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Estimating a bivariate linear relationship

David Leonard∗

Abstract. Solutions of the bivariate, linear errors-in-variables estimation problem

with unspecified errors are expected to be invariant under interchange and scaling

of the coordinates. The appealing model of normally distributed true values and

errors is unidentified without additional information. I propose a prior density that

incorporates the fact that the slope and variance parameters together determine

the covariance matrix of the unobserved true values but is otherwise diffuse. The

marginal posterior density of the slope is invariant to interchange and scaling of

the coordinates and depends on the data only through the sample correlation

coefficient and ratio of standard deviations. It covers the interval between the two

ordinary least squares estimates but diminishes rapidly outside of it. I introduce

the R package leiv for computing the posterior density, and I apply it to examples

in astronomy and method comparison.

Keywords: errors-in-variables, identifiability, measurement error, straight line fit-

ting

1 Introduction

Simple linear relationships inspire much empirical research, yet how to estimate their
parameters is a topic of continuing debate. Longstanding examples include the perma-
nent income model in economics (Zellner 1971), cosmic distance scale applications in
astronomy (Isobe et al. 1990), and allometric studies in biology (Warton et al. 2006).
From a statistical perspective, the common goal of these investigations is to estimate the
slope relating two variables that are observed with error. The controversy stems from
the absence of an estimate that is invariant to interchange and scaling of the coordinates
and depends reasonably on their joint distribution.

In one of the earliest comprehensive reviews, Madansky (1959) fixes ideas with the
familiar problem of estimating the density of a solid by fitting a line to measurements of
the mass and volume of a number of specimens. In this problem, the density estimate
should not depend on which axes the variables are plotted. It should also not depend
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on the units of measurement. That is, the same inference should be made by applying
a scale conversion to the data before fitting or to the density estimate afterward. The
observations may be affected by measurement errors as well as errors intrinsic to the
specimens, such as contamination by unknown impurities.

In many applications, the linear relationship appears on the log-log scale. In such
instances, units of measurement do not affect the slope of the fitted line, so it may
seem that scale invariance is unnecessary. Warton et al. (2006) point out, however,
that many multiplicative relationships involve arbitrary powers of the variables that
translate to scale changes upon log transformation. They offer that in an allometric
analysis of certain saplings, for example, analyzing the relationship between height and
basal diameter or basal area should lead to the same scientific conclusions. Similar
considerations apply in the analysis of the Faber-Jackson relation, Section 4.2.

The ordinary least-squares (OLS) estimate is scale invariant but not invariant to
interchange of the coordinates. The orthogonal regression estimate, proposed by Adcock
(1877, 1878) and Pearson (1901), is invariant to interchange of the coordinates, but it
was famously criticized by Wald (1940) for its lack of scale invariance. The economist
Samuelson (1942) proposed the additional property of dependence only on the sample
correlation coefficient and ratio of standard deviations. He showed that the only point
estimate of the slope exhibiting these particular invariance and dependence properties is
the geometric mean of the two OLS estimates, an estimate he credited to Frisch (1934).
This estimate, which is equal to the ratio of standard deviations of the measurements,
depends on their joint distribution only for its sign, however.

Dependence on the correlation coefficient and ratio of standard deviations is es-
pecially appealing in the model of normally distributed true values contaminated by
normally distributed errors. Reiersøl (1950) demonstrated that this model is uniden-
tified; the sampling density identifies not a point but a continuum of estimates. In
some situations, such as in pure measurement error problems, supplementing the data
with replicate measurements may solve the identification problem. In others, the addi-
tional information must come from outside the sample. A prior density would provide
a natural way to incorporate it.

This article will show how to assign a prior density jointly to the slope and vari-
ance parameters that leads to a marginal posterior density of the slope that is invariant
under interchange and scaling of the coordinates and has sufficient statistics in the sam-
ple correlation coefficient and ratio of standard deviations. Passage to an appropriate
noninformative limit is possible at the very end of the calculation. In contrast, previ-
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ous Bayesian solutions have relied on independent, informative prior densities for the
variance parameters (see, for example, Zellner 1971; Polasek and Krause 1993).

In one of the earliest reported Bayesian analyses, Lindley and El-Sayyad (1968) pre-
dicted some general properties of the marginal posterior density without fully specifying
the prior density. These properties, notably including failure to concentrate around a
single value in the limit of infinitely large samples, are indeed exhibited by the fully
specified solution that follows.

This introduction has mentioned only a few relevant developments in the long history
of this problem. Madansky (1959), Anderson (1984a), Sprent (1990) and Stefanski
(2000) provide comprehensive reviews. The book by Fuller (1987) has become a standard
reference. Isobe et al. (1990) describe applications in astronomy, biology, chemistry,
geology and physics.

2 Formulation of the problem

I adopt the notation of Zellner’s (1971, Chapter 5) comprehensive presentation. The
data are n pairs {y1i, y2i}, viewed as independent, noisy observations of their unobserved
true values {ξ1i, ξ2i}

y1i = ξ1i + u1i,

y2i = ξ2i + u2i,
(1)

i = 1, . . . , n. The elements of each pair of true values are linearly related,

ξ2i = α + βξ1i, (2)

and I seek an estimate of the slope β and possibly the intercept α.

I consider the model in which the true values {ξ1i} and {ξ2i} are samples from a bi-
variate normal distribution, degenerate to the regression line, and the total errors {u1i}
and {u2i} are independently and normally distributed with mean zero and respective
variances σ2

1 and σ2
2 . Despite outward appearances, assuming that either {ξ1i} or {ξ2i}

are samples from an improper constant density imposes severe restrictions on the result-
ing solutions. Zellner (1971) showed that the model in which {ξ1i} are samples from an
improper constant density produces the same estimates of β and α as OLS regression
of y2 on y1. He explained that the infinite variance of the distribution of {ξ1i} makes
the variance of the distribution of errors {u1i} negligible in comparison. Likewise, the
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model in which {ξ2i} are samples from an improper constant density produces the same
estimates as OLS regression of y1 on y2. Indeed, any model that assumes an improper
constant density along a line in the plane of true values presupposes a direction of ig-
norable error. The normal model may be appropriate in case such specific information
is not available.

Denoting the distribution of {ξ1i} by N(µ1, τ
2), the sampling distribution of the

observations {y1i, y2i} is bivariate normal with mean

µ = (µ1, α + βµ1) (3)

and covariance

Σ =

(
τ2 + σ2

1 βτ2

βτ2 β2τ2 + σ2
2

)
. (4)

Reiersøl (1950) demonstrated the consequence of the fact that the sampling distribu-
tion has six unknown parameters, but the sample mean and covariance matrix provide
only five sufficient statistics. Put simply, β is not identifiable in the normal model with-
out additional information. OLS regression overcomes the difficulty by assuming one
of σ1 or σ2 is zero, while orthogonal regression assumes the ratio σ2/σ1 = 1 or, more
generally, a known constant. These assumptions are more than adequate to estimate β;
reducing the number of unknown parameters by one provides estimates of the remaining
five. The focus of the present effort is to find out how much the form of Σ can tell us
about β alone.

3 The posterior probability density

Ultimately, I will estimate β from the posterior density

p(β | y) =
p(y | β)p(β)∫∞

−∞ p(y | β)p(β) dβ
, (5)

where y is the n× 2 observation matrix (y1, y2), p(β) is a prior density defined later in
this section, and

p(y | β) =
∫
· · ·

∫
p(y | µ1, α, β, τ2, σ2

1 , σ2
2)

× p(µ1, α, τ2, σ2
1 , σ2

2 | β) dµ1 dα dτ2 dσ2
1 dσ2

2

(6)

is the reduced sampling density.
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As discussed in Section 2, the full sampling density in the integrand of (6) is bivariate
normal

p(y | µ1, α, β, τ2, σ2
1 , σ2

2)

= (2π)−n/2|Σ|−n/2 exp {− 1
2 tr[(n(ȳ − µ)T(ȳ − µ) + νS)Σ−1]},

(7)

where ȳ = (ȳ1, ȳ2) is the vector of sample means, ν = n − 1, and S is the sample
covariance matrix with divisor n− 1.

I factor the conditional prior density of the location and variance parameters in (6)
as

p(µ1, α, τ2, σ2
1 , σ2

2 | β) = p(µ1, α | τ2, σ2
1 , σ2

2 , β)p(τ2, σ2
1 , σ2

2 | β) (8)

and take the conditional prior density of the location parameters µ1 and α to be a
constant.

Previous Bayesian analyses have gone forward under the assumption that various
functions of the variance parameters, for example, the ratio σ2/σ1, are approximately
known (see, for example, Zellner 1971, Section 5.4; Polasek and Krause 1993). In the
absence of such knowledge, the fact that Σ links the variance parameters to the slope
should not be ignored. In particular, from (4), nonnegativity of the variance parameters

τ2 =
1
β

Σ12 ≥ 0,

σ2
1 = Σ11 − 1

β
Σ12 ≥ 0,

σ2
2 = Σ22 − βΣ12 ≥ 0,

(9)

modifies the domain of Σ given β, and this information can be incorporated by assigning
a conditional prior density to Σ given β after changing variables p(τ2, σ2

1 , σ2
2 | β) =

|β|p(Σ | β).

Assigning an inverted Wishart density to p(Σ | β) acknowledges that Σ generates
the Wishart distributed sample covariance S (Anderson 1984b, Chapter 7). However,
because the domain of Σ depends on β, the inverted Wishart form

p(Σ | β) = K(β, ν0,Ψ0(β))−1|Σ|−(ν0+3)/2 exp [− 1
2 tr(Ψ0(β)Σ−1)] (10)

features a normalization factor that is a function of β. It also introduces a degrees of
freedom parameter ν0, a correlation parameter ρ0, and a scale parameter κ0 with units
of y1 through the precision matrix

Ψ0(β) = ν0κ
2
0

(
1 ρ0β

ρ0β β2

)
. (11)
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Fortunately, it will be possible to take the limit ν0 → 0 at the very end of the calculation,
removing any information these parameters carry, for any −1 < ρ0 < 1 and κ0 > 0.
The normalization factor K(β, ν0, Ψ0(β)) is the crux of the method; it is calculated in
Appendix 1.

After using (7)–(10) to carry out the integrations in (6), the posterior density (5) is

p(β | y) =
p(β)K(β, ν0 + ν, Ψ0(β) + νS)/K(β, ν0, Ψ0(β))∫∞

−∞ p(β)K(β, ν0 + ν, Ψ0(β) + νS)/K(β, ν0,Ψ0(β)) dβ
. (12)

Appendix 2 shows that in the limit ν0 → 0,

p(β | y) =
p(β)J(β, ν, r, l)∫∞

−∞ p(β)J(β, ν, r, l) dβ
, (13)

where the sample correlation coefficient r = S12/(S11S22)1/2 and the ratio of standard
deviations l = (S22/S11)1/2 are sufficient statistics, and

J(β, ν, r, l) = I(|β|/l, ν, r sign(β)) + I(l/|β|, ν, r sign(β)). (14)

In (14),

I(β̃, ν, r) =
∫ t+(β̃,ν,r)

t−(ν,r)

pt(t; ν)PF (F (t, β̃, ν, r); ν + 1, ν − 1) dt, (15)

where pt(t; ν) is the Student t probability density function, PF (F ; ν1, ν2) is the F cu-
mulative distribution function,

t−(ν, r) = −√ν r/
√

1− r2, (16)

t+(β̃, ν, r) =
√

ν (β̃ − r)/
√

1− r2, (17)

and
F (t, β̃, ν, r) =

ν − 1
ν + 1

ν + t2

[t+(β̃, ν, r)− t−(ν, r)]2 − [t− t−(ν, r)]2
. (18)

Importantly, (14) shows that J(β, ν, r, l) = J(β/l, ν, r, 1), so the entire role of β is
mediated by the scale invariant parameter β̃ = β/l. In terms of β̃ the posterior density
(13) is

p(β | y) = p(β̃ | y)/l, (19)

where

p(β̃ | y) =
p(β̃)J(β̃, ν, r, 1)∫∞

−∞ p(β̃)J(β̃, ν, r, 1) dβ̃
(20)

depends on the data only through the sample correlation coefficient.
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It remains to assign the prior density p(β̃). The pure number β̃ ensures scale invari-
ance. At a minimum, the prior specification should be invariant under interchange of the
coordinates. The sampling density (7), however, is invariant under continuous rotations
of the coordinate plane, and for now I assume that the prior information available on
β̃ is indifferent to such rotations as well. I will return to this point briefly in Section 5.
A rotationally invariant prior density will necessarily be invariant under interchange of
the coordinates, by rotation through the angle π/2.

Under rotation of the coordinates through an angle ϕ, a rotationally invariant prior
density must satisfy the functional equation p(β̃) = p(β̃′)|dβ̃′/dβ̃|, where β̃′ = (β̃ cos ϕ−
sin ϕ)/(cos ϕ + β̃ sin ϕ). Conveniently, there is only one solution, the Cauchy density

p(β̃) =
1
π

1
1 + β̃2

, (21)

equivalent to a uniform density on the angle θ = arctan β̃. Appendix 3 shows that
the resulting posterior density (19)–(21) has precisely the form required for a density
that depends on the data only through the sample correlation coefficient and ratio of
standard deviations to be invariant under interchange and scaling of the coordinates.

The function J(β, ν, r, l) in (14) is a sum of two integrals, one over the sampling
density of the estimate rl of β in the OLS regression of y2 on y1 with ν degrees of
freedom, and the other over the sampling density of the estimate r/l of 1/β in the OLS
regression of y1 on y2 with ν degrees of freedom. These integrals are well-defined for
n > 2. As n becomes large, the Student t density in the integrand of I(β/l, ν, r) be-
comes more sharply peaked around t = 0, while the F cumulative distribution function
becomes more like a unit step function at F (t, β/l, ν, r) = 1. Consequently, this integral
contributes little to J(β, ν, r, l) unless the point t = 0 is in {t : F (t, β/l, ν, r) ≥ 1}. From
definitions (16)–(18), this condition is met whenever |β| ≤ l. By the same reasoning,
the integral I(l/β, ν, r) contributes little to J(β, ν, r, l) unless |β| ≥ l. In other words,
for |β| < l, the posterior density is based largely on the sampling density of the estimate
rl of β in the OLS regression of y2 on y1, whereas for |β| > l, it is based largely on the
sampling density of the estimate r/l of 1/β in the OLS regression of y1 on y2.

In special cases, the integrals in J(β, ν, r, l) can be evaluated analytically. For in-
stance, Appendix 4 provides closed form expressions for the posterior density (19) for
sample sizes of n = 4 and n = 6. For n = 4, the posterior density of θ = arctan β̃ is
proportional to |sin 2θ|/(1− r sin 2θ), −π/2 ≤ θ ≤ π/2. For n = 6, the posterior density
of θ is proportional to |sin 2θ|(2− r sin 2θ)/(1− r sin 2θ)2. These densities have relative
maxima at θ = ±π/4 and absolute maximum at θ = sign(r) π/4.
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More generally, the posterior density of the scale invariant slope (20) is illustrated
in Figure 1 for sample sizes of n = 10 and n = 100. Notable features include the
symmetry about β̃ = 0 for r = 0 and the concentration about β̃ = ±1 as r → ±1. For
|r| < 1, however, the width does not shrink to zero as n →∞. Figure 1 also shows the
posterior density of the corresponding angle θ = arctan β̃, for which the prior density
(21) is uniform. The R package leiv (R Development Core Team 2011; Leonard 2011)
computes the posterior density (19)–(21) and is freely available from the Comprehensive
R Archive Network (CRAN).
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Figure 1: Posterior densities of the scale invariant slope β̃ (left) computed from (20)–
(21) and of the corresponding angle θ = arctan β̃ (right) for sample sizes of n = 10
(upper) and n = 100 (lower) and a series of sample correlation coefficients.



D. Leonard 735

4 Examples and simulations

4.1 Zellner’s artificial data

The present example, using the artificial data of Zellner (1971, Table 5.1), compares
the posterior density (19) to Zellner’s informed solution. The data are n = 20 pairs
{y1i, y2i}, generated from the model (1) and (2), with slope β = 1, intercept α = 2,
error variances σ2

1 = 4 and σ2
2 = 1, true means µ1 = 5 and µ2 = α + βµ1 = 7, and

true variance τ2=16. These data meet all the assumptions of Section 2. The sufficient
statistics are r = 0·909 and l = 0·963. The posterior density (19) is plotted in Figure 2.
The posterior median is 0·963; the shortest 95% probability interval is (0·722, 1·237).
For comparison, the 95% confidence intervals are (0·676, 1·075) from the OLS regression
of y2 on y1 and (0·864, 1·372) from the OLS regression of y1 on y2.

Figure 2 also illustrates the posterior density that Zellner (1971, Figure 5.4) calcu-
lated from the same data, assuming a uniform prior density for β and an independent,
inverted gamma prior density for the true error variance ratio with mean 0·246 and
standard deviation 0·152. Zellner’s posterior density is slightly narrower, due primarily
to the informative prior density on the variance ratio. It is shifted somewhat to the
right, due in part to the uniform prior density for β, which is not rotationally invariant
and favors angles approaching ±π/2.

4.2 Faber-Jackson relation

The following example illustrates the dilemma posed by estimates that do not possess
the same symmetries as the problem statement. The data are the luminosities L and
velocity dispersions σ of n = 40 elliptical galaxies obtained from Schechter’s (1980)
measurements of the Faber-Jackson relation, L ∼ σβ , as presented by Isobe et al. (1990,
Section 4). As these authors explain, theoretical predictions of β range from 2 to 3
to 4. Figure 3 is a log-log plot of L versus σ. The figure strongly suggests a linear
relationship, although there is considerable scatter, due primarily to uncharacterized
intrinsic processes.

The popular OLS bisector and orthogonal regression estimates of β used by as-
tronomers in this and other cosmic distance scale applications are invariant under in-
terchange of the coordinates. The OLS bisector line bisects the angle between the two
OLS regression lines, also shown in Figure 3, with slopes b1 = S12/S11 = 2·4 (0·4) and
b2 = S22/S12 = 5·4 (1·0). It has slope bOLSB(b1, b2) = tan( 1

2 (arctan b1+arctan b2)) = 3·4
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Figure 2: Posterior density of the slope β (solid) calculated from (19)–(21) and (dashed)
calculated by Zellner (1971, Figure 5.4) using an informative prior density.

(0·4). The orthogonal regression line minimizes the sum of the squared perpendicular
distances to the data. It has slope bOR(b1, b2) = B + sign(S12)(B2 + 1)1/2 = 5·2 (1·0),
where B = 1

2 (b2 − 1/b1). Here and in the following the standard errors are estimated
from 104 bootstrap replicates.

The OLS bisector and orthogonal regression estimates of β are not invariant under
scaling of the coordinates. In theoretical developments of the Faber-Jackson relation, the
velocity dispersion generally enters raised to the second power via the kinetic energy,
and in general one would expect the analysis of L ∼ (σk)β/k to lead to the same
estimate of β for any k > 0. This translates under log transformation to scale invariance.
Defining b

(k)
OLSB/k = bOLSB(b1/k, b2/k), the limits b

(0)
OLSB = 2/(b−1

1 + b−1
2 ) = 3·3 (0·4)
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Figure 3: Luminosities and velocity dispersions obtained from Schechter’s (1980) mea-
surements of the Faber-Jackson relation with the regression line based on the median
of (19) (bold) and the two ordinary least squares regression lines (dotted).

and b
(∞)
OLSB = (b1 + b2)/2 = 3·9 (0·5). Similarly, defining b

(k)
OR/k = bOR(b1/k, b2/k), the

limits b
(0)
OR = b2 = 5·4 (1·0) and b

(∞)
OR = b1 = 2·4 (0·4).

With no criterion of choice, investigators have no firm interval estimate of β. Isobe
et al. (1990) state, “In cases like these, the astronomer would be wise to calculate [a
number of] regressions and be appropriately cautious regarding the confidence of the
inferred conclusion.” The strategy introduced in Section 3 inspires a more positive state
of affairs. Figure 4 illustrates the interchange and scale invariant posterior density (19).
The posterior median 3·6 favors the theoretical predictions β = 3 and β = 4 more than
β = 2, but the shortest 95% probability interval (1·8, 6·1) confirms that more evidence
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is needed.
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Figure 4: Posterior density of β in the Faber-Jackson relation L ∼ σβ with the median
and shortest 95% probability interval.

4.3 Coverage probability

Analysis of the Faber-Jackson data of Section 4.2 showed that the location and width
of interval estimates around two interchange invariant point estimates of β vary with
an arbitrary choice of scale. Another limitation is that, because the sampling density
identifies Σ but not β, confidence intervals for point estimates b(S), all functions of
sufficient statistics for Σ, reflect sampling variation about the population values b(Σ)
but not β. The slope cannot be identified with the population value b(Σ) unless further
restrictions apply. For instance, the identifying condition for the scale and interchange
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invariant geometric mean model mentioned in Section 1 is σ2
2/σ2

1 = Σ22/Σ11, and the
identifying condition for the orthogonal regression model is σ2

1 = σ2
2 . Coverage of

confidence intervals around these point estimates is expected to reach nominal levels
when the identifying conditions hold, but otherwise how they will perform is uncertain.

On the other hand, shortest posterior probability intervals calculated from (19) are
marginalized over a distribution of variance parameters. Considering that the sampling
density cannot simultaneously identify the slope and the variance parameters, how the
posterior probability intervals will perform when applied to data characterized by a
specific configuration of variance parameters is also uncertain. In this section, I use
numerical simulation to study the empirical coverage probability of these intervals.

I considered a number of sample size and measurement error settings, as shown
in Table 1. For each setting, I generated 1000 data sets by randomly drawing the
true values {ξ1i} ∼ N(0, 1) and the errors {u1i} ∼ N(0, σ2

1) and {u2i} ∼ N(0, σ2
2), for

i = 1, . . . , n. I then constructed the observations {y1i} and {y2i} from the model (1)
and (2), with slope β = 1 and intercept α = 0. I calculated the shortest 90% posterior
probability interval for β using (19), and 90% basic bootstrap confidence intervals using
999 replicates of each data set for the geometric mean, OLS bisector, and orthogonal
regression estimates (see, for example, Davison and Hinkley 1997, Chapter 5). Table 1
shows the percentage of intervals that contained β = 1.

Table 1 shows that coverage of confidence intervals around the popular interchange-
invariant point estimates of β reached the nominal level when σ1 = σ2, the settings in
which, for β = 1 and τ2 = 1, the identifying conditions held. Otherwise, coverage fell
well short of the nominal level and worsened in larger samples.

The posterior probability intervals exhibited broader coverage accuracy, overcovering
in the vicinity of σ2

2/σ2
1 = β2 and undercovering in more singular regions of the (σ1, σ2)

sampling domain. Further investigation confirmed that the average coverage of the
posterior probability interval over the limiting sampling density p(σ2

1 , σ2
2 | β, τ2) ∝

|Σ|−3/2 matched the nominal level.

Previous studies have reported much better performance of the geometric mean,
OLS bisector, and orthogonal regression estimates (Babu and Feigelson 1992, Tables
2 and 3; Warton et al. 2006, Table 8). In these studies, however, replicate data was
generated from known Σ, not β. Correspondingly, performance was measured relative
to the identified value b(Σ), not β. Evaluated this way, the estimates perform well in
general and increasingly well in larger samples, in direct contrast to the present findings.
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Table 1: Empirical coverage (%) of the shortest 90% posterior probability interval and
nominal 90% confidence intervals of point estimates of β.

Posterior Geometric OLS Orthogonal
n σ1, σ2 density mean bisector regression

0·05, 1·00 86·5 52·5 49·8 77·3
0·10, 0·50 89·9 79·1 78·2 81·1

20 0·20, 0·20 92·8 84·8 84·6 85·3
0·50, 0·10 82·9 64·0 63·5 65·1
1·00, 0·05 72·2 21·3 24·4 20·3
0·05, 1·00 80·7 7·8 7·2 22·4
0·10, 0·50 83·9 56·3 55·8 58·9

50 0·20, 0·20 94·6 88·0 88·0 88·3
0·50, 0·10 75·8 40·4 40·4 41·0
1·00, 0·05 54·4 3·2 3·4 2·8
0·05, 1·00 71·6 0·3 0·2 0·9
0·10, 0·50 75·5 30·2 30·1 30·9

100 0·20, 0·20 96·6 88·0 88·0 88·1
0·50, 0·10 71·5 23·3 23·2 22·8
1·00, 0·05 42·1 0·1 0·1 0·0

Coverage based on 1000 random data sets. Geometric mean, OLS bisector,

and orthogonal regression basic bootstrap confidence intervals estimated

using 999 bootstrap replicates of each data set. Posterior density from (19).

Geometric mean estimate: sign(S12)
√

b1b2, b1 = S12/S11, b2 = S22/S12.

OLS bisector estimate: tan( 1
2
(θ1 + θ2)), θ1 = arctan b1, θ2 = arctan b2.

Orthogonal regression estimate: B + sign(S12)
√

B2 + 1, B = 1
2
(b2 − 1/b1).



D. Leonard 741

4.4 Method comparison

The final example shows how the posterior density estimate (19) addresses a limita-
tion of the Bland-Altman approach to method comparison studies (Altman and Bland
1983; Bland and Altman 1986). The data are from a study comparing two methods
of estimating the fat content of 45 samples of human milk (Bland and Altman 1999,
Table 3). One method (y1) is the standard Gerber method; the other (y2) relies on
enzymic hydrolysis of triglycerides. Figure 5 shows a scatter plot of the data.
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Figure 5: Fat content of human milk determined by the standard Gerber method and
by enzymic hydrolysis of triglycerides with the regression line based on the median of
(19) (bold) and the line of equality (dotted).

Standard practice in method comparison relies on the approach described in the
highly influential publications of Altman and Bland (1983); Bland and Altman (1986).
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The centerpiece of the method is the Bland-Altman plot, a plot of the differences against
the means of the two methods. Figure 6 shows a Bland-Altman plot of the fat content
data, with horizontal limits of agreement 1.96 standard deviations above and below the
mean difference. The Bland-Altman plot, serving as a type of residuals plot for the
identity model, provides a helpful perspective on the data. In this case, it gives no
indication of overall bias, but it suggests a decreasing trend for the differences relative
to the means.
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Figure 6: Difference versus average of the hydrolysis and Gerber methods of measuring
fat content with 95% limits of agreement.

The Bland-Altman approach sidesteps the controversial use of regression and corre-
lation (Dunn 2007) by focusing on the measurements obtained rather than the quantities
being measured. The measurements obtained, however, are affected not only by differ-
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ences in the quantities being measured but also by the errors. Indeed, the differences
have variance τ2(β− 1)2 +(σ2

1 +σ2
2) under the model (4), showing explicitly the contri-

butions of each of these effects. Importantly, the differences and means have covariance
1/2 [τ2(β2 − 1) + (σ2

2 − σ2
1)], showing that the measurements may differ systematically

even if β = 1, and also that the measurements may agree even if β 6= 1.

In the present example, the downward trend of Figure 6 hints that β < 1, but another
possibility is that σ1 > σ2. The Bland-Altman approach cannot distinguish between
these possibilities without specific information on the total errors. The posterior density
shown in Figure 7 isolates the relation between the quantities being measured, offering
substantial evidence that β < 1, that is, the increments of the quantity being measured
by the hydrolysis method are smaller than those of the quantity being measured by the
Gerber method. The shortest 95% posterior probability interval for β is (0·953, 0·991)
with median 0·972.

5 Discussion

Often, the information in a set of observations and knowledge of the sampling density
that generated it suffice to identify the parameters of interest. This is not true in the
bivariate normal errors in variables estimation problem with unspecified errors. The
elements of the mean µ and covariance matrix Σ are identified, but the slope β is not.
Given µ and Σ, the sampling density (7) does not vary with β. As explained by Poirier
(1998), the data are conditionally uninformative for β. Fortunately, the nonnegativity
conditions (9) modify the domain of Σ in a way that depends on β, so the data are
marginally informative for β. That is, the data are able to revise prior beliefs, as the
examples in Section 4 clearly demonstrate.

Reiersøl (1950) recognized that the nonnegativity conditions (9) restrict the values
of β given Σ. If Σ12 > 0, then β is restricted to the interval Σ12/Σ11 ≤ β ≤ Σ22/Σ12.
If Σ12 < 0, the inequalities are reversed. Of course, the true covariance Σ is not given,
so this fact is not directly useful for inference. In large samples, however, these bounds
should be approximated by the two OLS estimates of β, an observation Reiersøl credited
to Frisch (1934), also emphasized by Lindley and El-Sayyad (1968).

Looking at things the other way around, the nonnegativity conditions (9) restrict
the values of Σ given β. If β > 0, then Σ12 is restricted to the interval 0 ≤ Σ12 ≤
min(βΣ11, Σ22/β). If β < 0, then Σ12 is restricted to the interval max(βΣ11, Σ22/β) ≤
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Figure 7: Posterior density of the slope β for the fat content data with the median and
shortest 95% probability interval.

Σ12 ≤ 0. A conditional prior density p(Σ | β) will therefore have a normalization factor
that depends on β, and it will contribute at least this much additional information. A
conditional prior density p(Σ | β) in the inverted Wishart W−1(Ψ0, ν0) form with β

dependent normalization factor (10) will contribute just this much information in the
limit of vanishing degrees of freedom; all information that would otherwise be carried
by Ψ0 and ν0 is lost. Appendix 2 shows that this limit is possible at the very end of the
calculation for any proper prior density p(β).

The price to pay is that, no matter how large the sample, the prior information
carried by the nonnegativity conditions (9) must persist in order to identify β. From
the perspective of β given Σ, the OLS bounds emphasized by Lindley and El-Sayyad
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(1968) do not converge. The sample can never completely overwhelm the joint prior
density, and the posterior density cannot concentrate on a single point.

Of course, any information inadvertently incorporated into the prior density will
impact the posterior inference on β as well, so prior specification cannot be taken lightly.
It is important to consider what is not known as well as what is. The calculation in
Section 3 assumed that prior information on β is indifferent to continuous rotations of the
coordinate plane, consistent with the rotational symmetry of the sampling density (7).
The calculation went forward by specifying the uniquely rotationally invariant Cauchy
prior density (21) to the scale invariant slope β̃. In contrast, the seemingly benign
uniform prior density specified by Zellner in Section 4.1 implied a prior density p(θ) ∝
(sec θ)2 on the angle θ = arctan β̃ that introduced a preference for lines approaching the
vertical. Such a preference cannot be desired in all circumstances.

Prior information that is not invariant under continuous rotations of the coordinate
plane may still be incorporated in a way that leaves the posterior density invariant under
interchange of coordinates. Interchange invariant prior densities on the scale invariant
slope are necessarily of the form p(β̃) = 1/β̃ ψ(β̃, 1/β̃), where ψ(x1, x2) = ψ(x2, x1) is
symmetric with respect to its arguments. This is a broad class of densities that includes
the rotationally invariant Cauchy density and the posterior density (20). A convenient
way to incorporate prior beliefs on β̃ is therefore to use (20) as a prior density, choosing
the degree of freedom and correlation parameters ν and r that reflect these beliefs. As
(20) can be calculated for any ν > 1 and −1 < r < 1, no prior data are required.

Exact inference from the posterior density (19) is possible only when the unknown
true values and errors are normally distributed. Whether or not the true values and
errors are normally distributed, the normal model has the virtue that the resulting
inferences provided by the marginal posterior density depend on these distributions
only through the first and second moments of the sampled values, assumed to be finite
(see, for example, Jaynes 2003, Chapter 7).

Section 2 described the consequences of a model that assumes either one of the
true values of the coordinates is sampled from an improper uniform distribution with
infinite variance. The slope is identified, but the identified value depends on which
coordinate is marginalized out, an unacceptable solution to a problem that demands
invariance under interchange of coordinates. By incorporating the assumption that the
distributions of true values and errors have finite mean and variance, the normal model
leads to a solution with the required symmetries; the drawback is that the sampling
density does not identify β.
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Compounding the dilemma, Reiersøl (1950) showed that the normal model is the
only model that does not identify β. As Lindley and El-Sayyad (1968) point out, this
constitutes an acute sensitivity to distribution. In any nonnormal model, the limiting
posterior density will concentrate; otherwise it will not. They also point out, however,
that more accurate estimation is unlikely without specific information about the true
values and errors actually sampled in the data at hand.

Finally, looking forward, it appears to be straightforward to generalize the normal
model solution to higher dimensions, starting from the matrix form of the conditional
prior density (10). The challenge will be to find a practical expression for the normal-
ization factor (22). The approach of Klepper and Leamer (1984) may be particularly
helpful in this effort.

Appendices

Appendix 1: The normalization factor

The objective is to calculate the normalization factor

K(β, ν, Ψ) =
∫

R

|Σ|−(ν+3)/2 exp [− 1
2 tr(ΨΣ−1)] dΣ (22)

of the density (10), where Ψ and Σ are positive-definite, symmetric 2× 2 matrices, and
R is the region defined by the nonnegativity conditions (9). In (22) and throughout
this appendix, Ψ may depend on β; for convenience such dependence is suppressed in
the notation. But for the restriction to the integration region R, the defining integral
in (22) could be calculated in much the same way as Fisher (1915) first calculated the
2 × 2 case of the Wishart density. As it is, R breaks the defining integral in (22) into
two separate parts

K(β, ν, Ψ) =
∫ ∞

0

∫ ∞

β2Σ11

∫ βΣ11

0

|Σ|−(ν+3)/2 exp [− 1
2 tr(ΨΣ−1)] dΣ11 dΣ22 dΣ12

+
∫ ∞

0

∫ ∞

Σ22/β2

∫ Σ22/β

0

|Σ|−(ν+3)/2 exp [− 1
2 tr(ΨΣ−1)] dΣ22 dΣ11 dΣ12,

(23)
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for the case β ≥ 0, and

K(β, ν, Ψ) =
∫ ∞

0

∫ ∞

β2Σ11

∫ 0

βΣ11

|Σ|−(ν+3)/2 exp [− 1
2 tr(ΨΣ−1)] dΣ11 dΣ22 dΣ12

+
∫ ∞

0

∫ ∞

Σ22/β2

∫ 0

Σ22/β

|Σ|−(ν+3)/2 exp [− 1
2 tr(ΨΣ−1)] dΣ22 dΣ11 dΣ12,

(24)

for the case β < 0.

Introducing the reparameterization (Ψ11, Ψ22, Ψ12) → (|Ψ|, r, l) of Ψ, where

r = Ψ12/(Ψ11Ψ22)1/2,

l = (Ψ22/Ψ11)1/2,
(25)

(23) and (24) have the form

K(β, ν, Ψ) = K1(|β|/l, ν, |Ψ|, r sign(β)) + K1(l/|β|, ν, |Ψ|, r sign(β)), (26)

where

K1(β̃, ν, |Ψ|, r) =
∫ ∞

0

∫ ∞

β̃2Σ11

∫ β̃Σ11

0

|Σ|−(ν+3)/2

× exp [− 1
2

|Ψ|1/2

|Σ|√1−r2 (Σ11 − 2rΣ12 + Σ22)] dΣ11 dΣ22 dΣ12.

(27)

I apply the technique described by Anderson (1984b, Section 4.2) to the integral
(27), changing variables (Σ22,Σ12) → (u, v) by

u = Σ12/Σ11, (28)

v = Σ22 − Σ2
12/Σ11. (29)

Changing variables (Σ11, v) → (s, w) in the resulting expression by

s = 1
2RΨ/Σ11, (30)

w = 1
2RΨ[1/Σ11 + Qr(u)/v], (31)

where RΨ = |Ψ|1/2/
√

1− r2, and the nonnegative quadratic function Qr(u) = (u−r)2+
(1− r2) leads to

K1(β̃, ν, |Ψ|, r) = 2νΓ(ν+1
2 )Γ( ν−1

2 )R−ν
Ψ

×
∫ β̃

0

Qr(u)−(ν+1)/2Iz(u,β̃,r)(
ν+1
2 , ν−1

2 ) du.
(32)
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In (32), Iz(a, b) is the regularized incomplete beta function (beta cumulative distribution
function) (Olver et al. 2010, Section 8.17), and

z(u, β̃, r) =
Qr(u)

Qr(u) + β̃2 − u2
. (33)

Finally, introducing the integration variable t by

t/
√

ν = (u− r)/
√

1− r2 (34)

puts (32) in the form

K1(β̃, ν, |Ψ|, r) = H(ν)|Ψ|−ν/2I(β̃, ν, r), (35)

where

H(ν) =
√

π2νΓ( ν
2 )Γ( ν−1

2 ), (36)

and I(β̃, ν, r) is the following integral over the Student t probability density function
pt(t; ν) with degrees of freedom ν and F cumulative distribution function PF (F ; ν1, ν2)
with degrees of freedom ν1 and ν2 (Abramowitz and Stegun 1964, Sections 26.6 and
26.7).

I(β̃, ν, r) =
∫ t+(β̃,ν,r)

t−(ν,r)

pt(t; ν)PF (F (t, β̃, ν, r); ν + 1, ν − 1) dt, (37)

where the integration limits are

t−(ν, r) = −√ν r/
√

1− r2, (38)

t+(β̃, ν, r) =
√

ν (β̃ − r)/
√

1− r2, (39)

and

F (t, β̃, ν, r) =
ν − 1
ν + 1

ν + t2

[t+(β̃, ν, r)− t−(ν, r)]2 − [t− t−(ν, r)]2
. (40)

Substituting (35) into (26), the final expression for K(β, ν, Ψ) is

K(β, ν, Ψ) = H(ν)|Ψ|−ν/2J(β, ν, r, l), (41)

where

J(β, ν, r, l) = I(|β|/l, ν, r sign(β)) + I(l/|β|, ν, r sign(β)). (42)
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Appendix 2: The noninformative limit

Due to the factor H(ν) in (41), the reduced sampling density (6) cannot be evaluated
in the limit ν0 → 0. However, these factors cancel out of the posterior density (12),
leaving

p(β | y) = p(β)
|Ψ0(β) + νS|−(ν0+ν)/2J(β, ν0 + ν, Ψ0(β) + νS)

|Ψ0(β)|−ν0/2J(β, ν0, Ψ0(β))

×
[∫ ∞

−∞
p(β)

|Ψ0(β) + νS|−(ν0+ν)/2J(β, ν0 + ν, Ψ0(β) + νS)
|Ψ0(β)|−ν0/2J(β, ν0, Ψ0(β))

dβ

]−1

.

(43)

In (43), J(β, ν, Ψ) is shorthand for the function J(β, ν, r, l) of (42) in the parameteriza-
tion (25) of Ψ.

The precision matrix Ψ0(β) of (11) is parameterized by

|Ψ0(β)| = ν2
0κ4

0β
2(1− ρ2

0), (44)

r0(β) = ρ0 sign(β), (45)

l0(β) = |β|. (46)

The integration limits (38) and (39) of the first integral I(|β|/l0, ν0, r0) of J(β, ν0, r0, l0)
in (42) are therefore

t−(ν0, r0(β)) = −√ν0 ρ0/(1− ρ2
0)

1/2, (47)

t+(|β|/l0(β), ν0, r0(β)) =
√

ν0 (1− ρ0)/(1− ρ2
0)

1/2, (48)

independent of β whatever the value of ρ0, as is the function F (t, β/l0, ν0, r0), defined
in (40). Consequently, I(|β|/l0, ν0, r0) is independent of β. The same reasoning can
be applied to the second integral I(l0/|β|, ν0, r0), and therefore J(β, ν0, Ψ0(β)) cancels
out of the posterior density (43). Furthermore, from (44), the factors involving the
determinant |Ψ0(β)| in (43) are well-behaved in the limit

lim
ν0→0

|Ψ0(β)|−ν0/2 = lim
ν0→0

[ν2
0κ4

0β
2(1− ρ2

0)]
−ν0/2 = 1, (49)

while Ψ0(β) = 0 in the same limit. The noninformative limit of the posterior density
(43) is therefore

lim
ν0→0

p(β | y) =
p(β)J(β, ν, r, l)∫∞

−∞ p(β)J(β, ν, r, l) dβ
, (50)

where the sample correlation coefficient r = S12/(S11S22)1/2, and the ratio of stan-
dard deviations l = (S22/S11)1/2 are sufficient statistics. From the properties of the F

cumulative distribution function, the integrals in J(β, ν, r, l) are well-defined for n > 2.
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Appendix 3: Invariance properties

Samuelson (1942) proved that the geometric mean of the two OLS estimates is the only
point estimate of the slope consistent with the following three properties: (1) it must
depend on the data only through the sample correlation coefficient and ratio of standard
deviations; (2) it must be invariant to interchange of the coordinates; (3) it must be
invariant to a scale change of either coordinate.

Consider a posterior density p(β | y) = f(β, r, l) exhibiting property 1. If this density
must also exhibit properties 2 and 3, then

f(β, r, l) = f(1/β, r, 1/l)/β2, (51)

and

f(β, r, l) = cf(cβ, r, cl), (52)

for any c > 0. Simultaneous solutions of (51) and (52) are of the form

f(β, r, l) = g(β̃, 1/β̃, r)/(β̃l), (53)

where the scale invariant slope β̃ = β/l, and g is any function symmetric in its first two
arguments. The posterior density (19) is a particular case of (53) with

g(β̃, 1/β̃, r) =
β̃p(β̃)J(β̃, ν, r, 1)

h(r)
, (54)

where h(r) =
∫∞
−∞ p(β̃)J(β̃, ν, r, 1) dβ̃, and it is easily verified from (14) and (21) that

β̃p(β̃) and J(β̃, ν, r, 1) are each symmetric with respect to β̃ and 1/β̃.

Appendix 4: Special cases

In special cases, the posterior density (19) is available in closed form. For instance,
starting from (32) with n = 4, ν = n− 1 = 3, it is straightforward to show that

K1(β̃, 3, |Ψ|, r) = 23|Ψ|−3/2(1− r2)3/2 β̃

1 + β̃2

1
β̃2 − 2rβ̃ + 1

. (55)

The normalization factor (26) becomes

K(β, 3, Ψ) = 23|Ψ|−3/2(1− r2)3/2 |β̃|
β̃2 − 2rβ̃ + 1

, (56)
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where β̃ = β/l is the scale invariant slope parameter, using the reparameterization (25)
of Ψ. Applying the limit ν0 → 0 to (12) as described in Appendix 2, the posterior
density p(β | y) = p(β̃ | y)/l, where

p(β̃ | y) = K(r)
1

1 + β̃2

|β̃|
β̃2 − 2rβ̃ + 1

, (57)

l = (S22/S11)1/2 is the ratio of standard deviations, r = S12/(S11S22)1/2 is the sample
correlation coefficient, and

K(r) = F (1, 1; 3
2 ; r2)−1 =

r
√

1− r2

arcsin r
, (58)

which is continuous at r = 0, with value K(0) = 1. In (58), F (a, b; c; z) is the Gauss
hypergeometric function (Olver et al. 2010, Section 15.2).

Similarly, in the case n = 6,

p(β̃ | y) = K(r)
1

1 + β̃2

|β̃|(β̃2 − rβ̃ + 1)
(β̃2 − 2rβ̃ + 1)2

, (59)

where
K(r) = F (2, 1; 3

2 ; r2)−1. (60)
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