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A widely used signal processing paradigm is the state-space model. The
state-space model is de�ned by two equations: an observation equation
that describes how the hidden state or latent process is observed and a
state equation that de�nes the evolution of the process through time. In-
spired by neurophysiology experiments in which neural spiking activity
is induced by an implicit (latent) stimulus, we develop an algorithm to
estimate a state-space model observed through point process measure-
ments. We represent the latent process modulating the neural spiking
activity as a gaussian autoregressive model driven by an external stim-
ulus. Given the latent process, neural spiking activity is characterized
as a general point process de�ned by its conditional intensity function.
We develop an approximate expectation-maximization (EM) algorithm to
estimate the unobservable state-space process, its parameters, and the pa-
rameters of the point process. The EM algorithm combines a point process
recursive nonlinear �lter algorithm, the �xed interval smoothing algo-
rithm, and the state-space covariance algorithm to compute the complete
data log likelihood ef�ciently. We use a Kolmogorov-Smirnov test based
on the time-rescaling theorem to evaluate agreement between the model
and point process data. We illustrate the model with two simulated data
examples: an ensemble of Poisson neurons driven by a common stimulus
and a single neuron whose conditional intensity function is approximated
as a local Bernoulli process.
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1 Introduction

A widely used signal processing paradigm in many �elds of science and
engineering is the state-space model. The state-space model is de�ned by
two equations: an observation equation that de�nes what is being mea-
sured or observed and a state equation that de�nes the evolution of the
process through time. State-space models, also termed latent process mod-
els or hidden Markov models, have been used extensively in the analysis of
continuous-valued data. For a linear gaussian observation process and a
linear gaussian state equation with known parameters, the state-space esti-
mation problem is solved using the well-known Kalman �lter. Many exten-
sions of this algorithm to both nongaussian, nonlinear state equations and
nongaussian, nonlinear observation processes have been studied (Ljung &
Söderström, 1987; Kay, 1988; Kitagawa & Gersh, 1996; Roweis & Ghahra-
mani, 1999; Gharamani, 2001). An extension that has received less attention,
and the one we study here, is the case in which the observation model is a
point process.

This work is motivated by a data analysis problem that arises from a
form of the stimulus-response experiments used in neurophysiology. In the
stimulus-response experiment, a stimulus under the control of the exper-
imenter is applied, and the response of the neural system, typically the
neural spiking activity, is recorded. In many experiments, the stimulus is
explicit, such as the position of a rat in its environment for hippocampal
place cells (O’Keefe & Dostrovsky, 1971; Wilson & McNaughton, 1993), ve-
locity of a moving object in the visual �eld of a �y H1 neuron (Bialek, Rieke,
de Ruyter van Steveninck, & Warland, 1991), or light stimulation for retinal
ganglion cells (Berry, Warland, & Meister, 1997). In other experiments, the
stimulus is implicit, such as for a monkey executing a behavioral task in
response to visual cues (Riehle, Grün, Diesmann, & Aertsen, 1997) or trace
conditioning in the rabbit (McEchron, Weible, & Disterhoft, 2001). The neu-
ral spiking activity in implicit stimulus experiments is frequently analyzed
by binning the spikes and plotting the peristimulus time histogram (PSTH).
When several neurons are recorded in parallel, cross-correlations or unitary
events analysis (Riehle et al., 1997; Grün, Diesmann, Grammont, Riehle, &
Aertsen, 1999) have been used to analyze synchrony and changes in �ring
rates. Parametric model-based statistical analysis has been performed for
the explicit stimuli of hippocampal place cells using position data (Brown,
Frank, Tang, Quirk, & Wilson, 1998). However, specifying a model when the
stimulus is latent or implicit is more challenging. State-space models sug-
gest an approach to developing a model-based framework for analyzing
stimulus-response experiments when the stimulus is implicit.

We develop an approach to estimating state-space models observed
through a point process. We represent the latent (implicit) process modulat-
ing the neural spiking activity as a gaussian autoregressive model driven
by an external stimulus. Given the latent process, neural spiking activity
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is characterized as a general point process de�ned by its conditional inten-
sity function. We will be concerned here with estimating the unobservable
state or latent process, its parameters, and the parameters of the point pro-
cess model. Several approaches have been taken to the problem of simul-
taneous state estimation and model parameter estimation, the latter being
termed system identi�cation (Roweis & Ghahramani, 1999). In this article, we
present an approximate expectation-maximization (EM) algorithm (Demp-
ster, Laird, & Rubin, 1977) to solve this simultaneous estimation problem.
The approximate EM algorithm combines a point process recursive nonlin-
ear �lter algorithm, the �xed interval smoothing algorithm, and the state-
space covariance algorithm to compute the complete data log likelihood
ef�ciently. We use a Kolmogorov-Smirnov test based on the time-rescaling
theorem to evaluate agreement between the model and point process data.
We illustrate the algorithm with two simulated data examples: an ensem-
ble of Poisson neurons driven by a common stimulus and a single neuron
whose conditional intensity function is approximated as a local Bernoulli
process.

2 Theory

2.1 Notation and the Point Process Conditional Intensity Function.
Let .0; T] be an observation interval during which we record the spiking
activity of C neurons. Let 0 < uc1 < uc2 <; : : : ; < ucJc

· T be the set of Jc
spike times (point process observations) from neuron c for c D 1; : : : ; C. For
t 2 .0; T], let Nc

0;t be the sample path of the spike times from neuron c in .0; t].
It is de�ned as the event Nc

0;t D f0 < uc1 < uc2; : : : ; ucj · t
T

Nc.t/ D jg,
where Nc.t/ is the number of spikes in .0; t] and j · Jc. The sample path is
a right continuous function that jumps 1 at the spike times and is constant
otherwise (Snyder & Miller, 1991). This function tracks the location and
number of spikes in .0; t] and therefore contains all the information in the
sequence of spike times. Let N0;t D fN1

0;t; : : : ; NC
0;tg be the ensemble spiking

activity in .0; t].
The spiking activity of each neuron can depend on the history of the

ensemble, as well as that of the stimulus. To represent this dependence, we
de�ne the set of stimuli applied in .0; t] as S0;t D f0 < s1 <; : : : ; < s` · tg.
Let Ht D fN0;t; S0;tg be the history of all C neurons up to and including time
t. To de�ne a probability model for the neural spiking activity, we de�ne the
conditional intensity function for t 2 .0; T] as (Cox & Isham, 1980; Daley &
Vere-Jones, 1988):

¸c.t j Ht/ D lim
1!0

Pr.Nc
0;tC1

¡ Nc
0;t D 1 j Ht/

1
: (2.1)

The conditional intensity function is a history-dependent rate function that
generalizes the de�nition of the Poisson rate (Cox & Isham, 1980; Daley &
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Vere-Jones, 1988). If the point process is an inhomogeneous Poisson pro-
cess, the conditional intensity function is ¸c.t j Ht/ D ¸c.t/. It follows that
¸c.t j Ht/1 is the probability of a spike in [t; t C 1/ when there is history
dependence in the spike train. In survival analysis, the conditional inten-
sity is termed the hazard function because, in this case, ¸c.t j Ht/1 measures
the probability of a failure or death in [t; t C 1/ given that the process has
survived up to time t (Kalb�eisch & Prentice, 1980).

2.2 Latent Process Model, Sample Path Probability Density, and the
Complete Data Likelihood. It is possible to de�ne the latent process in con-
tinuous time. However, to simplify the notation for our �ltering, smoothing,
and EM algorithms, we assume that the latent process is de�ned on a dis-
crete set of evenly spaced lattice points. To de�ne the lattice, we choose K
large, and divide .0; T] into K intervals of equal width 1 D T=K, so that there
is at most one spike per interval. The latent process model is evaluated at
k1 for k D 1; : : : ; K. We also assume the stimulus inputs can be measured
at a resolution of 1.

We de�ne the latent model as the �rst-order autoregressive model,

xk D ½xk¡1 C ®Ik C "k; (2.2)

where xk is the unknown state at time k1, ½ is a correlation coef�cient,
Ik is the indicator function that is 1 if there is a stimulus at k1 and zero
otherwise, ® modulates the effect of the stimulus on the latent process, and
"k is a gaussian random variable with mean zero and variance ¾ 2

" . While
more complex latent process models can certainly be de�ned, equation 2.2
is adequate to illustrate the essential features of our algorithm.

The joint probability density of the latent process is

p.x j ½; ®; ¾ 2
" / D

µ
.1 ¡ ½2/

2¼¾ 2
"

¶ 1
2

£ exp

(
¡ 1

2

"
.1 ¡ ½2/

¾ 2
"

x2
0

C
KX

kD1

.xk ¡ ½xk¡1 ¡ ®Ik/2

¾ 2
"

#)
; (2.3)

where x D .x0; x1; : : : ; xK/.
We assume that the conditional intensity function is ¸c.k1 j xk; Hc

k; µ¤
c /,

where µ¤
c is an unknown parameter. We can express the joint probability

density of the sample path of neuron c conditional on the latent process as
(Barbieri, Quirk, Frank, Wilson, & Brown, 2001; Brown, Barbieri, Ventura,
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Kass, & Frank, 2002)

p.Nc
0;T j x; Hc

T; µ ¤
c / D exp

"Z T

0
log ¸c.u j x.u/; Hc

u; µ ¤
c / dNc.u/

¡
Z T

0
¸c.u j x.u/; Hc

u; µ¤
c / du

#
; (2.4)

where dNc.u/ D 1 if there is a spike at u from neuron c and 0 otherwise.
Under the assumption that the neurons in the ensemble are conditionally
independent given the latent process, the joint probability density of the
sample paths of the ensemble is

p.N0;T j x; HT; µ ¤/ D
CY

cD1

p.Nc
0;T j x; Hc

T; µ ¤
c /; (2.5)

where µ ¤ D .µ ¤
1 ; : : : ; µ ¤

C/.

2.3 Parameter Estimation: Expectation-Maximization Algorithm. To
illustrate the algorithm, we choose a simple form of the conditional inten-
sity function. That is, we take the conditional intensity function for neuron
c as

¸c.k1/ D exp.¹c C ¯cxk/; (2.6)

where ¹c is the log of the background �ring rate and ¯c is its gain parameter
that governs how much the latent process modulates the �ring rate of this
neuron. Here we have µ ¤

c D .¹c; ¯c/. Equations 2.3 and 2.6 de�ne a doubly
stochastic point process (Cox & Isham, 1980). If we condition on the latent
process, then equation 2.6 de�nes an inhomogeneous Poisson process. Un-
der this model, all the history dependence is through the stimulus. We let
µ D .½; ®; ¾ 2

" ; µ¤/. Because our objective is to estimate the latent process, x,
and to compute the maximum likelihood estimate of the model parameter,
µ , we develop an EM algorithm (Dempster et al., 1977). In our EM algo-
rithm, we treat the latent process x as the missing or unobserved quantity.
The EM algorithm requires us to maximize the expectation of the complete
data log likelihood. It follows from equations 2.3 and 2.6 that the complete
data likelihood for our model is

p.N0;T; x j µ / D p.N0;T j x; µ¤/p.x j ½; ®; ¾ 2
" /: (2.7)

2.3.1 E-Step. At iteration`C1 of the algorithm, we compute in the E-step
the expectation of the complete data log likelihood given HK, the ensemble
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spiking activity and stimulus activity in .0; T], and µ .`/, the parameter esti-
mate from iteration `. By our notation convention in the previous section,
since K1 D T, HK D HT and

Q.µ j µ `/ D E[log[p.N0;T; x j µ/] k HK; µ .`/]

D E

"
KX

kD0

CX

cD1
.dNc.k1/.¹c C ¯cxk C log 1/

¡ exp.¹c C ¯cxk/1/ k HK; µ .`/

#

C E

"
KX

kD1

¡ 1
2

.xk ¡ ½xk¡1 ¡ ®Ik/
2

¾ 2
"

¡ K
2

log 2¼ ¡ K
2

log ¾ 2
" k HK; µ .`/

#

C E

"
1
2

log.1 ¡ ½2/ ¡ 1
2

x2
0.1 ¡ ½2/

¾ 2
"

k HK; µ .`/

#
: (2.8)

Upon expanding the right side of equation 2.8, we see that calculating the
expected value of the complete data log likelihood requires computing the
expected value of the latent process E[xk k HK; µ .`/] and the covariances
E[x2

k k HK; µ .`/] and E[xkxkC1 k HK; µ .`/]. We denote them as

xkjK ´ E[xk k HK; µ .`/] (2.9)

Wk ´ E[x2
k k HK; µ .`/] (2.10)

Wk;kC1 ´ E[xkxkC1 k HK; µ .`/]; (2.11)

for k D 1; : : : ; K where the notation k j j denotes the expectation of the
latent process at k1 given the ensemble spiking activity and the stimu-
lus up to time j1. To compute these quantities ef�ciently, we decompose
the E-step into three parts: a forward nonlinear recursive �lter to compute
xkjk; a backward, �xed interval smoothing (FIS) algorithm to estimate xkjK;
and a state-space covariance algorithm to estimate Wk and Wk;kC1. This ap-
proach for evaluating the complete data log likelihood was suggested �rst
by Shumway and Stoffer (1982). They used the FIS but a more complicated
form of the state-covariance algorithm. An alternative covariance algorithm
was given in Brown (1987). The logic of this approach is to compute the for-
ward mean and covariance estimates and combine them with the backward
mean and covariance estimates to obtain equations 2.10 and 2.11. This ap-
proach is exact for linear gaussian latent process models and linear gaussian
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observation processes. For our model, it will be approximate because our
observations form a point process.

E-Step I: Nonlinear Recursive Filter. The following equations comprise a
recursive nonlinear �ltering algorithm to estimate xkjk and ¾ 2

kjk using equa-
tion 2.6 as the conditional intensity. The algorithm is based on the maximum
a posterori derivation of the Kalman �lter algorithm (Mendel, 1995; Brown
et al., 1998). It recursively computes a gaussian approximation to the pos-
terior probability density p.xk j Hk; µ .`//. The approximation is based on
recursively computing the posterior mode xkjk and computing its variance
¾ 2

kjk as the negative inverse of the second derivative of the log posterior
probability density (Tanner, 1996). The nonlinear recursive algorithm is:

(Observation Equation)

p.dN.k1/ j xk/ D
CY

cD1

[exp.¹c C ¯cxk/1]dNc
.k1/

£ exp.¡ exp.¹c C ¯cxk/1/ (2.12)

(One-Step Prediction)

xkjk¡1 D ½xk¡1jk¡1 C ®Ik (2.13)

(One-Step Prediction Variance)

¾ 2
kjk¡1 D ½2¾ 2

k¡1jk¡1 C ¾ 2
" (2.14)

(Posterior Mode)

xkjk D xkjk¡1 C ¾ 2
kjk¡1

CX

cD1

¯c[dNc.k1/ ¡ exp.¹c C ¯cxkjk/1] (2.15)

(Posterior Variance)

¾ 2
kjk D ¡

"
¡.¾ 2

kjk¡1/¡1 ¡
CX

iD1

¯2
c exp.¹c C ¯cxkjk/1

#¡1

(2.16)

for k D 1; : : : ; K. The initial condition is x0 and ¾ 2
0j0 D ¾ 2

" .1 ¡ ½2/¡1. The
algorithm is nonlinear because xkjk appears on the left and right of equa-
tion 2.15. The derivation of this algorithm for an arbitrary point process
model is given in the appendix.

E-Step II: Fixed Interval Smoothing (FIS) Algorithm. Given the sequence of
posterior mode estimates xkjk (see equation 2.15) and the variance ¾ 2

kjk (see
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equation 2.16) we use the �xed interval smoothing algorithm to compute
xkjK and ¾ 2

kjK. The algorithm is (Mendel, 1995; Brown et al., 1998)

xkjK D xkjk C Ak.xkC1jK ¡ xkC1jk/; (2.17)

where

Ak D ½¾ 2
kjk.¾

2
kC1jk/

¡1 (2.18)

and

¾ 2
kjK D ¾ 2

kjk C A2
k.¾ 2

kC1jK ¡ ¾ 2
kC1jk/ (2.19)

for k D K ¡ 1; : : : ; 1 and initial conditions xKjK and ¾ 2
KjK.

E-Step III: State-SpaceCovariance Algorithm. The covarianceestimate, ¾k;ujK,
can be computed from the state-space covariance algorithm (de Jong &
MacKinnon, 1988) and is given as

¾k;ujK D Ak¾kC1;ujK (2.20)

for 1 · k · u · K. It follows that the covariance terms required for the
E-step are

Wk;kC1 D ¾k;kC1jK C xkjKxkC1jK (2.21)

and

Wk D ¾ 2
kjK C x2

kjK: (2.22)

2.3.2 M-Step. In the M-step, we maximize the expected value of the
complete data log likelihood in equation 2.8 with respect to µ .`C1/. In so
doing, we obtain the following closed-form solutions for ½.`C1/, ®.`C1/ and
¾

2.`C1/
" ,

"
½.`C1/

®.`C1/

#
D

2

66664

KX

kD1

Wk¡1

KX

kD1

xk¡1jkIk

KX

kD1

xk¡1jkIk

KX

kD1

Ik

3

77775

¡1 2

66664

KX

kD1

Wk;k¡1

KX

kD1

xkjkIk

3

77775
(2.23)

¾ 2.`C1/
" D K¡1

"
KX

kD1

Wk C ½2.`C1/
KX

kD1

Wk¡1 C ®2.`C1/
KX

kD1

Ik
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¡ 2½.`C1/
KX

kD1

Wk;k¡1¡2®.`C1/
KX

kD1

xkjKIkC2½.`C1/®.`C1/

£
KX

kD1

xk¡1jKIk C W0

±
1 ¡ ½2.`C1/

² #

; (2.24)

where initial conditions for the latent process are estimated from x.`C1/
0 D

½.`C1/x1jK and ¾
2.`C1/
0j0 D ¾

2.`C1/
" .1 ¡ ½2.`C1//¡1. The closed-form solution for

½.`C1/ in equation 2.23 is obtained by neglecting the last two terms in the
expectation of the complete data log likelihood (see equation 2.8). This ap-
proximation means that we estimate ½.`C1/ from the probability density of
x1; : : : ; xK given x0 and the point processmeasurements instead of the proba-
bility density of x0; : : : ; xK given the point process measurements. Inclusion
of the last two terms results in a cubic equation for computing ½.`C1/, which
is avoided by using the closed-form approximation. We report only the re-
sults of the closed-form solution in section 3 because we found that for our
algorithms, the absolute value of the fractional difference between the two
solutions was less than 10¡6 (i.e., jcubic solution-closed form solutionj=cubic
solution < 10¡6).

The parameter ¹
.`C1/
c is estimated as

¹.`C1/
c D log Nc.T/

¡ log

Á
KX

kD1

exp
³

¯.`C1/
c xkjK C

1
2

¯2.`C1/
c ¾ 2

kjK

´
1

!
; (2.25)

whereas ¯
.`C1/
c is the solution to the nonlinear equation,

KX

kD1

dNc.k1/xkjK

D exp ¹.`C1/
c

(
KX

kD1

exp
³

¯.`C1/
c xkjK C

1
2

¯.`C1/
c ¾ 2

kjK

´

£ .xkjK C ¯.`C1/
c ¾ 2

kjK/1

)

; (2.26)

which is solved by Newton’s method after substituting ¹
.`C1/
c from equa-

tion 2.26. The expectations needed to derive equations 2.25 and 2.26 were
computed using the lognormal probability density and the approximation
of p.xk j HK; µ .`// as a gaussian probability density with mean xkjK and
variance ¾ 2

kjK.
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2.4 Assessing Model Goodness-of-Fit by the Time-Rescaling Theo-
rem. The latent process and point process models, along with the EM al-
gorithm, provide a model and an estimation procedure for computing the
latent process and the parameter vector µ . It is important to evaluate model
goodness-of-�t, that is, determine how well the model describes the neu-
ral spike train data series data. Because the spike train models are de�ned
in terms of an explicit point process model, we can use the time-rescaling
theorem to evaluate model goodness-of-�t. To do this, we compute for each
neuron the time-rescaled or transformed interspike intervals

¿j D
Z uj

uj¡1

¸.u j Oµ/ du; (2.27)

where the ujs are the spike times from the neuron and ¸.t j µ/ is the condi-
tional intensity function in equation 2.6 evaluated at the maximum likeli-
hood estimate Oµ for j D 1; : : : ; J, where we have dropped the subscript c to
simplifynotation. The ujs are a point process with a well-de�ned conditional
intensity function and, hence, by the time-rescaling theorem, the ¿js are inde-
pendent, exponential random variables with a unit rate (Barbieri et al., 2001;
Brown et al., 2002). Under the further transformation zj D 1¡exp.¡¿j/, the zjs
are independent, uniform random variables on the interval (0,1). Therefore,
we can construct a Kolmogorov-Smirnov (K-S) test to measure agreement
between the zjs and the uniform probability density (Barbieri et al., 2001;
Brown et al., 2002). First, we order the zjs from the smallest to the largest
value. Then we plot values of the cumulative distribution function of the

uniform density de�ned as bj D j¡ 1
2

J for j D 1; : : : ; J against the ordered zjs.
The points should lie on the 45 degree line. Because the transformation from
the ujs to the zjs is one-to-one, a close agreement between the probability
density of the zjs and the uniform probability density on (0,1) indicates close
agreement between the (latent process-point process) model and the point
process measurements. Hence, the time-rescaling theorem provides a direct
means of measuring agreement between a point process or neural spike
train time series and a probability model intended to describe its stochastic
structure.

3 Applications

3.1 Example 1. Multiple Neurons Driven by a Common Latent Process.
To illustrate our analysis paradigm, we simulate C D 20 simultaneously
recorded neurons from the model described by equations 2.2 and 2.6. The
time interval for the simulation was T D 10 seconds, and the latent process
model parameters were ½ D 0:99, ® D 3, and ¾ 2

" D 10¡3 with the implicit
stimulus Ik applied at 1 second intervals. The parameters for the conditional
intensity function de�ning the observation process were the log of the back-
ground �ring rate ¹ D ¡4:9 for all neurons, whereas the gain coef�cients
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Table 1: True Parameter Values and EM Algorithm Parameter Estimates.

Parameter True Estimate Parameter True Estimate

½ 0.990 0.993 ¯10 1.079 1.190
® 3.000 2.625 ¯11 1.008 1.039
¹ ¡4:900 ¡5:105 ¯12 1.078 1.247
¯1 1.075 1.261 ¯13 1.009 1.031
¯2 0.989 1.060 ¯14 1.078 1.129
¯3 1.035 1.039 ¯15 0.980 1.121
¯4 0.973 1.101 ¯16 0.976 1.164
¯5 1.003 1.190 ¯17 0.990 1.234
¯6 0.992 1.132 ¯18 0.968 1.154
¯7 0.977 1.118 ¯19 0.956 0.979
¯8 1.027 1.176 ¯20 1.098 1.350
¯9 1.066 1.089

¯c for the 20 neurons were chosen randomly on the interval [0:9 1:1]. These
parameter values for the latent and observation processes were chosen to
give an approximate average �ring rate of 10 Hz for each neuron. The neu-
ral spike trains were simulated using the time-rescaling theorem algorithm
described in Brown et al. (2002), and the state equations in the EM algorithm
were updated at 1 D 1 msec.

Using the EM algorithm described in the previous section, we �t the
model in equations 2.2 and 2.6 simultaneously to the 20 simulated neural
spike trains, assuming a �xed noise variance, ¾ 2

" D 10¡3. The convergence
criteria for the algorithm were absolute changes of less than 10¡2 in consecu-
tive iterates of the parameters and relative changes in the parameter iterates
of less than 10¡3, that is, jold ¡ newj=old < 10¡3. The parameter estimates
from the EM algorithm were in good agreement with the true values used
to simulate the spike train data (see Table 1). In this case, the overestimates
of the gain coef�cients, ¯c, are offset by the underestimates of ® and ¹.

Approximating the probability density of the state at k1 as the gaussian
density with mean Oxk and variance, O¾ 2

k , it follows from equation 2.6 and
the standard change of variables formula from probability theory that the
probability density of the rate for neuron c at time k1 is the lognormal
probability density de�ned as

p.¸c
k j O¹c; Ōc; Oxk/ D .2¼ O¾ 2

k /¡ 1
2 Ōc.¸

c
k/

¡1

£ exp

0

@¡ 1
2

"
Ō¡1
c .log ¸c

k ¡ O¹c/ ¡ Oxk

O¾k

#2
1

A ; (3.1)

where O¹c and Ōc are the EM algorithm estimates of ¹c and ¯c for c D 1; : : : ; 20.
The 1 ¡ » con�dence limits for the rate are computed simply by using the
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relation between the lognormal and standard gaussian probabilities to �nd
the »=2 and 1 ¡ »=2 quantiles of the probability density in equation 3.1 for
» 2 .0; 1/. In our analyses, we take » D 0:05 and construct 95% con�dence
intervals.

To compare our model-based analysis with current practices for analyz-
ing neural spike train data using empirical smoothing methods, we also
estimated the rate function for each of the 20 neurons by dividing the num-
ber of spikes in a 100 msec window by 100 msec. The window was then
shifted 1 msec to give the same temporal resolution as in our updating algo-
rithms. Because the latent process drives all the neurons, we also estimated
the population rate by averaging the rates across all 20 neurons. This is a
commonly used empirical temporal smoothing algorithm for computing
spike rate that does not make use of stimulus information in the estima-
tion (Riehle et al., 1997; Grün et al., 1999; Wood, Dudchenko, & Eichen-
baum, 1999).

The con�dence limits of the model-based rate function give a good es-
timate of the true �ring rate used to generate the spikes (see Figure 1). In
particular, the estimates reproduce the magnitude and duration of the effect
of the implicit stimulus on the spike �ring rate. The population �ring rate
estimated using temporal smoothing across all neurons is misleading (see
Figure 1, dot-dashed line) in that around the time of the stimuli, it has di-
minished amplitude and is spread out in time. Furthermore, if we smooth a
single spike train without averaging across neurons, spurious peaks in the
�ring rate can be produced due to noise (see Figure 1, solid gray line). By
using information about the timing of the stimulus, the model �ring rate
estimate follows the true rate function more closely.

The 95% con�dence bounds for the state process estimated from the EM
algorithm cover almost completely the time course of the true state process
(see Figure 2). The true state lies sometimes outside the con�dence limits in
regions where there are very few spikes and, hence, little information about
the latent process.

To assess how well the model �ts the data, we apply the K-S goodness-
of-�t tests based on the time-rescaling theorem as described in section 2.4
(see Figure 3). In Figures 3A, 3B, and 3C, the solid black line represents exact
agreement between the model and spike data, and dotted lines represent
95% con�dence limits. For 18 of 20 neurons, the model lies within the con-
�dence limits, indicating a good �t to the data. In contrast, for 14 of the 20
neurons, the empirical estimate lies outside the con�dence limits. For 6 of 20
neurons, both the model and empirical estimates lie within the con�dence
limits (see Figure 3B). In two cases, the model lies outside the con�dence
limits (see Figure 3C). In both cases where the model does not �t the data,
the empirical estimate does not either. Thus, the model appears to give a
considerably more accurate description of the spike train than the empirical
estimate.
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Figure 1: A 2000 millisecond segment of data from neuron 8 in the 20-neuron
simulation study of latent process estimation by the EM algorithm from exam-
ple 1. During this period, 26 spikes (verticalbarsaboveabscissa)are concentrated
around two stimulus events at 5000 msec and 6000 msec. The 95% con�dence
bands for the �ring rate estimated by the latent model (dashed lines) cover the
true rate (solid black line) used to generate the spikes most of the time. In con-
trast, when the �ring rate for neuron 8 is estimated empirically (solid gray line)
using a 100 msec smoothing window (i.e., by dividing the number of spikes in
a 100 msec window by 100 msec), the stimuli appear diminished in amplitude
and spread out in time. Furthermore, a spurious third peak in �ring rate is pro-
duced approximately 200 ms after the true �rst peak. This third peak is avoided
by using a smoothed estimate that is averaged over all cells (dash-dotted black
line), but the EM algorithm estimate of the �ring rate based on the model more
accurately reproduces the features of the stimuli.

3.2 Example 2. Single Neuron Latent Stimulus-Response Model. A
common practice is to use the binomial probability mass function as a local
model for analyzing neural spike trains. We demonstrate how the parame-
ters of a local Bernoulli model may be estimated using our EM algorithm.
We generate a single spike train subject to multiple repeated stimuli over a
period of approximately 1 minute. In this example, the conditional intensity
is given by

¸.k1/1 D exp.¹ C xk/1 ¼
exp.¹ C xk/1

1 C exp.¹ C xk/1
D pk; (3.2)
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Figure 2: True state (solid black line) and estimated 95% con�dence limits
(dashed lines) for the true state computed from the spike train observed in
Figure 1 using the EM algorithm. The estimated con�dence limits computed as
xkjk § 1:96¾kjk fail to cover the true state when few spikes are discharged (e.g.,
near 5700 ms).

Figure 3: Facing page. Kolmogorov-Smirnov goodness-of-�t analyses based on
the time-rescaling theorem for three representative neurons. Each panel is the
K-S plots comparing the model rate estimate (dashed line), the empirical rate
estimate (solid gray line), and the true rate (solid black line). In these �gures,
the 45 degree line in black represents an exact agreement between the model
and the spike data. Dotted lines in each panel are the 95% con�dence limits (see
Brown et al., 2002, for details). Since the true rate was used to generate spikes,
the true rate KS plot always lies within the con�dence limits. (A) An example
of the KS plot from 1 of the 18 out of the 20 neurons for which the model-based
estimate of the KS plot was entirely within the con�dence limits, indicating close
agreement between the overall model �t and the simulated data. (B) An example
of 1 of the 6 out of the 20 neurons for which the K-S plot based on the empirical
rate estimate completely lies within the 95% con�dence limits. (C) An example
of 1 of the 2 out of the 20 neurons for which the K-S plot based on the model
estimate of the rate function fails to fall within the 95% con�dence limits. For
both of these neurons, as this panel suggests, the KS plot based on the empirical
rate model did not remain in the 95% con�dence bounds.
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and spikes are generated with the local Bernoulli model,

p.dN.k1/ j Hk/ D pdN.k1/
k .1 ¡ pk/

1¡dN.k1/; (3.3)

with parameters ¹ D ¡4:6, ® D 4, and ½ D 0:8. The implicit stimulus is
applied at 40 time points. We assume the noise ¾ 2

" in the latent process is
0.2. In this example, we set 1 D 5 msec. This generates a spike train with
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Table 2: True Parameter Values and the EM Algorithm Parameter Estimates.

Parameter ½ ® ¾ 2
" ¹

True 0.800 4.000 0.200 ¡4:600
Estimate 0.804 3.573 0.125 ¡4:404

an average �ring rate over the minute period of approximately 10 Hz. The
parameters, including the noise variance ¾ 2

" , are again estimated using the
EM algorithm and are in good agreement with their true values (see Table 2).

As in the previous example, con�dence intervals were computed for the
true rate function by deriving the probability density function for ¸k using
the standard change of variable formula. Firing rates estimated by the model
are compared with the empirical temporally smoothed rate computed by
counting spikes in a 100 msec window and then dividing by 100 msec.

The �ring rate (95% con�dence limits) computed by the model compares
favorably with the original rate used to generate the spikes (see Figure 4).
The 95% con�dence limits for the model estimate the magnitude and shape
of the stimulus effect on the rate even when the stimulus has little obvious
effect on the spike train. This is because the estimates for each stimulus’s
effect are made based on the whole time series. In contrast, the temporally
smoothed estimate of rate does not clearly identify stimulus effects on the
spike train (see Figure 4, solid gray line).The choiceof a 100 msec window for
these simulated data appears too large as increases in �ringrate at the stimuli
are smoothed out. We can also make an overall estimate of the accuracy of
the �ring rates by comparing the model and the empirical �ring rates with
the true �ring at the stimulus times, namely, at 40 points in time where
we applied the stimulus during the 1 minute epoch of simulated data. The
mean differences (standard error) between the empirical and model rates
compared to the true rate at these timesare ¡113:9 (4.5) Hzand ¡8:5 (4.4) Hz,
respectively. Thus, the model provides a signi�cantly better approximation
to the true rate than the empirical method (Student’s t-test, p < 10¡6). The
estimate of the state variable is found to compare well with the true state
used to generate the spike train (see Figure 5).

Again we assess model goodness-of-�t using the K-S plot (see Figure 6).
The �t of model lies within the 95% con�dence limits except at very small
quantiles and follows closely the curve for the true �ring rate. In contrast,
the �t for the empirical 100 msec temporal smoothing method lies outside
the con�dence limits for a large portion of the total time, indicating poor �t
to the distribution over low and high percentiles.

3.3 An Extension to More General Point Process and State-Space Mod-
els. In the two simulated data examples we considered, the log conditional
intensity function log ¸c.t j Ht/ was a linear function of both the state vari-
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Figure 4: Simulated spike train (vertical bars above the abcissa), true �ring rate
(solid black line) from the local Bernoulli model (see equation 3.2) in example 2,
95% con�dence limits for the rate from the model-based EM algorithm (dashed
lines), and empirical �ring rate estimate (solid gray line) computed by tempo-
ral smoothing over the 100 msec window. In this time segment, two external
stimuli are applied at 150 msec and 750 msec. The 95% con�dence limits cover
nearly everywhere the true rate function. Although the spike count does not
obviously increase at these times, the algorithm estimates effectively the ampli-
tude and duration of the stimulus because it uses information from the entire
spike train. The 100 msec window for the empirical rate function appears too
large as increases in �ring rate at the stimuli are smoothed out.

able xk and certain components of the parameter vector µ . The EM algorithm
is straightforward to modify when this is not the case. For an arbitrary
¸c.t j Ht/, the E-step in equation 2.8 becomes

Q.µ j µ .`// D E[log[p.N0;T; x j µ /] k Hk; µ .`/]

¼ E

"
KX

kD0

CX

cD1

dNc.k1/ log ¸c.xk j Hk; µ /

¡ ¸c.xk j Hk; µ/1 k HK; µ .`/

#

C E[log p.x j µ / k HK; µ .`/]; (3.4)
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Figure 5: The true state (black line) and the model-based estimates of the 95%
con�dence intervals (dashed lines) computed using the EM algorithm for the
local Bernoulli probability model corresponding to the spike train and rate func-
tion in Figure 4. As in example 1, Figure 5 shows that the 95% con�dence limits
cover the true state completely except when the neural spiking activity is low
(around 700 msec).

where the last term in equation 3.4 is the sum of the last two terms on the
right-hand side of equation 2.8. We assume ¸c.xk j Hk; µ/ and log ¸c.xk j
Hk; µ / are twice differentiable functions that we denote generically as g.xk/.
To evaluate the �rst term on the right side of equation 3.4, it suf�ces to
compute E[g.xk j Hk; µ/ k HK; µ .`/]. This can be accomplished by expanding
g.xk/ in a Taylor series about OxkjK and taking the expected value to obtain
the approximation

E[g.xk j Hk; µ/ k HK; µ .`/] :D g. OxkjK/ C 1
2

¾ 2
kjKg00. OxkjK/; (3.5)

where g00. OxkjK/ is the second derivative of g.xk/ evaluated at OxkjK. The right-
hand side of equation 3.5 is substituted into equation 3.4 to evaluate the E-
step. The evaluation of the second term on the right of equation 3.4 proceeds
as in the evaluation of the second and third terms on the right of equation 2.8.

If the log conditional intensity function is no longer a linear or ap-
proximately linear function of the parameters, the M-step takes the more
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Figure 6: Kolmogorov-Smirnov goodness-of-�t analysis for local Bernoulli
probability model. The K-S plot for the EM algorithm model-based estimate
(dashed line) lies almost entirely within the 95% con�dence bounds (dotted
lines) and follows closely the KS plot computed using the true �ring rate (solid
black line), which lies almost entirely on the 45 degree line of exact agreement.
In contrast, the empirical rate estimate (solid gray line) lies mostly outside the
con�dence limits, suggesting that this model does not agree closely with the
data.

general form,

rQ.µ j µ .`// D 0; (3.6)

where the gradient in rQ.µ j µ .`// is with respect to µ . The zero of rQ.µ j
µ .`// and, hence µ .`C1/, has to be found using Newton’s method or another
appropriate numerical optimization procedure. Similarly, the recursive �l-
tering and smoothing algorithms generalize in a straightforward way when
the dimension of the state-space model is greater than one (Brown et al.,
1998). While these modi�cations increase the computational requirements
of our algorithm, they illustrate how it can be applied to a wider range of
point process and state-space models.

4 Discussion

We have presented a method for estimating from point process (spike train)
data a conditional intensity (rate) function modulated by an unobservable
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or latent continuous-valued state variable. The latent variable relates the
effect of the external stimuli applied at speci�ed times by the experimenter
to the spike train rate function. We compute maximum likelihood estimates
of the model parameters by the EM algorithm in which the E-step combines
forward and backward point process �ltering algorithms. The model per-
forms better than smoothed histogram estimates of rate because it makes
explicit use of the timing of the stimulus to analyze changes in background
�ring. Also, the model gives a more accurate description of the neural spike
train as evaluated by the goodness-of-�t K-S test.

Several authors have discussed the analyses of state-space models in
which the observation process is a point process. Diggle, Liang, and Zeger
(1995) brie�y mention state estimation from point process observations but
no speci�c algorithms are given. MacDonald and Zucchini (1997) discuss
state estimation for point processes without using the smoothing and �l-
tering approach suggested here. West and Harrison (1997) de�ne the state-
space model implicitlyand use the discount concept to construct an approx-
imate forward �lter. This approach is dif�cult to generalize (Fahrmeir, 1992).
Kitagawa and Gersch (1996) described numerical algorithms to carry out
state-space updating with forward recursion algorithms for binomial and
Poisson observation processes. For the Poisson model in equation 2.6, Chan
and Ledolter (1995) provided a computationally intensive Markov chain
Monte Carlo EM algorithm to conduct the state updating and parameter
estimation. The forward updating algorithms of Fahrmeir (1992), Fahrmeir
and Tutz (1994), and Durbin and Koopman (2000) resemble most closely
the ones we present, particularly, in the special case where the observa-
tion process is a point process from an exponential family, and the natural
parameter is modeled as a linear function of the latent process. Both the
examples we present follow these two special cases. The Fahrmeir forward
recursion algorithm for example 1 with a single neuron is

xkjk D xkjk¡1 C
¾ 2

kjk¡1¯

[¸.k1/¯2¾ 2
kjk¡1 C 1]

[dN.k1/ ¡ ¸.k1/] (4.1)

¾ 2
kjk D [.¾ 2

kjk¡1/¡1 C ¸.k1/¯2]¡1; (4.2)

whereas the Durbin and Koopman (2000) update is

xkjk D xkjk¡1 C
¾ 2

kjk¡1¯

.¸.k1/ C ¾ 2
kjk¡1¯2/¸.k1/

[dN.k1/ ¡ ¸.k1/] (4.3)

¾ 2
kjk D [.¾ 2

kjk¡1/¡1 C ¯2¸.k1/¡1]¡1: (4.4)

The variance updating algorithm in the Fahrmeir algorithm agrees be-
cause the observed and expected Fisher information are the same for the
Poisson model in our example. The state updating equation differs from our
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updating formula in equation 2.15 because their update is computed from
the Kalman �lter and not directly by �nding the root of the log posterior
probability density. The state and variance update formulae in the Durbin
and Koopman algorithm differ from ours because theirs use a Taylor series
approximation of the score function, �rst derivative of the log likelihood,
instead of the exact score function. Fahrmeir (1992) and Fahrmeir and Tutz
(1994) suggest using the EM algorithm for estimating the unknown param-
eters, but details are not given.

In an example applied to spike train data, Sahini (1999) describes the
use of a latent model for neural �ring where spikes are generated as an
inhomogeneous Polya process. In his model, parameters are computed by
optimizing the marginalized posterior by gradient ascent, and Monte Carlo
goodness-of-�t is used to compare the model �t with measured spike train
stochastic process.

The fact that our state-space models �t the simulated data better than
the empirical method is expected given that the spikes were generated with
the model. In applications to real data, it will be possible to use the same
approach, testing reasonable and ideally parsimonious forms of the state-
space and point process models for a given neurophysiological experiment.
In any case, we may use the time-rescaling theorem to assess goodness-of-�t
of any candidate models.

To study the problem of estimating a latent process simultaneously with
its model parameters and the parameters of the observation process, we
discretized time and assumed that the observation process and the latent
process occur on a lattice of points spaced 1 time units apart. Using the
EM algorithm, we computed the maximum likelihood estimate of µ and
empiricalBayes’ estimates of the latent processconditional on the maximum
likelihood estimate of µ . A Bayesian alternative would be to specify a prior
distribution for µ and compute a joint posterior probability density for the
latent process and µ . Liu and Chen (1998) developed sequential Monte Carlo
algorithms that may be adapted to this approach.

As another alternative, it is useful to point out how the latent process
and parameter estimation may be carried out if both the point process and
the latent process are assumed to be measured in continuous time. Nonlin-
ear continuous time �ltering and smoothing algorithms for point process
observations have been studied extensively in the control theory literature
(Snyder, 1975; Segall, Davis, & Kailath, 1975; Boel & Bene Ïs, 1980; Snyder
& Miller, 1991; Twum-Danso, 1997; Solo, 2000; Twum-Danso & Brockett,
2001). If the normalized conditional probability density, p.x.t/ j N0;t/, is
to be evaluated in continuous time, then a nonlinear stochastic partial dif-
ferential equation in this probability density must be solved at each step
(Snyder, 1975; Snyder and Miller, 1991). Here we let x.t/ be the continuous
time value of xk. If the updating is performed with respect to the unnormal-
ized conditional probability density, p.x.t/; N0;t/, then a linear stochastic
partial differential equation must be solved in this probability density at
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each step (Boel & Bene Ïs, 1980; Twum-Danso, 1997; Solo, 2000). For either
the normalized or unnormalized probability density updating algorithms,
the essential steps in their derivations use the posterior prediction equation
in equation A.1 and the one-step prediction equation in equation A.2 to de-
rive Fokker-Planck equations (Snyder, 1975; Snyder & Miller, 1991; Twum-
Danso, 1997; Solo, 2000; Twum-Danso & Brockett, 2001). If the parameters
of the continuous time system are nondynamic and unknown, then, as in
the discretized time case we present here, either the normalized or unnor-
malized partial differential equation updating of the conditional probability
density may be embedded in an EM algorithm to compute maximum likeli-
hood estimates of the parameters and empiricalBayes estimates of the latent
process. Similarly, a Bayesian procedure can be derived if a prior probabil-
ity density for µ can be speci�ed. While the normalized and unnormalized
conditional probability density updating equations have been known for
several years, the computational requirements of these algorithms may be
the reason they have not been more widely used (Manton, Krishnamurthy,
& Elliott, 1999). Discretized approximations (Snyder & Miller, 1991; Twum-
Danso, 1997; Twum-Danso & Brockett, 2001) and sequential Monte Carlo
algorithms (Solo, 2000; Doucet, de Freitas, & Gordon, 2001; Shoham, 2001)
have been suggested as more plausible alternatives. The sequential Monte
Carlo methods use simulations to compute recursively the solutions to equa-
tions A.1 and A.2 on a discrete lattice of time points, whereas our nonlinear
recursive algorithm, equations 2.12 through 2.16, uses sequential gaussian
approximations to perform the same computations.

A potential application of this analysis paradigm would be to estimate
the effect of external cue on a spike train in the delayed-response hand-
pointing task described in Riehle et al. (1997). In this experiment, parallel
spike data, measured in primary motor cortex of the monkey, are analyzed
to estimate differences between spike rate increases corresponding to ac-
tual motion and those caused by expectation of a stimulus. The structure
of our model enables us to estimate above-random �ring propensity in a
single cell while incorporating the history of cell �ring. For these reasons,
this approach may have advantages over the unitary events analysis meth-
ods (Grün et al., 1999), which may be dif�cult to apply to neurons with
low �ring rates (Roy, Steinmetz, & Niebur, 2000). A second potential ap-
plication would be in the analysis of cell �ring in the trace conditioning
paradigm (McEchron, Weible, & Disterhof, 2001). In this case, a conditioned
stimulus is followed after a trace interval by an unconditioned stimulus.
After many such trials, an association between the two stimuli develops,
as evidenced by changes in the �ring rate of the neuron. These data are
conventionally analyzed using PSTH techniques. However, because these
studies involve an implicit relation between the stimulus and the neural
spiking activity, this relation may be more clearly delineated by using the
paradigm presented here. Finally, we are currently investigating the ap-
plication of these methods to learning and memory experiments during
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recordings from the medial temporal lobe of the monkey (Wirth et al., 2002;
Yanike et al., 2002).

The state-space approach suggests several advantages. First, the ap-
proach uses a latent variable to relate explicitly the timing of the stimulus
input and history of the experiment to the observed spiking activity. Second,
use of explicit probability models makes it possible to compute probability
density functions and con�dence intervals for model quantities of inter-
est. Finally, formulation of the analysis in terms of a general point process
model allows us to assess model goodness-of-�t using the K-S tests based
on the time-rescaling theorem. In our opinion, this latter step is the most
critical as it forces us to assess how sensitive our inferences may be to lack
of agreement between the model and the experimental data.

In summary, we have presented a computationally tractable method for
state-space and parameter estimation from point process observations and
suggested that these algorithms may be useful for analyzing neurophysi-
ologic experiments involving implicit stimuli. In a future publication, we
will apply these methods to actual experimental studies.

Appendix: Derivation of the Recursive Nonlinear Filter Algorithm

We derive a form of the recursive �lter equations appropriate for an arbi-
trary point process model. The algorithm in equations 2.12 through 2.16 is
obtained by taking the special case of the Poisson. To derive the nonlinear
recursive �lter, we require the posterior prediction equation,

p.xk j Hk/ D p.xk j Hk¡1/p.dN.k1/ j xk; Hk/

p.dN.k1/ j Hk¡1/
; (A.1)

and the one-step prediction or Chapman-Kolmogorov equation,

p.xk j Hk¡1/ D
Z

p.xk j xk¡1/p.xk¡1 j Hk¡1/ dxk¡1: (A.2)

The derivation of the algorithm proceeds as follows. Assume that at
time .k ¡ 1/1, xk¡1jk¡1 and ¾ 2

k¡1jk¡1 are given. Under a gaussian continu-
ity assumption on xk , the distribution of xk given xk¡1jk¡1 is N.½xk¡1jk¡1 C
®Ik; ¾ 2

kjk¡1/, where ¾ 2
kjk¡1 D ¾ 2

" C ½2¾ 2
k¡1jk¡1. By equations 2.4, A.1, and A.2

and the gaussian continuity assumption, the posterior probability density
p.xk j Hk/ and the log posterior probability density log p.xk j Hk/ are, re-
spectively,

p.xk j Hk/ / exp

(
¡1

2
.xk ¡ ½xk¡1jk¡1 ¡ ®Ik/

2

¾ 2
kjk¡1

)

£
CY

cD1

expflog ¸c.k1 j Hc
k/dNc.k1/¡¸c.k1 j Hc

k/1g (A.3)
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log p.xk j Hk/ / ¡ 1
2

.xk ¡ ½xk¡1jk¡1 ¡ ®Ik/2

¾ 2
kjk¡1

C
CX

cD1

[log ¸c.k1 j Hc
k/dNc.k1/¡¸c.k1 j Hc

k/1]: (A.4)

To �nd the optimal estimate of xk, we apply a gaussian approximation
to equation A.3. This gaussian approximation is distinct from the gaussian
continuity assumption and means that we can use the mode and variance
of the probability density in equation A.3 to approximate it as a gaussian
probability density. As a result, we differentiate with respect to xk to �nd
the mode, and we compute the second derivative to obtain the approximate
variance (Tanner, 1996). Differentiating equation A.4 with respect to xk gives

@ log p.xk j Hk/

@xk
D ¡ .xk ¡ ½xk¡1jk¡1 ¡ ®Ik/

¾ 2
kjk¡1

C
CX

cD1

1
¸c.k1/

@¸c

@xk
[dNc.k1/ ¡ ¸c.k1/1]; (A.5)

and solving for xk yields

xk D ½xk¡1jk¡1 C ®Ik

C
CX

cD1
¾ 2

kjk¡1¸c.k1 j Hc
k/

¡1

£
@¸c.k1 j Hc

k/

@xk
[dNc.k1/ ¡ ¸c.k1 j Hc

k/1]: (A.6)

Equation A.6 is in general nonlinear in xk and can be solved using Newton’s
method. The second derivative of equation A.5 is

@2 log p.xk j Hk/

@x2
k

D ¡
1

¾ 2
kjk¡1

C
CX

cD1

"Á
@2¸c.k1/

@x2
k

1
¸c.k1/

¡
³

@¸c.k1/

@xk

´2 1
¸c.k1/2

!

£ [dNc.k1/ ¡ ¸c.k1/1]

¡
³

@¸c.k1/

@xk

´2 1
¸c.k1/

1

#
; (A.7)



State Estimation from Point Process Observations 989

and the variance of xk , under the gaussian approximation to equation A.3,
is

¾ 2
kjk D ¡

"
¡ 1

¾ 2
kjk¡1

C
CX

cD1

"Á
@2¸c.k1/

@x2
k

1
¸c.k1/

¡
³

@¸c.k1/

@xk

´2 1
¸c.k1/2

!

£ [dNc.k1/ ¡ ¸c.k1/1]

¡
³

@¸c.k1/

@xk

´2 1
¸c.k1/

1

##¡1

: (A.8)

Equations A.6 and A.8 constitute the basis for the general form of the �lter
equations 2.12 through 2.16.

Acknowledgments

Support was provided in part by NIMH grants MH59733, MH61637, NIDA
grant DA015644, NHLBI grant HL07901, and NSF grant IBN-0081458. Part
of this research was performed while E.N.B. was on sabbatical at the Labo-
ratory for Information and Decision Systems in the Department of Electrical
Engineering and Computer Science at MIT.

References

Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001).
Construction and analysis of non-Poisson stimulus-response models of neu-
ral spike train activity. J. Neurosci. Methods, 105, 25–37.

Berry, M. J., Warland, D. K., & Meister, M. (1997).The structure and precision of
retinal spike trains. Proc. Nat. Acad. Sci. USA, 94, 5411–5416.

Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991).
Reading a neural code. Science, 252, 1854–1857.

Boel, R. K., & Bene Ïs, V. E. (1980). Recursive nonlinear estimation of a diffusion
acting as the rate of an observed Poisson process. IEEE Trans. Inf. Theory,
26(5), 561–574.

Brown, E. N. (1987). Identi�cation and estimation of differential equation models for
circadian data. Unpublished doctoral dissertation, Harvard University, Cam-
bridge, MA.

Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The
time-rescaling theorem and its application to neural spike train data analysis.
Neural Comp., 14(2), 325–346.

Brown, E. N., Frank, L. M., Tang,D., Quirk, M. C., & Wilson, M. A. (1998).A statis-
tical paradigm for neural spike train decoding applied to position prediction
from ensemble �ring patterns of rat hippocampal lace cells. J. Neurosci., 18,
7411–7425.

Chan, K. S., & Ledolter, J. (1995).Monte Carlo estimation for time series models
involving counts. J. Am. Stat. Assoc., 90, 242–252.

http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0165-0270^28^29105L.25[aid=1883603]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2994L.5411[aid=214595]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29252L.1854[aid=217435]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2914:2L.325[aid=4870238]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2918L.7411[aid=215329]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2918L.7411[aid=215329]


990 A. Smith and E. Brown

Cox, D. R., & Isham, V. (1980). Point processes. New York: Chapman and Hall.
Daley, D. J., & Vere-Jones, D. (1988).An introduction to the theory of point processes.

New York: Springer-Verlag.
de Jong, P., & Mackinnon, M. J. (1988). Covariances for smoothed estimates in

state space models. Biometrika, 75, 601–602.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc.
B, 39, 1–38.

Diggle, P. J., Liang, K-Y., & Zeger, S. L. (1995).Analysis of longitudinal data. Oxford:
Clarendon.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods
in practice. New York: Springer-Verlag.

Durbin, J., & Koopman, S. J. (2000). Time series analysis of non-gaussian ob-
servations based on state space models from both classical and Bayesian
perspectives. J. Roy. Statist. Soc. B, 62, 3–56.

Fahrmeir, L. (1992). Posterior mode estimation by extended Kalman �ltering
for multivariate dynamic generalized linear models. J. Am. Stat. Assoc., 87,
501–509.

Fahrmeir, L., & Tutz, D. (1994). Dynamic-stochastic models for time-dependent
ordered paired-comparison systems. J. Am. Stat. Assoc., 89, 1438–1449.

Gharamani, Z. (2001). An introduction to hidden Markov models and Bayesian
networks. Int. J. Pattern Recognition, 15(1), 9–42.

Grün, S.,Diesmann, M., Grammont, F., Riehle A., & Aertsen, A. (1999).Detecting
unitary events without discretization of time. J. Neurosci. Meth., 93, 67–79.

Kalb�eisch, J. D., & Prentice, R. L. (1980).The statistical analysis of failure time data.
New York: Wiley.

Kay, S. M. (1988).Modernspectral estimation:Theoryand applications. Upper Saddle
River, NJ: Prentice Hall.

Kitagawa, G., & Gersh, W. (1996). Smoothness priors analysis of time series. New
York: Springer-Verlag.

Liu, J. S., & Chen, R. (1998). Sequential Monte Carlo methods for dynamic sys-
tems. J. Am. Stat. Assoc., 93(443), 567–576.

Ljung, L., & Söderström, S. (1987). Theory and practice of recursive identi�cation.
Cambridge, MA: MIT Press.

MacDonald, I. L., & Zucchini, W. (1997). Hidden Markov and other models for
discrete-valued time series. New York: Chapman and Hall.

Manton, J. H., Krishnamurthy, V., & Elliott, R. J. (1999). Discrete time �lters
for doubly stochastic Poisson processes and other exponential noise models.
Int. J. Adapt. Control Sig. Proc., 13, 393–416.

McEchron, M. D., Weible, A. P., & Disterhoft, J. F. (2001). Aging and learning-
speci�c changes in single-neuron activity in CA1 hippocampus during rabbit
trace eyeblink conditioning. J. Neurophysiol., 86, 1839–1857.

Mendel, J. M. (1995). Lessons in estimation theory for signal processing, communica-
tion, and control. Upper Saddle River, NJ: Prentice Hall.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: prelim-
inary evidence from unit activity in the freely-moving rat. Brain Research, 34,
171–175.

http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0890-6327^28^2913L.393[aid=4870242]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3077^28^2986L.1839[aid=4870243]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8993^28^2934L.171[aid=215374]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8993^28^2934L.171[aid=215374]


State Estimation from Point Process Observations 991

Riehle, A., Grün, S., Diesmann, M., & Aertsen, A. (1997). Spike synchroniza-
tion and rate modulation differentially involved in motor cortical function.
Science, 278, 1950–1953.

Roweis, S., & Ghahramani, Z. (1999).A unifying review of linear gaussian mod-
els. Neural Comp., 11, 305–345.

Roy, A., Steinmetz, P. N., & Niebur, E. (2000). Rate limitations of unitary event
analysis. Neural Comp., 12(9), 2063–2082.

Sahini, M. (1999).Latent variablemodels for neural data analysis. Unpublished doc-
toral dissertation, California Institute of Technology, Pasadena.

Segall, A., Davis, M. H. A., & Kailath, T. (1975).Nonlinear �ltering with counting
observations. IEEE Trans. Inf. Theory, 21(2), 143–149.

Shoham, S. (2001). Advances towards an implantable motor cortical interface. Un-
published doctoral dissertation, University of Utah, Salt Lake City.

Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing
and forecasting using the EM algorithm. J. Time Series Analysis, 3, 253–264.

Snyder, D. (1975). Random point processes. New York: Wiley.
Snyder, D. L., & Miller, M. I. (1991).Random point processes in time and space. New

York: Springer-Verlag.
Solo, V. (2000). Unobserved Monte-Carlo method for identi�cation of partially-

observed nonlinear state-space systems, part II: counting process observa-
tions. In Proc. IEEE Conference on Decision and Control. New York: Institute of
Electrical and Electronic Engineers.

Tanner, M. A. (1996). Tools for statistical inference. New York: Springer-Verlag.
Twum-Danso, N. T. (1997). Estimation, information and neural signals. Unpub-

lished doctoral dissertation, Harvard University, Cambridge, MA.
Twum-Danso, N. T., & Brockett, R. (2001).Trajectory information from place cell

data. Neural Networks, 14(6–7), 835–844.
West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models. New

York: Springer-Verlag.
Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal en-

semble code for space. Science, 261, 1055–1058.
Wirth, S.,Chiu, C., Sharma, V., Frank, L. M., Smith, A. C., Brown, E. N., & Suzuki,

W.A. (2002).Medial temporallobe activityduring theacquisitionofnew object-place
associations. Program 676.1, 2002 Abstract Viewer=Itinerary Planner, Society
for Neuroscience. Available on-line: http://sfn.scholarone.com.

Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of
memory in hippocampal neuronal activity. Nature, 397(6720), 613–616.

Yanike, M., Wirth, S., Frank, L. M., Smith, A. C., Brown, E. N., & Suzuki, W. A.
(2002). Categories of learning-related cells in the primate medial temporal lobe.
Program 676.2, 2002 Abstract Viewer=Itinerary Planner, Society for Neuro-
science. Available on-line: http://sfn.scholarone.com.

Received April 24, 2002; accepted November 18, 2002.

http://sfn.scholarone.com
http://sfn.scholarone.com
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29278L.1950[aid=212741]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2911L.305[aid=961622]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2912:9L.2063[aid=3055459]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0893-6080^28^2914:6L.835[aid=4870245]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29261L.1055[aid=215407]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29397:6720L.613[aid=4870246]

