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Abstract: Due to the challenges brought by field measurements to estimate the aboveground biomass
(AGB), such as the remote locations and difficulties in walking in these areas, more accurate and
cost-effective methods are required, by the use of remote sensing. In this study, Sentinel-2 data were
used for estimating the AGB in pure stands of Carpinus betulus (L., common hornbeam) located in the
Hyrcanian forests, northern Iran. For this purpose, the diameter at breast height (DBH) of all trees
thicker than 7.5 cm was measured in 55 square plots (45 × 45 m). In situ AGB was estimated using
a local volume table and the specific density of wood. To estimate the AGB from remotely sensed
data, parametric and nonparametric methods, including Multiple Regression (MR), Artificial Neural
Network (ANN), k-Nearest Neighbor (kNN), and Random Forest (RF), were applied to a single
image of the Sentinel-2, having as a reference the estimations produced by in situ measurements
and their corresponding spectral values of the original spectral (B2, B3, B4, B5, B6, B7, B8, B8a,
B11, and B12) and derived synthetic (IPVI, IRECI, GEMI, GNDVI, NDVI, DVI, PSSRA, and RVI)
bands. Band 6 located in the red-edge region (0.740 nm) showed the highest correlation with AGB
(r = −0.723). A comparison of the machine learning methods indicated that the ANN algorithm
returned the best ABG-estimating performance (%RMSE = 19.9). This study demonstrates that simple
vegetation indices extracted from Sentinel-2 multispectral imagery can provide good results in the
AGB estimation of C. betulus trees of the Hyrcanian forests. The approach used in this study may be
extended to similar areas located in temperate forests.

Keywords: aboveground biomass; estimation; remote sensing; Sentinel-2; Iran; multiple regression;
artificial neural network; k-nearest neighbor; random forest; performance

1. Introduction

Forests are an essential component of the carbon cycle, as they are both storing and
releasing carbon through their biomass into the atmosphere. Globally, forest ecosystems
contain approximately 80% of the aboveground and 40% of the underground biomass [1].
Knowledge on the amount of biomass and carbon storage is essential for forest man-
agement and planning [2]. Quantifying biomass availability in the forests through field
measurements is commonly resource-intensive. Remote sensing techniques integrated
with geographic information systems (GISs) provide quick access to useful information,
typically available for short cycle times and at lower costs [3]. Combining remotely sensed
data with nonspectral ancillary data such as those produced by field sampling has been
suggested by many studies as a way to reach better estimates [4]. A variety of remotely
sensed data, such as those coming from Landsat, Sentinel, Spot, and ALOS missions, have
been used to estimate the volume of wood and biomass stocked in the forests [5–13].
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Aboveground biomass (AGB) estimation methods include field measurements and
remote sensing approaches [14,15]. There are mainly two methods used in field measure-
ment to estimate the AGB, namely destructive (harvesting) and nondestructive methods.
Although the destructive method is useful and accurate in developing equations for the
assessment of aboveground biomass over larger areas, it is often constrained to few trees,
being time consuming, difficult to implement, and expensive [16]. A nondestructive
method is an alternative to estimate the AGB. It is implemented either by climbing to make
measurements in different tree parts or, more commonly, by measuring the diameter at the
breast height (DBH) and tree height; other options include the estimation of volume and
density using allometric equations or remote imagery [17,18]. As a nondestructive method,
remote sensing is based on previously developed allometric equations.

The techniques used for estimating the AGB of forests based on remotely sensed data
can be divided into two categories, namely those using parametric (statistical regression
methods) and nonparametric algorithms, respectively [7]. Nonparametric techniques,
including Machine Learning (ML) algorithms such as the k-Nearest Neighbor (kNN),
Artificial Neural Networks (ANNs), and Random Forests (RFs), were found to hold a better
ability of identifying complex relations between the used predictors and the AGB [7,19].
For instance, ANNs are being considered to be important nonparametric algorithms for
estimating forest-related parameters [20]. In addition, the kNN algorithm has received
considerable attention because it is easily accessible, and some literature reviews have
shown that it holds an excellent capability to increase the precision when estimating
vegetation parameters [21–23]. RF regression algorithms have also been widely used for
quantifying forest biophysical parameters [5,24–26], standing for an ensemble learning
algorithm with applications in classification and regression problems. The RF algorithm
was developed by Breiman [27] and can be used to predict continuous and categorical
dependent variables. A random subset of observations with replacement, as well as a
random set of explanatory variables, are used to build each regression tree [28].

Traditionally, in any part of the world, AGB is estimated by destructive methods,
which are used to develop allometric equations based on measured parameters collected
from harvested trees (e.g., DBH, tree height, and timber volume) [29]. However, applying
allometric equations across a large study area is cumbersome and sometimes impractical as
the field measurement input parameters are rare and sometimes unavailable. In comparison,
remote sensing techniques can provide large-scale and accurate biophysical information
for forest inventory data. Hence, remote sensing data combined with machine learning
techniques (i.e., parametric and nonparametric algorithms) have been widely used to
estimate forest AGB in the past decade. For example, Muukkonen and Heiskanen [30]
predicted the AGB in boreal forests using ANNs applied to ASTER (Advanced Spaceborne
Thermal Emission and Reflection Radiometer) data. IRS P6 LISS-III (Indian Remote-Sensing
Satellite-P6 Linear Imaging Self-Scanning Sensor-3) data were used by Yadav et al. [31] to
estimate the AGB in the Timli forests of India. In their research, the kNN method based on
Mahalanobis distance outputted a RMSE of 42.25 Mg/ha, while the distance metric used
was found to be best, being followed by the fuzzy and Euclidean distances, with RMSE of
44.23 Mg/ha and 45.13 Mg/ha, respectively. Lu et al. [32] showed that the estimation of
AGB in Amazon forests using Landsat-5 TM data is more accurate in young than in mature
stands. Ronoud et al. [33] found that the Landsat-5 TM NIR (near-infrared) band exhibited
the highest correlation with AGB (r = 0.427). Several studies have used Sentinel-2 data
to estimate AGB in various ecosystems, including semiarid [34], Mediterranean [35,36],
temperate [7,37,38], tropical [37,39,40], subtropical [41,42] and boreal [43,44] forests, and
grasslands [45]. For example, Chrysafis et al. [46] compared Sentinel-2 MSI (MultiSpectral
Instrument) and Landsat-8 OLI (Operational Land Imager) imagery for forest growing stock
volume (GSV) estimation in a mixed Mediterranean forest in northeastern Greece. GSV was
modeled using RF regression based on spectral bands and vegetation indices. They have
shown that to estimate the AGB, Sentinel-2 data with an R2 = 0.63 and RMSE = 63.11 m3/ha
were better than Landsat-8 OLI data with an R2 = 0.62 and RMSE = 64.40 m3/ha. According
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to Castillo et al. [37], red and red edge bands produced by Sentinel-2 data combined with
elevation data provided the best estimates of AGB in Philippine’s mangrove forests when
using machine learning methods. Nuthammachot et al. [47] assessed the potential of seven
vegetation indices derived from Sentinel-2 images for estimating the AGB in a private forest
of Indonesia. They found that, among other indices, including the Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Modified Simple Ratio (MSR),
Simple Ratio (SR), Sentinel-2 Red-Edge Position (S2REP), and Greenness Normalized
Difference Vegetation Index (GNDVI), the Normalized Difference Index (NDI45) exhibited
the strongest correlation with AGB (r = 0.89, R2 = 0.79). In addition, they found that the
NIR spectral band of the Sentinel-2 was the most effective variable in retrieving forest
standing volume when using the kNN algorithm. They estimated the standing volume
with a relative RMSE of 22.94%. Research by Pandit et al. [42] evaluated the usefulness
of Sentinel-2 data for estimating the AGB in protected forests from Nepal using the RF
algorithm. The effect of the number of input variables, including spectral band values
and spectral-derived vegetation indices on the AGB prediction, was also investigated. The
model using all spectral bands, in addition to the derived vegetation indices, provided
better AGB estimates (R2 = 0.81 and RMSE = 25.57 t/ha). Vafaei et al. [48] assessed ALOS-2
(Advanced Land Observing Satellite 2) and Sentinel-2 data for AGB estimation in the
Asalem forests of Iran using four machine learning methods, namely the Gaussian process
(GP), support vector regression (SVR), RF, and Multi-Layer Perceptron Neural Networks
(MLP Neural Nets, MLP NNs). In their study, a SVR model using combined Sentinel-2
spectral information (including blue, green, red, and NIR bands) and six vegetation indices,
namely SVI (Simple Vegetation Index), RVI (Ratio Vegetation Index), NDVI (Normalized
Difference Vegetation Index), EVI-2 (Enhanced Vegetation Index 2), PVI-2 (Perpendicular
Vegetation Index 2), and SAVI (Soil Adjusted Vegetation Index) based on ALOS-2 PALSAR2
(Advanced Land Observing Satellite 2, Phased-Array-type L-band Synthetic Aperture
Radar 2) imagery, HH (horizontal transmit and horizontal receive), HV (horizontal transmit
and vertical receive), VV (vertical transmit and vertical receive), and VH (vertical and
horizontal receive), yielded the best performance to estimate the forest AGB.

Data saturation often causes problems in estimating forest AGB when dealing with
high amounts of biomass or high-canopy-density areas [49]. This problem was addressed by
combining Sentinel-2 and ALOS2-PALSAR2 data [48]. The studies mentioned above, which
evaluated the utility of remotely sensed data for estimating the forest standing volume
and AGB, do not show consistency in performance and outcomes, due to the variety of
forest conditions, satellite data used, applied methodology, and due to the inherent, specific
limitations of each study.

In Iran, an area of ~10.7 million hectares is covered by forests accounting for ca. 7.4%
of the country’s territory [50]. Hyrcanian forests are the most important forests among
the five vegetation regions in Iran due to the density, canopy cover, and diversity in this
ecoregion [51,52]. They cover ~2 million hectares and are located on the south coast of the
Caspian sea [53]. For these forests, management plans are updated in terms of qualitative
and quantitative attributes every ten years, in which collecting data and information are
time-consuming and cost-intensive. In contrast, remotely sensed imagery holds a promising
potential for monitoring and continuously predicting forest attributes. In conjunction with
satellite data, field data can be used to create a continuous map of forest attributes through
classification or regression. Therefore, forest attributes have been estimated from remote
sensing data with various spatial resolutions, ranging from very high to medium.

To the best of our knowledge, this is the first study attempting to estimate the AGB
by the use of remotely sensed data and machine learning algorithms in pure common
hornbeam (Carpinus betulus L.) forests, as a typical forest type in the temperate forest region
of many European and Asian countries. This study was guided by the above mentioned,
as well as the fact that pure stands of common hornbeam are distributed from 200 to 1800
m a.s.l., from the western part, characterized by a very humid climate, to the eastern part
of the Hyrcanian region, which is characterized by a humid climate [54]. Accordingly,



Forests 2022, 13, 104 4 of 18

this study aimed to evaluate the usefulness of Sentinel-2 imagery and several machine
learning algorithms for estimating the AGB of C. betulus forests located in the Patom and
Namkhane districts of Kheyrud forest, Northern Iran. The objectives of the study were
the following: (i) comparing the performance of different AGB estimation approaches
including parametric (i.e., Multiple Regression—MR) and nonparametric algorithms (ANN,
kNN, and RF), and (ii) investigating the potential and capability of Sentinel-2 imagery in
improving the accuracy of the AGB estimation under the given conditions of the study.

2. Materials and Methods
2.1. Study Site

The study area is located in the Kheyrud forest as part of the mountainous deciduous
forests of the Hyrcanian ecoregion, north of Iran (longitude: 51◦34′53′ ′ to 51◦35′28′ ′ E
and latitude: 36◦36′14′ ′ to 36◦35′28′ ′ N). Kheyrud forest covers a total area of ~8000 ha,
and it is a natural and mature forest with uneven-aged and dense to semi-dense stands
consisting of seven management districts. Two study sites were selected in Patom and
Namkhane districts (Figure 1). The elevation of the selected areas ranges from 480 to
630 m a.s.l. in Patom and from 950 to 1110 m a.s.l. in Namkhane district. According
to the Nowshahr synoptic station [51,55], the climate of the area is sub-Mediterranean
with an annual temperature averaging 9 ◦C and a total annual precipitation of 1300 mm.
Tilio-buxetum, Querco-carpinetum, Fageto-carpinetum, and Rusco-Fagetum are the main
forest communities in the Patom district. Namkhane district contains forest communities
of Querco-carpinetum, Fageto-carpinetum, Fagetum mixed, and Fagetum-hyrcanum [34].
Sample plots were selected on flat areas, in pure stands of C. betulus to minimize the spectral
interference of other species [56]. The stock of C. betulus stands based on our plot-level
measurements ranged from 174 to 470 m3 ha−1.
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Figure 1. The geographic location of the study sites.

2.2. Remote Sensed Data and Data Preprocessing

Sentinel-2 satellite data (dated 17 July 2016) were obtained from the US Geological
Survey (USGS) website (https://earthexplorer.usgs.gov/; accessed on 25 March 2017) and
used for AGB estimation. Sentinel-2 carries the Multispectral Imager (MSI) that delivers 13
spectral bands with a spatial resolution ranging from 10 to 60 m. Sentinel-2 10 m spatial
resolution bands including B2 (490 nm), B3 (560 nm), B4 (665 nm), and B8 (842 nm), and 20

https://earthexplorer.usgs.gov/
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m spatial resolution bands of B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610
nm), and B12 (2190 nm) were used for analysis. The three 60 m bands (bands 1, 9, and 10),
which are mainly focused toward cloud screening and atmospheric correction [57], have
not been taken into consideration in this study. The digital topographic maps available at a
scale of 1:25,000 and provided by the National Cartographic Center (NCC) of Iran were
used to evaluate the geometric accuracy of the satellite image, which was evaluated based
on road features extracted from topographic maps.

The sixth version of the Sentinel Application Platform (SNAP) software developed
by the European Space Agency (ESA) was used to process the Sentinel-2 data. A visual
assessment of radiometric quality was also performed concerning the presence of cloud
cover, a scanning line, and duplicated pixels. Then, the two well-known processing
methods, namely Principal Component Analysis (PCA) and the spectral band ratio, were
applied to all original spectral bands of the images. Table 1 describes the vegetation indices
extracted using band rationing.

Table 1. Vegetation indices extracted from Sentinel-2 data.

Index Equation Reference

Infrared Percentage Vegetation Index (IPVI) NIR 1/(NIR + RED 2) [58]
Inverted Red-Edge Chlorophyll Index (IRECI) (NIR − RED)/(RED/RED) [59]
Global Environment Monitoring Index (GEMI) n 3 × (1 − 0.25 × n) − (RED − 0.125)/(1 − RED) [60]

Green Normalized Difference Vegetation Index (GNDVI) (NIR − GREEN 4)/(NIR + GREEN) [61]
Normalized Difference Vegetation Index (NDVI) (NIR − RED)/(NIR + RED) [62]

Difference Vegetation Index (DVI) NIR − RED [63]
Pigment Specific Simple Ratio (PSSRA) NIR/RED [64]

Ratio Vegetation Index (RVI) NIR/RED [65]

Note: 1 NIR = near-infrared band, 2 Red = red band, 3 n = (2 × (NIR2 − RED2) + 1.5 × NIR + 0.5 × RED)/(NIR +
RED + 0.5), 4 GREEN = green band.

2.3. In Situ Measurements

Field measurements were conducted to estimate the AGB in August 2016, and in
situ data were collected over 55 plots (45 × 45 m; Figure A1) that were navigated by GPS
(Garmin Colorado 300; Olathe, KS, USA). Sample plots were distributed selectively to meet
the homogeneity of plots in terms of species, terrain slope, and aspect due to the diverse
topographic conditions and small extent of pure C. betulus stands over the study sites. The
DBHs of all trees having a diameter greater than 7.5 cm and species were recorded for
each plot. The volume of individual trees was estimated using a local tarif volume table
and aggregated at the plot level. Then, AGB (t/ha) was estimated for each plot using
Equation (1) [66].

AGB = Volume×WD (1)

where Volume is the volume per hectare derived from the local tariff table, and WD (t/m3)
is the wood density. The value of 0.68 t/m3 was used for C. betulus as a WD [67].

2.4. Methods

The flowchart of AGB estimation is shown in Figure 2. Pearson’s correlation was
used to describe the association between AGB and the corresponding spectral values. The
AGB (dependent variable) was modeled based on the remote sensing metrics (independent
variables) using the parametric method of MR, as well as the well-known nonparametric
algorithms of ANNs, kNN [68], and RF [28]. In the MR method, the model was fitted
using all variables (main and synthetic spectral imagery). The suitable remote sensing
variables that had a strong correlation with AGB were identified by the means of backward
elimination and stepwise selection procedures [69]. Before implementing the MR, the
normality of the dataset was evaluated using the Kolmogorov—Smirnov test [70].
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Typically, the ANN contains a large number of interconnected nodes and uses mathe-
matical algorithms to model nonlinear problems such as modeling the forest biomass. The
MLP (MultiLayer Perceptron) NN model is one of the most commonly used neural network
algorithms for environmental modeling, monitoring, mapping of forests, and estimating
the forest biomass [69,71,72]. The typical architecture of the MLP NN consists of at least
three layers and includes the input, hidden, and output layers. Each layer is composed of
several nodes or neurons. The number of neurons used in the input layer was that of the
number of input explanatory variables. A significant influence on the performance of the
MLP NN model is given by the connection weights between the input and hidden layers, as
well as the connection weights between the hidden and output layers. Nonetheless, there
is no rule that allows previous decisions to determine the number of neurons in the hidden
layer or the number of hidden layers. Some have reported that an insufficient number of
hidden neurons made the network learning difficult [73], whereas an excessive number of
hidden neurons might lead to unnecessary training time [74]. Therefore, the commonly
used strategy to reach the optimum number of neurons in the hidden layer is by trial
and error [75]. The output layer contained one neuron and was used to output estimated
values of the AGB. The weights assigned at the connections between the input, hidden, and
output layers were updated in the training phase and were based on a back-propagation
algorithm [76] that minimized the differences between the AGB value estimated by the
MLP NN and that produced from AGB in situ inventories. The process was repeated until
reaching a predefined accuracy level or the maximum number of iterations.

To develop the architecture of the MLP NN model, in this study, the number of selected
hidden neurons was significantly impacting the estimation of AGB [72], as defined by [77].
As a result, by varying the number of neurons against the root-mean-square error (RMSE)
based on the data contained in the training dataset, the best MLP NN models were reached.
These best models were described by the highest R2 and the lowest RMSE. Accordingly, the
best MLP NN model was found to be that characterized by two hidden layers containing
four neurons in the first and two neurons in the second layer. The model was trained using
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70% of the dataset, and the remaining data (30%) were split in half for validation (15%) and
testing (15%). The steps described above were implemented in the Statistica software (Ver.
10).

For the kNN algorithm, the choice of the k value, distance metric, and weighting
function are critical factors affecting the estimation accuracy [32]. The model performance
was tested by the use of k values from 1 to 40 to find the optimum one for implementing
the kNN algorithm [23,78]. Moreover, for an efficient comparison of the distance metrics in
the kNN implementation, the four distance metrics available in Statistica software (StatSoft.
Inc., Tulsa, OK, USA), including the Euclidean, squared Euclidean, Manhattan (city block),
and Chebychev distances (Equations (2)–(5)), were used, and their results were compared
against each other [78].

The most frequently used distance metric is the Euclidean distance, standing for
a simple geometric distance in a multidimensional space [79]. In the case of squared
Euclidean distance, the distance between the target and reference units would be squared
to give progressively greater weights to data points that are closer or more similar. Absolute
distances are considered when using the Manhattan distance metric, although the effect of
single large differences (i.e., outlier data) is dampened whether they are not squared [79].
The absolute magnitude of differences between coordinates of a pair of data points was
examined by Chebychev’s distance metric. This metric can be used for both ordinal and
quantitative variables and it is appropriated when one would like to term two data points
as “different” if they are different on any one of their dimensions.

D(x, p) =

√
(x− p)2 (2)

D(x, p) = (x− p)2 (3)

D(x, p) = abs(x− p) (4)

D(x, p) = max(|x− p|) (5)

where D is the distance between the target and reference units, x is the target unit, and p is
the reference unit in all equations. The squared Euclidean distance is the most commonly
used distance metric among the four mentioned above [78,80–82].

RF is an efficient machine learning algorithm that was developed by Breiman [28],
currently being used for classification and regression problems. Typically, its use yields
high accuracy, being robust in finding outliers and noise, computes quickly, and shows
the relative importance of the input variables [83]. A bagging algorithm [84] is used to
generate n sub-datasets (which is called a bootstrap dataset) from the training dataset. By
the Classification And Regression Tree (CART) algorithm, each bootstrap dataset is used to
construct a base-decision tree [85]. Finally, the RF model is generated by grouping base-
decision trees to form a forest. Two-thirds of the total samples from the training dataset,
called “in bag” data, should be contained in these bootstrap datasets. Approximately one-
third of observations (out-of-bag, OOB) are used to evaluate the RF model [86]. The number
of base-decision trees should be selected carefully because the RF model’s performance
depends on this parameter. In this study, 500 base-decision trees were selected to ensure
the stability of the RF model’s results, as suggested by Stevens et al. [87], and they were
used to produce a graph showing the average squared error rates against each number
of trees for training and testing samples, as a robust analytical tool to explore data and to
verify the optimal number of trees within RFs. In such graphs, the optimal number of trees
is determined based on the number of trees that produces a stable error [55]. Following
this, we repeated the RF implementation using this optimal number of trees and other fixed
parameters.

2.5. Statistical Analysis and Modeling Performance

PCA analysis was used in this study to identify the main components and to help
analyze a subset of features by a dimensionality reduction. PCA is widely used to eliminate
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waste data in remote sensing studies [88]. In this study, PCA was computed from the
bands of the Sentinel-2 image, and it was used for AGB modeling by the means of Statistica
(version 10) software. The first component of all bands, except band 10, was included in the
PCA analysis. In addition, a sensitivity analysis was used to determine the most effective
model parameters [89].

Model testing and validation was performed by using 30% of all observations. The
estimated performance metrics of the models were developed in the form of statistics
such as the root-mean-square error (RMSE), relative RMSE (%RMSE), which were also
used to choose the best model, adjusted coefficient of determination (R2

adj), and standard
error of estimates (SEE). R2

adj and SEE were calculated only for regression models, while
RMSE and relative RSME were used to evaluate the performance of both parametric and
nonparametric models (Equations (6)–(9)).

RMSE =

√√√√√ n
∑

n−1
(AGB− AGBi)

2

n
(6)

%RMSE =
RMSE× 100

y
(7)

R2
adj = 1− (1− R2)(N − 1)

N − p− 1
(8)

SEE =
σ√
n

(9)

where AGB and AGBi stand for the estimated and observed AGB per plot, respectively, n is
the total number of samples, y is the average of the testing phase data, R2 is the coefficient
of determination, N is the number of samples, p is the number of predictor variables, and σ
is the standard deviation.

3. Results

Based on the in situ measurements, the minimum, maximum, and mean values of the
AGB for C. betulus stands were estimated at 118, 320, and 210 t/ha, respectively, with a
standard deviation of 60 t/ha (Figure 3; Table A1); there was a high variance (3588 t/ha),
indicating that the data were spread out from the mean, and from one another (Table A1).
The results of the normality test indicated a normal distribution of both in situ and remotely
sensed data. Based on Pearson’s correlation coefficient, a negative association was found
between spectral information and in situ AGB (Table 2). Band 6 of the Sentinel-2 data
outputted the highest correlation with in situ AGB (r = −0.723; Table 2).
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Figure 3. The value of the aboveground biomass for each plot. The red line shows the mean value of
aboveground biomass (AGB) at the study level.
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Table 2. Pearson’s correlation coefficient (r) between spectral information and the aboveground
biomass (AGB).

Variable r Variable r

B2 −0.519 ** IPVI −0.506 **
B3 −0.541 ** IRECI −0.567 **
B4 −0.580 ** GEMI −0.666 **
B5 −0.515 ** PC1 1 −0.686 **
B6 −0.723 ** GNDVI −0.322 **
B7 −0.682 ** NDVI −0.506 **
B8 −0.691 ** DVI −0.682 **

B8a −0.674 ** PSSRA −0.425 **
B11 −0.716 **

RVI −0.510 **B12 −0.594 **

Note: ** Significance level: 0.01, 1 PC1 = first component of PCA.

The result of the AGB prediction using MR indicated that the backward elimination
procedure (R2

adj = 0.65, %RMSE = 24.72) outperformed the linear regression that used all
the variables, as well as the stepwise regression model (Table 3).

Table 3. Performance of the best parametric models for estimating the AGB.

Regression
Method SEE R2 R2

adj %RMSE Variable

Multiple 40.35 0.757 0.588 29.72 All variables
Stepwise 42.89 0.547 0.535 30.99 B6

Backward 35.73 0.722 0.650 24.72 B2, B4, B5, B6, B7, B11, PCA,
GNDVI, NDVI, PSSRA, IRECI, DVI

Table 4 shows the performance of the kNN models that included all the variables and
used four distance metrics (Euclidean, Squared Euclidean, Manhattan, and Chebychev).
The best distance metric for the kNN algorithm was the Manhattan distance, which returned
the lowest %RMSE and the highest R2 (Table 4).

Table 4. Performance of aboveground biomass estimates using the kNN algorithm.

Range of k Distance Metric R2 %RMSE The Optimal k Value

1–40 Euclidean 0.67 23.90 27

1–40 Squared
Euclidean 0.72 22.94 29

1–40 Manhattan 0.73 21.85 25
1–40 Chebychev 0.67 23.87 24

The ANN fitted by a MLP NN model with an input layer containing all variables
and two hidden layers produced a relative RMSE of 19.93% during the validation phase
(Table 5). The sensitivity analysis indicated that PC1 was the most effective variable for
estimating AGB.

Table 5. Training and validation results of the aboveground biomass (AGB) using the MLP NN and
RF models.

AGB Model
Training Dataset Validation

R2 %RMSE R2 %RMSE

MLP NN 0.89 8.79 0.65 19.93
RF 0.69 19.52 0.60 22.55
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As mentioned before, the performance of the RF algorithm depends on choosing the
optimal number of trees and numbers of predictors (k) in each node for producing a good
response in estimations. For instance, Figure 4 shows the average squared error rates
against the number of trees used for AGB estimation when using RF during the training
and testing phases. The optimal number of trees is assigned to the point where the error rate
does not change by increasing the number of trees (Figure 4). The improvement in accuracy
was slow after about 220 trees; therefore, this number was used as a good estimation for
an optimum number to use (Figure 4). Based on the variable importance value obtained
from the sensitivity analysis, spectral band 6 of Sentinel-2 was the most effective variable.
In this study, the best RF model estimated AGB with a relative RMSE of 22.55% for k set at
6 (Table 5).
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4. Discussion

Previous studies have found that remote sensing-based models for AGB estimation
are more accurate than empirical-based and GIS-based models [32]. In this study, Sentinel-2
data were used to estimate the AGB in pure stands of C. betulus in a part of the Hyrcanian
forest, Iran. A total of 19 variables, including original spectral bands, vegetation indices,
and the first principal component of PCA (applied to all original bands), were used for
estimation. In situ AGB was found to be negatively correlated with all variables. The
highest correlation was between the AGB and the two spectral bands located at the red
edge (0.731–0.749 nm wavelength) and shortwave infrared (1.539–1.681 nm wavelength),
with values of R2 of −0.723 and −0.716, respectively. The negative correlation between
biomass and spectral values has been discussed in many studies [9–11,90], expected to be
caused by the canopy shadowing of trees, canopy size, stand volume and density, and
consequently, by a more complex vertical structure of the forests. Shadowing is a factor
influencing the reduction in spectral reflectance of forests [91]. In addition, the fraction
of vegetation cover (FVC) of the ground at the pixel level is another reason affecting the
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radiation behavior at the canopy level, particularly in taller stands [92,93], which was the
case of forests from this study.

The higher spectral radiances of low-density forests characterized by less biomass can
be partially explained by a smaller amount of shadows resulting in a higher contribution
of the soil to the spectral radiance [12,91]. The age of the studied stands could be another
reason for the negative correlation between the amount of AGB and their corresponding
spectral values [13,94]. At higher ages, which was the case of this study, the size of the
canopy is rising [95], which increases the canopy surface area, size, and number of holes in
the canopy [8,94]. Increasing the canopy surface area can reduce the amount of reflection
due to the holes created in the tree crowns that is causing the electromagnetic waves to
spread through the crown and reduces reflection [94]. In addition, as the age of the trees
increases, their requirements for water will increase. As the amount of water increases
in the leaves, it will absorb electromagnetic waves and will thus reduce reflection. Fur-
thermore, as the age of the forest stands increases, the number of stories usually develops,
causing more propagation of the electromagnetic waves and ultimately a reduction in
spectral reflection [10,96]. On the other hand, a positive correlation between biomass and
spectral reflectance was reported by different researchers [33,47] and explained by specific
characteristics of the study site such as the vertical structure of forest stands, canopy cover
percentage, forest health and vitality, species composition, and soil properties. In this study,
we found that the relatively strong correlation between AGB and B6, though negative,
preserved the presence of this variable in the backward and stepwise regression models
(Table 3).

Our results indicated that nonparametric models performed better than MR, and the
best result was obtained when using an ANN that outputted a relative RMSE of 19.93%.
This is in agreement with the findings of Vafaei et al. [48] (relative RMSE = 19.17%) and close
to those of Gao et al. [19] (relative RMSE = 28.8%). The ability to learn during training and
to generalize on new datasets makes ANN more powerful and flexible than MR [7,97]. Past
research has suggested that whenever an insufficient number of sample plots is available,
parametric models can result in a poor performance, while nonparametric models may lead
to more accurate predictions [98]. The ANN, as a nonparametric mathematical model, is
conceptually similar to biological neural networks and holds excellent linear and nonlinear
fitting capabilities [7]. Nevertheless, this is mainly due to the fact that the nonparametric
models are able to handle nonlinear relations between variables from multiple sources [34].
By comparing the performance of algorithms for forest AGB estimation on ALOS PALSAR
and Landsat data, Gao et al. [19] concluded that ANN performed better than RF. For
the temperate forest of China, Chen et al. [7] concluded that ANN was most accurate in
assessing the biomass of broadleaved deciduous forests as opposed to regression, SVR,
and RF algorithms. As shown by this study, the higher performance of nonparametric
algorithms could be due to the complex relations established between AGB and remote
sensing variables, which are difficult to understand and explain by parametric algorithms.
In addition, nonparametric algorithms are more flexible, by removing some limitations
such as the hypotheses on data distribution and the functional form of the mathematical
relation between independent and dependent variables. For instance, Lu et al. [32] believed
that nonparametric algorithms are more adapted in creating complicated nonlinear biomass
models because they do not explicitly predefine the model structure but determine it in a
data-driven manner.

As in many other studies, addressing data uncertainty is important. In this study, data
uncertainty may be associated with the GPS errors in locating the sample plots, possible
errors of the local volume table, the inappropriateness of the available allometric models
to calculate the AGB, and spectral interference of other species that existed in the plots.
In addition, optical data produced by the Sentinel-2 mission cannot penetrate the forest
canopy, preventing it from capturing information about wooden understories. On the
one hand, extending the canopy surface will increase the size and number of holes in the
canopy. Tree growth will increase in terms of volume, so trees will make a shadow that will
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cause a reduction in reflection [99]. On the other hand, spreading water on the leaves and
increasing the water availability will also reduce the reflectance [99].

Many studies have indicated that integrating multisensor information from optical,
radar, and lidar platforms can improve biomass estimation accuracy [32,100]. Further-
more, to improve the estimation of AGB by Sentinel-2 optical data, some points must
be considered. Due to the fact that vegetation cover and trees with DBHs less than 7.5
cm are not typically considered in the calculation of the stand volume, studies should be
carried out in areas without vegetation cover and small trees, or they should be carried out
during the time of year when the vegetation cover is missing. The amount of reflection
during the year varies due to the changes in the color of the leaves, water availability, and
changes in stand structure; therefore, in situ measurements should be performed close
to the time of satellite image acquisition. In addition, further studies should be carried
out to clarify the effects of water availability, saturation, canopy cover, vegetation cover,
and undergrowth vegetation on the canopy reflectance in a continuum of canopy closure.
As one characteristic of our study was the limited number of plots that provided data for
modeling and assessment, further studies should be carried out to check the effect of field
sampling effort on the improvements in accuracy of the estimates, as one option. Another
option would be using a leave-one-out cross-validation (LOOCV) procedure to improve the
results [101]. Nevertheless, the approach described herein was commonly used in previous
studies [102–105].

5. Conclusions

According to this study, freely available, high-spatial, -temporal, and -resolution
multispectral Sentinel-2 data are suitable for estimating C. betulus AGB at a small scale
over large areas. Our findings showed that in situ AGB is negatively correlated with 19
variables (original spectral bands, vegetation indices, and the first principal component of
PCA) extracted from Sentinel-2 data. This negative association was expected to be caused
by an increased canopy shadowing of trees, canopy size, stand volume and density, and
consequently, a more complex vertical structure. We conclude that nonparametric models
(ANN, kNN, and RF) performed slightly better than MR to estimate AGB, because these
models are able to account for nonlinear relations between the forest features and AGB.
From the group of nonparametric models tested in this study, the use of ANN returned
the best result. Therefore, Sentinel-2 data stand as an important information source for
assessing and monitoring forest biomass at local and regional scales in complex forest
stands. In addition, the efficiency of the models used in this study can inform the selection
of predictive mapping techniques for forest AGB modeling.
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Figure A1. Map of Iran (a); location of sample plots in Patom and Namkhaneh district (b); location of
sample plots over the Sentiel-2 image (c).

Table A1. Number of trees, mean value of DBH, volume, and AGB estimation per sample plot.

Plot No. Number of
Trees

Mean Value of
DBH (cm) Volume (m3/ha) AGB (t/ha)

1 36 39 326 221
2 46 41 439 298
3 46 41 399 271
4 48 39 463 315
5 57 37 316 215
6 70 32 463 315
7 45 35 292 198
8 56 30 420 286
9 88 30 353 240
10 32 50 305 208
11 30 35 390 266
12 42 30 236 160
13 60 22 174 118
14 97 20 366 249
15 88 20 190 129
16 94 24 273 185
17 87 30 284 193
18 60 27 240 163
19 61 26 229 155
20 95 23 260 177
21 81 23 188 128
22 92 26 224 152
23 72 26 337 229
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Table A1. Cont.

Plot No. Number of
Trees

Mean Value of
DBH (cm) Volume (m3/ha) AGB (t/ha)

24 62 35 183 124
25 52 27 234 159
26 61 32 403 274
27 42 46 385 262
28 26 44 304 207
29 32 53 184 125
30 29 41 234 159
31 36 31 470 320
32 30 36 295 201
33 40 33 428 291
34 40 44 338 230
35 27 40 261 178
36 45 34 338 230
37 38 32 189 128
38 48 32 240 163
39 55 38 189 128
40 35 28 461 314
41 50 42 358 244
42 34 30 368 250
43 29 40 272 185
44 36 34 276 188
45 66 47 304 207
46 28 34 452 307
47 57 41 338 230
48 29 36 307 209
49 45 34 218 148
50 50 43 319 217
51 49 43 344 234
52 47 31 278 189
53 55 31 207 141
54 75 29 175 119
55 61 21 446 303

Minimum 26 20 174 118
Maximum 97 53 470 320

Mean 52.58 33.96 308.45 209.73
Variance 397.62 59.85 7752.70 3598.24

Standard Deviation 19.94 7.74 88.05 59.99
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