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Abstract

Background: Hierarchical partitioning (HP) is an analytical method of multiple regression that identifies the most likely
causal factors while alleviating multicollinearity problems. Its use is increasing in ecology and conservation by its usefulness
for complementing multiple regression analysis. A public-domain software “hier.part package” has been developed for
running HP in R software. Its authors highlight a “minor rounding error” for hierarchies constructed from >9 variables,
however potential bias by using this module has not yet been examined. Knowing this bias is pivotal because, for example,
the ranking obtained in HP is being used as a criterion for establishing priorities of conservation.

Methodology/Principal Findings: Using numerical simulations and two real examples, we assessed the robustness of this
HP module in relation to the order the variables have in the analysis. Results indicated a considerable effect of the variable
order on the amount of independent variance explained by predictors for models with >9 explanatory variables. For these
models the nominal ranking of importance of the predictors changed with variable order, i.e. predictors declared important
by its contribution in explaining the response variable frequently changed to be either most or less important with other
variable orders. The probability of changing position of a variable was best explained by the difference in independent
explanatory power between that variable and the previous one in the nominal ranking of importance. The lesser is this
difference, the more likely is the change of position.

Conclusions/Significance: HP should be applied with caution when more than 9 explanatory variables are used to know
ranking of covariate importance. The explained variance is not a useful parameter to use in models with more than 9
independent variables. The inconsistency in the results obtained by HP should be considered in future studies as well as in
those already published. Some recommendations to improve the analysis with this HP module are given.
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Introduction

In recent years, multiple regression analysis (e.g. Generalized
Linear Models, GLMs) is widely used in ecology and conservation
biology. However, this statistical approach to modelling can be
seriously affected by multicollinearity between the explanatory
variables, i.e. correlation among them [1]. Problems caused by
collinearity have been traditionally reduced by removing highly
correlated explanatory variables during model creation or by using
principal components analysis (PCAs) taking the factors derived
from the PCA as predictor variables [2]. Nonetheless, collinearity
problems can be effectively alleviated using an analytical method
named hierarchical partitioning (HP hereafter; [3]). HP reduces
collinearity problems by determining the independent contribu-
tion of each explanatory variable to the response variable and
separates it from the joint contribution, resulting from correlation
with other variables (for a detailed explanation of how HP works,
see [4,5]).This allows ranking the importance of the covariates in
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explaining the response variable independently of the others
covariates. Given its usefulness for complementing multiple
regression analysis and by the recent developing of a free module
(“hier.part package”) [6,7] for running in R (a free statistical
software) [8], the use of HP is increasing in different research
fields. This increase can be measured using the Thomson Institute
(ISI Web of Science) bibliographic database (1900-31 December
2009) to identify all papers indexed that cited Mac Nally and
Walsh [4,5,9]. Using this bibliometric approach, we found a total
of 128 studies that used this package distributed in 28 subject
categories (Fig. 1; we had not access to 16 studies (5.4%) of 292
citing [4,5,9] for checking use of HP package). The increase in the
number of papers was predominant in the “ecology” subject
category and, to a lesser extent, in the “biodiversity conservation”
and “environmental sciences” subject categories [2,9-17] (Fig. 1).

HP produces, according to authors, a “minor rounding error”
with models comprised of more than 9 explanatory variables
[7,18]. Several works have already used these HP modules for

July 2010 | Volume 5 | Issue 7 | 11698



Implications Using hier.part

40 4
—@®—Total
35 | —a— EFoI?gy . ‘
——&—— Biodiversity Conservation
——&—— Environmental Sciences
30 1 —&— Geography Physical
= @ = Using >9 variables
-
g 254 7
b= | r
% /"'/J
20 4 -
5
3
e 15
3
2
10 \ O
5 -~ I dlE o
0l = A — : :
2002 2003 2004 2005 2006 2007 2008 2009

Figure 1. Number of studies using the HP package of Walsh and Mac Nally [9] for the R software over time. The subject categories with
most number of studies are shown. Filled circles: number of total studies using HP package (n=128). Filled squares: “Ecology” subject category.
Opened circles: “Biodiversity conservation” subject category. Filled triangles: “Environmental sciences” subject category. Filled diamonds:
“Geography physical” subject category. Red filled circles and dashed line: Number of studies using the HP package with more than 9 variables
(n=26). Note that a same study can pertain to more than 1 subject category and thus the sum of the number of studies from all the categories is

higher than the number of total of studies.
doi:10.1371/journal.pone.0011698.g001

identifying important factors in biodiversity [2,11,19], conserva-
tion [10,13,15], environmental monitoring [20], forest manage-
ment for conservation [21] and predicting the response of
biodiversity to climate change [22]. Some of these studies ran
models with more than 9 variables (Fig. 1), but the potential bias
by using this HP module from R has not yet been examined.
Knowing this bias is pivotal because the ranking obtained in HP is
increasingly being used, for example, as a criterion for establishing
priorities of conservation [13]. Because conservation resources are
frequently scarce, the prioritisation assessments used to allocate
conservation efforts should be highly precise [23].

In this paper, we show that this HP module produce a
considerable inconsistency for analyses with more than 9
independent variables This bias is here quantified and modelled
to aid researchers to make a proper assessment of the results
obtained with implications in environmental management and
conservation. Firstly, by means of numerical simulations we
examine and quantify the robustness of the HP modules for
running in R. The same set of variables in different order should
produce the same results (i.e. the same ranking). Particularly, we
analyze the potential variation in results obtained in relation to the
order the variables are entered into the analysis. We then modelled
the probability of a variable changing its position in the predictor
ranking obtained in HP. Thirdly, we address these issues in two
real examples worked on factors affecting the abundance and
habitat selection of two threatened species. Finally, we give some
recommendations to improve the analysis with this HP statistical
package.

Results

Numerical simulations
For models with 9 or fewer variables, the nominal ranking of
mmportance of the explanatory variables did not change with
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different entering order in the models (Table S1; see [18]).
However, for models consisting of more than 9 variables, there
was an effect of the entering order of the variables on the ranking
of importance. In other words, a same variable within the same set
of 1012 variables but entered in different order changed their
ranking of relative importance, based in independent explanatory
power of the response variable. For models with ten variables, this
nominal ranking changed, on the average, in the 90.5% of the
times (SE =0.87, range =89-93, n=4). For models with eleven
variables the order of importance of the predictors changed, on
average, in the 96.5% of the times (SE=2.53, range =89-100)
and in the 100% (SE=0) with twelve variables. This result
changed little when the change was considered only for the five
variables with most independent explanatory power (77.5% +5.86,
90.5% *=5.04, 91.0% *=3.76 for models with ten, eleven and twelve
variables respectively).

Predictors declared as the most important by their indepen-
dent explanatory power appeared in different ranking of
importance in models with different orders of the same set of
variables (Table 1). One predictor ranked first according to its
independent variance explained (IVE hereafter) in the reference
order (i.e. following alphabetic order) appeared second (6.2% of
the times) and third (1.2%) with other variable orders in analysis
of HP for models from ten to twelve independent variables.
Predictors ranked second (in reference order) appeared in other
positions in the 23.2% of the times after permuting the order of
the same set of variables (see Table 1 for other ranking
positions).

The IVE varied in all the explanatory variables of all the four
simulated data sets after changing the orders of the same set of
variables (Table S2). For example, the IVE of the first-ranked
variables changed by as little as 8.15 units (i.e., from 8.67 to 16.82)
in Dataset-1 to as much as 12.4 units (i.e., from 17.97 to 30.37) in
Data set-4 (see Tabla S1 for other ranking variables).
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Table 1. Percentage of times that a variable changes its
position within the ranking.

Implications Using hier.part

Table 2. Ranking of all the models explaining probability of a
variable changing its position (%).

Lesser Kestrel Data set
AUTOCOV4 100

FARMLAND 95 2 1 2
DROOST 2 70 21 5 2
FOREST 21 49 29 1
DCOLONY10 3 9 30 52 4 11

Egyptian Vulture Data set
ELEVATION 80 16 3

SHRUB 21 76 3

PATCH 6 94

ROAD 87 10 1 1 1
LENGTH 7 47 19 10 13 2 1

Ranking order: Position by amount of independent explanatory power and
analysed in the reference order (i.e. alphabetic order). Only the first five
variables are shown.

Data set-1 to 4: numerical simulations, N=1,200.

Lesser Kestrel Data set: N =100, only eleven variables.

Egyptian Vulture Data set: N=100.

doi:10.1371/journal.pone.0011698.t001

Throughout all the analysis the results were exactly the same for
the different updates of the “hier.part” packages to run HP
(version 1.0 and updates) [6].

Modelling the bias

The best models explaining the probability of a variable
changing the position were those including the difference in
IVE between a particular variable and the previous one in the
ranking (Table 2). The lesser is this difference, the more likely is
the change of position. According to our model, a decrease of
one unit in the difference of IVE between a particular variable
and the previous one in the ranking produces an increase of
3.7% in the probability of changing position of that variable
(Fig. 2). The number of variables considered when performing
HP (i.e. 10, 11 or 12) also influenced, but considerably less, the
probability of changing position (Table 2). For an given amount
of difference in IVE between two neighbouring variables in the
ranking, the probability of changing position with 10 variables
increased by 0.7% when adding one more variable (i.e. 11
variables) and by 1.3% when adding two (i.e. 12 variables;
Fig. 2).

Real examples worked

Abundance of a threatened falcon in an agricultural
landscape. In Table 3 is shown the independent (i.e., IVE), joint
and total variance explained for each of the predictors of Lesser
kestrel abundance in the reference order (alphabetic). The five
variables that most independent variance explained in the
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Position with other variable orders Models AIC AICc AAICc o, Ranking
Ranking order 1° 2° 3° 4° 5° 6 7° 8 9° 10° 11° 12° DIFPREVIOUS 94.85 95.14 0 0.84 1
Data set1 fo Data setd DIFPREVIOUS + VARIABLES ~ 98.77 99.21 4.07 0.11 2
First 92562 12 DIFPREVIOUS+DIFALL 100.5 10094 580 005 3
Second 60 76878 43 18 33 04 DIFPREVIOUS+VARIABLES+DIFALL 1063 10692 1178 0.00 4
Third 17 87 557259 60 1.1 06 0. 02 01 03 IFALL 1128 11300 1785 QD 2
Fourth 38 247 407229 48 18 038 02 03 08 VARIABLES+DIFALL 1193 11974 2460 000 6
Fifth 12 57 142 423245 79 23 04 06 14 03 Null model 1295 12967 3453 000 7
VARIABLES 1334 13369 3855 000 8

AlCc: Value used to rank the models.

®m: Akaike weight of each model.

The best models (2o, =0.95) are shown in bold.
doi:10.1371/journal.pone.0011698.t002

abundance of Lesser kestrel were AUTOCOV4 (IVE =10.63%),
FARMLAND (5.98), DROOST (4.82), FOREST (4.59) and
DCOLONY10 (3.71). The position of these variables in the
ranking (according to percentage of IVE) changed in models with
other variable orders (Table 1). The exception to this was
AUTOCOV4, whose first position did not change for models
with other variable orders (Table 1), although it changed the
amount of IVE. IVE changed in all the variables in the ranking
(Table S2). The variable that most varied the IVE among models
was AUTOCOV4 ranging from 18 to 53.3% (see Table S2 for
other variables).

Habitat selection by an endangered vulture. In Table 3
1s shown the independent, joint and total variance explained for
each of the predictors of habitat selection by Egyptian vulture in
the reference order (alphabetic). The five variables that most
variance explained in habitat selection by Egyptian vulture were
ELEVATION (IVE=8.94%), SHRUB (6.32), PATCH (5.34),
ROAD (3.67) and LENGTH (2.74). The position of these
variables in the ranking (according to percentage of IVE) changed
in models with other variable orders (Table 1). IVE also changed
in all the five variables in the ranking, after permuting the order of
the same set of variables. The change in IVE for each variable is
given in Table S2. The variable that most changed the IVE among
models was ELEVATION ranging from 11.20 to 26.43% (see
Table S2 for other variables).

Discussion

In the analyses explored here, the same set of variables in
different order should produce the same results (l.e. the same
ranking obtained in HP). However, for models with more than 9
variables we found that this was not true for more than 90% of the
times. Specifically, a particular variable may be declared in a
model as the most important predictor of the response variable but
to be second or third in importance for models with the same
predictors but differently ordered in around the 7.4% of the times
(as extreme cases a predictor second or third in importance may be
twelfth; Table 1). In variables related to both Lesser kestrel
abundance and Egyptian vulture habitat selection, the results were
in general the same as those of the simulated data sets, with
ranking of predictors frequently changing. The only exception to
this was AUTOCOV4 in the Lesser kestrel example. This variable
did not change their position in the ranking with models having
other variable orders (Table 1). However, this predictor consid-
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Figure 2. Probability of a variable changing ranking position obtained from the averaged general linear mixed model. Solid lines:
Effect of the difference in independent variance explained (IVE) between a particular variable and the previous one in the ranking (established for
explaining the response variable) on the probability of changing the position for data sets formed by 10, 11 and 12 explanatory variables in analysis
of hierarchical partitioning. Note that no change is expected when the difference in explained variance between a variable and the previous one in
the ranking is >17.1. Dotted lines: upper and lower limits according to the standard error of the averaged mixed-model coefficients.
doi:10.1371/journal.pone.0011698.9g002

erably varied the amount of IVE among models (18-53%; Table following variable/s in the ranking (first: 10.63 s second: 5.98) was
S2). That first variable in the ranking did not change their top larger than that of both the simulated examples (e.g. dataset-1:
position in the Lesser kestrel example may be because the 10.35 vs 9.84) and the Egyptian vulture example (8.94 vs 6.32;
difference in the amount of IVE between first position and the Table 1 and 3). In other words, AUTOCOV4 had a larger room

Table 3. Percentage of independent, joint and total explained variance for each considered variable.

Data set-1 Lesser Kestrel Data set Egyptian Vulture Data set

Variables Independent Joint Total Variables Independent  Joint Total Variables Independent Joint Total
Xa 4.10 -379 030 AUTOCOV4 10.63 20.85 31.48 cows 2.49 0.48 297
Xs 4.35 —370 064 BUILDUP 1.75 —066 1.10 ELEVATION 8.94 18.51 27.45
Xc 4.03 —3.50 0.53 DCOLONY10 3.71 7.16 10.87 HEIGHT 1.45 —1.42 0.03
Xp 4.05 =385 0.12 DROOST 4.82 4.66 9.48 LENGTH 2.74 2.03 4.77
Xe 591 0.59 6.50 EDGE 1.36 —1.01 0.36 LIVESTOCK 1.67 —-1.67 0.01
Xk 5.15 —048 467 EFFORT 237 1.65 4.02 NEIGHBOUR 244 4.19 6.63
Xa 4.96 0.40 5.37 FARMLAND 5.98 12.74 18.72 PASTURE 2.74 2.25 4.99
Xu 4.68 -1.12 356 FOREST 4.59 9.91 14.50 PATCH 5.34 13.02 18.36
X 8.63 9.26 17.88 GRASSLAND 1.30 —-096 034 ROAD 3.67 4.36 8.03
Xy 5.78 8.36 14.14 SHANDIVER 2.68 4.76 7.44 SHEEP 0.37 —030 0.07
Xk 9.84 9.73 19.58 WIRE 213 —-043 170 SHRUB 6.32 20.36 26.68
XL 10.35 16.36 26.71 SLOPE 2.09 —2.07 0.02
Total: Total explained variance, correlation (in “R%") of each of the variables with the response variable (for example, Xa, Xg, Xc and Xp have a correlation coefficient with
the response variable Y, r<0.10, i.e. each of them explain <1% of the variance of the response variable, r’<1%).

Joint: Negative joint variance indicates that the other variables act as suppressors of the particular variable.

Variables: The variable order shown in the tables is the order used (i.e. alphabetic order) for this particular analysis of hierarchical partitioning.
doi:10.1371/journal.pone.0011698.t003
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to vary without changing its position in the ranking (Table 1 and
3). Indeed, DROOST, FOREST and DCOLONY 10 had an IVE
close each other (i.e. difference in IVE, |d|<l.l1) and in
consequence frequently inter-changed their positions (Table 1) as
predicted by our model (i.e. 58.6, 61.5 and 59.5% probability of
changing position, respectively). Thereby the ranking of impor-
tance in explaining abundance of Lesser kestrel was actually
uncertain for these variables. This was also the case of some
variables explaining habitat selection by the Egyptian vulture. For
example, ROAD and LENGTH had a similar percentage of IVE
(]d|<1) and frequently inter-changed their positions in the
ranking (i.e. Table 1).

Implications in environmental management and
conservation

The authors of the HP package claims that the function
produces a “minor rounding error” for analyses with more than 9
independent variables [18]. In light of the results here obtained it
seems that it rather produces a considerable inconsistency both
quantitative and qualitative in the results. The next step, which is
out of the scope of the present study, would be to investigate why
the errors occur. Whilst the cause of this unexpected variation in
the HP results is by the moment unclear, what is clear is that these
findings need to be taken into account in future studies as well as in
some already published. For example, a 20.3% of the studies using
the HP package performed it with more than 9 explanatory
variables in their models (Fig. 1), which might have lead to
misleading conclusions about the importance of certain variables,
with implications for environmental management and conserva-
tion. In fact, one of the biggest challenges faced by conservation
managers today is that of the resource allocation [23]. Conserva-
tion budgets are clearly limited to correctly address all the current
conservation concerns, so there is an urgent need of efficient
resource allocation [24] and prioritisation assessments [23,25].
Accordingly, knowing the correct ranking of importance of
predictors is pivotal to effectively contribute to species and
ecosystems conservation. In this way, it seems that the highest
frequency attained in the ranking by particular predictors for
models with 1012 variables (Table 1) would be the “correct”
position in the ranking, as judged by explanatory power of the
predictors (Table 3). In contrast, knowing the true amount of
explained variance by predictors in models with 1012 variables is
absolutely uncertain, as it hugely varies between models with same
variables but differently ordered (Table S2). Therefore explained
variance is not a useful parameter to use in models with more than
9 independent variables.

Final considerations

In conclusion, if our aim is to obtain the amount of explained
variance, we suggest that the HP module of R should not be used
for more than 9 explanatory variables because of the inconsis-
tency of their results. If used for establishing ranking of
importance of variables it should be applied with caution,
running several times the model (we suggest at least 100 times)
with different order of the set of 1012 variables (as recommend-
ed by the authors of the HP module; [18]). However, in this case
it must be considered that variables with similar independent
variance explained will interchange positions frequently resulting
in a high uncertainty of actual positions. For 9 or fewer
explanatory variables this HP module seems to work well and it
is an useful tool either by itself or in combination with multiple
regression analysis (e.g. GLMs), as shown by its increasing use in
ecology and conservation.
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Methods

Numerical simulations

For the analysis we used “hier.part” package (version 1.0 and
updates) [6] in the R statistical software [8]. The method of fitting
the model to data was by least squares (i.e. the goodness-of-fit
measures were calculated by R-squared, argument: gof = “Rsqu”,
and by Log-Likelihood, argument: gof = “logLik”; see [18]).

In order to assess the potential impact of the variable order on
the HP results, we built 30 data sets with 13 variables each,
consisting of one response variable (Y) and twelve predictor
variables (the module of hierarchical partition ‘“hier.part” for using
in R does not run for more than twelve predictor variables; [18]).
The variables were generated by using the multivariate Normal
distribution function “rmvnorm” in SPLUS 2000; this function
generates correlated random numbers. All the 13 variables had a
gaussian distribution with n=25 and standard deviation (SD)
equal to 1. Different correlation patterns for each data set were
generated. For example, for Data set-1, four variables (X4, Xg, X
and Xp) had a correlation coefficient with the response variable
(Y) r<0.10 (i.e. each of these variables explained <1% of the
variance of the response variable, r<1%), for the rest of variables
and data sets see Table 3 and Table S2 (online appendix). The
same procedure was used for the other data sets. From the 30 data
sets, we randomly selected four data sets (Data set-1 to 4) for
analysis (Table S3). This random selection allows us to use then
mixed models for modelling the change of position fitting the
“dataset” as a random effect (see below). From each data set,
formed by twelve predictor variables, we selected subsamples
(vectors) of 2,3,4,5,...and so on up to twelve variables by using the
function “sample” in R. Then each of these eleven vectors
generated were reshuffled 100 times by using the same function
“sample” (i.e. the position of same variables was randomly
changed within the vector), and HP was run for each of the
subsamples generated (previously converted into data frames). By
using this procedure, we obtained results of HP for vectors
containing the same suite of variables but in different order and so
it allowed us to test the potential impact of the position of the
variables on HP results. Specifically, we measured how often the
nominal order of relative importance of predictors (according to
the amount of independent variance explained, IVE) was changed
after permuting the variable order in the models. In HP, the IVE
of a variable is estimated by averaging the increase in model fit
over all combinations involving that variable (see [4] for a more
detailed explanation). The amount of IVE of a predictor should be
exactly the same independently of the entering order in models
with the same suite of variables. In order to examine potential
changes among models with the same suite of predictor variables
but differently ordered, we used as reference model that with
predictors following alphabetic order (e.g. see Table 3).

We also measured the variability in the IVE by each variable
when changed its position within each of the 100 reshuffled
vectors.

Real examples worked

Abundance of a threatened falcon in an agricultural
landscape. Data of this example come from a previous paper
[16]. In this example, we examine the spatial pattern of Lesser
kestrel (Falco naumanni) abundance in function of a set of
environmental factors at landscape level (Table S4). This species
is a small falcon breeding in the Palaearctic and wintering mainly
in Africa [26,27], and is considered to be a globally threatened
species listed as Vulnerable [28]. The study area (384 km?) was
divided into 24 contiguous UTM grid 4kmx4 km (16km?)

July 2010 | Volume 5 | Issue 7 | 11698



squares, where birds were counted in up to 3 visits per square. An
index of relative density (IRD, no. of Lesser kestrels in 1 km of
driven transect) was calculated for each grid and each visit. Then,
the averages of IRD of the visits performed per square were
calculated for each grid (response variable). Environmental
variables were measured within strips 250 m wide at each side
of the routes for censusing kestrels and were extracted with aid of a
geographic information system (GIS software, ARCGIS 8.0).
Eleven independent variables were considered (Table S4). Lesser
kestrel abundance was log-transformed (In[x+0.5]) to reach normal
distribution. The method of fitting the model to data in HP was by
least squares (i.e. the goodness-of-fit measures were calculated by
R-squared).

Habitat selection by an endangered vulture. Data of this
example come from a previous paper [29]. Here we developed
habitat-occupancy models for the Egyptian vulture (Neophron
percnoplerus) using a set of environmental factors describing both
the nesting cliff and the surrounding landscape (Table S4). The
Egyptian vulture is a territorial, cliff-nesting, migrant scavenger
raptor distributed from the Mediterranean countries to India,
occupying also areas in the east and south of Africa. It has been
recently classified as Endangered by IUCN [30]. We selected 62
Egyptian vulture breeding territories (presences) within the study
area (8500 km?) and 58 randomly generated points without
apparent Egyptian vulture breeding pairs (pseudo-absences).
Variables describing the nesting cliff and the home range (i.e.
2.5 km radius around the nest) were extracted using ARCGIS 9.0
and were validated by field observations when necessary. Twelve
variables were considered (Table S4). The assumption of linearity
was evaluated by plotting response variable (i.e. presence/absence)
against every continuous explanatory variable in Generalized
Additive Models (GAMs) [31]. Non-linear relationships were
converted into piece-wise linear effects, with the best threshold
being selected according to the lowest residual deviance [32]. The
maximum likelihood method was used to fit the model to data in
HP (i.e. argument of goodness-of-fit “logLik”).

Modelling the bias

We defined bias as the probability of a variable changing its
position. This was measured as percentage of times a particular
variable changed its position within the predictor ranking obtained
in HP (see above). In order to assess factors influencing probability
of a variable’s position change, we used five data set (i.e. Data set-1
to Data set-4 and Lesser kestrel data set) and performed
generalized linear mixed models (GLMM). We modelled the
probability of position change (%, dependent variable) as a
function of seven explanatory variables (fixed effects) accounting
for the number of variables (10-12) and for differences in amount

Implications Using hier.part

of IVE between explanatory variables (Table 4). We used the data
set (L.e. 5 levels, the 4 simulated data sets plus the Lesser kestrel
data set) as a random effect. This allowed us to control for the
possibility that the probability of changing position might vary due
to factors related to the data set itself, whose effects are not taken
into account in the fixed effects. Random effects allow us also
control for the fact that variables (10-12) within same data set
could be pseudo-replicates. Importantly, considering the data set
as a random effect, our results can thus be extrapolated to a
population of data sets from which our sample was drawn. We
used /mer function of “Ime4” package with an identity link function
and a gaussian error distribution. The probability of changing
position was transformed into asin(x) to reach normal distribution.
First, we used the Spearman’s rank correlation to explore the
correlations between the variables. The highly correlated variables
(]rs]|>0.5) were included separately in the models (i.e. they were
not put together in the same model). We performed all possible
model permutations of the explanatory variables. Resultant
models were ranked altogether using the AICc and the Akaike
weight of each model (»,,) [33], estimated following Burnham and
Anderson [34]. Akaike weight is the relative likelihood of that
model being the Kullback-Leibler best model within a set of n
models, with ®,,>0.9 indicating a high level of support for a given
model. We constructed a 95% confidence set of models by starting
with the highest Akaike weight and adding the model with the next
highest weight until the cumulative sum of weights exceeded 0.95
[34]. We used these final best models to obtain the averaged model
which was used for inference. Additionally, we examined models
with non-linear variables (second-order polynomial), which were
no better (according to AIC) than those with linear variables, so
only linear variables were considered.

Supporting Information

Table S1 Number of times the ranking of predictors changed
relative to the reference order (i.e. that following order alphabetic
for analysis) when other variable orders were analysed by
hierarchical partitioning for models from two to twelve predictors.
Numbers are averaged percentages (and range) of the number of
times the ranking of predictors changed (n =100 for each suite of
predictors and Dataset, n =4 Datasets)

Found at: doi:10.1371/journal.pone.0011698.s001 (0.03 MB
DOC)
Table 82 Mean, standard deviation and range of the percentage

in independent explained variance of the five best predictors
obtained after permuting 100 times the variable order for each
dataset. Note that the results with 10, 11 and 12 variables for each
simulated dataset (i.e. Dataset-1 to Dataset-4) are pulled together.
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Table 4. Variables used for explaining the probability of a variable changing its ranking position.

Variable Definition

DIFNEXT Difference in independent variance explained between a variable and the next one

DIFPREVIOUS Difference in independent variance explained between a variable and the previous one

DIFSECOND Difference in independent variance explained between a variable and the second-further one

DIFTHIRD Difference in independent variance explained between a variable and the third-further one

DIFNEXTPREVIOUS Sum of the differences in independent variance explained between a variable and the next and previous ones
DIFALL Sum of the differences in independent variance explained between a variable and all the rest

VARIABLES Number of variables used to perform the HP analysis

doi:10.1371/journal.pone.0011698.t004
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Found at: doi:10.1371/journal.pone.0011698.s002 (0.07 MB
DOC)

Table S3 Independent, joint and total variance explained (in
percentage) for each of the variables taken into account in the
numerical simulation from Dataset-2 to Dataset-4. Note that the
total explained variance (Total column) expresses the correlation
(in “R2”) of each of the variables with the response variable.
Negative joint variance indicates that the other variables act as
suppressors of the particular variable.

Found at: doi:10.1371/journal.pone.0011698.s003 (0.05 MB
DOC)

Table S4 Independent variables used for explaining the
distribution of lesser kestrel abundance in a Spanish farmland
and habitat selection by Egyptian vulture in a mountain area.
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