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Abstract

Savannah regions are predicted to undergo changes in precipitation patterns according to

current climate change projections. This change will affect leaf phenology, which controls

net primary productivity. It is of importance to study this since savannahs play an important

role in the global carbon cycle due to their areal coverage and can have an effect on the

food security in regions that depend on subsistence farming. In this study we investigate

how soil moisture, mean annual precipitation, and day length control savannah phenology

by developing a lagged time series model. The model uses climate data for 15 flux tower

sites across four continents, and normalized difference vegetation index from satellite to

optimize a statistical phenological model. We show that all three variables can be used to

estimate savannah phenology on a global scale. However, it was not possible to create a

simplified savannah model that works equally well for all sites on the global scale without

inclusion of more site specific parameters. The simplified model showed no bias towards

tree cover or between continents and resulted in a cross-validated r2 of 0.6 and root mean

squared error of 0.1. We therefore expect similar average results when applying the model

to other savannah areas and further expect that it could be used to estimate the productivity

of savannah regions.

Introduction

Leaf phenology of savannah ecosystems is an important driver of the carbon cycle by affecting

the timing and amount of the primary production at both regional and global scales [1]. Leaf

phenology is a term used to describe natural events such as budburst and leaf fall, and here we

use it to describe the full seasonal cycle of changing leaf states. While the environmental con-

trols on leaf phenology have been shown to vary with geographical region [2], the focus of

most studies has been on temperate ecosystems [3] where temperature and photoperiod dura-

tion are the main controlling variables [4,5]. Few phenological studies have been undertaken in

water-limited ecosystems, such as savannahs, even though they comprise around half of the

world’s terrestrial ecosystems in terms of area [6].
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Savannahs are particularly important because they are populated with societies dependent

mainly on subsistence farming in some parts of the world. This is mainly true for African

savannahs, where harvest loss due to unsuitable weather conditions during (mostly short) wet

seasons can have major effects on food security and economic growth [7]. Apart from their

importance for food production, savannahs play an important role in the global carbon cycle

due to their total areal coverage [8]. However, savannah ecosystem function and phenology are

currently poorly characterized in global vegetation models [9]. For example, in the dynamic

vegetation model LPJ-GUESS [10], savannah trees and grasses are considered to be in full leaf

cover if the ratio between water demand and water supply is above a fixed threshold. As the

vegetation in the model never experiences water stress when in full leaf, this implementation

potentially leads to an overestimation of photosynthesis. This simplified approach also causes

trees and grasses to be in full leaf cover immediately after any sufficiently strong rain event.

This method of representing savannah leaf phenology is similar to other dynamic vegetation

models [11,12] and indicates a need for an improved savannah phenology representation. Pre-

viously, savannah phenology models mainly focused on predicting the onset of the growing

season [13–15] and phenological changes related to rainfall variability [16]. However, Jolly

et al. [2] developed a global phenology model using vapour pressure deficit, temperature, and

day length. Their model produced a growing season index (GSI) that had a high overall correla-

tion with the normalized difference vegetation index (NDVI), however when combined across

multiple sites the model exhibited low correlations between absolute values of NDVI and GSI,

which limits its applicability to other savannah ecosystems in different regions.

In this study, we use satellite-derived NDVI to represent the seasonal cycle of leaf phenol-

ogy. NDVI is a spectral index of vegetation greenness [17], and is commonly used for observing

vegetation seasonality for regions where field data are sparse [18,19]. Advantages of using

remotely sensed NDVI is that it generates quasi-continuous year-round estimates of vegetation

greenness. However, the NDVI signal does not separate trees and grasses. This might pose a

challenge because trees and grass can have different phenological cycles [15], which vary

dependent on species and location. For example, the onset of grass growth has been shown to

be related to water availability, soil moisture, and day length [13,20,21], whereas tree phenology

is influenced mostly by temperature and day length [13,22,23]. This difference in grass and tree

phenology is likely the result of different strategies of when to start developing leaves [13] and

how to use water reservoirs (shallow vs. deep root systems). Furthermore, savannah tree vege-

tation can display different survival strategies and leaf habits between continents. For example,

evergreen savannahs in Australia might occur due to different leaf traits compared to other

continents [24]. This shows the knowledge gap in savannah phenology studies regarding the

underlying climatic mechanisms [3] and also indicates that vegetation has developed to use dif-

ferent strategies in different places which can limit a global model that has not been parameter-

ized to take those specific strategies into account.

The objective of this study is to develop a global phenological model explaining climatic

controls on savannah vegetation. This is essential since vegetation generates feedbacks to the

climate system and affects the water cycle, surface albedo, energy fluxes and surface roughness

[3,25]. Thus, improving our ability to model savannah phenology is crucial for evaluating how

projected climate change will influence the length of the growing season, its timing, and pro-

ductivity [26]. Here, we present a global phenological model linking in-situ climate data to leaf

phenology for 15 sites located on four continents. This approach allows the model to be incor-

porated into global vegetation models or used as a prognostic tool to estimate ecosystem green-

ness for savannah sites.
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Methods

Data

We used soil moisture and temperature data for 15 sites located in Africa (10), Australia (2),

Europe (1) and North America (2) (Fig 1, Table 1). The sites were selected using an aridity

index (AI) [27] and we chose for each site the time period with the most complete record

(Table 1). AI is defined as the ratio between average potential evapotranspiration and mean

annual precipitation for the period 1950–2000. Only sites with both tree and grass and classi-

fied as arid (0.03<AI<0.2), semi-arid (0.2< = AI<0.5), or dry sub-humid (0.5< = AI<0.65)

were chosen.

Fig 1. Map showing site locations of study. Sites used for study are located in Africa (10), Australia (2), North
America (2), and Europe (1).

doi:10.1371/journal.pone.0154615.g001

Table 1. Site information.

Name Country Lat Lon Tree Cover (%) Aridity index Soil moisture importance (%)a Reference

Bira Benin 9.82 1.72 32 0.62 32 [28]

Dahra Senegal 15.4 -15.43 6 0.19 57 [29]

Daly Australia -14.16 131.39 96 0.58 35 [30]

Demokeya Sudan 13.28 30.48 12 0.14 62 [31]

Dry River Australia -15.26 132.37 44 0.41 45 [32]

Las Majadas del Tietar Spain 39.94 -5.77 36 0.38 52 [33]

Malopeni South Africa -23.83 31.21 40 0.31 36 [34]

Maun Botswana -19.92 23.59 72 0.24 36 [35]

Mongu Zambia -15.44 23.25 53 0.5 38 [36]

Nalohou Benin 9.75 1.61 8 0.62 42 [28]

Nylsvley South Africa -24.65 28.7 50 0.38 24 [37]

Skukuza South Africa -25.02 31.5 16 0.43 39 [38,39]

Tonzi Ranch USA 38.43 -121 42 0.53 46 [40]

Vaira Ranch USA 38.41 -121 54 0.53 44 [40]

Wankama Fallow Niger 13.65 2.63 12 0.21 54 [41,42]

aSoil moisture importance in modelling phenology as calculated in section 2.3. Importance separated between day length and soil moisture, day length

importance = 100 –soil moisture importance.

doi:10.1371/journal.pone.0154615.t001
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The climate data utilized in this study were in-situ volumetric soil moisture in the layer clos-

est to the surface (usually 5–10 cm) and air temperature. In-situ air temperature was used for a

majority of the site except for Wankama, Bira, Nalohou, and Nylvsley where a global meteoro-

logical dataset was used to derive the air temperature (Water and Global Change (WATCH)

Forcing Data methodology applied to ERA-Interim data (WFDEI) [43]). The long term mean

annual precipitation (MAP) was obtained from site descriptions available or calculated from

the climate data. Day length was calculated using site latitude and date. We included day

length, minimum temperature and soil moisture since it has previously been shown to influ-

ence the leaf phenology of savannahs [13,23]. However, since day length and minimum tem-

perature are known to be correlated we removed minimum temperature as it showed on

average the lowest correlation (r = 0.13) with NDVI.

NDVI was obtained from two MODerate Imaging Spectroradiometer (MODIS) vegetation

index products, MOD13Q1 and MYD13Q1 [44]. Both NDVI products come as 16 day com-

posite data sets. The composite means that the NDVI value for each pixel was recorded on one

day within those 16 days. We used the real acquisition date for the NDVI products, which can

vary between nearby pixels dependent on for example cloud cover. Therefore, to avoid averag-

ing over different acquisition dates, we used a single pixel of NDVI (size 250 m x 250 m) cover-

ing the location for each of the sites. We gap-filled the NDVI data with a linear interpolation

and resampled it to a temporal resolution of 8-days. The NDVI data were finally smoothed to

remove disturbances using a Savitzky-Golay smoothing filter in a similar approach as Jönsson

and Eklundh [45]. In the filtering, the midpoint values were updated using a second degree

polynomial fit applied to a seven time step moving window. Filtered NDVI data were then

checked for large changes to avoid removing valid rapid changes that can be typical for savan-

nahs. If a large change (>0.08 dimensionless NDVI unit) was detected between a data point

and its neighbors in time, that point was instead filtered with a 3-timestep moving window. An

8-day median soil moisture and maximum day length were calculated from the daily climatic

data and matched to the time steps of the NDVI.

Tree canopy cover was estimated using Google Earth imagery by visually inspecting 50 ran-

domly selected points within the 250x250 m NDVI pixel for presence of tree cover. An online

tool (i-Tree Canopy v 6.1,[46]) was used to sample the points, display the Google Earth imag-

ery available during January-February 2015, and identify tree cover. The exact date of the aerial

imagery was not available but assumed to not affect the result since the tree crowns were visible

independent on its leaf cover. Google Earth was used since other tested remote sensing prod-

ucts of tree cover gave some irregularities in the result when compared with site descriptions.

For example MOD44B tree cover [47] indicated a tree cover even at two pure grassland sites

(not used in this study) and was therefore deemed as unreliable for the purpose of our study.

Phenology models

A statistical phenology model was developed and evaluated. Since previous studies have shown

a significant lag between climatic events and vegetation activity [48,49] we used an explanatory

approach which allowed the most important variables and their time lag to be selected as

model parameters. The time lags were introduced to account for a potential mismatch between

the climatic variables and leaf development (photosynthetic activity).

The developed model was a lagged multiple variable time series regression model. The selec-

tion of the best regression model was done by assessing all possible combinations of the two

variables and their time lags by repeating the model selection steps shown in Fig 2. The models

were restricted to include each variable (soil moisture and day length) only once, and the maxi-

mum considered time lag was 10 time steps (80 days). Soil moisture was natural log

Savannah Phenology
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transformed and allowed to be multiplied with mean annual precipitation (MAP). The alter-

ations were done since MAP has been shown to be linearly related to NDVI [50] and an initial

analysis of the data showed an exponential behavior. The best model was assumed to be the

one with lowest Bayesian Information Criterion (BIC) [51]. The BIC was chosen as a model

selection tool since it is known to show whether additional model parameters result in a better

model or are simply over-fitting the model [51].

Variable importance

To analyze site-related differences and to assess model performance, the variable importance

of soil moisture and day length was estimated for each site using the average over ordering of

regressors function included in the R package relaimpo [52]. The function provides information

Fig 2. Visual representation of the steps taken in model selection. The five steps shown are repeated
until all combinations are found. DayL is day length in hours, log(sm) is the natural logarithm of soil moisture,
and smmap is soil moisture multiplied with mean annual precipitation (m/year). BIC is the Bayesian
information Criterion used to evaluate.

doi:10.1371/journal.pone.0154615.g002
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on how much each variable contributes to the total coefficient of determination (r2) of the lin-

ear regression model while also accounting for differences in the ordering. Soil moisture and

day length were each included in the linear regression as a combination of all lags of up to 10

time steps (80 days). Finally, the contribution of each variable and its lags to the r2 were

summed to get a single measure of the importance of the variable.

Model evaluation

The model was tested for its sensitivity to adding more sites by estimating the root mean

squared error (RMSE) 1000 times for each model size (i.e. number of sites included in the

model parameterization), selecting the sites and their order randomly. This test was done to

ensure that the selected model was stable with respect to the incorporated sites and did not

change substantially when adding more sites compared to a parameter estimation based on

fewer sites. The model was also evaluated using a cross-validation hold-out method which is a

way of dividing the data into training and evaluation subsets [53]. In this case 12 of the sites

and their order were used randomly as training and the remaining three sites as evaluation

data, and this process was repeated 1000 times. The evaluation subset was used to calculate the

RMSE, r2, and variance inflation factor (VIF, to assess multicollinearity) in each repetition, and

the average value of those parameters were assumed to represent the performance of the

model. The result is also the expected model performance when the model is used for other

savannah sites or regions not being represented in the model development. The capability of

the model to estimate the start of season (SOS) was compared to SOS estimated fromMOD-

IS-NDVI. SOS was defined as the time step closest to the midpoint between maximum and pre-

ceding minimum NDVI value for each growing cycle. The modelled NDVI was filtered in the

same way as MODIS-NDVI with the Savitzky-Golay filtering method adapted from Jönsson

and Eklundh [45]. Finally, the amplitude of the model was compared with the amplitude of

MODIS-NDVI (per site). The amplitude was calculated by subtracting the minimum NDVI

value from the maximum NDVI value.

Results

Phenology model

The development of the phenological regression model showed that day length (dayL, in

hours), lagged with two time steps (16 days, indicated with subscript 2), and natural log trans-

formed soil moisture (sm, in volumetric water content %), lagged with two time steps (16 days,

indicated with subscript 2), multiplied with mean annual precipitation (MAP, in m/year) were

the most important variables for the model (Eq 1).

NDVI ¼ 0:12 � logðsm
2
�MAPÞ þ 0:01 � dayL

2
þ 0:22 ð1Þ

Variable importance

The average importance of soil moisture for all sites was 42.8% and it showed a strong negative

correlation (r = -0.56, p = 0.03) to tree cover (Fig 3A) and a strong negative correlation (r = -0.57,

p = 0.03) to mean annual precipitation (MAP) (Fig 3B).

Model evaluation

The model (Eq 1) was evaluated by testing its sensitivity to the number of sites included in the

model, i.e. the size of the data pool used to develop the model. When the model parameterisa-

tion process included more sites the RMSE increased but reached saturation when around

seven or more sites were included (Fig 4).

Savannah Phenology
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The cross validation with MODIS-NDVI showed an average RMSE of 0.10 ± 0.02,an aver-

age coefficient of determination (r2) of 0.60 ± 0.18, and an average VIF of 1.20 ± 0.20 when

evaluated randomly 1000 times. The VIF result indicates that the multicollinearity between the

two explanatory variables day length at time lag 2 and soil moisture at time lag 2 (Eq 1) is very

low. The model produced some inconsistent results for Nylvsley, Mongu, Skukuza, and Bira

with a RMSE above 0.12 (Fig 5A). The RMSE showed a strong negative correlation (r = -0.54)

to soil moisture importance and no correlation with tree cover (r = 0.004) or MAP (r = 0.05).

The model gave a start of season (SOS) that was on average 1.5 time steps (12 days) earlier than

the SOS from MODIS-NDVI (Fig 5A) and the majority (12) of the sites had a SOS error lower

or equal to ±2 time steps (16 days). On average the amplitude of NDVI was 0.077 (dimension-

less NDVI unit) lower for the model compared with the MODIS-NDVI amplitude (Fig 6).

The model showed more variation in the upper half of the NDVI values and an over estima-

tion in the lower part (Fig 5B). For some of the sites it provided an acceptable temporal agree-

ment with MODIS-NDVI (Fig 6). But for some of the sites (Skukuza, Wankama, and Dahra)

the amplitude error was above 50% of MODIS-NDVI amplitude (Fig 6) showing that the

Fig 3. Variable importance analysis. a) Soil moisture variable importance related to tree cover. b) Soil moisture variable
importance related to mean annual precipitation. Correlation coefficients (r) are for both panels shown next to the linear regression
line. Day length importance (in %) can be calculated by taking 100-(soil moisture importance).

doi:10.1371/journal.pone.0154615.g003

Fig 4. Influence of the number of included sites in the model development. Average root mean squared
error (RMSE) of the model with respect to the number of included sites. Statistics are based on developing
the model 1000 times for each included sites size.

doi:10.1371/journal.pone.0154615.g004
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model cannot capture the MODIS-NDVI time series equally well for all of the sites. However,

when evaluating the model performance based on RMSE, SOS error, and amplitude error five

of the sites (Las Majadas, Daly, Malopeni, Nalohou, and Vaira Ranch) outperforms the others

with RMSE below 0.1, SOS error less or equal to ±2 time steps (16 days) and amplitude error

±0.1 (dimensionless NDVI units). Those five sites are representing all of the 4 continents and

have a tree cover ranging from 8% to 96% with an average value of 46.8%.

Discussion

Our study demonstrates the difficulties of creating a common simplified model to estimate

savannah phenology for 15 sites on four continents. However, the simplified approach makes

the presented model easy to use for new applications. The RMSE did not increase when

increasing the number of sites above seven in the model development. Therefore, we expect the

cross-validated result (RMSE = 0.10 ± 0.02, r2 = 0.60 ± 0.18) to be a representative average

range for the model when applying it to new savannah sites or areas. The presented model only

requires day length, soil moisture and MAP. Based on our results, we estimate that MAP affects

the absolute magnitude of the NDVI, soil moisture sets the temporal dynamics, and day length

accounts for some of the site specific differences related to the phenological strategies of trees

and grasses.

We showed that the soil moisture importance was related to tree cover with a moderate neg-

ative correlation (r = -0.56). However, since MAP is known to have an influence on tree cover

for savannahs [54] we expect this to be caused by the correlation between soil moisture impor-

tance and MAP (r = -0.57). Thus for drier sites the amount of water and timing is more impor-

tant compared to sites that have more plant available water or higher tree cover with a deeper

root system. Since we found no correlation between RMSE and mean annual precipitation

(r = 0.05) or tree cover (r = 0.004) we expect that some of the site specific differences regarding

this are captured by the inclusion of mean annual precipitation as a model parameter. In Con-

trast we found that RMSE was strongly negatively correlated (r = -0.54) to soil moisture

Fig 5. Model evaluation. a) Model evaluation at each site showing the root mean squared error (RMSE) to MODIS-NDVI.
The dashed line shows the average value for all sites. Numbers to the right indicate SOS differences between model NDVI
and MODIS-NDVI in 8 day time steps (SOS global model–SOSMODIS). b) MODIS-NDVI vs Model NDVI for all sites.
Dashed line represents the 1:1 line. SOS: start of season.

doi:10.1371/journal.pone.0154615.g005
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Fig 6. Time series of model (red line) and MODIS-NDVI (dots).Data has been filtered with a modified Savitsky-Golay filter as
described in the methods section. Site name and global model amplitude error (model amplitude—MODIS amplitude) is shown as title
for each subplot.

doi:10.1371/journal.pone.0154615.g006
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importance indicating a positive bias (less RMSE) in the result towards the sites where soil

moisture was more important. This result was mainly influenced by four of the sites having a

RMSE above 0.12 (Nylvsley, Mongu, Skukuza, and Bira) in combination with a low soil mois-

ture importance. We attribute this result again to site differences which our simplified

approach has not included in the model development. Despite this those four sites all showed a

lower than average SOS error that indicates that the temporal signal was correctly captured but

the error in amplitude or bias in the average value was mainly causing the high RMSE. The

error in amplitude and bias in average are hypothesized to be partly related to differences in

soil types. Soil types have previously been shown to have an effect on the relation between soil

moisture and NDVI, via the so called moisture use efficiency [55] which supports our hypothe-

sis. Soil type was not included in this study since that would increase the complexity of the

model.

The analysis of the SOS error showed that the model on average managed reasonably well to

estimate SOS (-12 days). However, three of the sites (Demokeya, Dry River, and Tonzi),

showed a much larger SOS error compared to the remaining sites. We attribute the larger SOS

error for those sites to the variability originating from different site specific parameters not

considered within this study. This could for example be due to differences in species composi-

tion, soil depth, ground water access, grazing, human activity, or fire. We assume that fire and

human activities are similar for all sites during the measurements used in this study. Un-man-

aged fire is most likely prevented due to the management of the measurement sites, and human

activity is restricted. However, differences in species composition and grazing have not been

considered in this study. As grazing has even been shown to affect NDVI differently for differ-

ent sites [56] this would have an influence on the assumptions made in model development

and would most likely increase the uncertainty of the model results. We also hypothesize that

the overestimation of NDVI values in the lower half of the parameter space (Fig 5B) could be

caused by grazing. However, since we have only partial information on grazing or species com-

position we were not able to test this. Furthermore, inclusion of grazing information would

limit the model applicability since this information would not be available at a global scale.

Even though it has been shown that savannahs on different continents function differently in

response to rainfall and fire [57] we do not find any bias in our model result towards any conti-

nent indicating that the inclusion of mean annual precipitation as a model parameter might

capture some of the continental variability.

Previous works on savannah phenological models have mainly focused on the regional

scale. For example, Choler et al. [58] created a phenology model for Australian semi-arid grass-

lands using soil moisture. Their resulting model had an average r2 of 0.73 which is higher than

the cross-validated result of the global model (r2 = 0.60) developed in this study but is created

at a regional scale which cannot be directly transferred to the global scale, and thus lacks a

global applicability. It is also important to note that remotely sensed NDVI itself is a proxy for

the vegetation greenness on the ground and does not provide any species specific information

that can be used to differentiate between tree and grass. Pooling these two growth forms

together in the phenology signal might have resulted in obscuring some of the site differences.

By relating our model result to tree cover we tested for some of these differences. To improve

the global model a separation of trees and grasses should be considered, which would increase

the model complexity but has also been shown to require a very good parameterization in

order to increase model performance [59]. Furthermore, at a global scale there is no reliable

dataset available to perform such a analysis. Therefore we decided to develop a model without

such a separation.

The variables used in our model development have been considered to be equally important

over the season, which might have been an oversimplification. However, when we examined
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the possibility of developing separate models for the wet and dry season the results only

improved marginally (2%–3%, data not shown) compared to using the presented model which

is only including half of the parameters. To improve on this, an even more complex model for

identifying different parts of the season would be required. However, in this study we showed

that even with a simple model using only two variables and their lags we can already explain a

large part of the variability. If we developed a more complex model, more parameters would be

required and the systematic error would most likely increase. Furthermore, the aim in this

study was to generate a simple model that can easily be applied to other studies which further

prevents the inclusion of more complexity.

The presented work highlights the difficulties of developing a global savannah phenological

model. Despite the deviation from remotely sensed data we assume that if the presented model

were integrated into a dynamic vegetation model this would improve global carbon estimates

given the overly simplistic way that savannah phenology currently is handled in many DGVMs.

Given the close link between NDVI and leaf area index as well as albedo (at least within savan-

nahs which have a relatively low leaf area index) the presented model can also serve as a sub-

model in simulations of regional climate models, which often still use static albedo [60]. The

main benefit of taking the presented approach to model savannah vegetation is that it covers the

whole growing season and is directly comparable to NDVI. NDVI is used in a number of studies

as a proxy for photosynthetic light uptake, leaf area index [61,62], gross primary productivity

[63], and seasonal characteristics such as start of growing season, growing season duration, and

end of season for which highly developed algorithms exist, e.g. TIMESAT [45].

Conclusion

This study addressed the climate-vegetation interaction of savannahs by using day length and

soil moisture to model leaf phenology. We used NDVI as a proxy of leaf phenology and showed

that the time-series of NDVI was best captured using a lagged log transformation of soil mois-

ture and MAP together with day length. We showed that it was not possible to generate a sim-

plified savannah model that gave perfect results for all sites with a small set of parameters that

also has a good global availability. However, we show that it is possible to get a sufficient aver-

age result. The presented model can potentially be integrated into a dynamic vegetation model

or used to generate rough estimates of NDVI from measured or predicted soil moisture and

MAP data to predict savannah photosynthetic light uptake, gross primary productivity, albedo,

and seasonal characteristics.
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