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ESTIMATING A TAIL EXPONENT BY MODELLING 
DEPARTURE FROM A PARETO DISTRIBUTION 

BY ANDREY FEUERVERGER AND PETER HALL 

University of Toronto and University of Toronto and Australian 
National University 

We suggest two semiparametric methods for accommodating depar- 
tures from a Pareto model when estimating a tail exponent by fitting the 
model to extreme-value data. The methods are based on approximate 
likelihood and on least squares, respectively. The latter is somewhat 

simpler to use and more robust against departures from classical 
extreme-value approximations, but produces estimators with approxi- 
mately 64% greater variance when conventional extreme-value approxi- 
mations are appropriate. Relative to the conventional assumption that the 
sampling population has exactly a Pareto distribution beyond a threshold, 
our methods reduce bias by an order of magnitude without inflating the 
order of variance. They are motivated by data on extrema of community 
sizes and are illustrated by an application in that context. 

1. Introduction. Estimating the tail exponent, or shape parameter, of a 
distribution is motivated by a particularly wide variety of practical problems, 
in areas ranging from linguistics to sociology and from hydrology to insur- 
ance. See, for example, Zipf (1941, 1949), Todorovic (1978), Smith (1984, 
1989), NERC (1985), Hosking and Wallis (1987) and Rootzen and Tajvidi 
(1997). Many models and estimators have been proposed, including those of 
Hill (1975), Pickands (1975), de Haan and Resnick (1980), Teugels (1981), 
Csorgo, Deheuvels and Mason (1985) and Hosking, Wallis and Wood (1985). 
The goodness of fit of a Pareto model to the tail of a distribution can often be 
explored visually by simply plotting the logarithms of extreme order-statistics 
against the logarithms of their ranks. The plot should be approximately 
linear if the Pareto model applies over the range of those order statistics, and 
in this case the negative value of the slope of the line is an estimate of the 
Pareto exponent. More efficient estimators are available, however, and those 
in use today are generally of two types, based on likelihood and the method of 
moments, respectively. 

Both these approaches are susceptible to errors in the assumed model for 
the distribution tail. As Rootzen and Tajvidi (1997) point out, none of the 
standard approaches is "robust against departures from the assumption that 
the tail of the distribution is approximated by a GP [generalized Pareto] 
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distribution. If there are marked deviations from a GP tail, the results will be 
misleading." On the other hand, if one confines attention to data that are so 
far out in the tail that the Pareto assumption is valid, then the effective 
sample size can be small and the estimator of tail exponent may have 
relatively large variance. 

Moreover, in some applications of the Pareto model, data that provide 
evidence of departure from the model are of greater interest than those to 
which the model fits well. A case in point is Zipf's (1941, 1949) classic study 
of the dynamics of community sizes. A linear plot of the logarithm of 
community size against the logarithm of rank, as in the case of U.S. cities 
during most of the twentieth century [see, e.g., Zipf (1941), Chapter 10; Hill 
(1975)] has been suggested as evidence of "stable intranational equilibrium"; 
while nonlinear plots, for example in the context of Austrian and Australian 
communities 60 to 80 years ago, have been interpreted as implying instability 
[Zipf (1949)]. As Zipf argues, it can be of greater sociological interest to 
analyze data from countries or eras that depart from the benchmark of 
"intranational equilibrium," than it is to analyze those which achieve the 
benchmark. 

In this paper we propose a simple and effective way of reducing the bias 
that arises if one uses extreme-value data relatively deeply into the sample. 
We show that the main effects of bias may be accommodated by modelling the 
scale of log-spacings of order statistics. With this result in mind, we suggest 
two bias-reduction methods, both developed from a simple scale-change model 
for log-spacings, and based on likelihood and on least squares, respectively. 
In the first method, a three-parameter approximation to likelihood is sug- 
gested for the distribution of log-spacings. One of the parameters is the 
desired tail exponent. In our least-squares approach, log-log spacings play 
the role of response variables, the explanatory variables are ranks of order 
statistics and the regression "errors" have a type-3 extreme-value distribu- 
tion, with exponentially light tails. 

These techniques reduce bias by an order of magnitude, without affecting 
the order of variance. Therefore, they can lead to significant reductions in 
mean squared error. Moreover, they allow us to model extreme-value data 
that depart markedly from the standard asymptotic regime. This advantage 
will be illustrated in Section 3 by application to highly non-Pareto data on 
Australian community sizes. We are not aware of kernel or moment methods 
that are competitive with our approach; they would be awkward to construct 
in the context of a flexible and practicable class of distributions that repre- 
sent departures from the Pareto model. 

Statistical properties of estimators of tail exponents in Pareto models 
(sometimes referred to as models for Zipf's law) have been studied exten- 
sively. Early work in a parametric setting includes that of Hill (1970, 1974), 
Hill and Woodroofe (1975) and Weissman (1978). Smith (1985) points out the 
anomalous behaviour of estimators of certain exponents in the context of 
generalized Pareto distributions. Hall (1982, 1990) and Csorgo, Deheuvels 
and Mason (1985), among others, consider the effect of choice of threshold on 
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performance of tail-exponent estimators. Rootzen and Tajvidi (1997) compare 
the performances of different approaches to tail-parameter estimation. 

Davison (1984) and Smith (1984) provide statistical accounts of peaks- 
over-threshold, or POT, methods. Those techniques are of course not identical 
to methods based on extreme-order statistics, but the strong duality between 
the two approaches means, as Smith (1984) notes, that virtually all methods 
for one context have versions for the other. Our bias-correction methods are 
no exception. However, for the sake. of brevity we shall discuss them only in 
the case of extreme order-statistics. Section 2 will introduce our methods, and 
Section 3 will describe their numerical properties. Theoretical performance 
will be outlined in Section 4, and technical arguments behind that work will 
be summarized in Section 5. 

2. Methodology. 

2.1. Modelling the source of bias. We shall introduce methodology in the 
case where the tail that is of interest is at the origin. Our methods extend 
immediately from there to the case of a tail at infinity. Suppose the distribu- 
tion function F admits the approximation F(x) Cxa as x I 0, or more 
explicitly, 

(2.1) F(x) = Cxa{1 + 8(x)), 

where C, a are positive constants and 8 denotes a function that converges to 
O as x I 0. We wish to estimate a from a random sample Z= {X1,..., Xn} 
drawn from the distribution F. Often, one would proceed by assuming the 
particular Pareto model 

(2.2) Fo(x) = Cx&, 

assumed for 0 < x < r, say, rather than (2.1), and alleviating bias problems 
caused by discrepancies between (2.1) and (2.2) by using only particularly 
small order-statistics from X. However, this approach can have a detrimental 
effect on performance, since it ignores information about a that lies further 
into the sample. That information would be usable if we knew more about the 
function 8. In later work we shall refer to the model at (2.1) as a "perturbed" 
Pareto distribution, when it is necessary to distinguish it from the Pareto 
distribution at (2.2). 

One approach to accessing the information is to model 8, for example in 
the fashion 

(2.3) 8(x) = Dx + o(x ) 

as x -> 0, where / > 0 and -oo < D < oo are unknown constants. In principle 
we could drop the "small oh" remainder term at (2.3), substitute the resulting 
formula into (2.1) and estimate the four parameters C, D, a, ,3 by maximum 
likelihood. This means, in effect, working with the model 

F,(x) = Clxal + C2xa2, 
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assumed for 0 < x < r, say, where C1, a,, a2 are all positive and the model is 
made identifiable by insisting that a = a1 < a2. The type of departure from a 
Pareto model suggested by (2.3) or (2.4) argues that the true distribution is, 
to a first approximation, a mixture of two Pareto distributions. This is 
sometimes implicitly assumed in accounts of departures from the Pareto. See 
for example Zipf's (1949), page 423 discussion of the contributions made by 
distinct urban and rural communities to the overall distribution of commu- 
nity sizes, and the remarks in the Appendix in this paper on data from 
countries that have been formed from mergers of autonomous states. 

2.2. Likelihood and least-squares approaches. Our methods are based on 
the observation that, to a good approximation, the normalized log-spacings of 
small order-statistics in the sample r are very nearly rescaled exponential 
variables, where the scale change may be simply represented in terms of the 
model at (2.1). Specifically, let Xnl < -* < X_ denote the order statistics 
from X and define 

Ui = i(log X,i1 - log Xn). 

Then, for a function 81 that can be expressed in terms of the 8 of (2.1), it may 
be shown that 

(2.5) Ui Zi 0{1 + 8,(i/n)} = Zi exp{61(i/n)}, 

where 0 = 1/a and the variables Z1, Z2,... are independent and exponen- 
tially distributed with unit mean. It can be proved that if 8 satisfies (2.1) and 
(2.3) then 

(2.6) (y) = D y1 + o(y1) 

as y 0, where ,1 = 13/a and D1 = -(3/aa)C-,/tD. In view of (2.5), 
this suggests regarding the variables Ui as exponential with mean 
0 exp{Dj(i/n)P1}, and estimating 0, D1, ,8 by maximum likelihood. In this 
case the negative log-likelihood is 

r r 

(2.7) r log 0 + D (i/n)1 + 0 1 U exp-D1(i/n) 1}. 
i=l i=l 

(Here, r is the threshold or smoothing parameter, about which we shall say 
more in Section 2.4.) Differentiating with respect to 0, equating to zero and 
solving for 0, we obtain 0 = T(D1, f,), say. Substituting back into (2.7) we 
conclude that (D1, ,1) should be chosen to minimize 

(2.8) L(D1, B1) = Dlr-1 (i/n)1 + log[r-1 E U exp{-Dl(i/n)f11 
i= 1 = J 

An alternative approach to inference may be based on the fact that, by 
(2.5), the log-log spacings Vi = log Ui satisfy 

Vi ( ,t + 5l(i/n) + ei, 
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where /uc = log 0 + LO, UO is the mean of the distribution of log Z, (thus, 
fJu = -0.5772..., the negative of the value of Euler's constant), and ei = 

log Zi - /u-t (for 1 < i < n) may be interpreted as an error in the approximate 
regression model (2.9). Given that 86 may be expressed by (2.6), we may (for 
fixed 8,3) compute explicit estimators (( ,31), D,( 13) of the unknowns Au, DI 
that minimize 

(2.10) S( , Dl, /31) Vi - - 
D,(i/n)1}2 

i==l 

Despite their having larger asymptotic variance than maximum likelihood 
methods (see Section 4), we found in numerical studies that the least-squares 
approaches were sometimes less biased and so could have superior overall 
performance (Section 3). 

The case where 13 is known, or is a known function of a (see Section 3.1), 
is of major interest. If we can reduce the number of unknown parameters, 
then the variances of our estimates of those that remain should also be 
reduced. Two canonical cases deserve special mention. In the first, one may 
think of X as being generated in the fashion X = IY1/a, where Y has a 
density that is nonzero and differentiable at the origin. Here, a = 3 and so 
,13 = 1. The second example is generated in the form F(x) = G(x)a, where 
the distribution function G is supported on the positive half-line and (con- 
fined to that domain) has a density that is nonzero and differentiable at the 
origin. Here, 3 = 1 and so ,1 = l/a. In practice one may obtain empirical 
evidence for either of these cases by computing pilot estimates of D1, a, ,1. 
See Section 3.1 for an example. 

2.3. An exploratory least-squares approach. To obtain a preliminary ap- 
proximation to ,3 it is sometimes helpful to fit the semiparametric model at 
(2.1) and (2.3) directly to log-spacings, as follows. Observe from (2.5) and (2.6) 
that 

log X, i 1 - log Xni + i Zi f{l1 + D,(i/n) 1}. 

Hence, for i >j and with xij = log{i/(j - 1)1 and yij = log Xn i+ - log X"j, 

(2.11) Yij Oxij + D2 exp( 1 )xij) + D3, 

where the "constants" D2, D3 depend on j and n. (The approximation is 
generally good, at least for i sufficiently greater than j, if D3 is omitted. We 
do, however, need j moderately large in order to neglect the stochastic 
component.) We may fit the model at (2.11) by ordinary or weighted least- 
squares for values i satisfying j < i < r, say. 

2.4. Estimators of a. The analysis in Section 2.2 suggests three estima- 
tors of a, of which the first is based on maximum likelihood and the others on 
least-squares. The likelihood-based estimator is found by taking (D1, ,31) to 
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minimize L(D1, S3), defined at (2.8), and putting 

(2.12) al = T(D1,1) = [r-1 E Uiexp{-D,(i/n)l)]. 

To derive the least-squares estimators, let Vi = log Ui = log (log X, i+ - 

log Xni) + log i, choose ( DJ, j/3, D1) to minimize S( ,u, D1, j1) [defined at (2.10)] 
and let 

(2.13) W, = i(log X, i +- log Xni)exp -Dj1(i/n) 1}, 

W = r-1 i r Wi and ,-o = Jf>o(log x)e-x dx = - 0.5772157. Then two least- 
squares estimators of a are a2 = exp( ,pu - j,) and 03 = 1/W. When ,1 is 

known, or estimated separately, we replace ,1 by that value at all its 
appearances, for example at (2.12) and (2.13). If we take 0, = I/a (see 
Sections 2.2 and 3.1), then we should again make the obvious changes to the 
algorithm, maximizing the likelihood or minimizing the sum of squares under 
the constraint. 

Given an estimator a of a, one may obtain an estimator of C quite simply, 
by substituting into the formula C = r(Xnr)_-/n. As expected, the estimators 
of a do not require the value of n, while those of C do. In practice, when only 
extreme-order statistics are recorded, the value of n is usually unknown. 

The value of r at (2.8) and (2.10) plays the role of a threshold, or smoothing 
parameter, determining the depth into the data that we are prepared to go 
when fitting the model defined by (2.1) and (2.3). For conventional estimators, 
such as those of Hill (1975) and also for our estimators aj, increasing r 
results in an increase in bias, owing to departure of (2.1) from its "ideal" form 
(2.2), but this is accompanied by a decrease in variance. One virtue of our 
approach is that for it, bias does not increase so rapidly with increasing r, 
and so r may be chosen an order of magnitude larger, producing an improve- 
ment in mean-square performance by an order of magnitude. These proper- 
ties will be demonstrated numerically in Section 3 and theoretically in 
Section 4; see, for example, Remark 4.4. 

3. Numerical properties. 

3.1. Example: community sizes. Zipf [(1949), page 139], showed graphi- 
cally that data on large Australian community sizes in 1921 departed 
markedly from a Pareto distribution with regularly varying tail at infinity. 
He neither tabulated his data nor gave a source, but they were apparently 
taken from Wickens (1921). See the Appendix of the present paper for details. 
Figure 1 graphs the logarithm of community size against the logarithm of 
rank for these data for all 256 Australian communities that had 2000 or more 
inhabitants in 1921. (Zipf considered only communities of more than 3000 
people.) The graph would of course be linear if the sampling distribution were 
Pareto. 
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FIG. 1. Logarithms of Australian community sizes, I. Plot of logarithm of community size 
against logarithm of rank for all 256 Australian communities having 2000 or more inhabitants 
in 1921. 

Nevertheless, it is plausible that the data were generated as X = Y-l, 
where X denotes the population of a randomly chosen Australian community 
and Y has the perturbed Pareto distribution modelled by (2.1) and (2.3). We 
analyzed the data from that viewpoint and also as though they were from a 
perturbed Pareto distribution with an upper bound at a fixed number No, 
say. That is, we subtracted each population size from No and regarded the 
new data Z = No - X as coming from a population whose distribution func- 
tion had the form described by (2.1) and (2.3). This approach has apparently 
not been used before with community-size data and would be inimical to 
Zipf's ideas, but there are nevertheless good empirical reasons for adopting 
it. We shall report here only this type of analysis, since it produced residuals 
whose empirical distribution was closer to the exponential than was that of 
residuals obtained using the first approach. 

Figure 2 shows a plot of values of the negative of the logarithm of Z 
against the logarithm of rank. It represents the analogue of Figure 1 in this 
context and would be linear if the single-component Pareto distribution at 
(2.2) were an appropriate model for departures of community size from an 
upper bound. 

When applying the exploratory least-squares approach suggested in Sec- 
tion 2.3, we found that if we took j > 5 then a plot of y,j against exp( 31xij), 
for j < i < 256 and with 3, chosen by least-squares, gave very nearly a 
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0 * 
C,,O 

0 

0* 

*. 

0.0 0.5 1.0 1.5 2.0 

Log10 of 'I' 

FIG. 2. Logarithms of Australian community sizes, II. Plot of negative value of the logarithm 
of the difference between size of 10th largest community and size of the (10 + i)th largest 
community, for 1 < i < 245, against the logarithm of i. 

straight line with negative slope. This suggests that for some No > 0, the 
distribution function G of city size has very nearly the property, 

1 - G( No - x) = A I log(l - A2 x)ja 

= AiA x{l + aA2x + 0(x2)}, 

for positive constants a, A1, A2 and small positive values of x. This is the 
perturbed Pareto model suggested by (2.1) and (2.3), with ,8 = 1. To appreci- 
ate why (3.1) follows from linearity of the plot, note that linearity suggests 
that to a good approximation, Xni?+ = B1 exp(-B2i)1) for constants B1, 
B2 > 0. Taking X,,i+1 = G-'1 - (i/n)} and writing x for i/n, we obtain 
1 - x = G{B1 exp(-B3x'31)}. This gives (3.1) exactly, with a = 1/31. 

Therefore, in our subsequent analysis, we took /B = 1 at (2.3), or equiva- 
lently, 8,3 = 1/a at (2.6). (Of course, this ,1 differs from that in the para- 
graph immediately above.) We used the maximum likelihood (ML) and least- 
squares (LS) methods suggested in Sections 2.2 and 2.4, with ,81 there 
constrained to equal 1/a. For brevity we took the LS estimator to be a2; 
results for a3 are similar. For the sake of simplicity we took No to equal the 
population of the smallest community that was not used in the analysis. That 
is, if attention was confined to communities whose size ranked in the range 
k + 1 < i < k + r + 1, then we took No to equal the size of the kth largest 
community. Removal of large community sizes was necessary to avoid errors 
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FIG. 3. Residual q-q plot. Ranked values of the residuals Zi, defined by (3.2), plotted against 
corresponding quantiles of the exponential distribution with unit mean. The line "y = x" is 

superimposed on the plot. Raw data were those used to generate Figure 2. 

due to arbitrariness of community boundaries in large Australian cities. The 
definitions of Sydney and Sydney North, and Melbourne and Melbourne 
South as distinct communities are among the obvious examples of this 
problem. 

The goodness-of-fit of the exponential distribution to residuals is apparent 
from q-q plots, of which Figure 3 is typical. There we graph log Z( + k +1) 
against -log{1l - (i/r)} for 1 < i < r, where 

(3.2) Zi = U/[(1/a^)exp(D( i/n)1/)} 

is our estimate of the quantity Zi appearing at (2.5), the parameter estimates 
on the right-hand side of (3.2) were obtained by maximum likelihood under 
the constraint that / = 1 and Z(j) denotes the ith largest value of Zi. For 
Figure 3 we took No to be the size of the 10th largest community (so that 
k = 10) and used all remaining communities of size 2000 or more (so that 
r = 256 - 11 = 245). We do not of course know the value of n in (3.2), but 
that is of no concern since it is absorbed into the estimator of D1. 

The resulting estimates of a, for different values of r and the cut-off k, 
range from about 0.9 to 1.2 and are given in Table 1. The ML estimates are a 
little less variable than those based on LS and also tend to be a little larger. 
Not much can be read into this, however, since all estimates were computed 
from the same data. Both ML and LS estimates are strikingly resistant to 
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substantial changes in r. The main source of variation appears to be random 
fluctuation, rather than systematic variation with r. This reflects the very 
low bias arising from the excellent fit of the model when /3 is constrained to 
equal 1; see Figure 3. By way of contrast, the Hill (1975) estimate of a 
increases virtually monotonically with increasing r, and more than doubles 
in size (from 1.57 to 3.53) within the range of Table 1. This substantial 
systematic error reflects the very poor fit to data offered by the single-compo- 
nent Pareto model at (2.2). The poor fit is exemplified by a highly nonlinear 
q-q plot (analogous to that of Figure 3 and not given here) for residuals 
under the single-component model. 

In the same setting as Figure 3, the "full" (i.e., without /8 constrained) ML 
estimate of a equals 0.64, and the estimate of /3 is 0.54. To assess the 
significance of these results we conducted a simulation study using data 
generated from the distribution at (3.3), with a = 8 = 1, n = 20,000 and 
r = 250 and values of B that produced "Zipf plots" having moderate curva- 
tures, as in Figure 2. (The case of higher curvature will be treated in Sec- 
tion 3.2.) These values of n and r were chosen because they lead to Zipf plots 
broadly similar to that in Figure 2. For the sake of simplicity we shall 
continue to use the same n and r in Section 3.2. 

TABLE 1 

Estimates of a for different values of k and r* 

r + k 

k 256 200 150 100 

6 ML 1.215 1.051 1.053 1.157 
LS 1.152 0.910 0.873 0.980 
Hill 3.531 3.007 2.458 1.921 

8 ML 1.149 0.986 0.964 0.993 
LS 1.097 0.874 0.811 0.865 
Hill 3.146 2.666 2.165 1.669 

10 ML 1.166 1.001 0.981 1.017 
LS 1.212 0.883 0.839 0.891 
Hill 3.173 2.693 2.188 1.687 

12 ML 1.211 1.043 1.043 1.149 
LS 1.152 0.918 0.851 1.004 
Hill 3.353 2.861 2.337 1.821 

15 ML 1.165 0.997 0.980 1.026 
LS 1.125 0.892 0.846 0.935 
Hill 3.073 2.616 2.125 1.638 

20 ML 1.167 0.995 0.974 1.007 
LS 1.134 0.901 0.853 0.952 
Hill 2.968 2.529 2.051 1.573 

* In each cell in the table, the maximum likelihood estimate (denoted by ML, and computed 
under the constraint 18 = 1) is listed above the corresponding least-squares estimate (LS), which 
in turn is listed above the Hill (1975) estimate. 
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We found that (1) the "full" ML and LS estimators of a have much higher 
variance than the "constrained" estimators (i.e., with ,3 constrained to 
equal 1); (2) the differences in bias are relatively minor; (3) the "constrained" 
ML estimator of a is substantially more accurate than the Hill (1975) 
estimator; and (4) the "full" ML estimator of ,3 is biased downwards by a 
factor close to 2, with variance being less of a problem. This bias appears to 
be due to third-order effects, which are not captured by second-order models 
such as the combination of (2.1) and (2.3). In view of this bias, we do not find 
the value /3 = 0.54, obtained using the "full" ML method, to be problematical. 
Overall, the "full" ML estimator does not perform well for these data, since 
departure from a single Pareto distribution is not sufficiently great; but the 
"constrained" ML method is effective. 

We conclude that the true value of a is close to 1. This is the value claimed 
by Zipf (1949) for countries such as the United States that satisfy his law of 
"intranational equilibrium," although of course he was concerned with regu- 
lar variation at infinity, not at an upper bound to city size. 

3.2. Summary of numerical properties. When fitting mixture models, it is 
generally found that a multicomponent model produces improved perfor- 
mance only if there is clear evidence that more than one component is 
necessary. When a single component is adequate, fitting a mixture of two or 
more components typically leads to poor performance, because (1) the addi- 
tional nuisance parameters use up information that would otherwise be 
available for estimating the main parameters of interest, and (2) there are 
problems of identifiability when the components are close. This gives rise to 
relatively poor performance of the "full" ML and LS methods, noted in 
Section 3.1, when the Zipf curve has only moderate curvature. 

However, when fitting a single Pareto distribution to data such as those on 
which Figure 2 is based, it is relatively important to determine the threshold, 
r, by empirical means. It has been observed previously that, in a range of 
settings, empirical choice of r can increase root mean squared error by a 
factor of about 2 when /3 is unknown; see, for example, Hall and Welsh 
(1985). As shown in Section 3.1 (Table 1), when fitting a Pareto mixture the 
estimator of a is relatively robust against systematic effects resulting from 
choice of r. Therefore, even if "full" or "constrained" ML or LS methods, for 
fixed values of r, produce estimates that perform similarly to Hill's estimator 
when the latter is computed at an optimal threshold, the ML or LS methods 
can be superior to the Hill estimator in practice. Analysis of threshold-choice 
methods for Hill's estimator is beyond the scope of this paper. 

Since /, is the parameter of a high-order term in the model, the likelihood 
surface is relatively flat near the maximizing value of /3,. Figure 4 depicts a 
typical graph of -L(D1, /,), defined at (2.8), and shows this property clearly. 
Similar behavior may be observed for the function S( JL, D1, 8/), defined at 
(2.10), and in this case one must also take care that the estimate of /3B is not 
taken to be a pathological extremum at infinity. These problems are not as 
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LCd - 

FIG. 4. Likelihood surface. Typical plot of -L(D, ,1) for data generated in the simulation study 
in Section 3.2. 

serious when data sets are analyzed individually, however. In our simulation 
study we used grid search to approximate the minimum, but due to the 
flatness of L and S it sometimes happened that the value we obtained was a 
long way from the true minimum. Additionally, in some samples where the 
Zipf plot was approximately linear, despite the average Zipf curve being 
nonlinear, the estimate of ,1 was a large distance from the true value of ,1. 
For these reasons we use median absolute deviation (MAD) instead of mean 
squared error to describe performance. 

We simulated data from the distribution 

(3.3) X= U1/ exp(BUO/"), 

where a, 8 > 0, B = -D/a, -oo < D < oo and U had a Uniform distribution 
on the interval [0, 1]. The parameters a, ,3, D have the meanings ascribed to 
them in Section 2, and the value of C there is now 1. In particular, the 
perturbed Pareto model defined at (2.1) and (2.3) is valid. In the context of 
(3.3), and for n = 20,000 and r = 250, Table 2 gives median absolute devia- 
tions of estimates computed by "full" or "constrained" ML and LS methods. 
The "constrained" estimators are generally slightly superior, and the ML and 
LS methods perform similarly. Throughout this section, the results reported 
represent averages over 100 simulated independent samples. 

The MAD of estimators suggested by Hill (1975), for r = 250, exceeds that 
of "full" ML estimators by a factor of between 1.3 and 3.6 across the range of 
Table 2. If the Hill estimator is computed at the value of r that gave it 
optimal MAD performance in the simulation study, then its MAD is generally 
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TABLE 2 
Values of mean absolute deviation* 

P1 = 

(B = 500) 
ML(?> 
LS1(?) 
LS2(0) 
ML(') 
LS11) 
LS2(1) 

(B = 300) 

0.12 
0.13 
0.13 
0.10 
0.10 
0.10 

0.30 
0.36 
0.35 
0.23 
0.22 
0.23 

(B = 200) 
ML(O?> 
LS1(?) 
LS2(0) 
ML(W) 
LS()1 
LS2(1) 

0.87 
0.58 
0.59 
0.61 
0.57 
0.60 

* The estimates are a' (abbreviated here to ML), &2 (LS1) and &3 (LS2), and are as defined in 
Section 2.4. Their unconstrained forms, constrained forms subject to ,38 = 1, and constrained 
forms subject to ,3 = 1/a, are indicated by the superscripts (0), (1) and (2), respectively. When the 
constraint is i81 = 1/a, the distinction between LS1 and LS2 is lost; there, the LS estimator of a 
is defined by minimizing S( ikO - log a, 1/a, D1) with respect to (a, Di). 

close to that of the "full" ML and LS estimates. However, this does not take 
into account the need in practice to choose r empirically so as to achieve good 
performance. We made no attempt to optimize our ML or LS estimates over r. 
When a = 1 or 2, in particular, performance can be improved significantly by 
using smaller values of r. Guidance as to the appropriate r may be gained 
by examining q-q plots; see Figure 3. 

In each case, B in (3.1) was chosen so that average values of Zipf plots 
showed curvature more marked than that in Figure 2 and of the opposite 
sign. Subject to this constraint, B was selected so that curvatures were 
visually similar in all the settings of the table. Figure 5 depicts average 
values of Zipf plots in the case of the first column of Table 2, each curve 
representing the mean of 100 independent synthetic samples. 

If curvature is decreased then the performance of "full" ML and LS 
methods relative to their "constrained" versions deteriorates, since the rela- 
tive contribution of stochastic error to MAD increases. As noted in Section 
3.1, the ML and LS estimators are relatively robust against changes in r. 

PI = l/o: 

ML(O 
LS1(0? 
LS2(0: 
ML(2) 

LS(2) 

(B = 15,000 

(B = 300) 

a= 1 

a= 2 

0.061 
0.071 
0.071 
0.040 
0.068 

0.30 
0.36 
0.35 
0.47 
0.38 

1.0 
0.93 
0.92 
1.0 
1.0 

ML(?) 
LS 1(O 
LS2(0) 
ML(2) 
LS(2> 

(B = 30) 
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4. Theoretical properties. Assume that (2.1) holds, where a > 0 and 
the function 8 is twice-differentiable on (0, oo) and satisfies 

(4.1) si()(x) = (d/dx)1(Dx ) + O(x7it) for i = 0, 1,2 

as x I0, with 0 < 3 < y < oo and -oo < D < o00. Put ,1 = /3/a and yi = y/a, 
and let a1,..., o-6 denote positive constants. (In Remark 4.1 we shall give 
the values of cj2 for j = 1, 2, 4, 5.) Define the estimators a,, a2, a3 as in Sec- 
tion 2.4. 

THEOREM. Assume condition (4.1), and that r = r(n) -> oo at a rate such 
that r1' + (r/n) = O(n-8) for some E > 0. If 81 is estimated as part of the 
likelihood or least-squares procedure then, for j = 1, 2, 3, 

(4.2) a, = a[1 + r-1/ N, + Op((r/n)mi(2 l)(log n)3} 

as n -> oo, where the random variable Nnj is asymptotically Normal N(O, ofj2). 
If, in the estimation procedure, we substitute for /11 a random variable that is 
within Op(rG) of its true value, where 0 < qr = O(n-8) for some e > 0, then 
(4.2) remains true provided (1) we interpret N,j as an asymptotically 
Normal N(0, rj2 3) random variable, and (2) we replace the remainder term 

by Op{(r/n) min(2 1, 71) + I log n}. 

REMARK 4.1 (Values of j2). For integers j > 1 and k > 0, define 

Kijk | fxj P(log x)k dx, 

and put AO = (K20 - K1O)(K22 - 11) - (21 - KKll), A1 K20 K22 -2D 

A2 = K11K21 - K10 K22 and A3 = K10 K21 - K11K20. Then, 

o2 == AA2f (A i + A23x1' log x) dx ITZ 0 X 3 10 0 

= AO2{A + A2 K2O + A3K22 + 2(A1A2 K10 + A1A3K11 + A2A3K21)}, 

and cr22 = (02r2, where -cr2 = Tr2/6 = 1.644934 is the variance of the loga- 
rithm of an exponential random variable. There is no such elementary 
relationship in the cases of o32 or o-62, for which the formulas are particularly 
complex and, for brevity, are not given here. More simply, however, 0(2 = 

(K20 - K2 ) 1 and = oO2 

REMARK 4.2 (Bias reduction). Condition (4.1) asks that to first order, 8 
decrease like x1 as x 10, and to second order, decrease like x7. In these 
circumstances the biases of more conventional estimators of a are asymptotic 
to a constant multiple of (r/n) 1; see for example Hall (1982) and Cs6rgo, 
Deheuvels and Mason (1985). Our theorem shows that this level of bias has 
been eliminated completely from the estimators a^ and a2 and that the new 
bias is of order only (r/n)min(2 1 Yl), multiplied by a logarithmic factor. This 

represents an improvement by an order of magnitude. 
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REMARK 4.3 (Variance). The variance of conventional estimators is of size 
r-1 [Hall (1982); Csorgo, Deheuvels and Mason (1985)]. It follows from the 
theorem that this level of variance is preserved by our bias-reduced estima- 
tors. Moreover, it may be proved that under the assumption that the model 
at (2.4) holds exactly for x in some interval [0, s], the estimator a, has 
asymptotic minimum variance among all estimators based on X"1,.. , Xnr. 

REMARK 4.4 (Mean squared error reduction). The theoretically smallest 
order of mean squared error is achieved by selecting the threshold, r, so that 
squared asymptotic bias is of the same size as asymptotic variance. In view of 
the results noted in Remarks 4.2 and 4.3, this will produce a mean squared 
error that is an order of magnitude less for our estimators a,, a2 and 03 
than in cases of conventional methods. In the conventional cases mentioned 
in Remarks 4.2 and 4.3, this balance would be achieved with a value r of the 
same size as (n/r)211, but for our estimators, the optimal r is an order of 
magnitude larger. 

REMARK 4.5 (Estimators of C, D1 and j1). ABy extending arguments in 
Section 5 it may be shown that the estimator Cj = r(Xnr)ji/n has asymp- 
totic variance of size r (log n)2 and asymptotic bias of size (r/n)m"i(21l1 l) 
multiplied by a power of log n (the latter depending on j). Our estimators of 
D1 and 1,( derived by either maximum likelihood or least squares, have 
variances of size r-(r/n)-2Pl(log n)2 and r- l(r/n)-2Il1, respectively. There- 

fore, these estimators will not be consistent unless r(r/n)2P1 -> oo. In view of 
Remark 4.4, this requires r to be an order of magnitude larger than would 
typically be used for conventional estimators of a. Note, however, that 
despite our likelihood and least-squares estimators being derived as functions 
of estimators of D1 and 1,3 consistent estimation of these quantities is not 
required for consistent estimation of a. 

5. Derivation of theorem. For brevity we treat only the case of al, in 
the setting where a, 83, D1 are estimated together. Let Z1, Z2,... be inde- 
pendent exponential random variables with unit mean and define 

n -i+ 1 

Si= E Z,_j+,/(n -j + 1) 
j=1 

and Ti = exp(-Si). By Renyi's representation for order statistics [e.g., David 
(1970), page 18], we may choose the Zi's so that Xni = F-'(T,) for 1 < i < n. 
Observe too that 

(5.1) Si = log(n/i) + O? (i-1/2) 

uniformly in 1 < i < r and that the representation of F at (2.1) may equiva- 
lently be written as 

logF-l(x) = Ologx + Cl + 82(x), 
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where 0 = a-1, C1 - 0 log C, and by (4.1), defining ( = min(2,/3, yl), 

52 = -OC-1Dx ' + O(x") 

as x It0. Furthermore, Si, - Si = -ilZi. It follows from the latter result 
and (5.2) that 

Ui i(log X, i + - log X) = X Zi + i{2(Ti) - (T)} 

whence, defining ,uO = E(log Z1), gU = log 0 + o?, ei = log Zi - Ao and 

A, = log[l + (OZ)-1i{2(Ti+1) - 2(T)}], 

we have 

(5.3) Ui = 0Zi exp( + Ai). 

Put 63(z) = 82(e-z). Then by (4.1), (Si)(z) = O{exp(-/31z)} for i = 1,2, as 
z -- oa. In view of(5.1), exp(-Si) = (i/n){l + Op(i-1/2)} uniformly in 1 < i < 

r, and so, defining pi = (i/n)/1, we have 

2(Ti+l) - M2(Ti) = 63(Si+l) - 83(Si) 

(5.4) = -i1 (S) + o 

Moreover, by (5.1), 

(5.5) 83(Si) = 8%{log(n/i)} + 0,(i-12pi). 

Define ai = - 6(log(n/i)} = (i/n)8 (i/n). Combining (5.4) and (5.5), we de- 
duce that 

82((T7i) - 8,(Ti) = i-1Ziai + Oi-3/2Zi(Zi + 1)pi). 

Therefore, 0Ai = a, + Op{i-1/2(Zi + l)pi + (i/n) }, uniformly in 1 < i < r. 
Now, ai = -( ?/ca2)C-/aD(i/n) + O{(fi/7n)}. Hence, 

(5.6) Ai D1 ,,(i/n)3 + O(i-1/2(Z + l)pi + (i/n) 

uniformly in 1 < i < r, where D1 = -( P/a)C-,/aD. Substituting (5.6) into 
(5.3) we see that 

(5.7) Ui = 6Zi exp{D,(i/n)8 l} + Op{i- /2Zi(Zi + l)pi + (i/n)?, 

uniformly in 1 < i < r. 
From this point it is convenient to write Au, D?, 1,8 rather than 7/, D1, P3 

for the true values of ,t, D1, 81 and to write AJ, D,, ,8 for general candidates 
for /J?, Do, 38. In this notation, put A, = y - ?0, AD = (D1 - DO)/D? and 
A= - 13 , and note that Pi = (i/n)6 and ^ = min(2 3, 1). Now, 

D(i/n)P' = {Do + (D - D?)}(i/n)'l exp{(, 1 - 132)log(i/n)) 

= D?(i/n) 
? 

+ D (i/n) {AD + A,, log(i/n)} 

+ O[(i/n)12{AD + (A,i log n)2}], 
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uniformly in 1 < i < r. Therefore, by (5.7), 

(5.8) Vi - Ui expf{-D,(i/n) 1} 

= OZ,{1 - D p,(AP + Ali,)} + Op{Qi(D1, pi)}, 

Vi(i/n) 1 = OZi Pipl - p(A + i)} + OZ,i{(i/n)1 - Pij 
+ OptpiQi(D1, 8P)} 

uniformly in 1 < i < r, where ii = log(i/n) and 

Qi(D1, 8) = -1/2Zi(Z + l)Pi + (i/n) + p ?i + (A log n)2 

For j = 1, 2, let Bj equal the average over 1 < i < r of the left-hand sides 
of (5.8) and (5.9), respectively, and let B3 equal the average over 1 < i < r of 
the left-hand side of (5.9) multiplied by li. Let Z, pZ and pmZ equal the 
averages of Zi, PiZi and p,m,Zi, respectively, over the same range. Put I = 1, 
and mi = log(i/r), and observe that li = 1 + mi. For nonnegative integers k, 
define Tjk= r- i p/mt, and let q = r- 12p + (r/n)6 + p{A2 + (A^ log n)2}. 
In this notation we have, by (5.8) and (5.9), 

r0 B = Z - DT{rioAD + (711 + 17lo)A,} + Op(q), 

0-1B, = pZ - D1T20oAD + (T21 + 
1720)A 

+ r-1 Zi{(i/n)P1 - Pi} + Op( Pq), 

(5.10) 
(5.10) 0-1B = pmZ + IpZ - {(T2 + 20) AD 

+ (22 + 21T21 + 1T20) Ap} 

+ r~1 Zi{(i/n)1 - p,i}l, + OP, pq log n). 
i=l 

Also, 
r r 

b1 r-1 I (i/n)3 = 10 + r1 E (i/n1 - p}, 
i=1 i=l 

r r 

b2 r- 1 E (i/n) 3 log(i/n) = rll + lrT + r- 1 {(i/n)31 - pil,. 
i1= i=l 

Consequently, 

r1bBj = Tio[Z - D{lT0oAD + (T11 + T10o)Ap}] 

+ Zr- 1 E {(i/n) 1- Pi} + OP( pq), 
i=l 

-lb2B = (11 + [ + (lT1o)[ 
- Dot l7O D 711 + 17io)Ap}] 

+ Zr-1 E {(i/n)31 
- pi,li + O,( pq log n), 

i=1 
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whence 

0-1 (bB B) = Z - PZ + D?,[(To - To)AD 

(5.11) +{721 + i20 - 
T10(T11 + lT10o)}A] 

+ O(pq + r-1/2pI\ log n), 

0-1(b2B, - B3) = (711 + 1T10)Z - (pmZ + IpZ) 

+ Do[{721 
+ 

1720 
- 710(T11 + Tlo0)}AD 

(5.12) + ({22 + 21721 + l20 - (11 + I10) 2AJ 

+ Op{pq log n + r-1/2PAl (log n)2}. 

Here we have used the fact that, for j = 0, 1, 

(Z - 1)r-1 E {(i/n)P1 -pi ll =- O{r- l/2plAI(log n)i+1} 
t=l1 

Let M= (mjk) denote the 2 x 2 symmetric matrix with mi1 = T20 - 1Lo, 

m12 = 7T21- T10T11 + 1(720 - T20) and 

m22 = 72 - 711 + 21(721 - T710oT) + 12(20 - 2 711) 

Then, det M = (720 - 710)( 22 -r1) - (21 - To7)2 Define (Wl, W2, 3) = 

E(Z, pZ, pmZ), (WI, W22 W3) = (Z - w, PZ - 2, pmZ - 3), A1 = -ToW - 
W2 and A2 = (11 + 110o)W1 - (W3 + IW2). Let R1, R2,... denote generic 
random variables each of which equals 1 + op(l). In this notation, 

T 
W (det M)(710, ~T 1+ lr10)M-'(A1, A2) 

(5.13) [T10{To(22 
- 

Tl) 
- 

711(T21 
- 

TlOT11)J 

+ Tll(Tll20 
- 

T10T21)Wil 

- 
('Tl(22- l) 

- 
7ll(&21 

- 
10711))W2 

- 
(711T20 

- 
T107T21)W3 

Hence, 

W1 + (det M) 1W 

(5.14) -(det M)- 1{(20722 -7 21 

+(711721 
- 

710722)W2 

+(T10o21- 7-11720)W3) 

Since rj pJKjk as n - oo then the quantity at (5.14) is asymptotically 
Normal with zero mean and variance r-lo12, where (r2 is as defined in 
Remark 4.1. 
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Let p = r-1/2p + (r/n)Y denote the part of q that does not involve AD or 
A,. If, in the quantity on the far left-hand side of (5.13), we replace (A1, A2) 
by 

(A1, A'2) = (A1 + Op(pp), A2 + Op(pp log n)), 

then the net change to the far right-hand side of (5.13) is to add a term Op(t), 
where t = p4p(log n). Hence, the net change to (5.14) is to add a term of size 
(r/nz)(log n)3. We claim that this gives the claimed limit theorem in the case 
of a'. To appreciate why, let AD, A denote the versions of AD, A in which 
Dl, ,81 are replaced by D1, /1, respectively. Note that the function L(D1, /,), 
defined at (2.13), is minimized when b1Bl - B2 = 0 and b2B1 - B3 = 0. 
Therefore, D1, /31 are given asymptotically by the equations formed by 
setting the right-hand sides of (5.11) and (5.12) equal to zero. This shows 
that (A, ,A)T equals -(D)-'1M-l(Al, A2)T [note the appearance of 
M-1(A, A2)T on the left in (5.13)], plus terms that are either negligible or of 
size p-(r/n)A(log n)2. Moreover, our likelihood-based estimator 0 = a-1 of 0 

equals B1 = B1(D, /3), evaluated at (D1, /1). Using the expansion (5.10) of 
B1 we see that 0- 1 equals 

Dl(7o,17T11 + Tlo)(AD,A), 

plus terms that are either negligible or of size (r/n)6(log n)3. [Note the 
appearance of (r10, T11 + r1o) on the left in (5.13).] Hence, by (5.13) (modified 
as suggested earlier), we deduce that 0-1 equals the quantity at (5.14), plus 
a term of size t. The desired central limit theorem for a' follows. 

APPENDIX 

Notes on the data. The data analyzed in Section 3.1 were extracted 
from tables prepared following the census of the Commonwealth of Australia 
on the nights of 3 and 4 April, 1921. See Wickens (1921). As definitions of 
communities we took "Municipalities" for New South Wales, Western Aus- 
tralia and Tasmania, "Cities, Towns and Boroughs" for Victoria, "Cities and 
Towns" for Queensland, and "Corporations" for South Australia. Alternative 
definitions, incorporating sparser communities in rural districts, would in- 
clude data on "Shire" populations in New South Wales, Victoria and Queens- 
land, "District Councils" for South Australia, and "Road Districts" for West- 
ern Australia. However, our choice appears to reproduce exactly the data 
presented graphically by Zipf [(1949), page 439]. 

The populations of the two internal territories in 1921, the Federal Capital 
Territory and the Northern Territory, were not tabulated by Wickens (1921) 
in a form which is readily comparable with that for the states, although 
detailed geographic distributions were given. We judged from the latter that 
the territories did not include any communities with populations exceeding 
2000 and so did not include them in our data set. 
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Explanations alternative to those of Zipf (1941, 1949) are possible for 
nonlinear plots of log-community size against log-rank. They include the 
hypothesis that the data are drawn from mixtures of Pareto distributions. For 
example, the distribution of Australian community sizes in 1921 would have 
reflected the strictures of development in six largely autonomous British 
colonies, which had been federated into a "mixture" only 20 years previously. 

Acknowledgment. We are particularly grateful to Ms. R. Boyce for 
obtaining the Australian population data used in Section 3. 
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