof of Theorem 1.4. Tt follows from Lemma 6 of Bogdan [4] that for any
bounded domain D satisfying uniform exterior cone condition,

(3.2) P(Xry #X:p_)=1, x €D.
The theorem now follows immediately from (3.1) and (3.2). ([l

Theorem 3.2. Suppose D is a bounded C'' domain in R". Then there is a con-
stant C = C(D, ) > 0 such that

5(x)>/? 1
(146(2)*/?6(z)*/* |x —z |’

Proof. By Theorem 1.4

/ GD()C,y)
) n+o
\ —z|

GD(X,y)

Kpx,z) < C xeD, z eD".

KD(X,Z)

< A, a) o=y +ly —z[) dy
Ix—ZI ply—z|
on G —y G
< Ao (/ p(x,y)|x —y] dy+ p(x,y) dy)
e —z|" \Up |y —zl"*e p ly—z]*

By Theorem 1.1, there is a constant C = C (D, «) > 0 such that

a/2 a/2
Gp(x,y) < ¢ 20T
lx —ylr

We have
o(y)?

I < Co)? | ———
p |y —z|me

1

< Cow / Ly

= O b Iy -z
5(z)+dp 1

< Co) w, /5 . et

< zcw” 5()‘_)0(/2(7’, 8(z)+dp

< = :

- 2w, 5(x)*/2
- a )/

3.4)

Using
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S a/2
Gor,y) < €0
e — y[r—ar?
we get
a/2 1
I < Cékx) —72 dy
p [x =y =2y —z]«
1
< Co” / Ly
peDx—y|2ly—2|} [y —zlmre/2
1 1
+ dy
/{yED:x—y|<|y—z|} e —y[re2 |y — 2] }
1
a/2
< Co(x) {5(1)0‘/2

|
+/ = dy}.
ebix—yl<ly—zly X =y (|lx —z] =[x —yl| V |[x —y])

In the last inequality, we used (3.4) and the triangle inequality. Using spherical
coordinates centered at x,

1 dD rnfl
H < Cox)**{ ——p / d
< Co) {5@)(1/2 + 0 r"_“/2(\a —r|Vr) r

where a = |x — z|

r=as 1 1 dp /a Sa/2—l
2 o) / 4l
< cdlx) {5(z)a/2+aa/2 | T =s[vsr s

Since 0 < a < 2,
/dD/a Sa/2—l Js < /00 sa/Z—l s <
——— ds ———ds < 00,
0 (1 =s|Vs)e “Jo (l=s|Vvs)e

§(x)a/2
I <C
- 5(2)0‘/2

for some constant C > 0. This together with (3.3) and (3.4), implies

thus

a/2
Kp(x,2) < A, apc 200 1

6(z)*/% |x —zJr for xeD,zeb"

In particular, if z € D¢ with §(z) < dp, then

5(x)*/2 1
3(z)2(1 +0(z))/? |x —z|*”

Kp(x,2) < A, )C (1 +dp)*/?

If 6(z) > dp, then for y € D, §(z) < |y — z| < 2d(z). Therefore
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Kx,z) = )/ ‘GD(x|ny+)a
< A, @) e )m / Gp(x,y)dy
< A(n,a)é(zinm [ |xC15y()|cn)af/2 y
: A(”’O‘)Cé((s)(c;:;iz s
a/2

< AT o

a/2
< A G e h

This completes the proof of the theorem. ]

Before going to estimate the lower bound of Kp, we first record three simple
facts about bounded Lipschitz domains in the following lemma. The proof of
this lemma is straightforward and thus omitted. We say a Lipschitz domain D
has Lipschitz characteristic constants (ry, Ag) if for every z € 9D, there is a
local coordinate system (£1,£1) € R x R"~! with origin sitting at z and there
is a Lipschitz function f defined on R"~! with Lipschitz constant Ay such that

DB, r0) =B, r) N {€ = (€.60): & > FED)).

Lemma 3.3. (1) If D is a Lipschitz domain with characteristic constants (ry, Ag)
and a > 0 is a constant, then the dilation aD has Lipschitz characteristic constant
(aro,Ao).

(2) Suppose that 0 € D and r > 0,0 < « < 2. Then there is a constant Cq > 0
depending only on r, «, and the Lipschitz characteristic constants (ro, Ag) of D

such that ,
1 5 a/2
/ — (l/\ (y)a )dy>C0>0.
DNB(0,r) y] y]

(3) There is a constant Cy = Cy(ry, Ao, r) > 0 such that

/ () ?dy > Cy >0 forall x € dD.
DNB(x,r)

Theorem 3.4. Suppose D is a bounded C"' domain in R". Then there is a con-
stant C = C(D, «) > 0 such that

5(x)*/? 1

D D°.
S P +0@) 2 [x —zpmar Y€ EE

KD()C,Z) 2 C

Proof. Let (rg,Ap) denote the Lipschitz characteristic constants for D. By Theo-
rem 1.2, we have
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1 5(x)a/25(y)a/2
o=yl =yl

GD(x,y)szin{ }, x,y €D.

Recall that dp is the diameter of D. We derive the estimate by considering two
cases.

Case 1. 6(z) <dp.
Using change of variable, we have

Kp(x,z)
— A, a)/ Gp(x, y)
| Z|n+o¢
1 1 5(y)/?
> A(n, a)C(x)*/? / ( A d
| Z|n+oz ‘x _y|n a 5(x)a/2 |)C _y|a Y
yox=frzly Co(x)™/? 1 1 1 S\
> A, o) /~ 1L (1 o,
|X _ Z‘n+a/2 D (] + ‘y|)n+a |y|n—a 5(})04/2 |y|a y
where D = 1(D — x) and 5() = d(3,0D). Since 4(X) = o <,
Co(x)/? / 1 1 S/2\
Kp(x,z) > A(n, ) [ — — 1N —= dy.
° e —z[al? J5 A+ e e ]

Note that |x — z| < 2dp, so D has Lipschitz characteristic constants (Z’TOD,AO).
Let 0 < r < 52 be fixed. Then

KD(va)
a/2 Sy /2
> A(n,a)L)z/ ! LI PPN SO 5
|x ["+2/2 Jpaposy (1+rye [yn-o [yl
Ccé a/2

1°. If 6(z) > ry, then by (3.5)

cry? 5/ 300/
Kp(x,z) > A(n,Oé)(;( )2 |x — z|"(2dp )a/z > A(n, Q)CTY(Z)Q/ZV i

2°.1If |x — z| < 44(z), then by (3.5)

Co(x)/? Co(x)>/?

2@y = A e — o

KD()C,Z) 2 A(}’l,O[)

3°. Lastly, if |x — z| > 44(z) and 6(z) < ro, then by a change of variable
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Gp(x
Kp(x,2) = >/| D(Z|,,y+)a
a/2
> A, a)Co)*? / oW
{yeD:y—z|<}|x—z|} |x _y| ‘y _Z| ]
Y28y Co(x)*/? HRO R
= A Tl e e RS e
6()*/2|x —z|" JGep:Gi<iiny X =Yyl
where
~ ~ X —Z
D = —(D z) and Xx = .
3(z) 0(z)
Thus
KD(X,Z)
C(x)2/? x|meGHer
=z A(”va)%/~~~ - %
0(2)?|x — z|" JGenpi<simy (K + D]
since [x|>4 Co(x)>/? ~ -
IS A, )%/~~~ 33)°/2dy. (3.6)
0@ 2x —z|" JGen<2)

Note that D has Lipschitz characteristic constants ( é(z)’AO) with 520) > 1. Let
y* € OD such that |y*| = d(0,0D) = 1. Then by (3.6), and Lemma 3.3(3),

CH(x)/? / S /2 e
7 |~ 8(3)*/*dy
8()2?x = z|" Jpagope )

Co(x)*/?
5(Z)(x/2|x —y\” .

KD(X7Z) 2 A(nva)

> A, q)

In summary, we have for §(z) < dp,

Co(x)/? Co(x)>/? 1

KD(Xyz) ZA(n7a)5(Z)O‘/2|X y|n = ( ’ )5(Z)a/2(1+6(1))a/2 |x _Zln-

Case 2. 6(z) > dp
In this remaining case, for any y € D, we have d(z) < |y — z| < 26(2).

Thus
G
Kp(x.2) >/ 5 D(x|,,y+)a

> - -
> A, >2n+a5(z),,+a /D Gp(x, y)dy

Cé(x)a/z/ . { 1 5@)“/2}
> A(n,a)———— [ min , d
= (ﬂ ) 6(Z)n+a b |x _y|n—a§(x)a/2 |x _y|n y
>

Co(x)/? / 1 5(y)*/?
A(n, A d
5 <P Jo \ @3 —ype o)

(3.7)
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a/2
W)z/ i RO
p \dp/ |x —y|r—= e =y

D

Note that

is strictly positive and continuous on D, thus ing p(x) > Cy > 0. So by (3.7)
xe

Co(x)/? 1

Kp(x,z) > An, a)é(z)a/z(l + 5(1))04/2 |.X — Z|n ’

4. Boundary Harnack inequality

By using the strong Markov property and the quasi-left-continuity of X, one can
show that if a function u defined on R” is (—A)a/ 2_harmonic in D, then for any
open set D; with D| C D,

u(x)=Eu(X(rp,)), forx € D.

Proof of Theorem 1.7. Without loss of generality, we can assume that for any
x €D,
u(x) = Exu(X(1p)), v(x) = Exv(X(7p)).

Otherwise, we can take a C'! domain D; C D andaset V, with K C V, C V
such that (D) N V; C (OD) N (0Dy) C V. Then u and v are bounded and
continuous in D; and vanishes in D{ N'V;. From Theorem 1.4 and the quasi-left-
continuity of X one can show that

u(x) = Exu(X(7p,)), v(x) = Exv(X(7p,)).

Then we can work with Dy, V;, K instead of K,V ,D.
Let ro=d(K ND,D\ V) > 0 and dy be the diameter of D N K. Then by
Theorem 1.5 for x € D

u(x) = /»Ko(x,z)u(z)dz

-1 a/2 u(z)
> C o) . 5+ 0@k — 2] dz
— -lseal/2 u(z) il
C 5(X) /D“\V 5(2)0‘/2(1 +(5(Z))O‘/2|X —Z‘” dz. ( . )

Similarly

R VS o e e e T

Forx,y e DNK andz € D\ V
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r
K=zl = bozlel oyl Sl -zl vdo)
doy doy
< ozl+ By -z < (162 ) -zl
ro ro

Hence

— d
x Z|§<1+0).
ly —z| o

Interchange the role of x and y, we have

Thus by (4.1) and (4.2)
)T e do\"
C (1+r0) §u(y)§C(1+r0> .

C—1<1+d°) gv(x)gc(ndo) :
ro u(y) ro
Thus there is a constant C = C(D,V,K,«) > 0 such that

ue) _ o u)
vx) T ()

Similarly

forx,y e DNK.

5. 3G Theorem and conditional lifetimes

Proof of Theorem 1.6. For x,y,w € D, if |x —w| < %max {6(x), 6(w)}, then by
(1.3) and (1.8)

GD(xay)GD(yaw) <C |'x B wln_a
Gp(x,w) T e =yrely —wlre

If |x —w| > %max {d(x), 6(w)}, then by (1.5), (1.7) and (1.9) we have

Gpe, GO, w) (o —w" @260 )2
Gplr,w) = )2y e =yt )2y —wlre
ORI Al 5.1)

e = y[ly —wlrme
Interchange the role of x and w,

Gox, IGpO,w) _ (o Jx —wl"

(5.2) < .
Gp(x,w) x —y[r=oly —w|"
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If [x — y| > 1|x —w]|, we see from (5.1) that (1.11) holds. If [x — y| < J|x —w],
since [y —w| > |x —w| — [x —y| > J|x — w|, we get (1.1) from (5.2). Thus

(1.11) is proved.

Forx,y € D and z € Ec, by Theorem 1.5

(5.3)

GD(X,)’)KD(%Z)
KO(va)

S CGD(xay)

If |x —z|] < 2|y —z|, by (5.3) and (1.6) we have

Gp(x, V)Kp(y,2) _ x —z|"™@

5(}])&/2 Ix _ Z|n
o)/ |y —z|"

KD(-x7Z)

- ‘x7y|n7a|yiz|n7a'

If x —z| > 2y —z|, then [x —z| < [x —y[+]y —z| < |x —y[+ 3|x —z|. So
|x —z| <2|x —y|. By (4.3) and (1.5)

GD(xay)KD(xay)

o) —z]" e~z

KD(X»)’)

Proof of Theorem 1.8. Fory € D and x € D \ {y}, by (1.11)

EXNTp\(y}]

Forx €D,z €D",

Eilmp]

e =yl [y =z ~

= /OOOP;‘ (xP eD\ {y})dt

<

1
Gp(x,y)
/ Gp(x, w)Gp(w,y)
D Gp(x,y)

1 1
C/ ( n—o + n—oz)
p \ | —w["= |y —w|=

dw

1
< 2C sup/iidw
xerr Jp [¥ —w[rme

Cy < 0.

by (1.12)

IN

/ Gp(x,w)Kp(w,z)
dw
D Kp(x,z2)

1 1
J——
o\ —wf=e " ==

Cy < .

|x —y|r—oly —zfrme

7/ E, [Gp(X,.y): XP € D\ {y}] dr
0

dw

)au
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6. Lower bound estimates for Green functions

Since D is a bounded C!' domain, we know that there exist positive constants C,
and ro depending only on D such that for any z,w € 9D, |n, —ny| < Colz —w|
(where n; and n,, are the inward unit normal vector to 9D at z and w respectively)
and for any z € 0D, 0 < r < ry, there exist two balls B{(r) and B;(r) of radius
r such that B{ (r) C D, B(r) C R"\ D and 0B (r) N OB5(r) = {z}.

Without loss of generality, we can assume that

1
6.1) ro < ——.

Lemma 6.1. Forany x € [—1,1],

2x —D+V/Qx — 12 +4(1 —x)2 > 1.

Proof. Using first year calculus it can be shown that the function

Fx)=Qx — D++/2x — 12 +4(1 —x)?
achieves its minimum on [—1,1] at x = % Thus f(x) > f (%) =1. O
Corollary 6.2. For any 0 <s < r, we have
(6.2) s2+2rs —4rs cos p; < 4r¥(1 — cos @))%

Proof. 1t is easy to see that (6.2) is true when

0<s< r[(200s<p1 - D+ \/(2cos<p1 — 1) +4(1 —cos<p1)2].

From Lemma 6.1 we know that

(2cosp; — 1) + \/(2005@1 — 12 +4(1 —cospr)* > 1.
Therefore (6.2) is true for any 0 < s <r. O
Lemma 6.3. For any z,w € 0D with z % w,
liminf 20 Gf/g);y . e
e (x)*/25(y)

Proof. For any fixed 0 < 8 < dp, the diameter of D, let » = min {ro, %} For
any z,w € 0D with |z —w| > 3, when |x —z| < § and [y —w| < %, let x* and
y* be the points on D such that |[x —x*| = d(x) and |y — y*| = 6(y). Write
B{ () =B(O.,1), B} (=B(0,r)
Bi(r)=B(0;,r),  B{"(r)=B(Oy,r).

Note that x € B(O,,r). By the explicit formula for the Poisson kernel on the
ball B(O,, r) given in [3] and the strong Markov property , we have
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Gp(x,y)
=E, [GpXryo, s ¥)]
2 x — 0,]?)/? 1
- ¢ / P G (u, y)du
80,.rerp (U — O — r2)/2 |x —ulr
> C2/ / (r2 — |x — 0)(‘2)(1/2(’,2 _ |y _ Oy|2)o¢/2 .
= U B(O,,r)*ND JB(O,,r)*ND (lu — 0x|2 _ rz)a/2(|v — Oy|2 — r2)a/2
G
_ Gowy)

e —ultly — ol
— CZ/ (r2 — |x - Ox‘Z)a/Z(rZ _ |y _ 0y|2)a/2 .
Yo o (u = 02 = r)e2(ju — 0,2 — r2)e/?

Gpu,v)lpo, re ()0, (V)

, - dudv
x—ul'ly — ol
where n o
=m0 (2)sin 2L,
| = 5 ) sin—
Thus
Gp(x.) - [ 0.2 + Iy = 0,
028y T Yo b (= O = r2e (v — Oy — r2)e/?
Gp(u,v)1p0, (U)o, re V)
. , - du dv
e —ul"ly — vl
=hx,y) (6.3)
We show next that limpsy—; h(x,y) exists and forms a positive and con-
D3y—w
tinuous function on {(z,w) € D x 0D : |z —w| > [}. For this, we set up a
spherical coordinate system (p, ¢, ... ,@,—1) With origin O, and principal axis

0xx; . Then for any u = u(p, p1,... ,n—1) € B(Oy,r)’, we have

u—x*> = PP+ =) = 2p(r — 5(x))cos oy

p=r+s

2r(r +5 — 6(x))(1 — cos 1) + 52 + 62(x) + 250(x) cos

> 4r(r+s — 8(x))sin® % + 52

0(x)< 5 ©

> 2r2sin? 2L 4+ 52

> (2r2 sin’ %) v (s2). (6.4)
Similarly, if we set up a spherical coordinate system (v; 6y, ... ,8,_) with origin
O, and principal axis O,y™, we have for any v =v(vy;01,... ,0,-1) € B(Oy,r)",
(6.5) lv—y> > <2r2 sin’ i‘) V(%)

where t =y —r. Let
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Dy = (B(0y,2r)\ B(Ox,r)) ND, D;=D\B(Ox,2r)
D3 = (B(0y,2r)\ B(Oy,r)) ND, D4y=D\B(Oy,2r).

Then, for any u € Dy,

d(u,0B3 (r) = [4r% + p* — drpcos g ]'/? — r

p=r+s

= [r2(5 — 4cos 1) + (s> +2rs — 4rs cos 1)]'/% — r
Corollary 6.2
[r2(5 — 4 cos ) +4r>(1 — cos p1)2]'/2 — r

r(v/5—4cosp; — 1)+ 2r(1 —cosyy)

4r(1 — cos 1) +2r(1 — cos 1)

127 sin® %. (6.6)

IN N IA

Similarly, for any v € Ds
y* .2 91
d(v,0B; (r)) < 12rsin >

Foru € Dy, v € D3

B<lz—wl < |z—x[+[x—ul+[u—v[+]v—y|+]|y —w]
< %+3r+|u—v\+3r+%
< Tr+|u—v
7
< ?ﬁ +|u —vl,
and hence
|M—’U|Z§, YueD,, VveDs.
By Theorem 1.1, we have
) a/25 a/2
Gplu,v) < ¢ 20T
u — ol
8 n . .
< C <5> d(u, 0B (r)*/*d(v,0By (r)*/?
8\" 0
< cazn)” (ﬁ) sin® % sin® El for (u,v) € Dy X Dj,
S(u)/? C(12r)*/? sin®™ €L
Gp(u,v) < ®) < (12r) 2 for (u,v) € Dy X Dy,
|M _,Uln—a/Z |M _,U|n—o¢/2
C(12r)*/?sin* &
Gp(u,v) < for (u,v) € Dy x Ds,
|M _Uln—oz/Z
and

Gp(u,v) <C for (u,v) € Dy X Dy.

lu — o=
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Thus for (u,v) € B(Ox,r)° X B(Oy, r)°

(r +|x — O)2(r + |y — Oy )*/? Gp(u,v)

(Ju = 0.2 = r2)e/2(jv = OyF = 1072 Ju —x["[v — y|"

1
(lu — Oy — r)o2(Jv — 0, ] — r)a/2 '
C(12r)*(§)" sin n® L 1p, (u)1p, (v)
{ [@r2sin® 5V (|u — Ox| — ST [<2r2 e DIV (v = Oy =212

C(12r)*/ sin® €11, ()1, (v) 1

P22 sin® 5V (ju — O — 1))/ Ju —v]r=e/?
C(12r)*/? sin® &1, (u) 1p, (v) 1

+
rl@r2sin §)V (v = 0y = /2 Ju —vlr=el?

1 1DZ<u>1D4(v>}

r2n |M _ U|nfoz

8 in® & .1 1
< C(12r>°'(*) 2 o 3
B [@2r2sin® £V (ju — Oy — 21"/2 (lu — O] — r)e/
sin® 9‘ ~1p,(v) 1
[(2r2 sin’ %‘) vV (|v — Oy = r21"/2 (Jv— 0, - rye/?
+C(12)a/2r*n sin® ‘Pl lDl(u) 1
[(2r2sin® 1) v (|u — O — 12"/2 (Ju — Oy| — r)/?
 1p,()
|Lt _ U‘n—a/Z
+C1204/2r7n sin® 91 1D3(U) 1
[(2r2sin® &) v (|v — Oy = r2/2 (v =0, = r)/?
Ip,(u)

u —vfi—ar?
1 Ip,(u)lp,(v)

r2n+o¢ ‘M _,U|n—a

flu,vix,y,2,w)
8 n
C(lzr)a (5) fl(u,UQX,yaZ7w)+C : lza/zr_an(uaU;xayvzvu)

1
+C12° 7 "f3(u,v;x,y,z,w)+ C 2nmﬁ;(u VX, Y,2,W).
From Lemma 6.4 below we know that the family of functions of (u, v)
"%={f(u7va-xayvz7w) : x,y€D,z,w€3D,|z7w|>ﬁ,

|x—z|< Jy —w| < } 6.7)

is uniformly integrable on D x D.



488 Z.-Q. Chen, R. Song

When x — z,y — w,

|0x701|

|(x* + ) — (z — rmy))|

|x* —z|+rColx™ — 2|

(14 rCo)(Jx* — x|+ |x — z)
2(1 +rCo)lx —z| — 0.

ININ A

Similarly
|0y — O] — 0.

Thus by the uniform integrability of . % in (6.7), we have

lim h(x,y)=
D3>x—z
Do>y—w
Gp(u,v)1po, ne(m)lpo, ()
C2 2 « L) LR d d
1) /D/D (= 0. = 72w — 0w — 2 — 2o — wfr "

and is a continuous function in {(z,w) € D x ID : |z —w| > B}. Since 8 > 0
is arbitrary, we have by (6.3) that for any (z,w) € D x D with 7 # w,

Gp(x,y)
BRI St ot = paih M) > O
D>y— Do>y—w

Lemma 6.4. There exists n = n(n,a) > 1 such that

SUP//(f(uyv;x7y,z7w))"dudv<oo,
D

fe.¢Jp

where .4 is the set of functions defined above in (6.7).

Proof. It is easy to see that for any 1 <n < .~ a/2’ and any u € D
1 dp  n—1
- - < -
(6.8) /D = v|(nia/2)ndv < wn/o Ty dr < 0o

and

1 dp 7_n—l
6.9 / / ——————— dudv < \D|w,1/ —— d1 < 0.
pJp |u—v|t=m 0TI

Casel. 1 < a<?2.

In this case, we take 1 < 1 < min { 2 n-l } Then

a’ n—a’ n— (x/2
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/ sin® %ID, (u) 1 ndu
p | [2r2sin® £V (lu — Oy — r217/2 (ju — Oy — r)/?

/ 1p, () 1 "du
D 2”/2}’" sin" ~¢ % (lu - 0A| - r)(x/Z

2r T
1 1 —1 :n—2
Wy — "~ sin” dopd
! /r (p — ryen/? /0 (2n/2pn sin" ~ £l )np prdpap

- 2 n—1 r 1 ™ on—2
< @10 / ds/ S P g < o (6.10)
0 0

IN

IN

2n/2pnyn son/2 ) £
Similarly
sin® & 1p,(v) 1 K
=20 7 dv
p | [2r2sin® )V (jv = Oy = r)?]"/2 (o= O0y[ =1)*
wa1 21 ™ sin" 726,
/2y o son/2 ds o sin?*—® %dal < oo. (6.11)

Thus, from (6.8)—(6.11), we have
//fl(”;v;xyy,Z,’LU)ndud’U
pJp
2 2n—2 r 2 P ) 2
W, —1(21) (/ _an ) (/ sin” % )
B e s” 2 ds — " dp| <o0
np2n . nn—o) )
@y 0 o sin” £
//fz(u,v;x,y,z,w)"dudu
pJp

W — 2 n—I1 r o dp n—1 ™ s n—Q
e 12( ) - (/ S_anS) / T 5 dr / ‘.sm( 72)907‘1()0
(2n/2pmyn 0 o TN—e/2) o sin”"7P £

< 00,

//ﬁ(u,v;my,z,w)”dudv
D JD

W — 2 n—1 r o dp n—1 ™ s on—2
= = n/12( ﬂr)n (/ s_zlds> (/ nla/Z)dT> (/ 'Slf?(nfa()pso dy
(2n/2rn) 0 o T 0 Ssin 5

< 00,

IN

IN

dp n—1
//f4(u,v;x,y,z,w)’7dudv§|D\wn / T___ur < 0.
pJp o TN

Therefore the assertion of Lemma 6.4 is valid when 1 < o < 2.

Case 2. 0 < a<1.
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In this case we take 1 <7 < min{ n—l _ 4 _=n } Then

102 @i i
/ sin” £t 1p,(u) du
p | [@r2sin® )V (ju — Oy — r)2/? (lu — O] = r)e/2

n

——
< 2;”“” K
T 3 —_ —
b (2r2) —sin" "~ T)% (Ju = Ox| =)=
) 2r n"~ 1 :
~ e
< e Wn— 1/ / Smn(n 5 » 2 (p—ni-5n’ dpidp
2y 0 n—1 —(1-2) T g
< @ e e | s ) | S
< . (6.12)
Similarly

sin® & 1p,(v) 1 !
/ =20 ' /2 dv
b | [(2r2 sin 71) Vi (|U — O),| —r)2/? (|U — Oy| —r)e

n—(l— 3a) r T sn—2
-1y n—1 —(1-2)y sm- @
< (27‘ ) (2}’) Wn—1 (/O s ¢ dS) </0 Sinn(”*(l+%)) %d(p

< oo. (6.13)

Therefore, from (6.8), (6.9), (6.12) and (6.13), we have

//fl(u,v;x,y,z,w)”dudu
D JD

r 2
< (2r2)—(n (1—3—‘1))7](2’,)21’1 2 ’% 1(/ s_(l_(f)"ds>
0
2
([ L
0 Sinﬂ(ﬂ—(“’%))%
< 00,
//fz(u,v;X,y,z,w)”dudv
D JD
<

r dp n—1
2 vy T
(2’,2)*(”7(17;T))n(zl")nilwnwnfl </ S(14)nds) / Wd/r
o 0 il 2
, ( / " Sin”sodgp>
s nn—1+9) ¢
0 sIn 473
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//f3(u,v;x,y,z,w)"dudv

D JD

< )T T2  wywey (/ s—<1—4>’7ds>
0

dp  n—1 ™ gin" 2 0
' e L =5y 2 4P
0 0 5

< oo,
and
dp 7_n—l
/ /ﬁ(u,v;x,y,z,w)”dudv < |D|w, (1) / ———d7 | < 0.
pJp o TN
Hence the assertion of Lemma 6.4 is also valid when 0 < o < 1. O

Lemma 6.5. For any xo € D and z € 0D, the limit

Gp(x,y)
x1—>n;0 §(y)a/2
D>y—z

exists and forms a positive and continuous function on D x OD.

Proof. Using the same notations as in the proof of Lemma 6.3, we have
Gp(x,y) = E [GD(XTB(OX,r)? Y)]

2 _ iy — 0. %)/ 1
Cl/ - 2 X|2) 2 Gp(u,y)du.
B0, rrp (U — Ox> —rH)e/2 |x —ul"

From here on we can use a similar but simpler argument as that of Lemma 6.3
to finish the proof of this lemma. (]

Lemma 6.6. For any ball B C R" of radius r, there is a constant C, =

2-ox=51 (2) 2 (%) such that

‘x_y|n n—a -
Gp(x,y) > G ((WW+|X_Y| ,

where dg(x) = d(x,0B).

Proof. Without loss of generality, we can assume that B = B(0, 1). We know that
Z
Gy (x,y) = CZ/ @+ 17" 2ut2  dulx — y |
0
where z = (1 — [x[)(1 — [y|*)]x —y|~2. If z > 1, then

1
(6.14) Gp(x,y) > Cz/ (u+ 1)~ 242y |x — y|o".
0
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If z < 1, since

Z 1
/ (u+ )" gy = z“/z/ (1 +wvz) "2/ 2 dy
0 0

1
Z ZOA/Z/ (]+v)—n/21}a/2—ldv
0
1
> (1-— |x‘)a/2(1 _ |y|)a/2‘x _y|70c/ a +U)fn/2va/27ldv
0
we have
1
SO0/ 25(y)o/2
(6.15) Gp(x,y) > cz/ a +v)—"/2va/2—‘dz;%
0 lx — v
Combining (6.14) and (6.15) we get the assertion of Lemma 6.6. U

Proof of Theorem 1.2. If |x — y| < %, take B = B(x,0(x)). Theny € B C D.
Let G be the Green function of B. Then it follows from [3] that we have

Gp(x,y) = Gg(x,y)

| lx—yle™" —/ lu —x|“7" py (du)
|u—x|>6(x)

ci(lx —y|*™" =)™
1

|x —y[r—e’

v

V

> co(1=-2")
n—a @ n/2 a —1 . . . . e
where ¢ = I'(%52) [2*7"/2'(£)]  and p, is the distribution of first hitting
position of B(x,d(x))° when the process starts from y.
If |x —y| < @, the proof is the same.

In the case that
o) 0k)
272 ’

|x—y>max{

if the conclusion of the theorem were false, there must be a sequence {(xx, i)} C
D x D such that

0(x) 6(yx)
2 9 2 }7 k 2 1

% — vl >max{

and
Gp (X, yi)

I S g =0

By taking subsequence, we may assume (x,yx) — (z,w) € D x D as n — oo.
If z £ w, z,w € D, then

Gp (X, yi)

lim a_ Gpz,w)
k=00 0 ()28 (y)*/?

= 5 o) |z —w|" > 0.

|xk _)’k|
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If z # w, z,w € ID, then by Lemma 6.3

liming Gp (X, Vi)
k—oo 0(x )/ 2(yr)/?

|n _

| — yx |z — w|" liminf _ Golw,yd)
k=00 (x)*/25(y)/?
If z #w, z € D and w € D, then by Lemma 6.5

lim GD (xk 3 )’k)
R 5 )*20(y)° 2

"= e —wl" . Gp(, i)

5@ A oz Y

\xk — Yk

Similarly, if z # w, z € D and w € D, then

Gp (xx, yi)

A S0 2agyer2 el >0

To deal with the case z = w (xy —yx — 0), we want to prove that there exists
a constant C > 0 such that for any x and y in D satisfying

{5()6) o(y)
ax { —=, —=
2 2

ro

6.16 v
( ) 10(1 + ryCp)’

} <k —yl<
the inequality

a/2 a/2
6.17) Gotr.y) = €20

holds. This fact leads to the final contradiction.

For any fixed points x and y satisfying (6.16), let x* and y* be the points
on 9D such that |x —x*| = §(x) and |y — y*| = 6(y). Set r = ry, B, = Bf (r) =
B(O,,r), B, =B} (r)=B(Oy,r). Then

"=y < fx—y[+6(x)+0() < 5lx —y]

|0y — Oy < X" —y"|+r|nge — ny-
< (L+rColx™ —y*|
< 50 +rChlx —y| < %
Set up a spherical coordinate system (p; ¢y, ... ,©,—1) with origin O, and

principal axis O,y (see Fig. 1 below) and set

6 = ¢ coordinate of Oy

a = max(p;:(r;i@1,...,00-1) € By)

S = {(r;soh...,cpn1)€8Bx:0<<p1<§}
I = |y - Ox|

J o= - 0)’|

8 = cos(@+a)

n = cosb.
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By some elementary geometric arguments, we can get
|0y — Oy| = 2rcos(f +@)
ly —O))* = |y — 0.2 +]|0; — 0> = 2|y — O] |Ox — Oy|cosb. (6.18)
Thus
1> —4rBnl +@r*3* —J*) =0
I=2rfn+ (4r252n2 — 45 + Jz)l/2
J2 2y 4 42 _
I—r= U_=r)+4r 56 —b) . (619
(r —2rfBn) + @4r232n? — 4r232 + J2)1/2
Set
h = 16rcos(d +a)sin @ sin | 6 + @
2 2
= 8|0, — Oy\sin%sin <9+ ;‘) .
There are three possible cases:
Case 1.y ¢ B,.
Then I > r. By (6.19) we get
a a h
r? —J? < 4r’B(n — B) = 8r? cos(f + @) sin % sin (0 + g) = %,

S0 =r—J <@*—=JH/r <h.
Noting 3 = |0, — O,|/2r < } and using (6.19), we have

< 4rpB(n — B)

1=l S5 S8Am -9 =h

Case 2.y € B, and 6(y) < h.

Then
I —r|=0p() <o) <h.

So in both Case 1 and Case 2, the following inequalities

(6.20) 0y) < h
(6.21) I —r|<h
hold.

Since Gp(-,y) is superharmonic on B,, we have
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du

(7’2 — |X - Ox|2)a/2 GD(”»)’)
Gp(x, >
I A T

/ (r2 — |x — O [»)*/? Gg,(u,y)
e (u = O = )72 Ju — x|

/ (r? — |x — O/ 1p,(u)
G :
5 (1 — O 7 — a2 Ju —xJf

u —y|" o)
. _ n—o d
(68,(14)(1/258),0’)(”2 +|u—yl u

where in the last inequality we used Lemma 6.6.
Put

7r§p§r+}a

| Ql

Dy = {u(p;gol,--- yon—1):0< 1 <

and let v be the point on JB, such that the angle between Oj% and 0_xy> is
(See Fig. 1.)

0[]

By the law of cosine we have
[0 — 047 +10s — O, — 2Jv — O, |0x — 0, cos <9+ ‘2"> =,
i.e.,
|v — O[> +4r% cos*(0 + @)] — 4r|v — O, | cos(d + @) cos (9 + j) =r’

which can be rewritten as
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(v = Oc| = r)? +2(Jv — O| — r)r (1 — 2cos(f + @) cos (0+ j))
+4r? cos(d + @) (cos(e + @) — cos (9 + g)) =0.

Solving the above equation, we get

v — 0y —r

=—r <l2cos(9+a)cos< Z))

+r\/(l — 2cos(f + @) cos ( %)) + 4 cos(f + @) (cos (9 + ) — cos(f +a))
4r cos(f + @) (cos (9 + 5) — cos(d + a))
(l — 2cos( + @) cos (9+ %)) + \/l — 4¢0s%(0 + @) sin” (9+ %)

> 2rcos(f + @) (cos (9 + (;) — cos(f + a))

- _
=4r cos(f + @) sin (0 + Ta sin %
a sin &
> 4r cos(f + @) sin (9 + ) sin o 4
2 2 sin %
1 sin £ 1
> —h, since —= > —.
47 sin % i

Therefore Dy C By, which implies that

(r2 — |x — O,?)*/? 1
G >C )
p(x,y) = C /D(J (tt — O, 2 — 12272 [x —ul?

u —y|" )
. -y du. (6.22
(5& (u)*/25p, (y)*/? =yl u. (622)

From Zhao [23] we know that for any u € S, |x — u| < 4|x — y|. For any
u ED(), u= ﬁ(u _Ox)+0x GS,thus

- . 1
x —u| < \xfu\+|u—u|§4|xfy|+—h

- 24w

< Alx —y[+ &0 Oy

< 4x —y| + (1 +roCo)|x — y]

< Sk —yl, (6.23)

— —
due to the fact that ro < ﬁ Let 6, be the angle between O,u and O,0,. Then
0, < 0+p1(u) < 0+%. Since
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|”_Oy|2
= u—0.2+0, —0,*>=2lu—0,] 10, —0,|cosb,
y y

< |u0x|2+|0xOy|22|u0x||0x0y|cos(9+

(SR
~

pU.t |u—Oy|=r+s

2| Ql

(r +5)> +4r* cos’(0 + @) — 4r(r +s) cos(d + @) cos (9 + ) ;

we have

P2 — |u — 0y|2

> 4r’cos(f + @) <c0s <9 + Z) — cos(f + oz))
+4rs cos(f + @) cos (9 + g) — (2rs +52)
> 3r2cos(d+ @) (cos (9 + 3) —cos(f + a))

N
&9

= 6r2cos(d +@)sin (0 + 304) sin

6r? a
> 2 cos(f + @) sin <0 + a) sin
s 2

2| Ql

3
= —rh
87rr

where in the second inequality from above we used the fact that for 0 < s <

1
24w h’

s2+2rs —4rs cos(6+a) cos <9 + g) < r? cos(0+a@) <cos <9 + (;) — cos(f + a))
which can be proven by using elementary algebra. Note that

(6.24) dp,(y) = 6(y)

and

(6.25) o, () =71 — |u— Oy > (r* — [u — Oy|»)/2r > % h.
’ ’ T
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lu—y[?
= |y - 0x|2+ |I/l — Ox‘z 72|y - Oxl |u - OX|COSS01(M)
MO P (s - 2 +s)cos )

= —r)* +2Ir(1 —cos ;) +2rs(1 — cos @) + 2(r — I)s cos | +s°
< B2+ 4r2(1 — cos o1+ T-(1 — cos )+ﬁ+}’72
= T 0 U0 T QA

I <2r, |r—1I|<h

2
< (32h> +5r2(1 — CoS 1)
3 2
< (2h> +5r%sin? ;. (6.26)

From (6.20)—(6.26), we have

GD(-xay)
2 . 2\ /2
e (r |x — O«]%) / 1 '
5”|x—y|” Do (|u—0x|2—r2)°‘/2
n/2
fom " L1 2 +5r% sin® /
3 he/25(y)a2 [\ 2 7!

n/2—a/2

3 \? B
+ [(2}1) + 572 sin? @1] du
o Ciowe? / 1 6r\** 1
- 30‘/25" |x - )’|" Dy (|M — Ox‘ - r)a/Z 3 ha/25(Y)a/2

n/2 n/2—a/2
l()z +512sin2gp ‘|
. 2 !

—1
2
+ l(g,zh) +5r2sin® @1] du

Crwp—1 6(x)/? rrat 1 1 =2
(5 sy [ G1) s ]
+[<%h)2+5r2sinzaplr/%a/z)ild(pldg

o [ e

(C5) e [Gn) w5

3 2 n/2—a/2\ —1
+[(§h) +5rzsin2<p1} ) do,.

Rl
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Note that

wIR|

[ () gl Gr) ]

3 \2 n/2—a/2\ —1
+[(§h) +5rzsin2<p|] ) r"~Lsin" "2 pid

o (€ R
+ K%h) + 51)2] WZ_a/Z) _lv"fzdv

sin O
2r sin 5

o B CO RN (C R C IR
—1

+(1+5w2)"/2*a/2) W' 2dw

2 sin &

2r

o () [

16\ /2 ;3\ h/? ~1
((55) 7 6) (14 50?2 4 (14 5wy 27002) 2w

33 Sopr
o) () [ (5 ) vy

—1
+(1+ Swz)"/z_o‘/z) W' 2dw

=C 5(y)a/2ha/2—1.
Therefore
e Y1 _h
Gpx,y) >C %ha/Zfl f0247\' §—/24¢

_  S@)*25(»)*/?
= C SR (6.27)

Case 3.y € By, 6(y) > h.

Since I < r and (r —2r3n) + (4r>3*n* — 4r*3? +J2)1/2 < 2r. We have from
(6.19) that
(r* =J%) —4r*B(n — B)
2r
[(r —J) —4rB(n— Pl

= 5[5@—%}-

oW =r—1 >

Vv
—_— N | =

Thus
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y) < 26, (y)+ﬁ < 205 (y) + — (y)
6(y) < 405()
ox) = (5BX(X).
Therefore by Lemma 6.6 we have
Gp(x,y) > Gg/(x,y)
|x — y‘" n—ao -1
> p—
- C2(§B (x)2/28g (y)a/2 +lx =yl )
402 )x — y|n
> _ yn—«
= C2(6(x)a/26(y)a/2 ‘X y| )
4“/2\)6 y[ 4a/2‘x T .
C _ n—o
N 2<5(x)“/25(y)a/2 * Swesgyr )

Gy 5(x)*/25(y)/?
= o PR (6.28)

Inequality (6.17) follows from (6.27) and (6.28). The proof is now completed. [

References

1.
2.
3.

10.

11.

12.

14.
15.

16.
17.
18.

J. Bertoin: Lévy Processes, Cambridge University Press, 1996.
R. M. Blumenthal, R. K. Getoor: Markov Processes and Potential Theory, Academic Press, 1968.
R. M. Blumenthal, R. K. Getoor, D. B. Ray: On the distribution of first hits for the symmetric
stable processes, Trans. Amer. Math. Soc. 99 (1961), 540-554.

. K. Bogdan: The boundary Harnack principle for the fractional Laplacian, Studia Math. 123(1)

(1997), 43-80.

. Z. Q. Chen, R. Song: Intrinsic ultracontractivity and conditional gauge for symmetric stable

processes, J. Funct. Analysis 150 (1997), 204-239.

. K. L. Chung, Z. Zhao: From Brownian motion to Schrodinger’s equation (1995), Springer, Berlin
. M. Cranston: Lifetime of conditional Brownian motion in Lipschitz domains, Z. Wahrsch. Verw.

Gebiete. 70 (1985), 335-340.

. M. Cranston, E. Fabes, Z. Zhao: Conditional gauge and potential theory for the Schrodinger

operator., Trans. Amer. Math. Soc. 307 (1988), 174-194.

. J. Elliott: Dirichlet spaces associated with integro—differential operators, Part I, 1ll. J. Math. 9

(1965), 87-98.

J. Elliott: Dirichlet spaces associated with integro—differential operators, Part I 111. J. Math. 10
(1966), 66-89.

M. Fukushima, Y. Oshima, M. Takeda: Dirichlet forms and Symmetric Markov Processes, Walter
de Gruyter, 1994.

R. Getoor: First passage times for symmetric stable processes in space Trans. Amer. Math. Soc.
101 (1961), 75-90.

. N. Ikeda, S. Watanabe: On some relations between the harmonic measure and the Lévy measure
for a certain class of Markov processes J. Math. Kyoto Univ. 2-1 (1962), 79-95.

A. Janicki, A. Weron: Simulation and Chaotic Behavior of a-Stable Processes, Dekker, 1994.
J. Klafter, M. F. Shlesinger, G. Zumofen: Beyond Brownian motion., Physics Today 49 No. 2
(1996), 33-39.

N. S. Landkof: Foundations of Modern Potential Theory, Springer—Verlag, 1970.

H. P. McKean: Sample functions of stable processes, Ann. Math. 61 (1955), 564-579.

P. W. Millar: First passage distributions of processes with independent increments, Ann. Prob.
3 (1975), 215-233.



Green functions and Poisson kernels for symmetric stable processes 501

19.
20.
21.
22.

23.

M. Sharpe: General theory of Markov processes, Academic Press, 1988.

M. L. Silverstein: Symmetric Markov Processes, Springer—Verlag, 1974.

M. L. Silverstein: Boundary Theory for Symmetric Markov Processes, Springer—Verlag, 1976.
Z. Zhao: Uniform boundedness of conditional gauge and Schrodinger equations, Commun. Math.
Phys. 93 (1984), 19-31.

Z. Zhao: Green function for Schrodinger operator and conditioned Feynman-Kac gauge, J. Math.
Anal. Appl. 116 (1986), 309-334.

Note added in proof. The first version of this paper was finished in September
of 1996. The results of this paper were presented by the authors at the proba-
bility seminars of Cornell University, Duke University, New York University in
October of 1996. After this paper was accepted, we found out that part of the
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