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Abstract This paper introduces new methods to track the offset between two multivariate time series on
a continuous basis. We then apply this framework to COVID-19 counts on a state-by-state basis in the
United States to determine the progression from cases to deaths as a function of time. Across multiple
approaches, we reveal an “up-down-up” pattern in the estimated offset between reported cases and deaths
as the pandemic progresses. This analysis could be used to predict imminent increased load on a healthcare
system and aid the allocation of additional resources in advance.

1 Introduction

Understanding the trajectories of and relationships
between COVID-19 case and death counts assists gov-
ernments in anticipating and responding to the impact
of the pandemic. In the United States (US) and else-
where, high case counts have generally been closely fol-
lowed by high hospital admissions, the use of costly
equipment such as ICU beds and ventilators [1], and
deaths. The strain on the healthcare system may
be considerable and can even threaten the health of
patients who are not afflicted by COVID-19 [2].

Unfortunately, the dynamics of the COVID-19 pan-
demic have been consistently difficult to describe and
predict. Numerous factors may influence the virus’
spread, including the emergence of new variants, changes
in government policy and restrictions, community adher-
ence to health recommendations, exhaustion with mit-
igation measures [3], community frustration, differ-
ing risk appetites by different population groups, and
changing testing policies [4–7]. Thus, the actual and
recorded counts of COVID-19 cases have exhibited com-
plex dynamics since the arrival of the pandemic. One
of the most significant attributes to be aware of is the
delay between the onset of cases and their progression
to deaths. This may predict the peak of hospitalisations
and provide advance warning of increased loads on the
healthcare system.

This paper serves this purpose by providing an in-
depth mathematical study on the estimated average
offset between reported cases and deaths, investigat-
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ing this as a function of time. Several clinical trials and
mathematical studies have aimed to do this in isolated
incidences, but this paper is the first we are aware of to
develop a nonlinear dynamical framework to calculate
a continuously changing time-varying offset. In Sect. 2,
we describe several approaches applicable to any two
multivariate time series, and we report our results on
the US in Sect. 3. We supply a more in-depth discussion
in Sect. 4.

This paper builds on a long literature of multivariate
time series analysis and a rich literature of nonlinear
dynamics applied to the COVID-19 pandemic. Exist-
ing methods of time series analysis include parametric
models [8] such as exponential [9] or power-law mod-
els [10] and nonparametric methods such as distance
analysis [11], distance correlation [12–14] and network
models [15]. Mathematical approaches to the COVID-
19 pandemic are almost too numerous to cover. First,
many papers based on existing mathematical models,
such as the susceptible-infected-recovered (SIR) model
and the (effective) reproductive ratio Rt [16], have been
proposed and systematically collated by researchers
[17,18]. Next, nonlinear dynamics researchers have pro-
posed several sophisticated extensions to the classi-
cal predictive SIR model, including finding analytical
solutions [19,20], modifications with additional vari-
ables [21–26], incorporation of Hamiltonian dynamics
[27] or network models [28], and a closer analysis of
uncertainty in the SIR equations [29]. Other mathe-
matical approaches to prediction and analysis include
power-law models [30–32], forecasting models [33], frac-
tal curves [34], Bayesian methods [35], regression mod-
els and feature selection [36,37], Markov chain Monte
Carlo models [38], distance analysis [39,40], network
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models [41–43], analyses of the dynamics of transmis-
sion and contact [44,45], clustering [46,47] and many
others [48–53]. Finally, numerous articles have been
devoted specifically to the dynamics of COVID-19 in
the United States [54], including incorporating spatial
components of the virus’ spread [55–57]. Our paper
builds on this rich literature by developing a new math-
ematical method and a more extensive analysis of the
progression of COVID-19 cases to deaths in the US than
previously performed.

2 Methodology

Our data spans 26 February 2020 to 25 May 2021
across n = 51 regions (50 US states and the District
of Columbia), a period of T = 454 days. We begin
here to avoid periods of sparse reporting early in the
pandemic. We end here due to changes in the CDC’s
reporting of case data, particularly between vaccinated
and unvaccinated individuals, which will be detailed in
Sect. 4. We order the states alphabetically and index
them i = 1, . . . , n. Let xi(t), yi(t) be the multivariate
time series of new daily COVID-19 cases and deaths,
respectively, in each of the n regions, i = 1, . . . , n and
t = 1, . . . , T . We introduce several new methods of anal-
ysis to find a continuously varying offset between the
multivariate time series xi(t) and yi(t). All four meth-
ods involve 7-day averaging; this is performed due to
the consistent weekly patterns of COVID-19 reporting,
with lower reporting on the weekends. Thus, let x̂i(t)
be the rolling 7-day case average, defined by

x̂i(t) =
1
7

t∑

s=t−6

xi(s), t = 7, . . . , T, (1)

and analogously let ŷi(t) be the rolling 7-day death
average. The following four methods, described in the
proceeding subsections, are contributions to the litera-
ture.

2.1 Probability vector method

First, we estimate a continuously varying offset between
multivariate time series xi(t) and yi(t) via a comparison
of probability vectors of total counts. Let pX(t) ∈ R

n

be the probability vector of 7-day rolling averaged cases
in each state, observed over an interval [t − 6, t]. That
is,

pXi (t) =
x̂i(t)∑n

j=1 x̂j(t)

=

∑t
s=t−6 xi(s)

∑t
s=t−6

∑n
j=1 xj(s)

, i = 1, . . . , n, t = 7, . . . , T.

(2)

Equivalently, Eq. (2) shows that pX(t) is the proba-
bility vector of new cases in each state, observed across

an interval t − 6 ≤ s ≤ t, divided by the total num-
ber of US cases across this period. Let pY (t) be the
analogous vector for deaths. As these probability vec-
tors are suitably normalised, it is possible to compare
them directly. Given two vectors p, q ∈ R

n, let their L1

distance be defined as ‖p − q‖1 =
∑n

i=1 |pi − qi|.
Next, we define a search interval length of S = 50.

With this, let the offset between the multivariate time
series be defined by the following function:

f1 : [7, T − S] ∩ Z → [0, S] ∩ Z; (3)

t �→ argmins{‖pX(t) − pY (t + s)‖1 : s = 0, 1, . . . , S}.
(4)

That is, for any probability vector of (averaged) cases
at time t, f1(t) is defined as the time at most S = 50
days in the future with the closest probability vector of
(averaged) deaths. We remark that the domain of f1 is
restricted to [7, T −S]∩Z to allow an entire search inter-
val of S = 50 days for each t. Were this not included,
the function would be trivially bounded and decrease
to zero as t approached T .

2.2 Affinity matrix method

In this section, we estimate a continuously varying off-
set between multivariate time series xi(t) and yi(t) by
comparing affinity matrices of counts between states.
Let DX(t) ∈ R

n×n be the distance matrix between 7-
day rolling averaged cases in each state, observed over
an interval [t − 6, t]. That is,

DX
ij (t) = |x̂i(t)− x̂j(t)|, i, j = 1, . . . , n, t = 7, . . . , T.

(5)

Let DY (t) be the analogous matrix for deaths. Given
such a distance matrix D, we associate a n × n affinity
matrix A by

Aij = 1 − Dij

max D
. (6)

This is suitably normalised with all elements in [0, 1]
to allow direct comparison between different affinity
matrices. Let AX(t) and AY (t) be the affinity matri-
ces corresponding to the distance matrices DX(t) and
DY (t), respectively. Given two matrices A,B ∈ R

n×n,
let their L1 distance be defined as ‖A − B‖1 =∑n

i,j=1 |Aij − Bij |.
Again we use a search interval length of S = 50. With

this, let the offset between the multivariate time series
be defined by the following function:

f2 : [7, T − S] ∩ Z → [0, S] ∩ Z; (7)

t �→ argmins{‖AX(t) − AY (t + s)‖1 : s = 0, 1, . . . , S}.
(8)

That is, for any affinity matrix between states’ (aver-
aged) cases at time t, f2(t) is defined as the time at
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most S = 50 days in the future with the closest affinity
matrix between (averaged) deaths. Again, the domain
of f2 is restricted to [7, T − S] ∩ Z to allow a complete
search interval of S = 50 days. Were this not included,
the function would be trivially bounded and decrease
to zero as t approached T .

2.3 Inner product method

This section estimates a continuously varying offset
between multivariate time series xi(t) and yi(t) via nor-
malised inner products between individual states’ time
series. As before, we make use of the 7-day rolling aver-
aged counts x̂i(t) and ŷi(t), but this time we restrict to
one state at a time for our calculations. For the proceed-
ing exposition, let x̂(t) and ŷ(t) be the 7-day averaged
counts of cases and deaths for a single candidate state.

Suppose a ≤ t ≤ b and c ≤ t ≤ d are two intervals
within [7, T ] of equal length L = b − a = d − c. Let
the normalised inner product between x̂(t)a≤t≤b and
ŷ(t)c≤t≤d be defined and notated as follows:

〈x̂(a : b), ŷ(c : d)〉n =
∑L

t=0 x̂(a + t)ŷ(c + t)
(∑b

t=a x̂(t)2
) 1

2
(∑d

t=c ŷ(t)2
) 1

2
.

(9)

This normalised inner product is derived from the
standard Euclidean inner product on R

L+1. Indeed, for
u,v ∈ R

L+1, let 〈u,v〉 =
∑L+1

i=1 uivi. Then 〈., .〉 is sym-
metric, bilinear and positive-definite; 〈u,u〉 =

∑L+1
i=1 u2

i

recovers the Euclidean norm on R
L+1. We can re-

express Eq. (9) as follows:

〈x̂(a : b), ŷ(c : d)〉n =
〈u,v〉

( 〈u,u〉) 1
2 (〈v,v〉) 1

2
, (10)

where u = x̂(t)a≤t≤b and v = ŷ(t)c≤t≤d. That is,
Eq. (9) presents a normalised analogue of the standard
Euclidean inner product on R

L+1.
We have chosen these normalised inner products to

have maximal value 1 if and only if there is a propor-
tionality relation ŷ(t) = kx̂(t+τ) for all t = c, . . . , d for
some constant k > 0 and offset τ . Indeed, we are seek-
ing the offset in time where deaths are most closely pro-
portional to cases. They are more suitable than other
metrics, such as correlation or distance correlation [12].
Correlation or distance correlation would each return
maximal value 1 if y = kx + b for an additional con-
stant b, which is unsuitable.

Next, we use a rolling window of length L = 150
days in which to compute a varying maximised offset.
This longer window is chosen here in order to capture
undulations in the time series, which are necessary for
the inner product comparison to work well. Indeed, the
inner product is maximised when local maxima and
minima in cases are aligned with future local maxima
and minima in deaths. Within each window, we again
use a search interval length of S = 50. Then, let the

offset between the univariate time series x̂i(t) and ŷi(t)
for each state i be defined by the following function:

gi : [7, T − L] ∩ Z → [0, S] ∩ Z; (11)
t �→ argmaxτ{〈x̂i(t : t + L − τ),
ŷi(t + τ : t + L)〉n : τ = 0, 1, . . . , S}. (12)

Effectively, this function considers the interval [t, t +
L] as fixed and selects an appropriate offset only by
considering case and death counts within the inter-
val. For that purpose, we must consistently truncate
the case time series at the end, and the death time
series at the beginning, hence the computation of the
normalised inner product between x̂(s)t≤s≤t+L−τ and
ŷ(s)t+τ≤s≤t+L.

Finally, the overall offset between the multivariate
time series x̂i(t) and ŷi(t), i = 1, . . . , n is simply defined
as

g : [7, T − L] ∩ Z → R; (13)

g(t) =
1
n

n∑

i=1

gi(t). (14)

Due to the averaging process, this is not necessarily
integer-valued.

2.4 Vector comparison method

In this final methodological section, we estimate not
only a continuously varying offset between multivari-
ate time series of cases and deaths, but also a time-
varying mortality rate. We proceed by directly com-
paring vectors of cases and deaths and attempting to
minimise appropriate linear combinations thereof. We
present multiple variations within this framework based
on different “loss” functions—these record differences
between vectors of cases and deaths, up to linear rescal-
ing. As in Sect. 2.3, we are seeking an offset in time
where deaths are most closely proportional to cases.
Unlike Sect. 2.3, we use all states concurrently.

First, we define an L1 1-day loss function as follows:

L1
1(t, τ, λ) =

n∑

i=1

|x̂i(t) − λŷi(t + τ)|. (15)

We remark that λ plays the role of the inverse of the
mortality rate between cases and deaths and is chosen
for increased interpretability when plotting our results.
Equivalently, we expect one death out of every λ cases
(for an optimal λ).

There are three parameters we can vary in our loss
function. First, we can use sums of squares (an L2 dif-
ference) rather than the above L1 difference. Second,
rather than fixing a single day t, we could compute a
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loss function over a longer period of length P . For exam-
ple, we define an L1 P -day loss function as follows:

L1
P (t, τ, λ) =

n∑

i=1

P−1∑

j=0

|x̂i(t + j) − λŷi(t + j + τ)|.

(16)

Third, we could modify the loss functions with a divi-
sion term. For example, we define an L1 1-day divided
loss function as follows:

L1
1,div(t, τ, λ) =

n∑

i=1

|x̂i(t) − λŷi(t + τ)|
|x̂i(t)| . (17)

We can also combine these modifications, for example
using sums of squares in (16) and (17).

If we use L2 differences, we have an analytically
determined value of λ that minimises the function for
any candidate τ . For example, consider the L2 1-day
loss function,

L2
1(t, τ, λ) =

n∑

i=1

|x̂i(t) − λŷi(t + τ)|2. (18)

The partial derivative with respect to λ is

2
n∑

i=1

ŷi(t + τ)(λŷi(t + τ) − x̂i(t)). (19)

By minimising a quadratic, there exists a distin-
guished value

λ̂ =
∑n

i=1 ŷi(t + τ)x̂i(t)∑n
i=1 ŷi(t + τ)2

(20)

that minimises L2
1(t, τ, λ) for fixed t and τ , and similarly

for other L2 loss functions.
With the framework of loss functions as defined

above, we can now define the continuous time-varying
offset and associated inverse mortality. Again, we use a
search interval length of S = 50 days. For any candidate
loss function L, we define the following function:

hL : [7, T − S] ∩ Z → [0, S] ∩ Z × R
+ ⊂ R

2 (21)
t �→ argminτ,λ{L(t, τ, λ) : τ = 0, . . . , S, 1 ≤ λ ≤ 200}.

(22)

We remark that hL effectively has two outputs.
We write hL(t) = (τL(t), λL(t)) ∈ R

2. Then, τL(t)
gives the time-varying offset between the multivariate
time series, while λL(t) gives the continuously vary-
ing inverse mortality rate. For the L2 loss functions,
λL(t) can be determined analytically through Eq. (20).
For the L1 loss functions, the optimisation can be per-
formed via a grid search. For the inverse mortality rate
λ, we search over a closed bounded interval [1, 200],

corresponding to a search of mortality rate between 0.5
and 100%.

3 Results

Figures 1 and 2 show the determined time-varying offset
for the probability vector and affinity matrix method,
respectively. In these plots, the value of the function at
a date index of 2020-03, for example, records the opti-
mal offset τ between cases at 1 March 2020 and deaths

Fig. 1 Continuous time-varying offset f1(t) determined by
the probability vector method, detailed in Sect. 2.1. A pat-
tern of increase, decrease and then increase is observed.
In order to accommodate the S = 50-day search window,
the indexed dates end 50 days from the end of our analysis
period

Fig. 2 Continuous time-varying offset f2(t) determined by
the affinity matrix method, detailed in Sect. 2.2. A pattern
of increase, decrease and then increase is observed. In order
to accommodate the S = 50-day search window, the indexed
dates end 50 days from the end of our analysis period
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Fig. 3 Continuous time-varying offset g(t) determined by
the normalised inner product method, detailed in Sect.
2.3. A pattern of increase, decrease and then increase is
observed. This function is substantially smoother than Figs.
1 and 2 due to the averaging in its definition (14). In order
to accommodate the L = 150-day rolling computation win-
dow, the indexed dates end 150 days from the end of our
analysis period

τ days later. Considerable similarity in these results
is observed, which is to be expected, as both methods
work similarly, by finding a future day in deaths with
similar internal structure among states as a given day in
cases. An “up-down-up” pattern is visible. Initially, the
calculated offset during March 2020 is about 10 days.
The offset rises to approximately 30 around September
2020 and then declines once more to 10–20 towards the
end of 2020. Subsequently, an increase is observed to
around 40, albeit with some irregularity during Febru-
ary 2021.

Figure 3 shows the offset for the normalised inner
product method. This function is substantially smoother
than the other offset functions in this paper due to the
averaging in its definition (14). Again, an “up-down-
up” pattern is observed but with consistently smaller
values than the previous two methods. The determined
offset rises from approximately 5 in March 2020 to 10,
back down almost to zero, and up to a peak of over 30.
We remark that the inner product method examines
data L = 150 days in advance, while the other meth-
ods search data only S = 50 days in advance, so the
determined offsets in Fig. 3 lead ahead of all the other
figures. Aside from this, the inner product method is
quite different to the other methods presented in this
manuscript. Indeed, Sect. 2.3 shows how an offset is
computed individually for each state, while every other
method uses the entire multivariate data in conjunc-
tion.

In Fig. 4, we present three plots for three different
loss functions within our vector comparison framework
of Sect. 2.4. We make sure to trial some variation of
all three available parameters in our loss function. In
Figs. 4a–c, we use an L1 1-day divided loss function,

Fig. 4 Several alternative time-varying offset functions
computed within our framework of direct vector compari-
son, detailed in Sect. 2.4. To show a range of options, we
present examples with every possible variation of parame-
ters. In a, we use an L1 1-day divided loss function. In b,
we use an L1 30-day loss function (without division). In c,
we use an L2 1-day loss function (without division), involv-
ing an analytically determined λ (as in (20)). A pattern of
increase, decrease and then increase is observed in the offset
τ , and a rather consistent increase in the reciprocal mortal-
ity rate λ
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an L1 30-day undivided loss function, and an L2 1-
day undivided loss function, respectively. In all three
figures, we display both the time-varying offset τ and
inverse mortality rate λ. These figures are quite consis-
tent with Figs. 1 and 2 in the offset. Initially, the offset
is consistently about 10 days, rising to 30, declining
to 10–20, and dramatically rising to 40–50. Like Figs.
1 and 2, some irregularity is observed during January-
February 2021. All three figures show a general increase
in λ, signifying a consistent decrease in the mortality
of COVID-19, at least with respect to observed cases
and deaths. However, a brief period in reduction in λ is
observed in the fall of 2020.

We remark that we could easily apply an averaging or
smoothing procedure to the probability vector, affinity
matrix or vector comparison methods (Figs. 1, 2, 4) to
generate smoother curves like Fig. 3, but have chosen
to display the initial raw result. In addition, smoothing
could be applied for use in a predictive setting.

4 Discussion

All four methods and six plots displayed thus far exhibit
an “up-down-up” pattern in the estimated time-varying
offset between case and death time series. Early on,
a small offset is observed—this has several explana-
tions. First, US states were slow to implement effective
and wide-scale testing regimes [58], so cases were likely
substantially underreported. Secondly, treatments were
limited, thus infected patients may have passed away
from infection within a quicker time frame. Third, due
to the novelty of the virus, many vulnerable individu-
als such as the elderly may have contracted the disease
early on and passed away relatively quickly. Later on,
it is likely that vulnerable individuals took greater pre-
cautions than the rest of the population.

Subsequently, the offset increases until July–
September, depending on the precise method. (The
offset estimated by the inner product method (Fig.
3) peaks ∼ 3 months earlier, likely due to exam-
ining data L = 150 days in advance rather than
S = 50 days in advance.) This could be attributed to
improved treatment [59–62], non-pharmaceutical inter-
ventions, including social distancing, business closures,
and better management of nursing homes, and more
widespread testing.

Curiously, all methods observe a subsequent decrease
in the estimated progression between cases and deaths.
This decrease begins around August–September 2020
for the probability vector, affinity matrix and vector
comparison methods (Figs. 1, 2, 4 respectively), and
proportionately earlier for the inner product method.
This period heralds a consistent worsening in the status
of the pandemic throughout the US. As seen in Fig. 5,
cases consistently rise from early September to the end
of 2020. In addition, many states relax and do not reim-
pose lockdown measures during this time [63], and the
colder climate yields worse outcomes both in terms of
spread and illness [64]. The change in offset is not neces-

Fig. 5 New daily cases for the entire United States

sarily only due to individual progressions from infection
to death, but involves mediating factors like stresses on
hospital capacity. For example, perhaps initial waves of
patients can be treated with ventilators, but these may
quickly run out, causing more deaths from later cases.

The status of the pandemic changes drastically fol-
lowing the beginning of 2021. First, cases precipitously
fall (Fig. 5), perhaps following the increased gather-
ing of people over Thanksgiving and Christmas. Sec-
ond, the rollout of vaccines produced at the end of
2020 [65,66] targeted vulnerable populations first and
had a beneficial effect on the mortality of COVID-19
among the elderly. The drastic change in the status of
the pandemic during this time could be the cause of
the irregularity observed in several figures. The dra-
matically higher determined offset at the end of the
time window, at least for Figs. 1, 2 and 4, is a welcome
testament to the effectiveness of vaccines and the still
improving treatment for unvaccinated individuals.

One strength in our paper is the fact that four differ-
ent methods, including different loss functions within
the vector comparison framework, yield relatively simi-
lar results. The loss functions in Sect. 2.4 allow variation
of three parameters, which are all trialled at least once
in the subfigures of Fig. 4. In particular, the choice of
whether to implement divided loss functions, such as in
(17), notably changes the properties of the loss func-
tion. In an undivided loss function such as (15), larger
states with larger absolute values of x̂i(t) and ŷi(t) are
likely to disproportionately influence the selection of τ
and λ. In a divided loss function, this is no longer the
case. It is a strength of the framework of Sect. 2.4 that
this normalisation produces little difference in results.

Several limitations exist in this paper and even in
future work. First, the framework of Sect. 2.4 implicitly
assumes (and aims to find) a constant (inverse) mortal-
ity rate λ among all the states. While the US mostly has
a similar standard of living and healthcare system qual-
ity from state to state, this is not uniformly the case,
and different states differ substantially in population
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density and socioeconomic demographics. However, we
believe that the remarks above, wherein two drastically
different methods that prioritise larger states and all
states, respectively, give similar results, show that per-
haps this limitation is not too grave.

Second, it is notable that Fig. 3, defined by the inner
product method of Sect. 2.3, is the one figure most dif-
ferent to the others. That is, it appears to be the odd
one out relative to Figs. 1, 2, 4a–c. This difference is
to be partially expected, as the inner product method
works quite differently to the other methods. Namely, it
examines L = 150 days in advance rather than S = 50
days, and computes an offset for each individual state
rather than the multivariate time series as a whole.
One may consider the outlier of Fig. 3 to be both a
strength and limitation of the manuscript. It is poten-
tially a limitation as it does not match the other figures
exactly, but it may be a strength as it suggests that
computing a separate offset for each state and simply
averaging them is too naive a procedure. We remark
that the inner product method is the simplest and the
most closely related to (quite naive) existing methods
of computing offsets between time series, such as cross-
correlation [67]. In Sect. 2.3, we explained why our cho-
sen normalised inner product is more suitable in this
context than an offset correlation (essentially equiva-
lent to the method of cross-correlations). That is, the
outlier status of Fig. 3 may have a notable upshot: that
a full consideration of the multivariate structure of the
time series is necessary, and not simply an individual
consideration of each state at a time.

Third, extending our analysis into the future may
be difficult due to complexities in the epidemiology of
COVID-19 and the availability of data. Specifically, the
rollout of vaccines has created very different progres-
sions from cases to deaths in the vaccinated vs unvac-
cinated populations. In addition, the Centers for Dis-
ease Control and Prevention (CDC) has changed its
reporting of cases among the vaccinated population,
only tracking “breakthrough cases” that result in hos-
pitalisation or death [68]. Future work could use the
analysis presented in this paper, but more precise data
needs to be collected and made available on an ongoing
basis. More broadly, we encourage future work to care-
fully separate out the mathematical epidemiology of
COVID-19 between vaccinated and unvaccinated pop-
ulations, studying phenomena not limited to the offset
between cases and deaths, and further exploring the
positive impact of COVID-19 vaccines on the commu-
nity. For example, future work could separate out the
progression from COVID-19 infection to either death or
recovery among the vaccinated and unvaccinated popu-
lations, including a consideration of “long Covid” [69].
There may be numerous non-trivial benefits to be dis-
covered with careful analysis. At the same time, as near-
entire vaccination of the US population seems unlikely
(that is, the US is unlikely to reach herd immunity),
measures to contain and reduce the impact of the virus
on the healthcare system remain highly relevant for the
reduction of casualties and economic and other social
consequences [70,71].

5 Conclusion

Overall, we have proposed four methods to determine
a continuously varying offset between two multivari-
ate time series and applied this to the state-by-state
counts of COVID-19 cases and deaths in the United
States. Our final method is a framework of loss func-
tions in which we have trialled the variation of several
parameters. Our methods exhibit considerable robust-
ness with broadly similar results obtained, including
under relatively substantial changes such as normalis-
ing by case counts in Sect. 2.4 to de-prioritise larger
states. Our findings reveal new insights into the time-
varying progression from cases to deaths in the US and
discuss how this reflects the changing status of the pan-
demic. We show that the estimated offset between cases
and deaths rises between the first and second waves of
COVID-19 in the US, falls towards the end of 2020, and
dramatically rises in 2021. Minor modifications such as
smoothing, combined with updated and reliable data on
cases among the vaccinated and unvaccinated popula-
tions could provide a valuable predictive tool regarding
future periods of high load on the healthcare system.
Our analysis could also be applied to other multivari-
ate time series outside epidemiology.
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