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Abstract

Background: When the mortality among a cancer patient group returns to the same level as in the general
population, that is, the patients no longer experience excess mortality, the patients still alive are considered
“statistically cured”. Cure models can be used to estimate the cure proportion as well as the survival function of
the “uncured”. One limitation of parametric cure models is that the functional form of the survival of the “uncured”
has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data,
for example, when there is high excess hazard within a few months from diagnosis, which is common among
older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure
models.

Methods: Here we have extended the flexible parametric survival model to incorporate cure as a special case to
estimate the cure proportion and the survival of the “uncured”. Flexible parametric survival models use splines to
model the underlying hazard function, and therefore no parametric distribution has to be specified.

Results: We have compared the fit from standard cure models to our flexible cure model, using data on colon
cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and
better fit when the standard cure model gives biased estimates.

Conclusions: Cure models within the framework of flexible parametric models enables cure modelling when
standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can
give stage-specific estimates, which is not always possible from parametric cure models.

Background
Patient survival, the time from diagnosis to death, is the
most important single measure of cancer patient care
(the diagnosis and treatment of cancer). Cancer patient
survival is often measured using 5-year relative survival,
the proportion of patients that would still be alive
5 years after diagnosis if the cancer (either directly or
indirectly) was the only possible cause of death [1]. As
cancer patient survival has improved for many cancer
types, and many patients are cured of their disease,
another important question is what proportion of
patients are cured of their cancer.

For most cancers the relative survival will reach a pla-
teau some years after diagnosis, indicating that the mor-
tality among the patients still alive is the same as
expected in the general population. This point is called
the cure point and the patients still alive are considered
“statistically cured”. De Angelis et al. [2], Verdecchia et
al. [3], Yu et al. [4] and Lambert et al. [5] have pro-
posed cure models for population-based cancer studies
that can be used to estimate the proportion of cancer
patients that are “statistically cured”. The models also
give an estimate of the survival of those “uncured”.
These measures are of interest to patients, clinicians
and policy makers, and can give valuable insights into
temporal trends in cancer patient survival. One limita-
tion of parametric cure models is that the functional
form of the survival of the “uncured” has to be specified.
It can sometimes be difficult to fit survival functions
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flexible enough to capture high excess hazard within a
few months from diagnosis, which is common among
older age groups. This has led to the exclusion of older
age groups in population-based cancer studies using
cure models [6]. In our experience the current models
can also give biased estimates, or fail to converge, when
the cure proportion is high (e.g. 80% and above). Yu et
al. [4] have proposed the generalized gamma distribu-
tion, which make less distributional assumptions, but
computational difficulties may arise. Lambert et al. [7]
have proposed a finite mixture of Weibull distributions
to add flexibility, but this adds to the complexity of
deciding which model parameters are allowed to vary by
covariates since there are 4 Weibull parameters to be
modelled. Non-parametric or semi-parametric cure
models have been suggested (e.g. [8-11]), but they do
not use relative survival.
This paper shows how these problems could poten-

tially be avoided by using flexible parametric survival
models to estimate the cure proportion and the survival
of the “uncured” in a population-based setting. Flexible
parametric survival models were first introduced by
Royston and Parmar [12,13], and extended to relative
survival by Nelson et al. [14] and Lambert and Royston
[15]. The models are fitted on the log cumulative excess
hazard scale using restricted cubic splines for the base-
line. By the use of splines these models can more easily
capture the shape of the underlying distribution. We
illustrate the method using data on patients diagnosed
with colon cancer in Finland during 1953-2003, which
has previously been used to study temporal trends in
the cure proportion [6]. We use and further develop the
flexible parametric survival model. Our results are com-
pared to the previously published results by Lambert et
al. [6]. Here we also include patients 80 and above at
diagnosis, who were excluded in the paper by Lambert
et al. [6], as well as analysing a subset of the cohort
with localised cancer to evaluate how the method per-
form when the survival is high.

Methods
Relative survival
The method of choice for studying cancer patient survi-
val in a population-based setting is relative survival, R(t)
[1]. Relative survival is the observed (all-cause) survival,
S(t), among the cancer patients divided by the expected
survival, S*(t), in a hypothetical group in the general
population that is comparable to the cancer patients
with respect to age, sex, calendar year and possible
other covariates. An advantage of relative survival is that
it does not rely on classification of cause of death,
which is known to be poorly reported [16]. As for
cause-specific survival, relative survival measures the net
survival. The net survival at a certain point in time is

the proportion of patients who would have survived up
to that point if the cancer of interest was the only possi-
ble cause of death. Even though this measure might not
be directly relevant from a patient perspective, it is use-
ful for studying temporal trends in cancer patient survi-
val and comparing populations where expected survival
may vary. In the relative survival model the overall sur-
vival can be written as

S(t) = S∗(t)R(t). (1)

The hazard analogue of relative survival is the excess
hazard rate. The overall hazard, h(t), among the patients
is the sum of two components, the expected hazard, h*
(t), and the excess hazard, l(t), associated with a diagno-
sis of the cancer.

h(t) = h∗(t) + λ(t). (2)

Both S*(t) and h*(t) are assumed known and are
usually obtained from routine data sources (eg. national
or regional life tables).

Parametric cure models
For most cancers the mortality in the patient group will,
after some years from diagnosis, return to the same
level as in the general population, i.e l(t) in equation (2)
is equal to zero after some time point. This point is
called the cure point and the patients still alive are con-
sidered “statistically cured”. This is a population defini-
tion of cure and does not necessarily imply that all
patients are medically cured. Statistical cure is a useful
method of measuring long-time survival in population-
based cancer studies. One of the most often used cure
models in population-based cancer studies is the mix-
ture cure model [2,3,5]. When incorporating relative
survival, the overall survival function from the mixture
cure model can be written as

S(t) = S∗(t)(π + (1-π)Su(t)). (3)

It assumes that a proportion, π, of the patients will be
cured (do not experience excess mortality), while the
remainder, 1 - π, are “uncured”. Su (t) is the cancer-spe-
cific survival function for the “uncured”, and is esti-
mated by the model along with the cure proportion. A
parametric distribution for Su(t) has to be chosen, and a
Weibull distribution is often used [2,3,5,6].
Another parametric cure model used in population-

based cancer studies is the non-mixture cure model [5],
which estimates an asymptote for the survival function
at the cure proportion. The survival function for the
non-mixture model can be written as

S(t) = S∗(t)πFZ(t), (4)
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where FZ(t) is a distribution function, as for the mix-
ture model, a Weibull distribution is often used. The
non-mixture model can be written as a mixture model

S(t) = S∗(t)

(
π + (1 − π)(

πFZ(t) − π

1 − π
)

)
, (5)

which enables estimation of both the cure proportion
and the survival of the “uncured”. When modelling,
both the cure proportion and the parameters in Su(t) or
FZ(t) can be allowed to vary by covariates.

Flexible parametric survival model
The flexible parametric survival model [14,15] is fitted
on the log cumulative excess hazard scale, using
restricted cubic splines to estimate the baseline cumula-
tive excess hazard. By integrating equation (2) we get

H(t) = H∗(t) + �(t), (6)

where H(t) is the overall cumulative hazard, H*(t) the
expected cumulative hazard and Λ(t) is the cumulative
excess hazard. The reason for modelling on the log
cumulative excess hazard scale instead of the log excess
hazard scale is because the log cumulative excess hazard
is a relatively stable function, and it is easier to capture
its shape. We are interested in modelling the cumulative
excess hazard on the log scale

ln(�(t)) = ln(− lnR(t)) = s(x; γ 0) (7)

where x = ln(t) and s(x; g0) is a restricted cubic spline
function, defined as

s(x; γ 0) = γ00 + γ01v1(x) + γ02v2(x) + ... + γ0K−1vK−1(x), (8)

where K is the number of knots and the jth basis func-
tion is defined as v1(x) = x, and for j = 2, ..., K - 1 as

vj(x) = (x − kj)3+ − λj(x − k1)3+ − (1 − λj)(x − kK)3+ (9)

where u+ = u if u >0 and u+ = 0 if u ≤ 0, k1 is the
position of the first knot, kK the position of the last

knot, and λj =
kK − kj
kK − k1

. Up to the first knot, all spline

variables except the first one (v1, the linear variable) are
zero, so the log cumulative excess hazard is forced to be
linear before first knot position. Introducing covariates,
z, into equation (7) gives

ln(�(t; z)) = ln(− lnR(t; z)) = s(x; γ 0) + βTz. (10)

This is a proportional excess hazards model. Non-pro-
portional excess hazards models, i.e. models with time-
dependent covariate effects, are extremely common in
population-based cancer studies and can be modeled by

including interactions between covariates and splines for
time. Since the time-dependent effects usually do not
require as many knots as the baseline cumulative excess
hazard, new spline parameters are introduced for each
time-dependent effect, and separate knot positions can
be chosen for each new covariate with a time-dependent
effect, zi. This gives the model:

ln(�(t; z)) = s(x; γ 0) + βTz +
D∑
i=1

s(x; γ i)zi, (11)

where D is the number of time-dependent covariate
effects and s(x; gi) is the spline function for the ith time-
dependent effect.

Flexible parametric cure models
When cure is reached the excess hazard rate is zero, and
the cumulative excess hazard will be constant after this
time. By forcing the log cumulative excess hazard in the
flexible parametric survival model to not only be linear
but also to have zero slope after the last knot, we would
be able to estimate the cure proportion. This is done by
calculating the spline variables “backwards”, treating the
knots in reversed order, and then restricting the linear
spline variable to be zero. The spline basis functions, vj
(x), are then defined as

vj(x) = (kK−j − x)3+ − λj(kmax − x)3+ − (1 − λj)(kmin − x)3+, (12)

where j = 2, ..., K -1, and λj =
kK−j − k1
kK − k1

The relative

survival function from the flexible parametric survival
model, with splines calculated backwards and with
restriction on the parameter for the linear spline vari-
able (g01 = 0) is defined as

R(t) = exp(− exp(γ00 + γ02v2(x) + ... + γ0K−1vK−1(x))), (13)

which can be written as

R(t) = π exp(γ02v2(x)+...+γ0K−1vK−1(x)), (14)

where π = exp(- exp(g00)). When comparing to a non-
mixture model we can see that the flexible parametric
cure model is a special case of a non-mixture cure
model with π = exp(- exp(g00)), and FZ(t) = exp(g02v2(x)
+ ... + g0K - 1vK - 1(x)). FZ(t) is a distribution function as
long as the excess mortality is not negative, which is
very uncommon. As for the non-mixture model, the
flexible parametric cure model can be written as a pro-
portional excess hazards model, as long as no time-
dependent effects are modelled. When we incorporate
covariates,

R(t; z) = exp(− exp(γ00 + βTz) exp(γ02v2(x) + ... + γ0K−1vK−1(x) +
D∑
i=1

s(x; γ i)zi)) (15)
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we see that the constant parameters, g00 and b are
used to model the cure proportion and the time-depen-
dent parameters are used to model the distribution
function FZ(t). The constraint of a zero effect for the
linear spline term has to be incorporated for each spline
function, s(x; gi), that we model. All spline variables take
the value 0 from the point of the last knot, which
means that in equation (15), the constant parameter,
g00, is the log cumulative excess hazard at and beyond
the last knot for the reference group, and can therefore
be used to predict cure. It is usually preferred to ortho-
gonalise, i.e. by Gram-Schmidt orthogonalisation, the
spline variables. This results in them not being zero
from the point of the last knot, and cure can then not
be predicted by a direct transformation of the constant
parameters. Therefore, we have chosen to center the
orthogonalised spline variables around the value they
take at the last knot, which enables direct predictions of
cure from the constant parameters. All parameters are
estimated using maximum likelihood estimation on indi-
vidual level data [15]. The survival of “uncured” can be
predicted in the same way as for the non-mixture cure
model, and the median survival time of “uncured” is
predicted using a Newton-Raphson algorithm in a simi-
lar way as Lambert et al. [7].
We have adapted the Stata package for flexible para-

metric survival models [15], to incorporate backward
calculation of the splines and the constraint to force a
constant cumulative excess hazard after the last knot.
There are also postestimation commands to predict the
cure proportion and the survival of the “uncured”.

Evaluating the method
To evaluate the model we used data from the Finnish
Cancer Registry. The Finnish Cancer Registry started in
1953, and the completeness for solid tumors is over 99%
[17]. We studied all patients diagnosed with colon ade-
nocarcinoma in Finland 1953-2003, with follow-up until
2004. Patients that emigrated were censored at the date
of emigration, and everyone still alive was censored 10
years after diagnosis. Patients that were incidentally
diagnosed at autopsy or were registered solely on death
certificate information were excluded. The cohort con-
sists of 34,664 patients. The same cohort, restricted to
patients aged less than 80 years at diagnosis, is described
elsewhere [6]. In that study, temporal trends of the cure
proportion and the median survival time of uncured
were estimated for different age groups, and we have
repeated that analysis with the flexible parametric cure
model.
We graphically compared the estimated relative survi-

val from the flexible parametric cure model with empiri-
cal life table estimates of relative survival using the
Ederer II [18] method. For comparison with the life

table estimates the data were divided into 5 age groups
(less than 50 years, 50-59 years, 60-69 years, 70-79 years
and 80 years and above) and 5 calendar periods (1953-
1964,1965-1974, 1975-1984, 1985-1994, 1995-2003).
Results from the flexible parametric cure model were

also compared to results from a non-mixture cure
model. Lambert et al. [6] used a mixture cure model
with a Weibull distribution to study temporal trends by
age group in survival of colon cancer patients in Fin-
land. In that study, calendar year was modeled continu-
ously using splines and age was categorized in four
categories (less than 50 years, 50-59 years, 60-69 years
and 70-79 years). The two main effects of year and age
as well as an interaction between age and the linear
spline variable for year were included for all three
model parameters (the cure proportion and the two
Weibull parameters). In this paper we repeated the ana-
lysis using a non-mixture cure model because it is more
comparable with the flexible parametric cure model, but
the estimates from the mixture and non-mixture cure
models are very similar. We also included the oldest age
group (80 years and above) that was excluded by Lam-
bert et al. [6].

Results
Evaluating the sensitivity to knot placement
The flexible parametric survival model has been shown
to be robust to the number and location of the knots
[14,15]. To evaluate the sensitivity to the location of the
knots for the flexible parametric cure model we com-
pared predicted survival from the new model using dif-
ferent knot positions with life table estimates of relative
survival. This was done separately for all combinations
of age group and calendar period described previously.
We used 6 knots and first distributed them according to
default settings recommended by Lambert and Royston
[15], evenly distributed at centiles of the log of the
observed death times (centile 0, 20, 40, 60, 80 and 100).
Since most of the death times happen early in follow-up
the default positions put a lot of knots in the beginning
of follow-up, so we also assessed putting more knots
towards the end of follow-up, first by distributing 5
knots evenly according to centiles and one extra at the
95th centile (knot at centiles 0, 25, 50, 75, 95 and 100),
and by placing more knots towards the end (at centiles
0, 35, 65, 80, 95 and 100). We also investigated the pos-
sibility to put the last knot earlier than the last observed
death time, at the 95th centile (knots at centiles 0, 35,
65, 75, 85 and 95). To be sure that the knots are placed
more evenly according to actual follow-up time we also
put the knots at follow-up years instead of centiles of
log death times (at the first and last death time and fol-
low-up years 3, 5, 7 and 8). Finally we put the last knot
after the last observed follow-up time (the knots were
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located at centiles 0, 25, 50, 75, 95 of log death times
and the last knot 12 years from diagnosis).
Similarly we evaluated the sensitivity to the number of

knots used, ranging from 4 to 9 knots. The knots were
distributed evenly according to centiles of log death
times with an additional knot at the 95th centile. Figure
1 shows Ederer II life table estimates of relative survival
and predicted relative survival as well as the survival of
“uncured” from the flexible parametric cure models with
the knot positions described above, for calendar period
1985-1994 and age group 60-69. The fit of the cure
model is fairly robust to the number and location of the
knots. When the default distribution is used all knots
except the last one are placed within the first few years
from diagnosis, and cure (where the survival reach a
plateau) seems to be slightly overestimated (see Figure 1
left-hand panel). Cure is also slightly overestimated
when the last knot is placed at the 95th centile of death
times. The number of knots seem to have little impact
on the estimated relative survival (see Figure 1 right-
hand panel). The results also seem to be robust for the
predicted survival function of the “uncured”, with the
largest differences being observed for the same combi-
nations of knots that seem to overestimate cure. The
results were similar for the other age groups and

calendar periods (not shown). For almost all combina-
tions of age group and calendar period the first or
fourth knot distribution seem to overestimate the cure
proportion, as compared to life table estimates. Simi-
larly, for the different number of knots it was always the
model with only 4 knots that gave slightly overestimated
cure proportions. Among the other knot distributions
the largest difference in the predicted cure proportion
was observed for the age group 70-79 in period 1965-
1974 (difference 2.2%) when the knots were placed at
different locations, and for the oldest age group in per-
iod 1985-1994 (2.8%) when different number of knots
were used. Overall the flexible parametric cure model
seem to give a good fit as long as knots are placed over
the whole follow-up period and the last knot is posi-
tioned at the last observed death time or possibly later.

Comparison to life table and standard non-mixture model
In order to see how well the flexible parametric cure
model fitted the data we compared the predicted survi-
val from a model with knots at centiles 0, 25, 50, 75, 95
and the last knot 12 years from diagnosis, with Ederer II
life table estimates and the predicted survival from a
non-mixture cure model using a Weibull distribution.
This was done separately for all age groups and calendar
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Figure 1 Sensitivity to knot placement. Ederer II life table estimates of relative survival and predicted survival from flexible parametric cure
models with different knot locations and number of knots.
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periods. Figure 2 shows predicted survival from the two
cure models, the predicted cure proportion and life
table estimates for all age groups in calendar period
1985-1994. The predicted survival and cure proportions
from the two cure models are similar for all age groups
except the oldest, and they seem to correspond well
with the life table estimates of relative survival. For the
oldest age group, which was excluded in the paper by
Lambert et al. [6] because of poor fit of the cure model
used, the flexible parametric cure model fits the data
much better than the Weibull non-mixture model
(Figure 2).
All flexible parametric cure models described above

were also compared to standard flexible parametric sur-
vival models, without the restriction of constant cumula-
tive excess hazard after the last knot, using Akaike’s
information criterion (AIC) and the Bayesian informa-
tion criterion (BIC). The difference between the models
is then the restriction on the linear spline term to be
zero. For most models the restricted 9 model gives a
better fit, indicating that the final term in the unrest-
ricted model is probably close to zero. In Figure 2 the
AIC and BIC for all age groups in the calendar period
1985-1994 are shown. There is no formal goodness of
fit test for cure models, since they rely on a good fit at

the end of follow-up, and most of the data is at the
beginning of follow-up. Since the flexible parametric
cure model is a flexible parametric survival model with
a restriction on one of the parameters, it can as
described here, be compared to a standard flexible para-
metric survival model to test the assumption of cure.
But we believe that this should not be used as a formal
test, the assumption of cure and the fit of the model
should be assessed graphically. To repeat and compare
to the results from Lambert et al. [6] we also fitted a
flexible parametric cure model and a non-mixture cure
model. Calendar year was modeled continuously using
splines and age was categorized in five categories as
described previously. The two main effects of year and
age as well as an interaction between age and the linear
spline variable for year was included. All variables were
included both as constant and time-varying effects,
knots for the baseline log cumulative excess hazard were
placed at centiles 0, 25, 50, 75, 95 and the last 12 years
from diagnosis, and for the time-varying effects knots
were placed at centiles 0, 25, 50, 75 and 100.
Table 1 shows predicted cure proportions from the

flexible parametric cure model and the Weibull
non-mixture model for year 1960, 1970, 1980, 1990 and
1999, and Table 2 the median survival time for
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“uncured” from the two models. In Figure 3 the esti-
mated cure proportion from the flexible parametric cure
model and the Weibull non-mixture cure model is
shown and Figure 4 shows the estimated median survi-
val time for “uncured” from the two models. The results
from the two models are similar for most age groups, as
expected. There are large differences between the esti-
mated cure proportion from the two models for the old-
est age group, where we know that the Weibull non-
mixture model overestimates cure (Figure 2), and the
flexible parametric cure model predicts a lower cure
proportion for this age group. Some differences are also
seen for the cure proportion among those aged 70-79 in
earlier years, where we expect the non-mixture model
to give slightly biased results [6].

Proportional excess hazards model
Table 3 shows parameter estimates from 3 flexible para-
metric survival models. All models include age and
calendar periods as categorical variables and model the
baseline log cumulative excess hazard with knots at

centiles 0, 25, 50, 75, 95 and the last 12 years from diag-
nosis. We chose to put the last knot outside the range
of our data to make sure that we don’t impose a cure
point too early. Even though we don’t assume the
cumulative excess hazard to be constant within the data,
the restriction will still have some implications on the
gradient of the cumulative hazard before the last knot.
The first model in Table 3 is a standard flexible para-
metric survival model with no time-dependent effects, i.
e. a proportional excess hazards model. The spline vari-
ables in model 1 are calculated backwards as described
in equation (12), to make the intercept comparable to a
flexible parametric cure model. The excess hazard ratios
and the fitted values are the same as when splines are
calculated in standard way (not shown). Model 2 is a
flexible parametric cure model with no time-dependent
effects, so the only difference between model 1 and 2 is
the restriction of a constant cumulative excess hazard
from the last knot. The intercept in both model 1 and 2
are interpreted as the log cumulative excess hazard at
the last knot, and since both models are proportional

Table 1 Estimates of cure

Aged <50 Aged 50-59 Aged 60-69 Aged 70-79 Aged 80 and above

(a) Flexible parametric cure model

Year 1960 33.8 (30.5-37.1) 26.7 (23.9-29.6) 20.2 (18.1-22.3) 12.7 (10.8-14.6) 7.9 (5.5-10.8)

Year 1970 40.7 (38.1-43.2) 36.2 (33.9-38.6) 30.9 (29.1-32.8) 24.1 (22.2-26.0) 16.9 (14.3-19.8)

Year 1980 47.2 (45.0-49.4) 45.6 (43.5-47.5) 42.0 (40.3-43.7) 37.2 (35.6-38.9) 28.6 (26.3-30.9)

Year 1990 50.0 (47.5-52.4) 51.0 (48.9-53.0) 49.3 (47.6-51.0) 46.9 (45.2-48.5) 37.7 (35.6-39.7)

Year 1999 52.4 (49.1-55.6) 55.6 (53.1-58.1) 55.5 (53.5-57.4) 55.0 (53.2-56.8) 45.8 (43.3-48.3)

(a) Non-mixture cure model

Year 1960 33.7 (30.2-37.2) 27.6 (24.4-30.8) 21.8 (19.3-24.4) 16.9 (14.5-19.3) 12.7 (9.0-16.4)

Year 1970 39.5 (36.9-42.2) 36.2 (33.8-38.6) 31.5 (29.5-33.5) 28.1 (26.0-30.1) 25.0 (22.3-27.8)

Year 1980 44.9 (42.5-47.3) 44.3 (42.1-46.4) 40.7 (38.8-42.6) 38.8 (36.9-40.6) 36.9 (34.6-39.1)

Year 1990 47.7 (44.9-50.5) 49.8 (47.5-52.1) 47.3 (45.4-49.3) 46.9 (44.9-48.9) 46.2 (44.0-48.3)

Year 1999 50.0 (45.9-54.0) 54.5 (51.3-57.7) 53.0 (50.2-55.8) 54.0 (51.3-56.7) 54.2 (51.8-56.7)

Model based estimates of cure (%) from flexible parametric cure model and non-mixture cure model

Table 2 Estimates of median survival time of “uncured”

Aged <50 Aged 50-59 Aged 60-69 Aged 70-79 Aged 80 and above

(b) Flexible parametric cure model

Year 1960 0.56 (0.46-0.66) 0.43 (0.36-0.50) 0.32 (0.29-0.36) 0.23 (0.21-0.26) 0.16 (0.15-0.18)

Year 1970 0.81 (0.72-0.90) 0.67 (0.60-0.74) 0.53 (0.48-0.57) 0.36 (0.33-0.40) 0.21 (0.19-0.23)

Year 1980 1.14 (1.05-1.23) 1.00 (0.92-1.08) 0.85 (0.79-0.92) 0.64 (0.58-0.69) 0.32 (0.29-0.35)

Year 1990 1.29 (1.18-1.41) 1.14 (1.05-1.24) 1.00 (0.92-1.07) 0.72 (0.66-0.79) 0.31 (0.28-0.34)

Year 1999 1.51 (1.37-1.65) 1.36 (1.24-1.48) 1.23 (1.14-1.32) 0.93 (0.84-1.03) 0.33 (0.29-0.38)

(b) Non-mixture cure model

Year 1960 0.63 (0.55-0.72) 0.50 (0.45-0.57) 0.38 (0.35-0.42) 0.27 (0.25-0.30) 0.17 (0.15-0.20)

Year 1970 0.86 (0.75-0.95) 0.70 (0.64-0.77) 0.56 (0.52-0.61) 0.39 (0.36-0.43) 0.21 (0.19-0.24)

Year 1980 1.32 (1.21-1.44) 1.10 (1.02-1.19) 0.95 (0.88-1.02) 0.66 (0.61-0.71) 0.29 (0.27-0.32)

Year 1990 1.45 (1.32-1.60) 1.22 (1.13-1.33) 1.10 (1.02-1.19) 0.76 (0.70-0.83) 0.29 (0.27-0.31)

Year 1999 1.67 (1.46-1.91) 1.42 (1.27-1.59) 1.34 (1.20-1.50) 0.94 (0.83-1.07) 0.30 (0.27-0.34)

Model based estimates of median survival time (years) of “uncured” from flexible parametric cure model and non-mixture cure model
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Figure 3 Comparing predicted cure proportions. Predicted cure proportion (%) with 95% confidence intervals from a flexible parametric cure
model and a non-mixture cure model.
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Figure 4 Comparing predicted median survival times. Predicted median survival time (years) of “uncured” with 95% confidence intervals
from a flexible parametric cure model and a non-mixture cure model.
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excess hazards models the parameter estimates for the
covariates are interpreted as log excess hazards ratios.
We have omitted the parameters for the spline para-
meters. The estimates from model 1 and 2 are very
similar. Since the cure model is nested within the stan-
dard flexible parametric survival model, a likelihood
ratio test comparing the two models can be used to test
if the extra parameter (the linear spline term set to zero
in the cure model) in the standard model is significant.
A significant result then suggests that we can reject that
the linear spline term is zero, meaning that cure is not
reached. From the life table estimates of relative survival
we see that the relative survival seems to reach a pla-
teau. This shows how hard it is to rely on formal tests
for assessing the assumption of cure, especially in large
datasets where comparisons between models are often
significant. Even if the standard flexible parametric
model gives a better fit to the data we are, in situations
like this when the differences are in practice small, will-
ing to give up some model fit to gain the informative
estimates that the cure model gives.
The third model in Table 3 is a flexible parametric

cure model that includes time-dependent effects for
both age group and calendar periods. We only present
the parameters for the constant effects in Table 3. The
model parameters are harder to interpret, since they are
no longer log excess hazard ratios. In both model 2 and
3 the parameters are transformations of cure. It has pre-
viously been shown for non-mixture cure models where
a Weibull distribution is used that modelling of both

Weibull parameters can be crucial [5]. Similarly we
believe that time-dependent effects should usually be
included in the flexible parametric cure model for most
cancers.

An example of a high cure proportion
To investigate how the flexible parametric cure model
performs when survival is high we restricted to localised
cancer and compared, separately for each combination
of age group and period, the predicted survival from the
flexible parametric cure model with Ederer II life table
estimates and the predicted survival from a non-mixture
cure model using a Weibull distribution, in the same
way as described previously for the whole cohort. The
non-mixture model did not converge for all combina-
tions of age and calendar period, mostly where the sur-
vival was high and is therefore not included here. In
these scenarios the flexible parametric cure model con-
verged and gave sensible estimates, although data were
sparse when split by age and calendar period. Figure 5
shows results from flexible parametric cure models with
knots at centiles 0, 25, 50, 75, 95 and the last 12 years
from diagnosis, together with life table estimates, for all
age groups in calendar period 1985-1994. All flexible
parametric cure models were also compared to standard
flexible parametric survival models using AIC and BIC,
as described previously. In Figure 5 the AIC and BIC
from the models can be found, the unrestricted model
did not converge for the youngest age group so AIC
and BIC is missing. For most models the restricted

Table 3 Parameter estimates from flexible parametric survival models

Parameter Standard FPM
splines calculated backwards

Restricted FPM
incorporating a cure proportion

Restricted FPM
including time-dependent effects

Intercept 0.385 (0.032) 0.350 (0.031) 0.279 (0.033)

Age group

<50 - - -

50-59 0.089 (0.034) 0.089 (0.034) 0.085 (0.035)

60-69 0.214 (0.030) 0.212 (0.031) 0.184 (0.031)

70-79 0.385 (0.030) 0.382 (0.030) 0.284 (0.031)

80+ 0.788 (0.032) 0.785 (0.032) 0.532 (0.035)

LRT p <0.0001 p <0.0001 p <0.0001

Calendar period

1953-1964 - - -

1965-1974 -0.339 (0.029) -0.340 (0.029) -0.264 (0.032)

1975-1984 -0.741 (0.028) -0.743 (0.028) -0.585 (0.030)

1985-1994 -0.922 (0.027) -0.924 (0.027) -0.769 (0.029)

1995-2003 -1.190 (0.027) -1.194 (0.027) -1.025 (0.030)

LRT p <0.0001 p <0.0001 p <0.0001

LRT comparing to the previous model p <0.0001 p <0.0001

AIC 92285.22 92323.95 91590.12

BIC 92398.63 92429.26 91825.04

Parameter estimates (standard errors) from flexible parametric survival models

FPM, flexible parametric survival model; LRT, likelihood ratio test; AIC, Akaike’s information criterion; BIC, Bayesian information criterion.
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model gives a better fit, indicating that the final term in
the unrestricted model is probably close to zero and
that cure is reached.

Discussion
The cure proportion is an important and interesting
measure of cancer patient survival. Many of the cure
models used for population-based cancer survival today
rely on finding a parametric distribution flexible enough
to capture the shape of the survival function, which in
some scenarios is difficult to do. We here present a flex-
ible parametric cure model, which is an extension of the
flexible parametric survival model. This new method
gives similar results to the Weibull non-mixture cure
model, when it is reliable, and better fit when the Wei-
bull non-mixture cure model gives biased estimates.
This is illustrated here for the oldest age group where
the Weibull non-mixture model gives biased estimates,
but the flexible parametric survival model fits the data
well.
Since the flexible parametric cure model uses splines

to model the underlying survival, it is important that the
model is not overly sensitive to the location of the
knots. We have investigated the sensitivity and the
model seems to be fairly robust to the number and

location of the knots, but some care needs be taken
regarding the location of the last knot. The cure propor-
tion is estimated from the cumulative excess hazard at
the last knot, so it is important not to place the last
knot too early, but preferably at the last observed death
time or later. It is also good to make sure that the knots
are distributed along the whole follow-up time, since
the model needs to fit well at the end of the follow-up,
even if most of the events are at the beginning.
The mixture and non-mixture cure models are some-

times used in situations when cure is not reached within
the available follow-up time in the data. This can be
done since the models estimate an asymptote for the
relative survival function, but estimates of cure can be
very sensitive to the parametric distribution chosen. We
do not recommend extrapolation in this way when
using the flexible parametric cure model since the point
of cure has to be chosen. Even though the position of
the last knot can be outside the data the cure point
should be reached within the available follow-up time.
As with other cure models, the flexible parametric

cure model will give an estimate of the cure proportion
even when cure is not reasonable. It is therefore impor-
tant to always compare results from cure models with
standard methods for relative survival and to make sure
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Figure 5 An example of a high cure proportion. Predicted survival and cure proportion (%) for localised cancer from flexible parametric cure
models, compared to life table estimates of relative survival.
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that there seem to be a proportion of patients that are
cured (see Figure 2). This is not a specific drawback for
the flexible parametric cure model, but for cure models
in general. In contrast to the mixture and non-mixture
cure model, it is for the flexible parametric cure model
possible to informally test the assumption of a cure pro-
portion since it is a restricted standard flexible para-
metric survival model. But these tests should be
interpreted with some caution, since the comparison is
based on the fit over the whole time-scale and not just
towards the end where the cure proportion is estimated.
We have presented the flexible parametric cure model

within a relative survival setting, since that is the
method of choice for population-based studies. How-
ever, the flexible parametric survival model and the flex-
ible parametric cure model can also be used for non-
relative survival data. For example when cause of death
is known and reliable, or when the background mortal-
ity is very low which is the case for childhood cancer.
To enable application of the method we have updated

the Stata command for flexible parametric survival mod-
els [15], and added an option that will fitflexible para-
metric cure models.

Conclusions
Cure models within the framework of flexible para-
metric models enables cure modelling when standard
models are not flexible enough. These flexible cure
models enable inclusion of older age groups and can
give stage-specific estimates, which is not always possi-
ble from standard methods.
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