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Abstract. Many cardiac diseases are associated with changes in ven-
tricular shape. However, in daily practice, the heart is mostly assessed
by 2D echocardiography only. While 3D techniques are available, they
are rarely used. In this paper we analyze to which extent it is possible
to obtain the 3D shape of a left ventricle (LV) using measurements from
2D echocardiography. First, we investigate this using synthetic datasets,
and afterwards, we illustrate it in clinical 2D echocardiography measure-
ments with corresponding 3D meshes obtained using 3D echocardiog-
raphy. We demonstrate that standard measurements taken in 2D allow
quantifying only the ellipsoidal shape of the ventricle, and that capturing
other shape features require either additional geometrical measurements
or clinical information related to shape remodelling. We show that noise
in the measurements is the primary cause for poor association between
the measurements and the LV shape features and that an estimated 10%
level of noise on the 2D measurements limits the recoverability of shape.
Finally we show that clinical variables relating to the clinical history can
substitute the lack of geometric measurements, thus providing alterna-
tives for shape assessment in daily practice.
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1 Introduction

Many cardiac pathologies are associated with changes in the cardiovascular sys-
tem and in particular the shape of cardiac ventricles[1]. Some pathologies are
associated to very particular changes in the shape, such as infarctions producing
a concavity/aneurysm in one of the walls of the left ventricle (LV) [2]. Addi-
tionally, some conditions determined in fetal life (e.g. tetralogy of Fallot[3] or
intra-uterine growth restriction [4]) shown to result in (sometimes subtle) shape



changes that are related to the severity of remodeling and thus might have clin-
ical predictive value above more commonly used parameters like volumes and
ejection fraction.

In daily practice, cardiac imaging is primarily carried out by 2D echocar-
diography. 2D echo has a good temporal resolution and a reasonable spatial
resolution. It is also cheap and can be operated at bedside. Its problem is that
it only allows to image a slice of the heart in each acquisition. This makes it
difficult to assess the shape, as the whole heart is not observable from a single
acquisition, but several views must be combined.

Even if 3D imaging techniques are available that give a complete view of
the heart and might thus be preferable, they have important drawbacks in daily
practice. 3D echo is nowadays not used in daily clinical practice due to its limited
temporal and spatial resolution and need for extra transducers and high-end
scanners. It is also more prone to having poor acoustic window and poor image
quality. Other 3D technologies, MRI and CT also have drawbacks. They have
better volume reproducibility and less imaging artifacts as compared to 2D echo,
but their temporal resolution is much worse. Moreover, they are not portable,
expensive and, in case of CT, use ionizing radiation.

In this paper, we investigate whether it is possible to infer the 3D shape of
the human left ventricle from the 2D echo measurements with a linear regression
approach. We will use not only the 2D measurements related to the geometry,
but also functional and clinical parameters. This approach reveals which parts
of the shape can be recovered in 2D and what confidence we can expect on those
predictions. We aim to know in which situations 3D imaging is required, and in
which 2D gives enough information.

To that end, we first create a synthetic dataset for studying the influence of
noise on the measurements and, afterwards, we illustrate the use of our regres-
sion approach on a population of pre-adolescents born after intrauterine growth
restriction (IUGR) where both 3D shapes and 2D measurements are available.
Specifically, we want to study how the following shape patterns reported in the
literature for these patients [5] can be best predicted from 2D measurements:
the overall size of the Left Ventricle (LV), its sphericity, and a lateral shift of
the apex with respect to the LV base. We also study in this paper the influence
of increasing noise levels on the 2D measurements.

Although the problem of inferring the complete 3D shape from 2D images
or an incomplete part of the 3D shape has already been addressed by the com-
munity (e.g. for the liver[6], or the femur[7]), this is, to our knowledge, the first
attempt to infer the LV shape from 2D clinical measurements obtained through
echocardiography, including the analysis of the impact of measurement noise on
the prediction.



Table 1: Classification of the 2D measurements included in the study
Class #measurements examples

Geometry of the LV 18 ES volume, ED volume, internal dimension, long axis
length, basal diameter

Function of the LV 14 cardiac output, cardiac index, mitral A speed
Geometry of the other parts 17 LA area, RV volume
Function of the other parts 18 TAPSE, Tricuspid E speed, AR duration
Clinical history 13 age, sex, IUGR label, height, weight

Table 2: Summary of the IUGR population.
Variable mean std min max

Age (years) 10.51 1.70 7.24 13.23
Weight (kg) 38.32 9.96 19.10 64.00
Height (m) 1.42 0.12 1.16 1.74
LV Volume (ml) 80.16 18.17 44.00 126.00
LV axial diameter (mm) 66.90 6.68 48.30 87.00

2 Data description

2.1 IUGR patient data

We used the dataset of [5] of 152, 7-13 years old, individuals (58 with Intrauterine
Growth Restriction (IUGR) and 94 controls). For each individual we have a 3D
mesh of the end-diastolic LV acquired using 3D echo (Echopac version 108.1.6)
and an independent complete 2D echo study with the standard clinical mea-
surements. After removing cases with incomplete measurements, 116 patients
remained. The summary of the population can be found in Table 2. The meshes
in this dataset have point correspondence, containing 720 nearly regular faces
with an average face area of 13.9mm2. Each patient has 90 measurements re-
lated to the function and geometry of the LV, other chambers, as well as clinical
history. Some examples of measurements included in the previous classification
are showed in Table 1. A more complete overview of the variables included can
be found in [8].

2.2 Generation of the synthetic database

In order to study the effect of noise on the measurements, we have generated a
synthetic database matching the main sources of variability found in the IUGR
population: size, sphericity and septal bulging (an asymmetrical half moon de-
formation). We first created a template LV as a sphere cropped at 3/4 of its
height. We estimated the distribution of the scaling coefficients that the IUGR
meshes follow by affinely registering the template LV to each LV mesh, and stor-
ing the scaling coefficients of the affine transform. With those we estimated a
Multivariate Normal distribution C. We randomly assigned every individual to
either the pathological (P) or control (H) group. Individuals belonging to the
pathological group were given a stronger half moon shape pattern. The template

LV was first positioned so that the cropped section is perpendicular to the y



axis, the half moon deformation was further introduced along the x axis using
the following deformation for very point p(x, y, z) of the mesh:

φ(x, y, z) = (|x− xmean|(y − ymin)(y − ymax), 0, 0) (1)

where xmean refers to the mean value of the x coordinates, ymin and ymax

refer to the minimal and maximal y coordinate over the points of the template.
The deformation is then normalized to have unit L2 norm. The generation of a
synthetic mesh was performed as follows:

1. Sample scaling coefficients c from C, scale the template LV using c and obtain
the cropped ellipsoid e;

2. Generate the label H/P, with 50% probability for each class;
3. Sample µ from DH = N (0cm, 0.3cm2) if the label is H, or from DP =

N (1.5cm, 0.4cm2) if the label is P;
4. The synthetic mesh is m := e + µφ, where φ is the half moon deformation

vector. We modeled the noise in the 3D mesh by a random displacement at
every vertex with mean norm of 1mm.

2.3 Measurements

The 2D measurements in the synthetic dataset are taken from the 3D shape, and
they contain similar information as real measurements. They are not directly
comparable to the real 2D measurements, because the latter are obtained from
the echocardiographic image. We used 3 different sets of synthetic measurements:

1. Basic measurements: they are equivalent to the volume, long axis length,
basal diameter and biggest internal diameter as described in the European
Association of Cardiovascular Imaging (EACVI) clinical recommendations
([8]). In Fig. 1a, there is a graphical description of how the linear measure-
ments were taken in the mesh.

2. Extra measurements: basic measurements, with the internal diameter divided
in two segments from the furthest points to the long axis (Fig. 1b). Those
distances are specific to the half moon pattern.

3. Random measurements: basic measurements and 5 distances between ran-
dom pairs of points and 5 diameters at different heights along the principal
axis.

Optionally the H/P label used in the generation was added to the geometrical
measurements.

For the IUGR dataset, 3 types of measurements, obtained from the 2D echo
study, were used:

1. Left ventricular end-diastolic volume, obtained using the biplane method,
and 3 linear measurements: long axis length, basal diameter and biggest
internal diameter.

2. Measurements from the point 1 and the label of the IUGR condition.
3. All the measurements available in the 2D study, including function and ge-

ometry of all parts of the heart.



(a) Basic
measure-
ments

(b) Extra
measure-
ments

Fig. 1: Linear measurements taken for the synthetic meshes. The basic measure-
ments correspond roughly to the long axis (black), internal dimension(orange)
and basal diameter(purple). In the extra measurements, the internal dimension
is split in the distances from the extremes to the long axis (orange and cyan).

3 3D shape regression from 2D measurements

This section describes how we learn a regression from a set of 2D measurements
to the 3D shape. It also defines the metrics that will be used later to quantita-
tively compare regression results.

3.1 Shape predictor training

In order to carry out 3D shape prediction from the 2D echo measurements, we
trained a linear regressor using the standardized 2D measurements as predictor
variables. As output, we used the coordinates of the mesh we want to recon-
struct after projection on a standard PCA basis. PCA has indeed the advantage
of giving both projection and reconstruction linear operators. To make the PCA
representation more compact, we kept PCA modes that explained 99% of the
variance. As input, the PCA takes the concatenation of all mesh vertex coor-
dinates. We used the Elastic Nets algorithm to learn the matrix of regression
coefficients Ŵ∗ and bias vector b̂∗:

Ŵ∗, b̂∗ = argmin
W,b

(

1

n
‖Ŷ −XW − b̂‖2fro + λ1‖W‖21 + λ‖W‖2fro

)

(2)

where ‖W‖fro is the Frobinus norm, ‖W‖21 =
∑

i
‖Wi‖2, n is the number of

samples used for training, X are the 2D measurements arranged in rows and Ŷ
are the PCA coordinates after projection. We kept only the modes explaining
99% of the variance. The λ1 and λ2 were determined using 3-Fold cross-validation
with the training data. From Eqn. 2, we learn a regressor predicting PCA co-
ordinates from the input 2D measurement. The resulting shape is then simply
obtained by applying the PCA reconstruction to these regressed coordinates.



3.2 Evaluation

We used 9 different noise levels (between 0 and 0.5) for 2D measurements in
the synthetic dataset. For every level, we have added to every measurement a
white Gaussian noise with a mean µi and a variance σ2 = (αµi)

2, where α
is the noise level. We generated 10 different synthetic datasets and report in
Sect. 4 the mean and 95% CI of theirs results. The quality of the regression
in the IUGR dataset was evaluated using Leave-One-Out cross-validation and
an independently generated test-set of size 50 for the synthetic dataset. We
use the R2 determination coefficient as a quality metric. It is defined as R2 =
1 − var(Ypred −Y)/var(Y), where Y is the real response and Ypred = XW∗.
The R2 coefficient is the percentage of the response space variance that can
be predicted via the regression. Given a linear deformation column mode m,
the R2 of the variability associated with that mode is defined similarly: R2

m =
1− var(Ypredm)/var(Y m)

4 Results

4.1 PCA modes

As PCA was used as encoding of the 3D shape for learning the regression
(Sect. 3.1), we show here PCA modes on both the IUGR and the synthetic
data. For IUGR we have previously aligned the meshes using the Procrustes al-
gorithm (preserving the scale). The 4 largest PCA modes and the percentage of
variability they represent are shown in the top row of Fig. 2. The two modes with
the largest variability are elongation and sphericity. The third mode appears to
be associated with a 3D segmentation artifact due to the partial coverage of the
outflow tract in many cases. The fourth mode is a non-symmetric deformation
where the apex is shifted with respect to the base with a small inclination of the
base, creating an impression of a half moon ventricular shape due to a bulging
septum. The bottom row of Fig. 2 shows the main PCA modes learned on the
synthetic data.

4.2 Synthetic data

We first evaluated how the choice of 2D measurements influences the regression
quality. Fig. 3 plots the R2 coefficient (Sect.3.2) for the first 3 PCA modes
as a function of noise for all possible combinations of measurements defined in
Sect. 2.3. Then, we investigated how training affects the quality of the regression.
First we tested whether adding more training data or selecting another regression
algorithm would affect the performance. Fig. 4.a shows the effect of changing the
training data size for the basic set of measurements and Fig. 4.d for the random
set. We also tested how different linear regression algorithms [9] compared in
terms of R2 values: PLS, Ridge, Elastic Nets, classic Linear Regression, Gaussian
Kernel Ridge regression for both the basic measurements (Fig. 4.c) and the
random ones (Fig. 4.f). Finally we studied the influence of noise on the training



Fig. 2: Top row: Main PCA modes learned on the IUGR dataset. Bottom row:
the biggest 4 modes of the PCA of the synthetic dataset. All modes are displayed
at ±3 STD

and testing steps. For the basic set of parameters, we have added to the training
set noise with a variance equal to twice the testing set noise and viceversa (Fig.
4.b and Fig. 4.e).

4.3 IUGR data

We used 4 measurements (volume, long axis length, basal diameter and internal
dimension) in the IUGR dataset that are equivalent to the basic measurements of
the synthetic dataset. We have performed regression using those measurements
to compare real and synthetic results. In Fig. 5.a we plot the observed R2 values
of the real data for the first two PCA modes along with the synthetic R2 curves
for the same PCA modes. We can see that the noise factor is around 10%,
which coincides with the results obtained by D’hooge et al. in [10]. We have also
compared the regression results when different types of measurements are used
as predictors. Results show that, with 116 data samples, the best combination
of parameters is the basic geometric measurements and the clinical label. Using
all the measurements available introduces error, as the algorithm is not able to
choose which measurements are relevant for the regression.

4.4 Volumes

We computed the volumes of the predicted meshes and compared them with
the 3D echo volumes. We evaluated whether they were closer to the volumes
acquired from 3D echo than the ones obtained using the biplane method. Results
showed that there was no significant precision difference between both volumes
estimations. Fig. 6 shows the Bland-Altman plots of the volumes obtained with
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Fig. 3: Influence of the noise and choice of measurements on the regression. For
each set of measurements, we plot the R2 coefficient for specific PCA modes as a
function of the noise. All these results were obtained with the synthetic dataset.
See Sect. 2.3 for a definition of all types of measurements combined here.

the biplane method and the volumes of the predicted shapes compared with the
3D echo.

5 Discussion

The most common shape representation for the LV is a cropped ellipsoid, as
commonly assumed in many measurements done in clinical practice. Our results
confirm the validity of this assumption since the PCA analysis of the IUGR
dataset (Fig. 2, top row) give modes coinciding with the longitudinal and radial
scaling of a mean shape similar to a cropped ellipsoid. Although these modes ex-
plain 82% of the total variance, they are not always the most useful parameters
for shape assessment to evaluate cardiac pathological remodeling. More complex
shape features are encoded by the next modes. As those have much less variabil-
ity than the main ellipsoidal modes, they are more sensitive to noise and harder
to recover. Results in Fig. 3.a show that with the geometrical measurements
inspired from EACVI recommendations, only the main ellipsoidal modes can be
estimated. A consequence of this might be that the predicted shape does not
provide a better volume estimation than the biplane method (Fig. 6). Biplane
method is also accurate when the shapes are symmetric, but it is less precise for
asymmetric shapes. Findings in the IUGR data were similar (Fig. 3.b).

When using only the basic geometrical measurements, neither increasing the
training dataset size (Fig. 4.a), nor removing the training noise (Fig. 4.e), nor
changing the algorithm (Fig. 4.c) altered the regression quality. This suggests
that most of the regression error is induced by the error on 2D input mea-
surements. Adding new measurements allows to improve shape accuracy. An
example of this is the half moon pattern, that can not be estimated from basic
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Fig. 4: Effect of: error in training set (a, d), train data size (b, e) and regression
algorithm (c, f). The upper row corresponds to the basic measurements and the
lower to the random measurements. All these results were obtained with the
synthetic dataset.
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Fig. 5: a) R2 coefficients for the 1st and 2nd PCA mode obtained in the real
data compared with the synthetic results for their equivalent PCA modes. b) R2

for the 3 first PCA modes for different sets of measurements.

measurements (dotted cyan graph in Fig. 3.a), but can be retrieved when spe-
cific measurements sensitive to this pattern or many random measurements are
added. Another positive effect of adding measurements is that we can use re-
dundant information to make the regression more resilient to noise. In Fig. 3 we
can see that for the 1st mode, R2 decreases slower when random measurements
are used (c) than when only the basic ones are available (a). We do not have to
restrict to geometrical measurements as geometry predictors, we can use mea-
surements related to the clinical history: Fig. 3.d and Fig. 3.e show how adding
a label related to the clinical diagnosis improves the regression of the half moon

feature. A similar behavior was observed for the IUGR dataset in Fig. 4.b.
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Fig. 6: Bland-Altman plot of the biplane and predicted shape volumes compared
with the 3D echo. The dotted lines represent the 95% CI. The volumes of the pre-
dicted shapes have a RMSE of 8.11 ml, while the biplanes volume measurements
have 8.32 ml.

6 Conclusion

We have shown that it is possible to predict 3D shape from 2D measurements,
and how the quality of the prediction is intrinsically limited by the amount of
noise in the input measurements. The uncertainty present in the measurements
used in daily clinical practice is of such magnitude that it hampers recovering
subtle cardiac remodeling features. This can be improved if more measurements
specific to the deformation we aim to recover are taken. Alternatively, additional
geometric measurements, possibly random, or some clinical history parameters
can be used to improve the accuracy of the 3D reconstructed shape. In any
case, a sensitivity analysis as done in this paper is important to determine the
minimal size of the training population and the optimal choice of features for a
given population.
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