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SUMMARY. The Joint United Nations Programme on HIV/AIDS (UNAIDS) has decided to use Bayesian melding as the
basis for its probabilistic projections of HIV prevalence in countries with generalized epidemics. This combines a mechanistic
epidemiological model, prevalence data, and expert opinion. Initially, the posterior distribution was approximated by sampling-
importance-resampling, which is simple to implement, easy to interpret, transparent to users, and gave acceptable results
for most countries. For some countries, however, this is not computationally efficient because the posterior distribution
tends to be concentrated around nonlinear ridges and can also be multimodal. We propose instead incremental mixture
importance sampling (IMIS), which iteratively builds up a better importance sampling function. This retains the simplicity
and transparency of sampling importance resampling, but is much more efficient computationally. It also leads to a simple
estimator of the integrated likelihood that is the basis for Bayesian model comparison and model averaging. In simulation
experiments and on real data, it outperformed both sampling importance resampling and three publicly available generic
Markov chain Monte Carlo algorithms for this kind of problem.
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1. Introduction

The Joint United Nations Programme on HIV/AIDS (UN-
AIDS) publishes updated estimates and projections of the
number of people living with HIV/AIDS in the countries with
generalized epidemics every 2 years. As part of this, state-
ments of uncertainty are also provided. Generalized epidemics
are defined by overall prevalence being above 1%, and the epi-
demic not being confined to particular subgroups; there are
about 38 such countries (Ghys et al., 2004).

UNAIDS bases its estimates and projections on data from
two main sources: prevalence estimates from antenatal clinics
and estimates from Demographic and Health Surveys (DHS).
The antenatal clinic data are sparser and less representative,
but they are available in all the countries and are typically
available for many time periods, allowing estimation of trends.
The DHS data are more representative, but they are not avail-
able for all countries, and for most countries are available
at only one time point. Thus the DHS data give better in-
formation about overall prevalence, when they are available,
but the antenatal clinic data give better information about
trends.

The quality of the data available varies widely from coun-
try to country. As a result, UNAIDS bases its estimates on a
relatively simple method that can be supported by the data
in all the countries, and so can give estimates that are com-
parable between countries. This is based on a simple stan-
dard epidemiological model with four adjustable parameters.
The estimates and projections are produced using a Bayesian
melding method that combines the epidemiological model
with a hierarchical random effects model for the sampling
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variability of the data (Alkema, Raftery, and Clark, 2007;
Alkema, Raftery, and Brown, 2008). Out-of-sample predictive
assessments by Alkema et al. (2007) indicated that the over-
all method performed well over the 5-year time horizon of the
projections.

This method was incorporated into the Estimation and
Projection Package (EPP) produced by UNAIDS and avail-
able for download from http://www.epidem.org. This is used
by the UNAIDS Secretariat and also by national officials pro-
ducing their own estimates and projections. It was used to
produce the 2007 update of the UNAIDS estimates and pro-
jections (UNAIDS, 2007; Ghys et al., 2008). This update at-
tracted a great deal of attention because it featured a large
change, notably a revision of the estimate of the number of
people with HIV/AIDS worldwide downwards from 39 million
to 33 million.

The Bayesian melding posterior distribution is produced
using the sampling-importance-resampling (SIR) algorithm,
with the first sample drawn from the prior distribution (Ru-
bin, 1987, 1988; Poole and Raftery, 2000; Alkema et al., 2007).
This consists of simulating a large number of samples from the
prior distribution of the model parameters, weighting these by
their likelihoods, and then resampling them with replacement
and with the computed weights. This method is simple to im-
plement and explain, and works well for most of the countries
involved. It is not computationally efficient, however, but for
most countries this does not matter much: the model runs
quickly and so it is possible to draw an initial sample of size
200,000, which is enough to give a reasonable estimate of the
posterior in most cases.
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For some countries, however, this was not enough to give
a good picture of the uncertainty. Our goal here is to pro-
pose a generic method that is more efficient than the SIR
algorithm while retaining its essential simplicity and trans-
parency, and so can be used for all the countries involved.
The problem is a difficult one because the posterior distribu-
tion tends to feature nonlinear ridges and to be multimodal,
and so is unlike posterior distributions typical of standard sta-
tistical models. However, these features are common in pos-
terior distributions derived from mechanistic models, because
these are often underdetermined by the data, which are typ-
ically adequate only to estimate some nonlinear functions of
the parameters well (Raftery, Givens, and Zeh, 1995; Poole
and Raftery, 2000). This kind of posterior distribution is also
challenging for generic Markov chain Monte Carlo (MCMC)
algorithms.

We propose a new method, incremental mixture impor-
tance sampling (IMIS). The basic idea was first proposed in
a different context by Steele, Raftery, and Emond (2006). It
is generic, relatively simple to implement and explain, and
works well for countries where SIR does not. It also leads to a
simple estimator of the integrated likelihood that is the basis
for Bayesian model comparison and model averaging; this is
challenging to obtain using MCMC (Han and Carlin, 2001;
Raftery et al., 2007). In simulation experiments that mimic
the ridge-like characteristics and multimodality of the pos-
terior, it substantially outperformed SIR and three different
generic Metropolis algorithms. It yields essentially indepen-
dent samples from the posterior, avoiding the autocorrelation
and burn-in problems that plague MCMC. It is a kind of
adaptive importance sampling, a class of methods that also
include sequential Monte Carlo (SMC) and population Monte
Carlo; we discuss other methods in Section 6.

In Section 2, we describe the EPP model and methodology
used by UNAIDS in more detail. In Section 3, we describe our
IMIS method for estimation, and also the simple estimator
of the integrated likelihood to which it leads. In Section 4,
we give results for some simulated examples, and in Sec-
tion 5, we give results for estimation and projection for Zim-
babwe, one of the countries for which SIR did not perform
well.

2. The UNAIDS Estimation and Projection Package
and Bayesian Melding

The UNAIDS Estimation and Projection Package is based on
a simple susceptible-infected-removed epidemiological model
that we will refer to as the “EPP model.” This involves four
adjustable parameters or inputs, 6 = (r, %, fo, $), where r is
the force of infection, ¢, is the start year of the HIV/AIDS
epidemic, fj is the initial fraction of the adult population at
risk of infection, and ¢ is the behavior adjustment param-
eter. The output p is a sequence of yearly HIV prevalence
rates.

The model divides the population at time t into three
groups: a not-at-risk group X(¢), an at-risk group Z(t), and an
infected group Y(#). The model assumes a constant non-AIDS
mortality rate p and a constant fertility rate, and does not
represent migration or age structure. The rate at which the
sizes of the groups change are described by three differential
equations:
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where N (t) = X (t) + Z(¢) + Y () is the total population, and
the function g(7) specifies the HIV death rate 7 years after
infection. The population being modeled is aged 15+. The
number of new members at time ¢, E(t), depends on the pop-
ulation size 15 years ago, the birth rate and the survival rate
from birth to age 15. When individuals survive to age 15, they
are assigned to either the not-at-risk group X(¢) or the at-risk
group Z(t). The fraction of the new 15-year-old members en-
tering the at-risk group Z(t) is given by f(f\i—g;, Jo,b).

The Bayesian melding approach (Raftery et al., 1995; Poole
and Raftery, 2000) was applied to the EPP model by Alkema
et al. (2007). It proceeds as follows. A prior distribution is
specified for §. The UNAIDS Reference Group on Estimates,
Modelling, and Projections agreed on a default prior distri-
bution (see Section 5), but users can specify their own. The
observed antenatal clinic and DHS data give the likelihood
L(p) for the model output, using a hierarchical random effects
model. A prior on the model output p can also be specified;
this is currently restricted to being uniform between specified
bounds for specific years.

In the initial UNAIDS implementation, the Bayesian meld-
ing procedure computed the posterior distributions using the
SIR algorithm of Rubin (1987, 1988), with the prior as im-
portance sampling distribution. It consists of the following
stages:

(1) Obtain N independent and identically distributed
(i.i.d.) samples, {0y,...,60y}, from the input prior dis-
tribution p(6).

(2) For each 6;, determine the corresponding series of
prevalence rates p; by running the EPP model, and
calculate the likelihood L; = L(p;).

(3) Set the importance weights for each p; (and thus for
each 6;): w; = Li/zyzl L;.

(4) Sample from the multinomial distribution of
{61,...,0x} with probabilities {wi,...,wy} to
approximate the posterior distribution of the inputs
and outputs.

The default value of N is 200,000, and the EPP model runs
fast enough for this to be feasible.

The SIR algorithm performs acceptably for most of the
countries involved. For some, however, it does not work well.
In these cases, there is a small number of large importance
weights, and so the resample is dominated by large numbers of
repetitions of the same few points. Then there are few distinct
values present in the resample and the target distribution is
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poorly sampled. This happens because the posterior distribu-
tion tends to be concentrated near thin curved manifolds, and
in addition is often multimodal. In the most extreme case we
have seen, for the urban parts of Ghana, SIR found only 8
unique points in 3000 resamples.

3. Incremental Mixture Importance Sampling
3.1 Basic IMIS Algorithm

To overcome this problem, we extend IMIS to the Bayesian
melding problem. IMIS is an iterative generalization of de-
fensive mixture importance sampling (Hesterberg, 1995), and
was introduced by Steele et al. (2006) in a very different con-
text, that of a high-dimensional discrete distribution.

The basic idea of IMIS is that points with high importance
weights are in areas where the target density is underrep-
resented by the importance sampling distribution. At each
iteration, a multivariate normal distribution centered at the
point with the highest importance weight is added to the cur-
rent importance sampling distribution, which thus becomes a
mixture of such functions and of the prior. In this way un-
derrepresented parts of the parameter space are successively
identified and are given representation, ending up with an it-
eratively constructed importance sampling distribution that
covers the target distribution well.

The algorithm ends when the importance sampling weights
are reasonably uniform. Specifically, we end the algorithm
when the expected fraction of unique points in the resam-
ple is at least 1 —1/e = 0.632. This is the expected fraction
when the importance sampling weights are all equal, which
is the case when the importance sampling function is the
same as the target distribution. The IMIS algorithm is as
follows:

(1) Initial Stage:
(a) Sample Ny inputs 61, 6s, ..
tribution p(9).
(b) For each 0;, calculate the likelihood L;, and form
the importance weights

., 0y, from the prior dis-

o_ _Li
Wy =
DL
j=1
(2) Importance Sampling Stage: For k= 1,2,..., repeat

the following steps:

(a) Choose the current maximum weight input as the
center ). Estimate X*) as the weighted covari-
ance of the B inputs with the smallest Mahalanobis
distances to %), where the distances are calculated
with respect to the covariance of the prior distribu-
tion and the weights are taken to be proportional
to the average of the importance weights and ﬁ

(b) Sample B new inputs from a multivariate Gaussian
distribution H, with covariance matrix 2*).

(c) Calculate the likelihood of the new inputs and com-
bine the new inputs with the previous ones. Form
the importance weights:

where c¢ is chosen so that the weights add to 1,
g% is the mixture sampling distribution ¢*) =
1\\7210 + 1\% Zle H, H, is the sth multivariate nor-
mal distribution, and N, = Ny + Bk is the total
number of inputs up to iteration k.

(3) Resample Stage: Once the stopping criterion is sat-
isfied, resample J inputs with replacement from
01,...,0y, with weights wy,...,wy, , where K is the
number of iterations at the importance sampling stage.

The algorithm has several control parameters to be set by
the user: the number of initial samples Ny, the sample size at
each importance sampling iteration B, and the number of re-
samples J. The algorithm is unbiased for any choice of control
parameters, because it is an importance sampling algorithm,
but the control parameters can affect its efficiency. We have
found good results with the choices Ny = 1000d, B = 100d,
and J = 3000, where d is the dimension of the integrand.

A great advantage of importance sampling is that it is ef-
fectively self-monitoring, in that poor coverage of the target
distribution by the importance sampling is immediately seen
by the presence of large importance weights. We use the fol-
lowing specific criteria to assess the performance of the various
importance sampling algorithms considered here.

(1) The maximum importance weight among the N} in-
puts.

(2) The variance of the rescaled importance weights,
V() = g S (New, — 1)

(3) The entropy of the importance weights relative to uni-

formity, U(w) = — 25\2‘1 w; 11:;;((1\‘/;))

(4) The expected number of unique points after resam-

pling, Q(w) = Zz\:kl(]' — (1 —w;)”). ,
(5) The effective sample size, ESS(w)= %7 where
the coefficient of variation CV is defined as CV =

Varg[L(0)p(0)/a(0)] - 1 :
m = V(w) (Kong, Ijllu, and Wong, 1994).
We can also write ESS(w) = 1:;‘@) = ﬁ

i=1 i

Since IMIS will involve computing the likelihood that may
be a product of several densities, numerical over- or under-
flow is often encountered. Therefore, in practice it is often
better to compute the weights as

exp(w; )

N,
> expl(iy)

Jj=1

where w; =log(L;)+log(p(8;)) —log(¢*)(8;)) —log(C), with
C a suitable constant that will reduce computational prob-
lems, such as the maximum of the L;’s.

3.2 IMIS with Optimization

If the prior distribution disagrees strongly with the target dis-
tribution, particularly if the posterior is multimodal, the ini-
tial sample might miss a whole high-probability region. In this
case, IMIS might not work, as it proceeds essentially by fill-
ing in the importance sampling distribution to make it cover
the target. If there are no initial points at all in an important
unexplored region, IMIS would find it difficult to extend the
coverage to that region.

w; =
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As a remedy for this, we suggest inserting an optimization
stage after the initial stage. This yields a mixture of D multi-
variate normal distributions, each one centered around a local
maximum of the target distribution. It works as follows:

(1) Optimization Stage:

(a) Set the maximum weight input from the initial
stage as the first starting point, use the optimizer
to get a local maximum of the posterior density
9"", and store the inverse of the Hessian matrix
as B9P°.

(b) Fori=2,...,D, exclude the starting points and
the % inputs that have the smallest Maha-
lanobis distances from the previous local maxi-
mum, (z — Hi"ff)’Z?fi_l(x —6277). Among the re-
maining inputs, set the maximum weight input as
the new starting point to get §”" and X' as in

step (a).

(¢) Sample B inputs from each of the D multivariate
normal distributions with centers 6;%*,... 07"
and covariance matrices X77*, ... 0",

In our experiments, we used the L-BFGS-B method (Byrd
et al., 1995) as implemented in the R function optim, and we
set the maximum number of function evaluations to be 100.
When the Hessian matrix was not positive definite, we used
the first derivative g(8) = % to build a new information
matrix, and added it to the inverse of the diagonal of the prior
covariance matrix, diag(X®7?°"))~!. The inverse of the new
information matrix is then defined as X*" = [¢/(0) x g(6) +
diag(2®77°"))"1]-1. We found good results with D = 10. We
refer to this version of IMIS as IMIS-opt.

3.3 Estimating the Integrated Likelihood using IMIS

The standard Bayesian approach to model comparison is
based on the Bayes factor between two models (Jeffreys, 1939;
Kass and Raftery, 1995), and the standard Bayesian approach
to accounting for model uncertainty is Bayesian model aver-
aging (Leamer, 1978; Madigan and Raftery, 1994; Hoeting
et al., 1999; Clyde and George, 2004). Both are based on the
integrated likelihood of a model M, defined as

P(D|M) = /p(D|9)7r(€)d9, (2)

where D denotes the data, 6§ denotes the parameter vector
(or set of inputs) of the model, p(D|0) is the usual likelihood
function, and 7 () is the prior density of § under the model.
The Bayes factor for model M, against model M; is then

P(D|My)

By = 2,
7 P(D| M)

It has proven difficult to find a satisfactory general method
to estimate the integrated likelihood using standard posterior
simulation methods, including direct posterior simulation and
MCMC. Many proposals have been made, however, and some
work well for specific models; see Raftery et al. (2007) for a
review of the literature. IMIS directly yields an estimate of
the integrated likelihood that is simple to compute and has
good theoretical properties.

We can rewrite (2) as

where ¢(f) is the importance sampling distribution. The IMIS
estimator of the integrated likelihood is then

(6)do, ()

where {01,...,0x,} is the sample from the final IMIS impor-
tance sampling distribution ¢(#) = ¢)(6). Then the IMIS es-
timator has several desirable theoretical properties, as shown
by the following theorem, proved by Raftery and Bao (2009).

THEOREM 1. If the posterior distribution of 0 is proper,

) STy Nk

then, as an estimator of p(D|M), P(D|M) = ﬁZi:ﬁ
p(D10: ) (0:)

") (0;)

asymptotically normal, with

is (i) unbiased, (ii) strongly consistent, and (i)

Ny
V(K)

—

(P(D|M) —p(D|M)) ~N(0,1), ()

where ¢ is the mizture importance sampling function de-
fined previously, consisting of a mixture of the prior dis-
tribution and K multivariate Gaussian distributions, V) =

%d@ —p(D|M)?, and the asymptotics refer to the
amount of simulation increasing, so that Nx tends to infinity

at the Kth stage.

Note that the finite variance of the IMIS estimator is not
shared by other importance sampling estimators in general.
It arises because the IMIS importance sampling distribution
is a mixture of the prior and other distributions. The inclu-
sion of the prior makes IMIS a defensive mixture method
in the sense of Hesterberg (1995), and yields this desirable
behavior. When the importance sampling distribution is the
posterior itself, the importance sampling estimator of the in-
tegrated likelihood is the harmonic mean estimator of New-
ton and Raftery (1994), which is simulation-consistent but
whose reciprocal has infinite variance except in special cases
(Raftery et al., 2007). This is at the root of the difficulty in
estimating the integrated likelihood directly from posterior
simulation. o

The Monte Carlo estimate of the variance of P(D|M) is

given by
— (p(D|0)r(6)
vary (q(&) > . (6)

o~ T 1
var(P(D|M)) = N,

—

We can approximate the standard error of log(P(D|M)) by

—

SE(log(P(D] 1)) ~ SELDIM)) (7
P(D|M)

4. Simulated Examples
4.1 Methods for Comparison

We consider two simulated examples, to explore the behavior
of IMIS in situations with features similar to those of the
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EPP problem. The EPP posterior is typically ridge-like and
multimodal, so we show one example of simulating from a
distribution concentrated around a thin curved manifold, and
another of simulating from a bimodal distribution.

We compare IMIS and IMIS-opt with SIR, and also
with generic random-walk Metropolis algorithms, which have
become perhaps the most common way of simulating from
posterior distributions. We include results for three different
publicly available algorithms of this kind: a version that is
close to theoretically optimal for simulating a multivariate
normal distribution, a version that does not use optimization,
and a version that was programmed in WinBUGS.

The first one is the random-walk Metropolis algorithm im-
plemented by the R function MCMCmetropiR in the MCMCpack
package (Martin and Quinn, 2007). This is close to the theo-
retically optimal algorithm for simulating from a multivari-
ate normal distribution using a single-block random-walk
Metropolis algorithm with a multivariate normal proposal
distribution (Gelman, Roberts, and Gilks, 1996; Neal and
Roberts, 2006). It involves numerically optimizing the pos-
terior density to find the posterior mode and evaluating the
inverse Hessian at that point. The variance of the proposal
distribution is then 2.38/d times the estimated inverse Hes-
sian at the posterior mode, where d is the dimension of the
target distribution. The theoretical acceptance rate for a mul-
tivariate normal target ranges from 0.44 for d =1 to 0.23 as
d — oo. We ran five chains, all starting from the mode found
by the optimizer.

The second generic Metropolis algorithm uses the R func-
tion metrop in the memc package (Geyer, 2005), with a mul-
tivariate normal proposal distribution with variance propor-
tional to the identity matrix. We simulated five starting values
from the prior, and ran five chains, tuning the proposal vari-
ance so that the acceptance rate was close to 0.23. Finally,
we also ran the WinBUGS program (Lunn et al., 2000) using
the “zero trick” to specify a new distribution (Cowles, 2004),
again running five chains from starting values simulated from
the prior. This random-walk Metropolis algorithm is used in
WinBUGS for nonconjugate continuous full conditionals with
an unrestricted range.

As our primary criterion for comparing all six methods,
we use Efficiency, defined as the effective sample size (ESS)
divided by the total number of function evaluations. For the
MCMC methods, we used the estimated ESS using an autore-
gressive estimate of the spectrum at zero, as implemented in
the R function effectiveSize of the coda package (Plummer
et al., 2006). To estimate the ESS for the MCMC methods,

we used the diagnostic of Gelman and Rubin (1992) to assess
convergence using the five chains, and then ran one of the
chains for as many iterations as used by IMIS, discarding the
iterations before the five chains had converged as burn-in.

4.2 Ridge-Like Simulated Example

The posterior distributions from mechanistic deterministic
models are often ridge-like, that is, concentrated around thin
curved manifolds. This is because they are often underdeter-
mined by the data, with only functions of the parameters
being well estimated. We simulate a situation of this kind,
with a setup first used by Bates (2001).

The deterministic model that maps the inputs 6 =

(64,...,05) to the outputs ¢ = (¢1,...,¢,) is given by
6
o =[]0
i=1
G2 = 0204, (8)
b3 = 01/05,
¢4 = 0306.

The prior distributions on the inputs are independent and
normally distributed with means {6.0,0.5,5.5,0.15,3.0,0.6}
and standard deviations {1.3,0.14,0.289,0.029,0.04,0.1}. In
addition, there are independent normal likelihoods on the
outputs, with means {7.0,0.0525,2.0,4.0} and standard de-
viations {0.5,0.00144,0.01,0.01}, respectively.

IMIS converged after 35,400 function evaluations, and
IMIS-opt converged after 16,800 evaluations. The efficiencies
of the different methods are shown in Table 1. SIR was clearly
much less efficient than the other methods. IMIS was far
more efficient, and IMIS-opt was about 50% more efficient
again, although there were not multiple modes in this case.
The MCMC methods were more efficient than SIR, and the
MCMCMetroplR method, with its optimality properties, greatly
outperformed the metrop and WinBUGS methods, by a factor
of at least 7. However, IMIS and IMIS-opt were much more
efficient than the best of the generic MCMC methods, by a
factor of at least 15.

4.3 Bimodal Example

Our second example was bimodal, and the target distribution
was the product of a likelihood and a prior. The likelihood
was a mixture of two multivariate normal distributions

LNA((0,0,.....0), AR(~0.95))
+ %Nd((9, 9,....9), AR(0.95)),

Table 1
Efficiencies of different methods for the simulated examples and EPP for Zimbabwe. The value 1.0 corresponds to direct

independent sampling from the posterior distribution.

Method Ridge-like Bimodal d =4 Bimodal d = 20 EPP
SIR 2x107° 0.0002 1076 8 x10°¢
IMIS 0.0675 0.2063 0.0073 0.1361
IMIS-opt 0.1040 0.4047 0.1758 0.1553
MCMCMetroplR 0.0045 0.0437 0.0143 0.0031
Metrop 0.0006 0.0047 0.0004 NA
WinBUGS 0.0005 0.0223 0.0049 NA
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where AR(p) represents a first-order autoregressive covariance
matrix with correlation parameter p and marginal variance 1.
The prior was U ([—3,12]%).

We considered two cases: d = 4, the same dimension as the
EPP model, and d = 20, corresponding to larger deterministic
models that have been analyzed using Bayesian melding, for
example in forestry (Radtke, Burk, and Bolstad, 2002) and
hydrology (Hong et al., 2005). In the four-dimensional case,
the high-density region for each mode (defined as the sphere
centered at the mode with radius three standard deviations) is
4 x 107% times the volume of the prior distribution’s support,
while in the 20-dimensional case the ratio is about 1073°. This
experiment was modeled on an experiment of Warnes (2001).

When d = 4, IMIS converged after 13,600 function evalua-
tions and IMIS-opt after 8600 evaluations. When d = 20, the
numbers were much larger: 150,000 for IMIS and 41,000 for
IMIS-opt. However, when d = 20, IMIS had not sampled the
second mode, while IMIS-opt was the only one of the methods
we consider here that sampled both modes in this challenging
example.

Contour plots of the simulated values are shown in Figure 1,
for the same number of function evaluations for all methods
(13,600 for d = 4 and 150,000 for d = 20). SIR did not perform
well: it sampled both modes for d = 4, but only sparsely, and
for d = 20 it missed both modes. IMIS did an excellent job
for d = 4, but for d = 20 only partly explored one mode and
missed the other. IMIS-opt did a very good job in both cases.

For d=4, MCMCMetroplR performed best of the
three MCMC methods we wused. For d =20, however,
MCMCMetropiR did not work, but we implemented a sim-
ilar method using the metrop function, and that is shown in
Figure 1. For d = 4, the MCMC method found both modes,
but did not weight them correctly. For d = 20, the MCMC
method found only one of the modes.

These impressions are confirmed by the efficiencies in
Table 1. For both d = 4 and d = 20, IMIS-opt performed best
by far; IMIS was a respectable second for d = 4, but far be-
hind for d = 20. IMIS-opt was about 10 times more efficient
than the best of the three generic MCMC methods in both
cases.

5. Application to EPP for Zimbabwe
5.1 Estimation and Projection Results

We now apply IMIS to Bayesian melding for the EPP model
for the urban parts of Zimbabwe. We use prevalence data
from 18 antenatal clinics from 1989 to 2004. The observed
prevalences are shown by the dots in Figure 2, with different
colors corresponding to different clinics.

We implemented Bayesian melding using the random ef-
fects likelihood function described by Alkema et al. (2007)
and the default prior distributions agreed by the UNAIDS
Reference Group, namely log(r) ~ Ullog(0.5),log(150)], fo ~
Ul0,1], to ~ Discrete Uniform[1970,1971,...,1990], and ¢ ~
Logistic(100,50). The starting time of the epidemic, tg, is
treated as an integer by the EPP model because the data
typically come in yearly increments, but our implementation
of IMIS is designed for continuous parameters. We deal with
this by treating ¢y, as continuous in the importance sampling
distribution, with a piecewise constant likelihood.

Figure 2a shows the results of using SIR. The J = 3000
resamples yielded only 19 unique trajectories, each one cor-

responding to a different set of parameter values. The largest
weight was 0.81, so over 2400 of the 3000 resampled trajecto-
ries were actually the same.

Figures 2b and c¢ show the IMIS and IMIS-opt results.
Clearly they cover the posterior distribution much more fully
and smoothly. In IMIS-opt, the red dashed lines correspond
to the local optima found; most of these had little support in
the posterior.

Table 2 shows performance measures for the various meth-
ods used. Among the three MCMC methods we show results
only for MCMCMetroplR, as it performed better than the other
two in this case. With the IMIS importance sampling distribu-
tion, the 3000 resamples generated 1929 unique points, which
is close to the expected number of unique points when the im-
portance sampling distribution is equal to the target (1896).
IMIS-opt was slightly more efficient than IMIS in this case,
but not much more so, reflecting the fact that the secondary
modes were much smaller than the largest one. The best of
the MCMC methods was far less efficient than IMIS, by a
factor of more than 40. In fact, when we ran the five chains
from different starting points, they had not converged within
20,400/5 = 4,088 iterations, according to the Gelman—Rubin
diagnostic.

Figure 3 shows plots of the samples from the joint posterior
distribution of f; and r found by the four methods. SIR cov-
ered the posterior distribution completely but sparsely, while
generic MCMC (in this case a single chain starting from the
SIR mean and run for over 168,000 iterations) missed sub-
stantial parts of the posterior distribution.

5.2 Model Comparison and Model Averaging

One question of great interest in the context of HIV/AIDS
is whether the pattern of the epidemic has changed, for ex-
ample due to a change in behavior. One way of represent-
ing this is the so-called “R-jump model” proposed by Brown
et al. (2008), which allows for a one-time change in the force
of infection, r, at time 7. The R-jump model specifies that r
depends on time t, denoted by 7({), according to r(t) =r;
if to<t<7, and r(t)=ry if t > 7. We use a joint prior
distribution for (ty,7) specified by ¢, ~ U[1970,1990], and
7 |tg ~ Ultg,2004]. The priors for r; and 7y are taken to be
independent, with log(r;) ~ U[log(0.5),log(150)].

This question can be addressed by computing the Bayes
factor for the R-jump model, My, against the standard EPP
model, M;. The estimated values and 95% Bayesian confi-
dence intervals of the log integrated likelihoods after each
stage of IMIS are shown in Figure 4. The values increase and
then stabilize, which is a result of the “pseudo-bias” that can
afflict importance sampling (Ventura, 2002). This underlines
the importance of running IMIS to convergence.

The estimated log Bayes factor was log(Ba) = 75.73 —
75.04 = 0.69. The standard error of the log integrated likeli-
hood was 0.018 for the standard EPP model and 0.020 for the
R-jump model, and so the standard error of the log Bayes fac-
tor was v/0.0182 + 0.0202 = 0.027. Thus the estimated Bayes
factor was just 2.0, “evidence worth no more than a bare men-
tion,” in the words of Jeffreys (1939). Thus there is slight evi-
dence for the R-jump model against the standard EPP model
for Zimbabwe, but nothing conclusive.

When multiple competing models are considered plausible,
Bayesian model averaging can be used to obtain combined
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Figure 1. Results for the bimodal simulated example, for SIR, IMIS, IMIS-opt, and the best performing of the three generic
Metropolis algorithms considered. The results are for dimensions 4 and 20, and are projected onto the first two dimensions.
The true elliptical contours of the densities are shown in black.
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Table 2
Efficiencies of different methods for the EPP model applied to the Zimbabwe urban data
Method Total inputs Variance Max. weight Entropy Unique points ESS
SIR 200,000 13,317 0.81 0.06 24 1.5
IMIS 20,400 6.5 0.0010 0.82 1929 2776
IMIS-opt 17,447 5.5 0.0012 0.84 1915 2709
MCMCMetroplR() 20,447 62.7

inference about the trajectory of the disease prevalence, tak-
ing account of the model uncertainty. We illustrate this
here by combining the results of the standard EPP and R-

jump models. We took 3000 x ﬁ = 997 trajectories from

the standard EPP posterior distribution; and 3000 x 522 =
2003 trajectories from the R-jump model. Figure 4b shows
50 trajectories randomly selected from this combined sample.
In this case the projections for 2015 did not differ greatly
between the models, so model uncertainty was not a major

component of uncertainty about this quantity of interest.

6. Discussion

We have proposed a new computational method for imple-
menting Bayesian melding for the EPP model of the HIV/
AIDS epidemic used by UNAIDS. This is IMIS, a form
of adaptive importance sampling. IMIS outperformed both
simple SIR and three publicly available variants of generic
MCMC in simulations and real data relevant to the problem
at hand. IMIS also yields a simple estimate of the integrated
likelihood required for Bayesian model comparison and model
averaging; this is hard to obtain in general using MCMC.
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Figure 3. EPP model for Zimbabwe urban data: Comparison of the marginal posterior distribution of (fy, ) obtained using
SIR with 200,000 inputs (upper left), IMIS without optimizers and with 20,400 inputs (upper right), IMIS with 10 optimizers
and 17,447 inputs (lower left), and generic Metropolis random walk starting from the SIR mean and with 168,074 iterations

(lower right).

Moreover, the importance sampling framework allows easy
assessment of the Monte Carlo error and facilitates parallel
implementation.

These results are relevant to problems like the present one,
with posterior distributions of moderate dimension (up to at
least 30) that tend to be concentrated close to ridges, or thin
curved manifolds, and also can be multimodal. Many prob-
lems involving deterministic or mechanistic models have these
characteristics, so this method may be more widely useful. It
is unlikely to be as useful, however, for some classes of models
that are routinely and successfully handled by MCMC, such
as Bayesian hierarchical models with hundreds or thousands
of parameters.

IMIS is an adaptive important sampling method, and other
adaptive importance methods have been proposed, includ-
ing global adaptive importance sampling (West, 1992, 1993;
Oh and Berger, 1993; Zhang, 1996), local adaptive impor-

tance sampling (Givens and Raftery, 1996), defensive mixture
importance sampling (Hesterberg, 1995; Raghavan and Cox,
1998; Owen and Zhou, 2000), population Monte Carlo (PMC;
Cappé et al., 2008 and references therein), and stochastic
approximation Monte Carlo (Liang, Liu, and Carroll, 2007).
IMIS more directly attacks the fundamental problem of im-
portance sampling: important regions of parameter space
that are unrepresented or sparsely represented in the origi-
nal sample from the important sampling function. The pres-
ence of these is identified by large importance weights, and
IMIS directly adds mass to the importance sampling function
where there are large weights. In this way, it learns an ef-
fective importance sampling function. Also, the optimization
step of IMIS-opt makes it easier to reach modes not initially
sampled.

There are also similarities between IMIS and SMC, since
they are both iterative importance sampling schemes. SMC
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Figure 4. Model selection and model averaging for Zimbabwe urban data: (a) Estimated log integrated likelihood (solid lines)
plus or minus twice its approximate standard error (dashed lines). The standard EPP model is in blue and the R-jump model
in red. IMIS required 26 stages for the standard EPP model and 86 for the R-jump model. The lines for the standard EPP
model are extended horizontally to allow easier visual comparison with the R-jump model. (b) A sample of 50 trajectories
from the combined BMA posterior distribution for 2006 Zimbabwe urban data. The trajectories from the standard EPP model
are in blue and those from the R-jump model are in red. (¢) Kernel density estimate of the posterior predictive distribution of
HIV prevalence in 2015. The standard EPP model has median 11.3% and 95% confidence interval (3.0%, 26.0%), the R-jump
model has median 6.2% and 95% interval (2.6%, 23.2%), and the BMA combined posterior has median 7.6% and 95% interval
(2.7%, 24.9%). This figure appears in color in the electronic version of this article.

methods were originally introduced to deal with sequential
inference problems in statistics; see Liu (2002) and Moral,
Doucet, and Jasra (2007) for a review. It was soon pointed
out that SMC can also be used for static inference, and
several methods for doing this have been proposed, includ-
ing annealed importance sampling (Neal, 2001), resample-

move (Gilks and Berzuini, 2001), sequential particle filter-
ing (Chopin, 2002), and the dynamically weighted impor-
tance sampling method (Liang, 2002); see Jasra, Stephens,
and Holmes (2007) for a review. A problem for SMC sam-
plers is that the particles may only represent a single mode
of the target (Jasra et al., 2008).
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The main differences between IMIS and the other adaptive
importance sampling methods mentioned (including PMC
and SMC methods) are that IMIS updates the importance
sampling function in a different and more direct way, IMIS
uses all the values simulated and not just those simulated at
the last stage, and IMIS (in the IMIS-opt version) uses opti-
mization to reach local modes not reached by the sample from
the initial importance sampling function. The IMIS idea was
introduced in a different context by Steele et al. (2006), and
the present work extends this to the problem of simulating
from a continuous posterior distribution. Cappé et al. (2008)
subsequently proposed a PMC method that is an adaptive
importance sampling method with an adaptively estimated
mixture of multivariate normals and the prior as importance
sampling function. IMIS differs from their approach in the
way the importance sampling function is updated, its use of
all the samples simulated, and the optimization step.

An alternative to our approach to inference about deter-
ministic models is the approach based on interpolation us-
ing model emulators (see Liu and West, 2009, and references
therein). This seems more complex than our approach, espe-
cially when the dimension of the input and output is not very
small.

The application of IMIS to the EPP model is implemented
as part of the UNAIDS EPP software, publicly and freely
available from http://www.epidem.org.
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