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ABSTRACT

Estimating characteristics of large graphs via sampling is
a vital part of the study of complex networks. Current
sampling methods such as (independent) random vertex and
random walks are useful but have drawbacks. Random ver-
tex sampling may require too many resources (time, band-
width, or money). Random walks, which normally require
fewer resources per sample, can suffer from large estimation
errors in the presence of disconnected or loosely connected
graphs. In this work we propose a new m-dimensional ran-
dom walk that uses m dependent random walkers. We show
that the proposed sampling method, which we call Fron-
tier sampling, exhibits all of the nice sampling properties
of a regular random walk. At the same time, our simula-
tions over large real world graphs show that, in the presence
of disconnected or loosely connected components, Frontier
sampling exhibits lower estimation errors than regular ran-
dom walks. We also show that Frontier sampling is more
suitable than random vertex sampling to sample the tail of
the degree distribution of the graph.
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1. INTRODUCTION

A number of recent studies [7, 11, 15, 19, 20, 26, 30, 29,
36] (to cite a few) are dedicated to the characterization of
complex networks. A complex network is a network with
non-trivial topological features (features that do not occur
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in simple networks such as lattices or random networks).
Examples of such networks include the Internet, the World
Wide Web, social, business, and biological networks [7, 28].
This work represents a complex network as a directed graph
with labeled vertices and edges. A label can be, for in-
stance, the degree of a vertex or, in a social network setting,
someone’s hometown. Examples of network characteristics
include the degree distribution, the fraction of HIV positive
individuals in a population [24], or the average number of
copies of a file in a peer-to-peer (P2P) network [16].

Characterizing the labels of a graph requires querying ver-
tices and/or edges; each query has an associated cost in re-
sources (time, bandwidth, money). Characterizing a large
graph by querying the whole graph is often too costly. As a
result, researchers have turned their attention to the estima-
tion of graph characteristics based on incomplete (sampled)
data. In this work we present a new tool, Frontier Sampling,
to characterize complex networks. In what follows random
vertez (edge) sampling refers to sampling vertices (edges) in-
dependently and uniformly at random (with replacement).

Distinct sampling strategies have different resource re-
quirements depending on the network being sampled. For
instance, in a network where each vertex is assigned a unique
user-id (e.g., travelers and their passport numbers, Face-
book, MySpace, Flickr, and Livejournal) it is a widespread
practice to perform random vertex sampling by querying
randomly generated user-ids. This approach can be resource-
intensive if the user-id space is sparsely populated as the
hit-to-miss ratio is low (e.g., less than 10% of all MySpace
user-ids between the highest and lowest valid user-ids are
currently occupied [30]). Another way to sample a network
is by querying edges instead of vertices. Randomly sam-
pling edges can be harder than randomly sampling vertices
if edges are not be associated to unique IDs (or if edge IDs
cannot be randomly queried). We summarize some draw-
backs of random vertex and edge sampling:

e Random edge sampling may be impractical when edges
cannot be randomly queried (e.g., online social net-
works like Facebook [15], MySpace [30], and Twitter
or a P2P network like Bittorrent).

e Random vertex sampling may be undesirable when
user-ids are sparsely populated (low hit-to-miss ratio)
and queries are subject to resource constraints (e.g.,
queries are rate-limited in Flickr, Livejournal [26], and
Bittorrent [18]). In a P2P network like Bittorrent, a
client can randomly sample peers (vertices) by query-
ing a tracker (server); however, trackers may rate-limit
client queries [18].



e Even when random vertex sampling is not severely
resource-constrained, some characteristics may be bet-
ter estimated with random edge sampling (e.g., the tail
of the degree distribution of a graph).

An alternative, and often cheaper, way to sample a network
is by means of a random walk (RW). A RW samples a graph
by moving a particle (walker) from a vertex to a neighboring
vertex (over an edge). By this process edges and vertices are
sampled. The probability by which the random walker se-
lects the next neighboring vertex determines the probability
by which vertices and edges are sampled. In this work we
are interested in random walks that sample edges uniformly.
The edges sampled by RW can then be used to obtain un-
biased estimates of a variety of graph characteristics (we
present two examples in Section 4).

In this work we assume that a random walker has the
ability to query a vertex to obtain all of its incoming and
outgoing edges (Section 4 details the reason behind this as-
sumption). This is possible for online networks such as Twit-
ter, LiveJournal [26], YouTube [26], Facebook [15], MyS-
pace [30], P2P networks [29], and the arXiv citations net-
work. We revisit the theory behind random walks in Sec-
tion 4.

Sampling graphs with random walks is not without draw-
backs. The accuracy of the estimates depends not only on
the graph structure but also on the characteristic being es-
timated. The graph structure can create distortions in the
estimates by “trapping” the random walker inside a sub-
graph. An extreme case happens when the graph consists
of two or more disconnected components (subgraphs). For
instance, wireless mobile social networks exhibit connection
graphs with multiple disconnected components [11]. But
even connected graphs can suffer from the same problem.
A random walker can get “temporarily trapped” and spend
most of its sampling budget exploring the local neighbor-
hood near where it got “trapped”. In the above scenarios
estimates may be inaccurate if the characteristics of the lo-
cal neighborhood differ from the overall characteristic of the
graph. This problem is well documented (see [21]) and our
goal is to mitigate it.

Contributions

This work proposes a new m-dimensional random walk sam-
pling method (Frontier sampling) that, starting from a col-
lection of m randomly sampled vertices, preserves all of the
important statistical properties of a regular random walk
(e.g., vertices are visited with a probability proportional to
their degree). While the vertices are visited with a proba-
bility proportional to their degree, we show that the joint
steady state distribution of Frontier Sampling (the joint dis-
tribution of all m vertices) is closer to uniform (the starting
distribution) than that of m independent random walkers,
for any m > 0. This property has the potential to dramati-
cally reduce the transient of random walks.

In our simulations using real world graphs we see that
Frontier Sampling mitigates the large estimation errors caused
by disconnected or loosely connected components that can
“trap” a random walker and distort the estimated graph
characteristic, i.e., Frontier sampling (FS) estimates have
smaller Mean Squared Errors (MSEs) than estimates ob-
tained from regular random walkers (single and multiple in-
dependent walkers, reviewed in Section 4.4) in a variety of
scenarios.
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We make two additional contributions: (1) we compare
random walk-based estimates to those obtained from ran-
dom vertex and random edge sampling. We show analyt-
ically that the tail of the degree distribution is better es-
timated using random edge sampling than random vertex
sampling. We observe from simulations over real world net-
works (in Section 6.4) that FS accuracy is comparable to
the accuracy of random edge sampling. These results help
explain recent empirical results [29]; (2) we present asymp-
totically unbiased estimators using the edges sampled by a
RW for the assortative mixing coefficient (defined in Sec-
tion 4.2.2) and the global clustering coefficient (defined in
Section 4.2.4).

Outline

The outline of this work is as follows. Section 2 presents
the notation used in this paper. Section 3 contrasts ran-
dom vertex with random edge sampling. Section 4 revisits
single and multiple independent random walk sampling and
estimation. Section 5 introduces Frontier Sampling (FS), a
sampling process that uses m dependent random walkers in
order to mitigate the high estimation errors caused by dis-
connected or loosely connected components. Section 5 also
shows that FS can be seen as an m-dimensional random
walk over the m-th Cartesian power of the graph (formally
defined in Section 5). In Section 6 we see that F'S outper-
forms both single and multiple independent random walkers
in a variety of scenarios. We also compare (independent)
random vertex and edge sampling with F'S. Section 7 re-
views the relevant literature. Finally, Section 8 presents our
conclusions and future work.

2. DEFINITIONS

In what follows we present some definitions. Let Ggq
(V, Eq) be a labeled directed graph representing the (origi-
nal) network graph, where V' is a set of vertices and Eq is a
set of ordered pairs of vertices (u,v) representing a connec-
tion from u to v (a.k.a. edges). We assume that each vertex
in G4 has at least one incoming or outgoing edge. The in-
degree of a vertex u in G4 is the number of distinct edges
(v1,u),. .., (vi,u) into u, and its out-degree is the number
of distinct edges (u,v1),...,(u,v;) out of u. Some com-
plex networks can be modeled as undirected graphs. In this
case, when the original graph is undirected, we model G4 as
a symmetric directed graph, i.e., V(u,v) € Eq4, (v,u) € Eq4.

Let £, and L. be a finite set of vertex and edge labels,
respectively. Each edge (u,v) € Eq is associated with a set
of labels Le(u,v) C L. For instance, the label of edge (u, v)
can be the in-degree of v in G4. Similarly, we can associate a
set of labels to each vertex, £, (v) C L,, Vv € V. Some edges
and vertices may not have labels. If edge (u,v) is unlabeled
then Lc(u,v) = @. Similarly, if vertex v is unlabeled then
LU (U) = @

When performing a random walk, we assume that a ran-
dom walker has the ability to retrieve incoming and outgoing
edges from a queried vertex (and vertices are distinguish-
able). With this assumption we are able to build (on-the-
fly) a symmetric directed graph while walking over G4. Let
G = (V, E) be the symmetric counterpart of Gg, i.e.,

U {wo), @}

V(u,v)EE

E =



Note that G may not be connected. As G is symmetric, we
denote by deg(v) to be the in-degree or the out-degree of
v € V as they are equal. Let vol(S) = Zwes deg(v), VS C
V', denote the volume of the vertices in S.

Let él be the estimated fraction of wertices with label [
obtained by some estimator. The two error metrics used in
most of our examples are the normalized root mean square
error of él, which is a normalized measure of the dispersion
of the estimates, defined as

VE[(0, — 6,)?]

NMSE(l) = 9
l

: (1)
and the normalized root mean square error of the Com-

plementary Cumulative Distribution Function (CCDF) v =
{m}, where v, = Z;‘;lﬂ 0y, defined as

E[(f1 — m)?] .

CNMSE(l) = .
l

2
For the sake of simplicity, and unless stated otherwise, in
the remainder of this paper we assume that all queries of
edges and vertices have unitary cost and that we have a
fixed sampling budget B.

3. VERTEX V.S. EDGE SAMPLING

We consider a straightforward estimation problem to il-
lustrate a tradeoff between random edge and random ver-
tex sampling. Consider the problem of estimating the out-
degree distribution of G4. Let 0; be the fraction of vertices
with out-degree ¢ > 0 and d be the average out-degree. Let
the label of vertex u, £,(u), be the out-degree of u. We as-
sume that d is known; also assume that from an edge (u,v)
we can query L,(u). In random edge sampling the proba-
bility of sampling a vertex with out-degree i is proportional
it m = 10;/d. On the other hand, random vertex sam-
pling samples a vertex with out-degree ¢ with probability 6;.
A straightforward calculation shows that the NMSE (equa-
tion (1)) of B randomly sampled edges with out-degree i
is

NMSE(i) = /(1/m — 1)/B, i>0.

Similarly, the NMSE(4) for random vertex sampling is

NMSE() = 1/(1/6; — 1)/B. (4)

Now note that m;/6; = i/d, which means that m; > 0; if
it > d and m; < 0; if ¢ < d. From equations (3) and (4) we
see that random edge sampling more accurately estimates
degrees larger than the average (¢ > d) while random vertex
sampling more accurately estimates degrees smaller than the
average (i < d). This means random edge sampling exhibits
smaller NMSE when estimating the tail of the out-degree
distribution.

Above we have seen that random edge sampling is more
accurate than random vertex sampling in estimating the tail
of the out-degree degree distribution. A similar result hap-
pens with the in-degree distribution and the degree distri-
bution of undirected networks. The above analysis explains
real world experiments [29]. Unfortunately, as discussed in
Section 1, random edge sampling is rarely practical. In what
follows we see that, if G is connected, random walks exhibit
similar statistical properties to random edge sampling.

®3)
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4. RANDOM WALK SAMPLING

In this section we review random walk (RW) sampling and
estimation over a non-bipartite, connected, directed, sym-
metric graph G. Sampling G with a RW is straightforward.
The random walker has a sampling budget B and starts at
vertex vo € V. For the sake of simplicity, unless stated oth-
erwise, we consider that all queries to vertices have unit cost
and that we have a fixed sampling budget B.

Let {(ui, vi)}?:l be the a sequence of edges sampled by a
RW, where u; = vi—1,¢ = 2,...,B. Note that edges may
be sampled multiple times. We refer to (u;,v;) as the i-th
sampled edge. At the i-th step a walker at vertex v; chooses
an outgoing edge (v;, u;) uniformly at random from the set
of outgoing edges of v; and adds (v, u;) to the sequence of
sampled edges. At step ¢ + 1 the random walker starts at
vertex u; and the sampling continues until ¢ = B.

The RW described here is the most common type of RW
found in the literature [22]. Other types of random walks
differ in the way in which outgoing edges are sampled. The
Metropolis-Hastings RW [38] is an example of a random
walk that samples vertices (not edges) uniformly at random.
However, experiments estimating a variety of metrics indi-
cate that Metropolis-Hastings RW is less accurate than the
random walk described in this work [15, 29]. For more de-
tails about other types of RW please refer to [32, Chapter 7].

An important property of a RW is its ability to reach a
unique stationary regime. A necessary condition for sta-
tionarity is that G must be symmetric, connected, and non-
bipartite (the non-bipartite assumption can be relaxed in
a lazy random walk [22]). In a stationary RW, the se-
quence of sampled edges is a stationary sequence. A se-
quence X1, Xa,... of random variables is said to be station-
ary if for any positive integers n and k, the joint distribu-
tion of (Xn,...,Xntk) is independent of n. Once the RW
reaches steady state, it also shares two important properties
with random edge (RE) sampling. First, both RW and RE
sample edges uniformly at random [22], which means that
the probability that a vertex v is sampled is deg(v)/vol(V).
Second, both RW and RE obey the strong law of large num-
bers, as we see next.

4.1 Strong Law of Large Numbers

The following variation of the strong law of large num-
bers is a powerful tool to build (asymptotically) unbiased
estimators of graph characteristics. We provide a trivial
extension of a well known result [25, Theorem 17.2.1] to
the case where we are interested in a subset of the graph
edges. Let E* C E be non-empty. Let (u;, v;) be the i-th
RW sampled edge such that (u;,v;) € E*; and let B*(B)
be the number of such samples, where B is the number of
RW steps. B*(B) is a random variable that represents the
number of RW sampled edges that belong to E*. Note that
B*(B) < B.

Theorem 4.1 (SLLN). For any function f, where
Z(u,u)GE* |f(u7v)| < o0,

B*(B)

. 1 1

Jim s D0 flww) = > fw),
i=1 V(u,v)EE*

almost surely, i.e., the event occurs with probability one.



PROOF. Let

B, v) = 1 if (u,v) € E*, and
"7 10 otherwise.

As the RW is stationary (and edges are sampled uniformly)

o i Flus v v) | Yvwen £ 0)h(u,v)
1 b
B—oo Zil h(ui,v;) Zv(u VeE h(u,v)
almost surely [25, Theorem 17.2.1]. The proof follows from

noting that B*(B) = 2?21 h(u;,v;) and that h(u,v) =
0,Y(u,v) € E\E™. a

Theorem 4.1 allows us to construct estimators of graph char-
acteristics that converge to their true values as the number
of RW samples goes to infinity (B — o0). If we are try-
ing to estimate vertex labels we set F* = E and B* = B.
In what follows we apply Theorem 4.1 to estimate graph
characteristics; we also present four examples of estimators.

4.2 Estimators

An estimator is a function that takes a sequence of obser-
vations (sampled data) as input and outputs an estimate of
a unknown population parameter (graph characteristic). In
this section we see how we can estimate graph characteristics
using the edges sampled by a RW.

We present estimators of the following four graph charac-
teristics: the edge label density (the fraction of edges with
a given label in the graph), the assortative mixing coeffi-
cient [27], the vertex label density, and the global clustering
coefficient [34]. Designing these estimators is straightfor-
ward:

(1) First we find a function f that computes the charac-
teristic of G using F;

(2) then we replace E with the sequence of edges sampled
by a stationary RW.

In what follows we illustrate how to build an estimator of
the edge label density.

4.2.1 Edge Label Density

We seek to estimate the fraction of edges with label [ € L,
in G4 among all edges (u, v) that have labels, i.e., L (u,v) #
(). Edge labels can be anything, from social networking la-
bels to the amount of IP traffic over each link in a com-
puter network. An edge label can be, for instance, a tuple
(outdeg(u), indeg(v)) where outdeg(u) is the out-degree of u
and indeg(v) is the in-degree of v in the original graph Ggq.

For now we assume that we know E. Let E* be the non-
empty subset of E for which there are labels. Let p; denote
the fraction of edges in E* with label [; it is clear that

_ 1(l € Le(u,v))
pr= Z T7
V(u,v)€E*
where

1 ifle Le(u,v),
0 otherwise.

1(1 € Lo(u,v)) = {

Let B*(B) be the number of RW sampled edges that belong
to E* and (us,v;) be the i-th of such edges. Replacing E*

with the edges in E* sampled by a stationary RW gives the
following estimator

B*(B)

=53

i=1

1(l S Ee(ui, 'UZ))
G ®

It follows directly from Theorem 4.1 (with f(u,v) = 1(l €

Le(u,v))) that limp_eo Py as pi. Moreover, from the lin-
earity of expectation, E[p;] = p; for all values of B*(B) > 0.

4.2.2 Assortative Mixing Coefficient

The assortative mixing coefficient [27] is a measure of the
correlation of labels between two neighboring vertices. By
appropriately assigning edge labels derived from vertex la-
bels, we can use the density estimator of equation (5) to
derive an estimator of the assortative mixing coefficient. In
order to simplify our exposition, we restrict our analysis to
the assortative mixing of vertex degrees in a directed graph
(equation (25) of [27]). It is trivial to extend our analysis
to other types of assortative mixing coefficients, e.g., equa-
tions (21) and (23) of [27].

Let (outdeg(u),indeg(v)) denote the label of a directed
edge (u,v) in G that also exists in G4; and let E* be the set
of all such edges (E* = E4). Let p;; denote the fraction of
labeled edges with label (7, 7). Let Wout (Win) denote the
maximum observed out-degree (in-degree) of G4 in the RW.
The degree assortative mixing coefficient [27] of a directed
graph can be estimated using

1 Wout Win
N YN ~out ~in
= S 2, 1 ?
o 2 2y )
=0 j7=0
where
B*(B) -
. Z outdeg Uk) =1, 1ndeg(vk) j) .
b= 2 B*(B) ’
Wout

Aout _ . Ain __ A .
Dik ; q; = Prj
k=0

Wout Wout
o = Zﬁ@“—(qu}“) - and
=0

Win Win 2
Oout = E Z'Q(?;n— E 7lqzout

i=0 i=0

where 6in, and 6.4t are the standard deviation of the distri-
bution §;* (¢5"*). As the estimate p;; (equation (5)) asymp-
totically converges almost surely to its true value, it is trivial
to show that gi*, (j;’ , Gin, and Gout also asymptotically con-
verge almost surely to their true values. Thus, 7 asymptoti-
cally converges, almost surely, to the true assortative mixing
coefficient of [27], as long as oin > 0 and oout > 0. This im-
plies that # is an asymptotically unbiased estimator of the
assortative mixing coeflicient of Gg4.



4.2.3 Vertex Label Density

Let £, (v) be the set of labels associated with vertex v, Vv €
V. The fraction of vertices with label | in G, 6;, is

! 1( € L,(v))
0[ = m Z T re—

(6)
d
V(u,v)eEE eg('U)

as G = (V, E) is directed and symmetric. By replacing E
with a sequence of edges sampled by a stationary RW (here
we have E* = F and B* = B) and renormalizing, we arrive
at the following estimator for 6,

élESBZ

where S =1/B Z 1 1/ deg(v;) . From Theorem 4.1 we have
limpsee S — |V|/|E| almost surely. Using again Theo-
rem 4.1 we have

BZ

almost surely, which divided by |V|/|E| yields equation (6).

1(l € Lo(vi))

deg(v;) ’ ()

1(leLo(vi)) 1
deg(v;) |E|

1(1 € Lo(v))

li _
By deg(v) ’

>

V(u,v)EE

As S converges almost surely to |V|/| E|, we have limp_ o 0; —

01, almost surely. This also implies that ; is an asymptoti-
cally unbiased estimator of 6;.

4.2.4 Global Clustering Coefficient

In the literature the term clustering coefficient often refers
to the local clustering coefficient [37]. In our example we
estimate a different metric: the global clustering coefficient.
In a social network the global clustering coefficient, C, is
the probability that the friend of John’s friend is also John’s
friend [34]. Let V* be the set of vertices v € V with deg(v) >
1. The global clustering coefficient of an undirected graph
is defined as [34]

1
C= v V;/ c(v), (8)
where
_ A(v)/(degz(v)) if deg(v) > 2
ofv) = 0 otherwise ,
where A(v) = [{(u,w) € E : (v,u) € E and (v,w) € E}| is

the number of triangles that contain vertex v and (degz(v))
is the maximum number of triangles that a vertex v with
degree deg(v) can belong to.

Note that finding A(v) for a given vertex v € V requires
knowing all vertices within two hops of v, which can be a
resource intensive task. To avoid the cost of computing A,
we rewrite equation (8)

1 flo,u)
v, 2, )

V(v,u)eE 2

C =

where f(v,u) gives the number of shared neighbors between
u and v.

Let (vs,u;) be the i-th sampled edge in a stationary RW
and let

'UZ, ul

¢ deg(vz)

> fed

1
SB (vi) ’
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where

e

Corollary 4.2. limp_, CA'—>C’7 almost surely.

Uu |

PrRooOF. From Theorem 4.1
lim S—|V*|/|E]|,
B—oo

almost surely. Also from Theorem 4.1
fv,u)

3 57y

almost surely, which together with the almost sure conver-
gence of S implies that limp_,.. C—C', almost surely. O

fvi, ui) 1

i) Tty TE

li
Bgnoo B

>

V(v,u)eEE

Note that almost sure convergence implies that C is an
asymptotically unbiased estimator of C.

4.3 Estimator Accuracy & Graph Structure

Sampling a graph using a RW is not without drawbacks.
A random walker can get (temporarily) “trapped” inside a
subgraph whose characteristics differ from those of the whole
graph. Even if the random walker starts in steady state (i.e.,
is stationary), this scenario may increase the mean squared
error of the estimates. If the random walker does not start
in steady state, this scenario may cause an increase in the
estimation bias as well as the mean squared error. Ideally,
the random walker needs to mitigate the effect of these traps
on the estimates.

The above two types of estimation errors are well doc-
umented in the literature and various solutions are avail-
able [14]. For instance, if the random walker does not start
in a stationary regime (transient), it is common practice to
discard the first w samples [14]. The value of w is called the
burn-in period. There are two problems with this solution:
(1) it only reduces the error related to the non-stationarity
of the samples; (2) it is difficult to determine a good value
for w if the sampling budget is small (compared to the size
of the graph) and the size and structure of G are unknown.

A simple naive solution to the RW “trapping” problem
(adopted in [15] to sample Facebook), is to sample the graph
using multiple independent random walkers [14]. In what
follows we see that this naive approach can lead to increased
estimation errors. In Section 5 we propose a method to mit-
igate the random walk “trapping” problem using m depen-
dent random walkers.

4.4 Multiple Independent Random Walkers

The main problem of estimating graph characteristics us-
ing a single walker is that the walker may get trapped inside
a local neighborhood. But there is the question of what
happens if we could start m independent random walkers
(MultipleRW) at m independently sampled vertices in the
graph. Note that when m = 1 we are back to sampling G
using a single random walker, which we denote as SingleRW.
Networks such as MySpace, Facebook, and Bittorrent admit
random (uniform) vertex sampling at cost ¢ higher than the
cost of sampling the neighbors of a known vertex (which is
what a RW does). In such networks random vertex sampling
may help us start m random walkers at different parts of the



graph. While the value of ¢ can be large, initializing m ran-
dom walkers with uniformly sampled vertices costs (only)
mc units of our sampling budget (where one unity of the
budget is the cost of sampling a vertex in a RW).

+++MM_W
Lt
538880
0.2 0000
=
@ 0.1
=1
Z
© +
SingleRW <&
MutipleRW (m = 10) +
<
0.02 T T T T T
0 10 102 10* 10°

vertex in-degree

Figure 1: (Flickr) The log-log plot of the CNMSE of the in-degree
distribution estimates with budget B = |V|/10.

Unfortunately, m independent random walkers starting at
m randomly sampled vertices may decrease estimation ac-
curacy. Consider the following experiment where each of
the m random walkers (independently) performs | B/m — c]|
steps. We seek to estimate the CCDF (complementary cu-
mulative distribution function) of the in-degree of the Flickr
graph (the Flickr dataset is summarized in Table 1). Accord-
ing to Table 1 the Flickr graph is disconnected. The goal
of this simulation is to compare the estimation accuracy of
SingleRW and MultipleRW when there are no disconnected
components. For this we set ¢ = 1. The sampling budget
is B = 171,525 = |V|/10, which amounts to a sampling
budget equivalent to 10% of the vertices in the graph. Fig-
ure 1 shows a log-log plot of the CNMSE, equation (2), of
SingleRW and MultipleRW (m = 10) averaged over 10,000
runs. Note that the estimates obtained by SingleRW are,
on average, more accurate than the estimates obtained by
MultipleRW. Increasing the sampling budget B does not re-
duce the gap. In Section 6 we see, over other real-world
graphs, that when starting random walkers from uniformly
sampled vertices, MultipleRW has higher estimation errors
than SingleRW.

4.5 Disconnected Graph Example

The following example shows a situation in which both
MultipleRW and SingleRW have large estimation errors. In
this example we initialize MultipleRW with m randomly
(uniformly) sampled vertices. We simplify our exposition by
assuming that each MultipleRW walker takes B/m steps,
where B (the sampling budget) is a multiple of m. Let
G = (V, E) be an undirected graph that has two large dis-
connected components G4 = (Va, Ea) and G = (V, EB).
Let |[Va| = |Vg| and vol(Va) > vol(Ve). When initial
vertices are uniformly sampled, the probability that each
MultipleRW walker (independently) starts in G4 (Gg) is
ha = |Val/|V]| (he = |VB|/|V])- Recall that G4 and Gp are
disconnected. For each random walker, after B/m (B > 1)
RW steps, an edge (ua,va) € E4 is sampled with probabil-
ity pa &~ ha/vol(V4). Similarly an edge (up,vr) € Ep is
sampled with probability pp =~ hg/vol(Vs). Thus pa < pa,
i.e., the edges in Gp are sampled with higher probability
than the edges in Ga. As our estimators assume that all
edges are sampled with the same probability, this imbal-
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ance between pa and pp has the potential to introduce large
MSEs (and biases). Note that increasing m does not change
pa and pp. Increasing B only mitigates this problem if G
is connected and, in a loosely connected graph, only large
values of B positively impact the MSE. Ideally we want a
RW algorithm that does not rely on large sampling budgets
B to achieve low estimation errors.

Now consider the same thought experiment where each
random walker starts in G4 and Gp (independently) with
probabilities ha = vol(Va)/vol(V) and hp = vol(Vg)/vol(V),
respectively. In this new scenario it is easy to see that
pa = ps = 1/vol(V) = 1/vol(V). Thus, we would like
to start a RW at vertex v with probability deg(v)/vol(V),
Vv € V. Section 6 shows that in practice this approach
can successfully mitigate estimation errors caused by discon-
nected components. Unfortunately, it is difficult to sample
m mutually independent vertices with probabilities propor-
tional to their degrees. In the case where G is connected, this
is equivalent to jointly start m independent random walkers
in steady state. In networks such as MySpace, Facebook,
and Bittorrent it is unclear how one can (efficiently) sample
vertices with probabilities proportional to their degrees.

We want an m-dimensional random walk that, in steady
state, samples edges uniformly at random but, unlike
MultipleRW, can benefit from starting its walkers at uni-
formly sampled vertices.

S. FRONTIER SAMPLING (FS)

In this section we present a new and promising approach
to an m-dimensional random walk that benefits from start-
ing its walkers at uniformly sampled vertices. Frontier Sam-
pling (FS) performs m dependent random walks in the graph.
We refer to m as the dimension of the FS random walk.
Let ¢ be the cost of randomly sampling a vertex. The FS
algorithm, given in Algorithm 1 is a centrally coordinated
sampling algorithm that maintains a list of m vertices rep-
resenting m random walkers. This way FS is less likely to

Algorithm 1: Frontier Sampling (FS).

1: n + 0 {n is the number of steps}

2: Initialize L = (v1,...,vm) with m randomly chosen
vertices (uniformly)

3: repeat

Select u € L with probability deg(u)/ ), ., deg(v)

5:  Select an outgoing edge of u, (u,v), uniformly at

random

6: Replace u by v in L and add (u,v) to sequence of

sampled edges

n+<n+1

8: untiln > B — mc

b

=

get stuck in loosely connected components than a single ran-
dom walker. However, in Section 5.2 we see that the joint
steady state distribution of F'S is much closer to the uniform
distribution than is the steady state distribution of m inde-
pendent random walkers. Section 5.3 describes how the F'S
algorithm can be made fully distributed. In Section 6 we
see that, if the initial set of random walk vertices is chosen
uniformly at random, FS estimates are more accurate than
both single and m independent random walkers.



Frontier Sampling: An m-dimensional Random Walk

FS shares many of the same statistical properties of a sin-
gle random walker. The key insight behind Theorem 5.2
below is that the FS stochastic process is equivalent to the
stochastic process of a single random walker over the m-th

Cartesian power of G, G™ = (V™, E,,), where
sz{(v17---7vm)|vl EVA---ANvm GV}

is the m-th Cartesian power of V and Vv,u € V™, (v,u) €
E,, if exists an index 4 such that (vi,u;) € E and u; = v;
for j # 1.

Legend

a = 1/(deg(u) + deg(v))
B = 1/(deg(k) + deg(v))
¢ = 1/(deg(u) + deg(h))
w = 1/(deg(j) + deg(v))

Figure 2: Ilustration of the Markov chain associated to the Fron-
tier sampler with dimension m = 2.

Lemma 5.1. The Frontier sampling process is equivalent
to the sampling process of a single random walker over G™.

PRrROOF. Consider the (n — 1)-st step of FS. The reader
may find Figure 2 helpful in following the proof. Let L,, =
(v1,...,vm) be the state of FS before the n-th step. Clearly
L, € V™. Let e(L,) denote the collection of all edges as-
sociated to the vertices in L,. We refer to e(L,) as the
edge frontier at the n-th step. We describe the transition
from state L, to state Ln4+1 as follows (lines (4) and (5) of
the FS algorithm): Select a vertex v € L,, with probability
proportional to deg(v) and then replace vertex v in L, with
one of its neighbors (selected uniformly at random). This is
equivalent to randomly sampling an edge from e(L,) with
probability

1 1
el Surer, deg(®)’

Therefore, L, transits to state Lni1 iff (Ln,Lnt1) € En
and the transition probability from Ly, to Lp41 is 1/|e(Ln)].
Thus, the Markov chain that describes FS is equivalent to
the Markov chain of a single random walker over G™. [

p=

Theorem 5.2. Recall that G is a directed symmetric graph.
If G is connected and non-bipartite, then in steady state FS
has the following properties:

(1) edges are sampled uniformly at random and form a
stationary sequence,

(II) has distribution, Leo = (V1,...,vm), equal to
> iy deg(vi)
m|V|m=1vol(V)’ ’
which is unique, and

(II1) the sequence of sampled edges satisfies the Strong Law
of Large Numbers (Theorem 4.1).
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PROOF. The proof is found in our technical report [31].
O

In Section 4.5 we observed that, when starting multiple RWs,
the MSE is reduced when the number of walkers inside each
subgraph matches the number obtained when the graph is
connected and all walkers are in steady state. In what fol-
lows we see that, in steady state, the average number of
MultipleRW walkers in V4 is far from the average number
obtained with m uniformly sampled vertices. In contrast,
Section 5.2 shows that as m — oo, by uniformly sampling
the starting vertices, F'S starts in steady state with respect
to the number of random walkers in any subset of vertices
VaCV.

5.1 MultipleRW Steady State v.s. Uniform Dis-
tribution

Consider a MultipleRW process with m walkers and let
Kmw(m) be a random variable that denotes the steady state
number of MultipleRW random walkers in V4. Let aa =
E[Kmw(m)]/E[Kun(m)] be the ratio between the steady
state number of MultipleRW in V4 and the number of ran-
dom walkers that start in V4 from uniformly sampled ver-
tices. As all random walkers are independent we have

m |Valda
It is also easy to see that
m|Va

From the above we have
aa = E[Kmw(m)]/E[Kun(m)] =da/d.

Note that the value of @4 may be quite large or close to zero
depending on both (1) the choice of V4 and (2) the average
degree of G.

5.2 FS Steady State v.s. Uniform Distribution

Let G = (V, E) be a connected graph and V4 C V be a
proper subset of V; define Vg = V\Va. Let d4 = vol(Va)/|Val,
dp = vol(VB)/|VB|, and d = vol(V')/|V| be the average de-
grees of the vertices in V4, Vi, and V, respectively. Consider
a FS process with m walkers and let Ky (m) be a random
variable that denotes the number of random walkers in V4 in
steady state. Let Kun(m) be a random variable that denotes
the number of sampled vertices, out of m uniformly (ran-
domly) sampled vertices from V, that belong to Va. Kun(m)
has distribution P[Kun(m) = k] = (’;)pk(l —p)™ 7k VE >
0, where p = |V4|/|V|. In this section we show that Kt (m)
and K. (m) converge to the same limiting distribution, i.e.,

lim P[Kf(m)=k] = lim P[Ku,(m)=Ek|], Yk >0. (9)

Recall that the FS algorithm starts m random walkers at m
uniformly sampled vertices (sampled independently). Let
Va C V. As m increases, eq. (9), the number of FS walkers
that are initially selected to be in V4 approaches the steady
state distribution (assuming G is connected).

Let L € V™ be the state of FS; from (Theorem 5.2) we
have

)] = e S

P[L:(U17‘.. —m



Graph Flickr LiveJournal YouTube Internet RLT
Description Social Net.  Social Net. Social Net. Internet tracert.
Type of graph Directed Directed Directed Directed
# of Vertices 1,715,255 5,204,176 1,138,499 192,244
Size of LCC 1,624,992 5,189,809 1,134,890 609, 066
# of Edges 22,613,981 77,402,652 9,890, 764 609, 066
Average Degree 12.2 14.6 8.7 3.2
Wmax 2232 1029 3305 335
% of Original Graph 26.9% 95.4% NA NA

Table 1: Summary of the graph datasets used in our simulations.

“Size of LCC” refers to the size of the largest connected component

and wmax is the value of the largest vertex degree divided by the average degree.

In the following lemma we find the probability that K s (m
k,0<k<m.

)=

Lemma 5.3.

1

)= = (’Z)pku—p)“(k dat+(m—K)dz),

where p = |Va|/|V| and 0 < k < m.

PROOF. P[Kf(m) = k] is the sum of the probabilities
P[L = (v1,...,vm)] over all states L in which exactly k
vertices belong to Va. Consider v;, the i-th element of L.
When v; € Vg, the contribution of v; towards P[K s (m)
k] is

Va7V [™ " deg(vi) /(m|V " vol(V)) ;
when v; € Vp, the contribution of v; towards P[K ¢ (m) = k]
is

Val ¥V " deg(vi) / (m[V [~ vol(V)).
Summing over all elements in L and over all vertices yields

k m—k
P[K{s(m) = k] = (7]?) %

deg Us) deg( tJ
(T X Sy )
i=1 Yu; EVy j=1 Vt;eVp
_ 1 m k m—k
—md<k)p (I=p)" " (kda+ (m —k)ds)
|

The previous lemma gives the probability that a subset of
vertices Va has Kg(m) € {0,...,m} FS random walkers.

The following theorem shows that K¢ (m) and Kun(m) con-
verge to the same limiting distribution.

Theorem 5.4.

limp—oo P[Kfs(m) = k] = limm—oo P[Kun(m) = k], Vk >
0.

PrRooF. From Lemma 5.3
kda+ (m —k)ds

P[Kys =k]= P[Kyn =k]. (11
(Ko (m) = K] s [Kun(m) = ). (1)
Note that if kK = mp we have

vol(vya) vol(vg)

mpda + (m —mp)ds _ ™7 tM v
= =1. (12)

md md

As m — oo, the probability mass of P[Kun(m) = k| gets

highly concentrated around the interval k € [mp—cy/m, mp+
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cy/m], for large enough values of ¢. Let k™ (m) = mp —
z(m)y/mp(1l —p) and kT (m) = mp + z(m)/mp(l — p),
where z(m) = o({/m)"* is a slow increasing function of m.
Note that

m)y/m/p(1 —p)(da — dp)
md

and, thus, eq. (12) yields

= o(m*%)/m

lim k=(m)da+ (m —k~(m))ds _1 (13)
m— oo md
and
+ _ ot
lim kT(m)da+ (m —k"(m))ds _1 (14)
m— oo md
All that is left to show is that limy,— 0 P[Kun(m) < k™ (m)] =

0 and lim,— 00 P[Kun(m) > k] = 0. Using an extension of
the de Moivre-Laplace limit theorem shown in [12; pg. 193]
yields

lim P[Kun(m) <k (m)] =0, and
m—r o0
N (15)
lim P[Kun(m) > k" (m)] =0.
m— o0
Putting together egs. (11), (13), (14), and (15), with
lim k(m) da + (m = k(m))ds < 00, k(m) = o(m),
m— o0 md
yields
lim P[Ky(m)=k] = lim P[Ku,(m)=k|, Yk >0,
m—r o0 m—r o0
which concludes our proof. |

We have seen as m gets larger, FS gets closer to starting
in steady state with respect to the number of FS random
walkers inside Va4, VV4 C V.

We have seen that if we initialize m random walkers with
uniformly sampled vertices, F'S starts closer to steady state
than MultipleRW. In what follows we show that FS is well
suited to be used in large scale (parallel, asynchronous) ex-
periments without incurring in any coordination or commu-
nication costs between the random walkers.

5.3 Distributed FS

F'S is well suited to be used in large scale (parallel, asyn-
chronous) experiments. Let B be the budget of FS. In the
distributed version of F'S the budget is not directly related to
the number of sampled vertices obtained by the algorithm.

L f(m) = o(h(m)) implies lim,— 00 f(m)/h(m) =0




This is because distributed F'S is achieved using multiple in-
dependent random walkers where the cost of sampling a ver-
tex v is an exponentially distributed random variable with
parameter deg(v). In what follows we show, using the Uni-
formization principle of Markov chains [8, Chapter 7.5] and
the Poisson decomposition property, that FS can be made
fully distributed.

Theorem 5.5. A MultipleRW sampling process where the
cost of sampling a vertex v is an exponentially distributed
random variable with parameter deg(v) is equivalent to a
F'S process.

PRrROOF. Consider the following Distributed FS (DFS) pro-
cess. Let x = {L(r) € V™ : 7 € R*} be the Markov chain
associated with a random walker over G™ = (V™, E,,), the
m-th Cartesian power of GG, with transition rate matrix

Q:A_D7

where A is the adjacency matrix of G™, A, ; € {0,1}, Vi, j,
and D is a diagonal matrix with D;; = Zvj' Aij;. We
observe this FS process over the interval [0, B].

In the DFS process, the probability that the k-th random
walker transitions out of vertex vy at step 7 + A depends
only on deg(vx) and not on the state of L(7). Thus, we can
decompose the Poisson process describing a departure from
the state L, = (v1,...,v,m) into m independent stochastic
processes, where the i-th process is a Poisson process with
parameter \; = deg(v;),i = 1,...,m. The above is equiva-
lent to the stochastic process of a MultipleRW process with
m random walkers and budget B, where the cost of sampling
a vertex v is an exponentially distributed random variable
with rate deg(v).

The DFS is equivalent to a F'S process via the Uniformiza-
tion property of Markov chains [8, Chapter 7.5]. The tran-
sition probability matrix of the Uniformized Markov chain
(with unitary uniformization parameter) at the embedded
transition points is

P=/-D'Q=D'A,

which is also the transition probability matrix of a F'S pro-
cess. O

6. RESULTS

In this section we compare FS with SingleRW and Multi-
pleRW. We also contrast F'S with random vertex and edge
sampling. The experiments consist of executing these sam-
pling methods on a variety of real world graphs. The datasets
used in the simulations are summarized in Table 1: “Flickr”,
“Livejournal”, and “YouTube” are popular photosharing,
blog (weblog), and video sharing websites, respectively. Users
are represented as vertices of a graph. In these websites a
user can subscribe to other user updates; an edge (u,v) ex-
ists between users u and v if user u subscribes to user v. At
“Livejournal” and “YouTube” it is possible to query the in-
coming and outgoing edges of a given user. Further details of
these three datasets can be found in [26]. “Internet RLT” is
a router-level Internet graph collected from traceroute mea-
surements of 23 monitors distributed over the world [13].
Note that some of these graphs contain disconnected com-
ponents (subgraphs).

In the following simulations the starting vertex of each
random walker is chosen uniformly at random from the set
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of all vertices. Our results show that F'S estimates are consis-
tently more accurate than their SingleRW and MultipleRW
counterparts. Moreover, when restricted to the largest con-
nected component, FS reaches steady state faster than Sin-
gleRW and MultipleRW in the simulations presented in our
technical report [31].

6.1 Assortative Mixing Coefficient

In our first experiment we treat the graphs in Table 1
as undirected graphs. In-degrees and out-degrees are repre-
sented as vertex labels and the assortative mixing coefficient
is obtained using the estimator described in Section 4.2.2.

In our experiment we average the estimates and calculate
their mean squared error (MSE) over 100 runs. The sam-
pling budget is |V]/100 for all graphs. Let 7 denote the
estimated value of r. Table 2 shows a summary of the rel-
ative bias of # (1 — E[#]/r) and #'s NMSE with respect to
the true value of r. We observe that F'S is consistently more
accurate than both MultipleRW and SingleRW. If we focus
on Flickr, the F'S bias is 7 fold smaller than the bias of both
MultipleRW and SingleRW. In addition F'S’s NMSE is one
order of magnitude smaller than the NMSEs of MultipleRW
and SingleRW. The Internet graph (“Internet RLT”) is the
only graph we studied that shows little difference between
FS and MultipleRW.

We also perform an extreme experiment that focuses on
the impact of loosely connected components on the assorta-
tive mixing estimates. Consider a graph that consists of two
instances of a random undirected Barabasi-Albert [5] graph,
G4 and Gp, with 5 x 10° vertices each and average degrees
2 and 10, respectively, joined by a single edge connecting
the two smallest degree vertices in G4 and Gp (ties are re-
solved arbitrarily). Henceforth, we use Gap to denote the
above graph. It is worth noting that over the Gap graph,
SingleRW consistently finds 7# = 0 over all 100 runs. This
is because SingleRW only estimated the assortative mixing
of either subgraph A or subgraph B, which are both zero.
Over G4 MultipleRW performs almost as bad as SingleRW
while F'S is able to accurately estimate r.

6.2 In- and Out-degree Distribution Estimates

We now focus on estimating the in-degree distribution.
Let 6 = {0;}vicc denote the in-degree distribution, where
0; is the fraction of vertices with in-degree i. In our simu-
lations we estimate v; = Z;o:i+1 0k, the CCDF of 6, using
equation (7). We choose to estimate the CCDF instead of
the density because the CCDF is the plot of choice when it
comes to displaying degree distributions. Each simulation
consists of 10,000 runs (sample paths) used to compute the
empirical CNMSE (equation (2)). The CNMSE is used to
compare the accuracy of the estimates obtained from FS
(dimension m € {10,1000}), SingleRW, and MultipleRW
(m € {10,1000} walkers). For the sake of conciseness, we
restrict our presentation to a handful of representative re-
sults.

Consider first two representative results from the Flickr
graph, whose in-degree CCDF (complementary cumulative
distribution function) log-log plot is shown in Figure 3. The
sampling budget is B = 17,152 = |V|/100, which amounts
to sampling 1% of the vertices. In the first simulation, we
are restricted to the Largest Connected Component (LCC)
(which contains 94% of the vertices). The objective is to
test if F'S can outperform SingleRW and MultipleRW even



Graph r FS MultipleRW SingleRW
Bias |NMSE]| Bias |NMSE] Bias |NMSE]
Flickr 0.007 8% 1.08  752% 7.65 —619% 27.32
LiveJournal ~ 0.07 -0.5% 011 —-12% 0.16 1% 0.17
Internet RLT 0.17 3% 0.33 2% 0.32 17% 0.44
Youtube —0.03 0.001% 0.02 2% 0.03 —-1% 0.1
Gag 0.08 0.01% 0.12 70% 0.72 100% 1.00

Table 2: Assortative mixing coefficient estimate bias and the module of the estimator NMSE ; r is the true value of the global clustering
coefficient and these values are estimated value over 100 runs. The sampling budget is |V|/100 for all graphs.
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Figure 3: (Flickr) Log-log plot of the in-degree CCDF.
0.5
0.2 —
0.1 H
OOOW
=
E ++++w
Z 0.02 H
O
1072 —]
SingleRW o
> FS (m = 1000 +
+ MutipleRW (m = 1000
—3
10 T T T T T
0 10 102 104 10°

vertex in-degree

Figure 4: (LCC of Flickr) The log-log plot of the CNMSE of the
in-degree distribution estimates with budget B = |V|/100.

when there are no disconnected components. Figure 4 shows
a log-log plot of the CNMSE of FS (m = 1000), SingleRW,
and MultipleRW (m = 1000). In this experiment FS out-
performs both SingleRW and MultipleRW. It is interesting
to note that the estimates obtained by SingleRW are more
accurate than the estimates obtained by MultipleRW. Now
consider the complete Flickr graph. Figure 5 shows a log-log
plot of the CNMSE of the in-degree distribution estimates.
Contrasting the plots shown in Figures 4 and 5 we see that
the gap between FS and both SingleRW and MultipleRW
has significantly increased, favoring F'S.

To better understand the differences between these sam-
pling methods, Figure 6 focuses on four runs (sample paths)
of the simulation over the complete Flickr graph. Figure 6
plots the evolution of #; (the estimate of 01) as a function
of n (the number of steps in the random walk). At each run
of the simulator both FS and MultipleRW start at the same
initial set of vertices (chosen using random vertex sampling).
Figure 6 shows that all four F'S sample paths (runs) quickly
converge to the value of 6;. For SingleRW, three of the four
runs start inside the LCC. These runs do not converge to the
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Figure 5: (Flickr) The log-log plot of the CNMSE of the in-degree
distribution estimates with budget B = |V/|/100.
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Figure 6: (LCC of Flickr) Four sample paths of 61 (§1 = 0.53) as
a function of the number of steps n (horizontal axis in log scale).

value of 0, as some vertices with in-degree one lie outside
the LCC. In one of the runs, SingleRW starts in a small dis-
connected component and, thus, grossly overestimates the
value of #;. For a similar reason, i.e., walkers starting at
small disconnected components, MultipleRW grossly over-
estimates the value of 6. The MultipleRW rapid increase
of 6; at around n = 10 steps needs further investigation. It
may be due to the transient of the random walk (discussed
in Section 4.4). Even when n >> 1 (not shown in Figure 6)
the MultipleRW estimate is unable to converge to 6;. Modi-
fying both SingleRW and MultipleRW methods to cope with
disconnected components is an interesting open problem.
For the sake of conciseness, we omit the results of the
simulations over the remaining graphs (Table 1) as they
are similar to the results observed over the Flickr graph.
However, consider the out-degree distribution estimates of
Livejournal. Figure 7 shows a log-log plot of the CCDF of
the out-degrees. The log-log plot of the CNMSE is shown
in Figure 8 for FS (m = 100), SingleRW, and MultipleRW
(m = 100) with sampling budget B = |V/|/10. From Fig-
ure 8 we see that estimates of vertices with small out-degrees
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Figure 7: (Livejournal) Log-log plot of the out-degree CCDF.

in F'S are up to one order of magnitude more accurate than
those obtained from both SingleRW and MultipleRW.
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Figure 8: (Livejournal) The log-log plot of the CNMSE of the out-
degree distribution estimation with sampling budget B = |V/|/100
(CNMSE over 10,000 runs).
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Figure 9: (Gap graph) Four paths of 610 as a function of the
number of steps n (019 = 0.024).

The next experiment focuses on studying the impact of
loosely connected components on the degree distribution es-
timates. For this we use the two Barabdsi-Albert joined
graphs G 4 g presented in Section 4.2.2. The experiment con-
sists of estimating the degree distribution of G ap using F'S
(m = 100), SingleRW, and MultipleRW (m = 100). Again,
both FS and MultipleRW start at the initial set of vertices
in each simulation (chosen uniformly at random). In this
experiment the hypothesis is that, for small sampling bud-
gets, each random walker will see the degree distribution of
either G4 or Gp but not the degree distribution of Gap.
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Moreover, as the starting vertex of each random walker is
chosen uniformly at random, G 4, which has the same num-
ber of vertices as Gg but 1/5 of the edges, receives more
random walkers than its per edge “share”. Consequently,
MultipleRW oversamples G 4.

Figure 9 shows the results of four simulation runs and
plots the evolution of the estimates of 619 (élo) as a function
of the number of steps. In this simulation note that: (1) FS
quickly converges to a value that is close to the correct value;
(2) two out of the four SingleRW runs overestimate 619 and
the remaining two underestimate it; (3) three out of the four
MultipleRW runs converge to the same, incorrect, fraction
(underestimating the true value of 619). FS is designed to be
robust to disconnected or loosely connected components. All
of the F'S runs quickly converge to a good estimates of 619.
Figure 10 also shows that the CNMSE for F'S is consistently
lower than the CNMSE for SingleRW and MultipleRW.
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Figure 10: (Gap graph) The log-log plot of the CNMSE of the
degree distribution estimation with sampling budget B = |V/|/100
(CNMSE over 10, 000 runs).

6.3 FSv.s. Stationary MultipleRW & SingleRW

We now compare FS with SingleRW and MultipleRW,
when the latter two start in steady state. Figure 11 shows
the results (over the Flickr graph) of the same simulation
scenario used to obtain the results in Figure 5, except that
now MultipleRW and SingleRW both start in steady state.
While SingleRW has improved slightly (most notably at the
tail errors), the benefit of starting in steady state is most
felt by the MultipleRW method. In this simulation we see
that the large estimation errors of MultipleRW in the previ-
ous simulations were due to the starting vertices being sam-
pled uniformly at random. It is interesting to observe that
MultipleRW starting in steady state and FS have similar
estimation errors.

6.4 FS v.s. Random Independent Sampling

In Section 3 we showed that, if the degrees of two neigh-
boring vertices are independent, random edge sampling is
more accurate than random vertex sampling when it comes
to estimating the tail of the degree distribution. In this sec-
tion we observe this to be true over large real world graphs;
we also observe that the accuracy of FS closely matches the
accuracy of random edge sampling. In the following simula-
tions we estimate the in-degree distribution. Random edge
sampling uses the estimator ;, equation (7) (the estimator
used for sampled vertices is trivial).
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in-degree distribution estimation of MultipleRW and SingleRW
starting in steady state; sampling budget B = |V|/100 (NMSE
over 10,000 runs).

In our first simulation we set the sampling cost of ran-
dom vertex sampling to one and random edge sampling has
cost two (as each edge samples two vertices). The sam-
pling budget is B = |V]/100. We label this simulation
“100% hit ratio” to indicate the unitary cost of randomly
sampling vertices. Figure 12 shows a log-log plot of the
NMSE (not the CNMSE ) of our simulation over the (com-
plete) Flickr graph. Here we use the NMSE (instead of the
CNMSE ) in order to be able to compare our results with
the ones presented in equations (3) and (4). The vertical
line indicates the average in-degree. Note that random edge
sampling is more (less) accurate than random vertex sam-
pling at estimating in-degrees larger (smaller) than the av-
erage in-degree, as predicted by equations (3) and (4) of our
model in Section 3. We also observe that the accuracy of
FS (m = 1000) closely matches the accuracy of random edge
sampling.
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Figure 12: (Flickr) The log-log plot shows the NMSE of the in-
degree distribution estimation with budget B = |V|/100 = 18612
(CNMSE over 10, 000 runs).

Some complex networks exhibit a sparse user-id space.
In this scenario a fraction of the sampling budget B can
be spent querying invalid users-ids. Motivated by recent
experiments over the MySpace network [30], the following
experiment assumes that only 10% of the user-ids are valid,
i.e., on average only one in every ten randomly sampled
vertices are valid. We denote this value (10%) to be the hit
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Figure 13: (Livejournal) The log-log plot shows the CNMSE of
the in-degree distribution estimation with budget B = |V|/100 =
52844 (CNMSE over 10, 000 runs).

ratio. For random edge sampling we assume a hit ratio of 1%
(the choice of 1% is arbitrary). Figure 13 shows a log-log
plot of the CNMSE of our simulation over the (complete)
Livejournal graph with sampling budget B = |V|/100 =
52844. We observe that FS (m = 1000), which samples
m = 1000 random vertices and (on average) crawls B—10m
vertices, outperforms random edge sampling. Also note that
F'S estimates are more accurate than the estimates obtained
from random vertex sampling for all but the three smallest
in-degrees. This indicates that F'S is more robust to low hit
ratios than random vertex and edges sampling.
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Figure 14: (Flickr) The NMSE of the density estimates of the
most popular groups in the Flickr graph.

6.5 Density of Special Interest Groups

In a variety of complex networks, e.g. on-line social net-
works, each vertex (user) is associated with multiple labels
that represent group affiliations, e.g. user interests, user ge-
olocation, among others. For example, in the Flickr graph
21% of the users belong to one or more special interest
groups [26]. Let £ denote the set of groups in the Flickr
graph and 6; denote the fraction of vertices that belong to
group [ € L. In the simulations we estimate 6; using FS
(m = 100), SingleRW, and MultipleRW (m = 100) with
budget B = |V|/100. Figure 14 shows the NMSE (from
10, 000 runs) of the most popular 200 groups ordered in de-
creasing popularity. F'S is clearly superior to both SingleRW
and MultipleRW. Even when restricting the random walks
to the largest connected component, FS still noticeably out-
performs MultipleRW (m = 100) and SingleRW.



E[C] (NMSE)
Graph B C FS SingleRW MultipleRW
Flickr 1% 0.14 0.13(0.04) 0.12(0.33) 0.16 (0.18)
LiveJournal 1% 0.16 0.16 (0.02) 0.16 (0.02) 0.17(0.06)

Table 3: Global clustering coefficient estimates. C' is the true

value of the global clustering coefficient and C is its estimated
value.

6.6 Global Clustering Coefficient Estimates

In our last set of experiments we evaluate the accuracy
of estimating the global clustering coefficient using F'S, Sin-
gleRW, and MultipleRW. Our simulations show a small dif-
ference between FS (m = 1000), SingleRW, MultipleRW
(m = 1000). Let C be the clustering coefficient and C' de-
note its estimated value. Table 3 presents the empirical
value of E[C] and the empirical NMSE of the clustering co-
efficient, given by

E[(C - )7
O )
over 10, 000 runs of F'S; SingleRW, and MultipleRW over the
Flickr and Livejournal graphs. From the results of Table 3
we see that FS accurately estimates the global clustering

coefficient and has smaller error than both SingleRW and
MultipleRW.

NMSE =

7. RELATED WORK

This section is devoted to review the related literature. FS
can be classified as a Markov Chain Monte Carlo (MCMC)
method. Other MCMC-based methods have been applied to
characterize complex networks. Applications include, but
are not limited to estimating characteristics of a popula-
tion [36] (e.g. estimation of HIV seroprevalence among drug
users [24]), content density in peer-to-peer networks [16, 23,
29, 35], uniformly sampling Web pages from the Internet [17,
33], and uniformly sampling Web pages from a search en-
gine’s index [4]. The above literature is mostly concerned
with random walks that seek to sample vertices uniformly
(also known as Metropolized Random Walks or Metropolis-
RW) [16, 17, 33, 4, 35]. The accuracy of RW and Metropolis-
RW (MRW) is compared in [15, 29], and in a variety of ex-
periments RW estimates are shown to be consistently more
accurate than or equal to MRW estimates.

The above literature does not consider the use of mul-
tiple random walks to address the problem of estimating
characteristics of disconnected or loosely connected graphs.
While multiple independent random walkers have been used
as a convergence test in the literature, our simulations in
Section 6 show that independent walkers are not suited to
sample loosely connected graphs when the starting vertices
are selected uniformly at random.

A number of real complex networks are known to have dis-
connected or loosely connected components. A large body
of MCMC literature is dedicated to overcome the locality
problem described in Section 4.3. However, the literature
either assumes that the graph is very structured, e.g., a 2
dimensional lattice, or that the graph is completely known.
These assumptions make the solutions inapplicable to our
problem. A comprehensive list of MCMC methods and their
characteristics can be found in [32].

Projecting a RW onto a higher dimensional space has been
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used in [9] to make the Markov chain associated to the ran-
dom walker nonreversible, which can speed up the mixing of
the original RW. Unfortunately, it is unclear if this method
can be successfully used to estimate characteristics of com-
plex networks.

In networks that cannot be crawled (e.g., the Internet
topology), samples must be obtained along shortest paths,
and vertex degrees cannot be queried, [1] shows that ob-
served vertex degrees are biased. Our work, however, as-
sumes a graph can be crawled and vertex degrees queried.
Our scenario admits a RW with an unbiased estimator. Mul-
tiple random walks also find other applications besides the
one presented in this work. They are used to collect Web
data [10], search P2P networks [6, 38], and decrease the time
to discover “new wireless nodes” [2]. Dependent multiple
random walks are also used in percolation theory [3].

8. DISCUSSION AND FUTURE WORK

In this work we presented a new and promising random
walk-based method (Frontier sampling) that mitigates the
estimation errors caused by subgraphs that “trap” a random
walker. Frontier sampling (F'S) uses multiple (m) mutually
dependent random walkers starting from vertices sampled
uniformly at random. The FS samples are shown to be the
projection (onto the original graph) of a special type of m-
dimensional (single) random walker. Simulations over real
world graphs in Section 6 show that Frontier sampling (FS)
is more robust than single and multiple independent random
walkers (starting out of steady state) to estimate in-degree
distributions and the fraction of users that belong to a so-
cial group. We also present evidence, using an analytical
argument (also substantiated by simulations), that random
walks (in particular, FS) are better suited to estimate the
tail (all degrees greater than the average) of degree distri-
butions than random vertex sampling. FS can also be made
fully distributed without incurring in any coordination or
communication costs.

The ideas behind FS can have far reaching implications,
from estimating characteristics of dynamic networks to the
design of new MCMC-based approximation algorithms.
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