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Abstract: This article extends the recent work of Vännman and Albing
(2007) regarding the new family of quantile based process capability in-
dices (qPCI) CMA(τ, v). We develop both asymptotic parametric and non-
parametric confidence limits and testing procedures of CMA(τ, v). The ker-
nel density estimator of process was proposed to find the consistent estima-
tor of the variance of the nonparametric consistent estimator of CMA(τ, v).
Therefore, the proposed procedure is ready for practical implementation to
any processes. Illustrative examples are also provided to show the steps
of implementing the proposed methods directly on the real-life problems.
We also present a simulation study on the sample size required for using
asymptotic results.
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1. Introduction

As a numerical measure, the process capability index (PCI) uses both the
process variability and the process specifications to determine whether the process
is capable. It plays an important role in monitoring and analyzing process quality
and productivity. Many PCIs have been proposed since Juran et al. (1974)
proposed the first PCI Cp. Let USL and LSL be the upper and lower specification
limits, d = (USL − LSL)/2, m = (LSL + USL)/2 and T be the target value.
The process mean and standard deviation are denoted by µ and σ. Vännman
(1995) proposed the superstructure which unifies the four basic PCIs, namely,
Cp, Cpk, Cpm and Cpmk, as follows

Cp(u, v) =
d − u|µ − m|

3
√

σ2 + v(µ − T )2
. (1.1)

where u and v are non-negative constants. We can see from (1.1) that Cp(0, 0) =
Cp, Cp(1, 0) = Cpk, Cp(0, 1) = Cpm and Cp(1, 1) = Cpmk. Since the process
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mean and variance based process capability indices (mvPCI) implicitly assume
the normality of the underlying process, they are sensitive to skewed processes.

Recently many published works (see Spiring et al., 2003, for more references)
try to address this important non-normal issue through modifying the existing
popular PCIs. Some researchers use different parametric models to deal with
non-normal processes. To name a few, Kotz and Lovelace (1998, page 174) and
Lin (2004) use the folded normal distribution and Lin (2005) uses the generalized
folded normal distribution to model the underlying process and use the special
feature of the parametric models to modify PCIs. Chang and Bai (2001) and
Chang et al. (2002) model the process density with a weighted average of two
normal densities (mixture of two normal distributions with known mixing pro-
portions) according to the skewness of the underlying process. Most recently,
Chao and Lin (2005) proposed a very general process yield-based PCI as follows

Cy =
1
3
Φ−1

[
1
2

(Fθ(USL) − Fθ(LSL) + 1)
]

(1.2)

where Φ is the CDF of standard normal distribution, F (·) and θ are the CDF
and the vector of parameters of the underlying process distribution. PCI (1.2)
has an elegant analytical expression involving only two tail probabilities of the
underlying process and is easy to interpret. The formulation of Cy does not
implicitly assume the normality/sysmetry of the underlying process since the
CDF of the underlying process F (·) is not specified. From this perspective,
Cy has a structural difference from many existing PCIs in handling non-normal
processes.

Another direction to relaxing the implicit normality/symmetry assumption
is to introduce process quantiles to the definition of PCIs. Motivated from
Clements’ (1989) quantile idea, Chen and Pearn (1997) modified Vännman’s
(1995) Cp(u, v) and proposed a quantile-based PCI superstructure without im-
plicitly assuming normality of the underlying process as follows

CNp(u; v) =
d − u|ξp2 − m|

3
√

( ξp3−ξp1
6 )2 + v(ξp2 − T )2

. (1.3)

where ξα is the α-th quantile of the process, i.e., P (X < ξα) = α, and p1 =
0.00135, p2 = 0.5, and p3 = 0.99865. The formulation of the above quantile-
based PCI is intended to yield the nonconformity proportion about 0.27% with
CNp = 1 if the process is approximately normally distributed and on target.

Note that (1.3) is essentially designed for processes with two specification
limits. In practice, many processes only have one-sided specification limit, such as
zero-bound processes in which zero is the natural bound and measurements with
value zero are desirable. The existing standard two-sided and one-sided indices do
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not work well on this special type of processes (see Vännman and Albing, 2007).
There are only a few discussions on this topic available in the literature. Using the
parametric approach, Lovelace et al. (1997) studied this process based on the log-
normal distribution and proposed an index Cpu(ln) (see Kotz and Lovelace (1998),
page 167-174) and its modification allowing measurements with zero values. Kotz
and Lovelace (1998, page 174) also proposed to use the folded normal distribution
on index Cpu for zero bound data and estimated the process mean and standard
deviation by sample mean and sample standard deviation. Lin (2004) uses the
folded normal distribution on zero-bound process and proposed a new estimator
for process mean and standard deviation.

Vännman and Albing (2007) recently defined a promising quantile based index
for measuring capability of processes (particularly for skewed distribution) with
upper specification limit such as zero-bound processes as follows

CMA(ν; ξ) =
USL√

ξ2
p3

+ νξ2
p2

(1.4)

where p2 = 0.5 and p3 = 0.9973. The process yield at CMA = 1 is given by

P (X < LSL) = P
(
X <

√
ξ2
p3

+ ξ2
p2

)
> P (X < ξp3) = p3 = 99.73%.

Vännman and Albing’s (2007) work is essentially within nonparametric frame
work in which they proposed sample quantile and interpolation based quantile
estimators of CMA(u, v), denoted by ĈMA(u, v), and proved that ĈMA(u, v) are
asymptotically normally distributed. Since the asymptotic variance of ĈMA(u, v)
is dependent on the explicit expression of the density function of the underlying
process, their results of asymptotic normality cannot be used directly to construct
confidence intervals or test hypotheses for the qPCI unless the distribution of the
underlying process is completely specified.

In this paper, we systematically develop both parametric and non-parametric
procedures for constructing asymptotic confidence limits and testing hypothe-
ses based on Vännman and Albing’s (2007) qPCI CMA(ν; ξ). The parametric
method will be discussed in Section 2. In Section 3, we discuss a nonparametric
approach and use the kernel density estimator to estimate the underlying pro-
cess density function, hence, to obtain the consistent estimate of the variance of
nonparametric estimate of CMA(ν; ξ). Case studies and illustrative examples are
given in Sections 4 and 5. We also conduct a simulation study on sample size de-
termination in Section 6. Finally, we make some remarks on using the proposed
procedures.
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2. Parametric Confidence Limit and Testing Procedure

Let {y1, · · · , yn} be an i.i.d. random sample selected from the process with
density f(y; θ) with θ = (θ1, · · · , θk)τ , the transpose of the column vector of
process parameters. The likelihood and log likelihood functions of θ are given by

L(θ) =
n∏

i=1

f(yi; θ)) and l(θ) =
n∑

i=1

ln f(yi; θ) (2.1)

respectively. The αth quantile (ξα) of the process distribution is defined implicitly
by function

α = F (ξα; θ) =
∫ ξα

−∞
f(y; θ)dy (2.2)

Let θ̃ = (θ̃1, · · · , θ̃k)τ be the MLE of θ. By the invariance property of MLE, ξ̃α =
ξα(θ̃) is the maximum likelihood estimator of quantile ξα. Therefore, we propose
the parametric maximum likelihood estimators of the CMA(ν; θ̃) as follows

C̃MA(ν; θ) = CMA(ν; θ̃) =
USL√

ξ2
p3

(θ̃) + νξ2
p2

(θ̃)
(2.3)

Note that CMA(ν; θ) is a real valued function of quantiles ξp3 and ξp2 which are
continuous real functions of the vector of parameters θ. Note also that θ̃ is a
consistent MLE of θ, therefore, C̃MA(ν; θ̃) is consistent MLEs of CMA(ν; θ) (see
Serfling 1980, page 24). Since CMA(ν; θ) is expressed as functions of θ through
quantiles ξα(θ), we will use notations CMA(ν; θ) interchangeably with CMA(ν; ξ).

Let I(θ) be the information matrix of the numeric characteristic of the process
corresponding the parameter θ. Under some regularity conditions (Serfling, 1980,
page 144-145), the MLE possesses the following asymptotic normality

√
n(θ̃ − θ) →d N(0, I−1(θ)) (2.4)

A consistent estimator of the information matrix is

Î(θ) = In(θ̂) = − 1
n

∂2 lnL(θ)
∂θτ∂θ

|θ=θ̃ (2.5)

with θ = (θ1, · · · , θk)τ and θ̃ = (θ̃1, · · · , θ̃k)τ . Furthermore, define

U1(ν, θ) =
∂CMA(ν; θ)

∂ξp2

= − USL · ν · ξp2(
ξ2
p3

+ νξ2
p2

)3/2
= −CMA(ν; θ) × νξp2

ξ2
p3

+ νξ2
p2

(2.6)

U2(ν, θ) =
∂CMA(ν; θ)

∂ξp3

= − USL · ξp3(
ξp2

3
+ νξ2

p2

)3/2
= −CMA(ν; θ) × ξp3

ξ2
p3

+ νξ2
p2

(2.7)
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U1 and U2 are only dependent on the form of CMA(ν; θ). Define

U(ν, θ) =
(
U1(ν, θ), U2(ν, θ)

)
(2.8)

and

R(θ) =

 ∂ξp2(θ)
∂θ1

· · · ∂ξp2(θ)
∂θk

∂ξp3(θ)
∂θ1

· · · ∂ξp3(θ)
∂θk

 . (2.9)

Using the first order Taylor expansion and the Slutsky’s Theorem (see Casella
and Berger, 2002, page 239), we have

√
n
(
C̃MA(ν; θ) − CMA(ν; θ)

)
→d N

(
0, Ω

)
(2.10)

where Ω = U(ν; θ)R(ν; θ)I−1(θ)Rτ (ν; θ)U τ (ν; θ) and Rτ (ν; θ), U τ (ν; θ) are trans-
pose of R(ν; θ) and U(ν; θ) respectively. We see from (2.10) that point estimator
C̃MA(ν; θ) is an asymptotically unbiased estimator of CMA(ν; θ). A consistent
estimator of variance Ω is given by

Ω̃ = U(ν; θ̃)R(ν; θ̃)I−1(θ̃)Rτ (ν; θ̃)U τ (ν; θ̃) (2.11)

that is, by replacing the vectors of parameters θ = (θ1, · · · , θk) with their MLEs

θ̃ = (θ̃1, · · · , θ̃k), the standard error of C̃MA(ν; θ) is s.e.
[
C̃MA(ν; θ)

]
=

√
Ω̃/n.

The 100(1−α)% one-sided confidence interval (with lower limit) of CMA(ν; θ) is
given by (

C̃MA(ν; θ) − zαs.e.
[
C̃MA(ν; θ)

]
,∞

)
(2.12)

Since the process is capable if CMA(ν, θ) > 1, the test statistic for testing H0 :
CMA(ν, θ) ≤ 1 vs Ha : CMA(ν, θ) > 1 is given by

Z =
C̃MA(ν, θ̃) − 1√

Ω̃/n
∼ N(0, 1) (2.13)

Constructing the confidence interval using (2.12) and testing process capability
using (2.13) with illustrative examples will be discussed in Section 5.

3. Non-parametric Confidence Limits and Testing Procedures

The procedure we discussed in Section 2 is dependent on the assumption
that the density function of the underlying process is completely specified. If the
density function of the process is unknown and we are not sure which distribution
should be used to fit the model, nonparametric procedure methods should be
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used. We focus our discussion on constructing confidence intervals and developing
testing hypotheses using the distribution free approach in this section.

Let ξ̂α be the sample αth quantile. That is,

ξ̂α = max{y : Fn(y) < α} (3.1)

where Fn(y) is the empirical CDF defined based on the sample data. It is well
known that ξ̂α is a consistent estimator of ξα. Furthermore for p2th and p3th sam-
ple quantiles, we have the following variance and covariance matrix (see Serfling,
1980, page 80.)

Γ(f ; ξ)
n

= cov
(

ξ̂p2

ξ̂p3

)
=

 p2(1 − p2)
nf2(ξp2)

p3(1 − p2)
nf(ξp2)f(ξp3)

p3(1 − p2)
nf(ξp2)f(ξp3)

p3(1 − p3)
nf2(ξp3)


where f is the density function of the underlying process. Therefore, a consistent
estimator of CMA(ν; ξ) using sample quantiles is given by

ĈMA(ν; ξ) = CMA(ν; ξ̂) =
USL√

ξ̂2
p3

+ νξ̂2
p2

(3.2)

Again using the first order Taylor expansion on ĈMA(ν; ξ) at the true value ξ
and Slutsky’s Theorem, we have

√
n
(
ĈMA(ν; ξ) − CMA(ν; ξ)

)
→ N

(
0, σ2

C

)
(3.3)

where
σ2

C = U(ν; θ)Γ(f ; ξ)U τ (ν; θ)

=
C2

MA(ν; ξ)
(ξ2

p3
+ νξ2

p2
)2

[ ν2ξ2
p2

4f2(ξp2)
+

ν(1 − p3)ξp2ξp3

f(ξp2)f(ξp3)
+

p3(1 − p3)ξ2
p3

f2(ξp3)

]
which is exactly the same as the one obtained in Vännman and Albing (2007).

In order to use the asymptotic result (3.3) to construct the confidence inter-
val of CMA(ν; ξ) and test hypothesis of process capability, we need a consistent
estimator of variance σ2

C in (3.3). For consistent quantile estimators, we only use
the sample quantiles ξp2 = ξ0.5 and ξp3 = ξ0.9973 in this paper. We can also use
sample quantiles or interpolation based quantiles discussed in Hyndman and Fan
(1996), Pearn and Chen (1997) generalized Chang and Lu (1994) with a minor
modification on σ2

C .
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For the process density, we choose the following nonparametric kernel density
estimator. Suppose that {y1, · · · , yn} is a random sample collected from the un-
derlying process with density f(y). The kernel density estimator of f(y), denoted
by f̂(y), is given by

f̂n(y) =
1

nh

n∑
i=1

K

(
y − yi

h

)
(3.4)

where K(·) is the kernel function which is nonnegative, unimodal and symmetric
with respective to the vertical axis and integrates to unity, and h is the band-
width which controls the degree of smoothing of the estimation. Among several
commonly used kernel functions, Gaussian kernels are the most often used. In
this paper, we will use Gaussian kernel and the rule-of-thumb of Silverman (1986)
for choosing the bandwidth of a Gaussian kernel density estimator.

Using the kernel estimator of the density and the sample quantile estimators,
we propose the following variance estimators

σ̂2
C =

C2
MA(ν; ξ̂)

(ξ̂2
p3

+ νξ̂2
p2

)2

[ ν2ξ̂2
p2

4f̂2(ξ̂p2)
+

ν(1 − p3)ξ̂p2 ξ̂p3

f̂(ξ̂p2)f̂(ξ̂p3)
+

p3(1 − p3)ξ̂2
p3

f̂2(ξ̂p3)

]
(3.5)

Since the variance is a continuous function of the estimated density function
f(x) and the estimated process quantiles, the consistency of estimator σ̂2

C follows
immediately from the fact that f̂(x) is (strongly) consistent with f(x).

The 100(1 − α)% one-sided confidence limit for CMA(ν; ξ) based on sample
quantiles is given by (

ĈMA(ν; ξ) − zαs.e.
[
ĈMA(ν; ξ)

]
,∞

)
(3.6)

where s.e.
[
ĈMA(ν; ξ)

]
=

√
σ̂2

C/n. The test statistic for testing H0 : CMA(ν, ξ) ≤
1 vs Ha : CMA(ν, ξ) > 1 is given by

Z =
ĈMA(ν, ξ̂) − 1√

σ̂2
C/n

∼ N(0, 1) (3.7)

Since the above standard errors are explicitly expressed in data measure-
ments and the estimated density function, the confidence limits can be calculated
through simple programming.

4. Parametric Case Studies: Lognormal and Weibull Processes

We are interested in the investigating the performance of CMA under skewed
process with upper specification. Since lognormal and Weibull distributions are
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non-normal and widely used in engineering, particularly in engineering reliability
modeling, we choose to use these two distributions to illustrate how to construct
parametric asymptotic confidence intervals for CMA. We will provide the explicit
expression of the lower confidence limit and the test statistic in terms of sample
data values.

4.1 Lognormal process

Recall that the two parameter lognormal distribution has density function

f(x; µ, σ) =
1√

2πσx
exp

[
− 1

2
( lnx − µ

σ

)2
]

(4.1)

The α-th quantile of the lognormal process with parameters θ = (µ, σ2) is defined
by

ξα = exp[µ + Φ−1(α)σ] (4.2)

where Φ(·) is the CDF of standard normal distribution as usual and Φ−1(·) is the
inverse of Φ(·). Let x1, · · · , xn be a random sample collected from a lognormal
process. The log-likelihood function of µ and σ is

lnL(θ) = −n

2
ln 2π − n

2
lnσ2 −

n∑
i=1

xi −
1
2

n∑
i=1

( lnxi − µ

σ

)2 (4.3)

One can easily find the consistent MLE of the parameters µ and σ2 are

µ̃ =
∑n

i=1 ln(xi)
n

and σ̃2 =
∑n

i=1

[
ln(xi) − µ̃

]2

n
(4.4)

The consistent estimator of the information matrix is given by

In(θ̃) = − 1
n

∂2 lnL(θ)
∂θ∂θτ

|θ=θ̃ =

 1
σ̃2 0

0 1
2σ̃4

 (4.5)

where θ̃ = (µ̃, σ̃2). Note also that the MLE of matrix R(θ) defined in (2.9) by
using the the MLEs of the derivatives of quantiles

∂ξα

∂µ
|θ=θ̃ = ξ̃α and

∂ξα

∂σ2
|θ=θ̃ = ξ̃α

( ln ξ̃α − µ̃

2σ̃2

)
=

ξ̃αΦ−1(α)
2σ̃

(4.6)

Using MLEs (4.4), (4.5) and (4.6) we can easily evaluate the consistent MLE of
the variance Ω in (2.11) by using the MLEs of the α-th quantile and the matrix
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of (2.9) expressed below

ξ̃α = exp
[
µ̃ + Φ−1(α)σ̃

]
and R̃(µ, σ) = R(µ̃, σ̃) =

(
ξ̃p2 , Φ−1(p2)ξ̃p2/(2σ̃)
ξ̃p3 , Φ−1(p3)ξ̃p3/(2σ̃)

)
.

(4.7)
Therefore, the parametric asymptotic confidence interval (2.12) and the test

statistics (2.13) can be easily calculated.

4.2 Weibull process

Next we consider the underlying process which follows the Weibull distribu-
tion with density function

f(x) =
β

θ

(x

θ

)β−1
exp

[
−

(x

θ

)β ]
, x ≥ 0 (4.8)

where θ is the scale parameter and β is the shape parameter. The theoretical
αth quantile of this Weilbull process, denoted by ξα, is determined by

ξα = θ [− ln(1 − α)]1/β (4.9)

Let x1, · · · , xn be a random sample collected from a Weibull process. The log-
likelihood function of θ and β is

l(θ, β) = n ln
(

β

θ

)
+ (β − 1)

n∑
i=1

lnxi − n(β − 1) ln θ −
n∑

i=1

(xi

θ

)β
(4.10)

Let θ̃ and β̃ be the maximum likelihood of θ and β and

∂l2(θ, β)
∂θ2

=
n

β
− β(β + 1)

θ2

n∑
i=1

(
xi

β

)β

,
∂l2(θ, β)

∂β2
=

n

β2
−

n∑
i=1

(xi

θ

)β
ln2

(xi

θ

)
∂l2(θ, β)

∂θ∂β
= −n

θ
+

β

θ

n∑
i=1

(xi

θ

)β
ln

(xi

θ

)
+

1
θ

n∑
i=1

(xi

θ

)β
=

∂l2(θ, β)
∂β∂θ

The observed information matrix is given by

Î(θ, β) = In(θ̃, β̃) = − 1
n

(
∂l2(θ,β)

∂θ2
∂l2(θ,β)

∂θ∂β
∂l2(θ,β)

∂β∂θ
∂l2(θ,β)

∂β2

)∣∣∣∣∣
(θ,β)=(θ̃,β̃)

(4.11)

The MLE of matrix Q(ξ, θ, β) defined in (2.9) is specified as follows

Q(ξ, θ̃, β̃) =

[− ln(1 − p2)]1/β̃ − θ̃
β̃2

[− ln(1 − p2)]1/β̃ ln[− ln(1 − p2)]

[− ln(1 − p3)]1/β̃ − θ̃
β̃2

[− ln(1 − p3)]1/β̃ ln[− ln(1 − p3)]

 .

(4.12)
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Using the MLE of the quantile function (4.9), ξ̃α = θ̃ [− ln(1 − α)]1/β̃ , along with
the observed information matrix (4.11) and the MLEs of the quantile derivative
matrix (4.12), we can calculate the consistent MLE of the variance Ω specified
in (2.11). Hence the parametric asymptotic confidence limit (2.12) and the test
statistic defined in (2.13) can be easily expressed with sample data values.

5. Illustrative Examples

In this section, we simulate two datasets from the two-parameter lognormal
family and Weibull family respectively and use them to illustrate how to construct
parametric and nonparametric confidence limits and test hypothesis introduced
in Sections 2, 3 and 4. Throughout this section and the next section of simulation,
we choose ν = 1.

5.1 Example 1: Weibull process

We use the sample process specification limit (USL = 10) and the target
(T = 0) values used in Vännman and Albing (2007) and generate 100 random
sample data values from Weibull population with scale parameter θ = 2.2 and
shape parameter β = 1.5 as follows
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Figure 1: The broken curves represent the estimated parametric density curves
and the solid curves represent the nonparametric kernel density curves

The left panel of Figure 1 gives the histogram based on the simulated data
along with the true density curve (scale θ = 2.2 and shape β = 1.5) and the
kernel density curve (binwidth = 0.4722).

For the parametric approach, we first make a histogram of the data and then
choose appropriate parametric distribution(s) based on the histogram to fit the
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data. A goodness-of-fit test is conducted to avoid model misspecification. In this
example, we use Kolmogorov-Smirnov goodness-of-fit test based on Weibull and
log-normal distributions and found that the two p-values are 0.9683 and 0.1714
respectively. Since the p-value based on Weibull distribution is higher than that
based on log-normal distribution, we choose Weibull as the final model (in fact,
the data was generated from Weibull distribution). The MLE of θ and β are
θ̃ = 2.211263 and β̃ = 1.5141. The MLE of CMA(θ, β) is CMA(θ̃, β̃) = 1.3587.
The 95% asymptotic confidence interval of CMA is (1.25,∞). The p-value of
the asymptotic parametric normal test for testing H0 : CMA(ξ) ≤ 1 versus Ha :
CMA(ξ) > 1 is approximately 0 which indicates that the underlying process is
capable.

For the nonparametric approach, the median and the 99.73-th quantile are
ξ̂p2 = 1.715 and ξ̂p3 = 6.305 respectively. The kernel density estimator evaluated
at the two sample quantiles gives f̂(1.715) = 0.278843 and f̂(6.305) = 0.01638945
respectively. Using these values, we obtain the point estimate ĈMA(ξ) = 1.53.
The 95% asymptotic nonparametric confidence interval (3.6) and the nonpara-
metric test statistic (3.7) for testing H0 : CMA(θ, β) ≤ 1 versus Ha : CMA(θ, β) >
1 are given by (1.382,∞) and 7.312 with p-value 0.

The results obtained based on both parametric and nonparametric approaches
agree with that of Vännman and Albing (2007) in which the sample quantiles and
the true parametric density were used.

5.2 Example 2: Lognormal process

In the second example, we generate 100 data values from log-normal distri-
bution with geometric mean 0 and geometric standard deviation 0.4. We choose
USL = 3.05 to guarantee that the proportion of nonconforming is at least 99.73%
if the associated CMA is at least 1. The right panel in Figure 1 gives the true
density (broken curve) and the kernel density (solid curve) with binwidth 0.1156.

Similar to the steps used in example 1, we performed Kolmogorov-Smirnov
test based on Weibull and Lognormal distributions and obtained p-values 0.04242
and 0.61 respectively. Since the test rejects the Weibull distribution and fails
to reject lognormal, we choose lognormal distribution (in fact, the dataset was
generated from the lognormal distribution).

For the parametric approach, we first find MLEs µ̃ = 0.02258 and σ̃ = 0.3830.
The MLE of CMA(µ, σ) is CMA(µ̃, σ̃) = 0.9712. The 95% asymptotic confidence
interval of CMA is (0.8075,∞). The p-value of the asymptotic parametric t test
for testing H0 : CMA(µ, σ) ≤ 1 versus Ha : CMA(µ, σ) > 1 is approximately 0.929
indicating that the process is barely capable or incapable.

For the nonparametric approach, the median and the 99.73-th quantile are
ξ̂p2 = 1.03 and ξ̂p3 = 3.126 respectively. The kernel density estimator evaluated at
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the two sample quantiles yields f̂(1.03) = 1.173559 and f̂(3.126445) = 0.02786794
respectively. Using these values, we obtain the point estimate ĈMA(ξ) = 0.9266.
The 95% asymptotic nonparametric confidence interval (3.6) and the nonpara-
metric test statistic (3.7) for testing H0 : CMA(ξ) ≤ 1 versus Ha : CMA(ξ) > 1
are given by (0.8286,∞) and −1.4696 with p-value 0.9292 which matches the
parametric result.

6. A Simulation Study on the Sample Size Requirement

The open source statistical package R is used to carry out all data analysis
presented in the previous section and the simulation study in this section as well.
The program is available from the author upon request.

In this section, we will investigate the sample size needed in asymptotic normal
approximation for both parametric and nonparametric confidence limits and tests
of the process capability. To be more specific, we first choose different sample
sizes and population parameters which generates different skewed populations,
then conduct the Shapiro’s normality test to see the discrepancy between the
normal distribution and the sampling distribution of the consistent estimator
of the qPCI. The p-value of Shapiro’s test of each of the simulated samples
with different sample sizes and population parameters will be reported. The
distributions we use in this simulation are Weibull and lognormal distributions.

For the Weibull family, we first fix the scale parameter at θ = 2.2 and choose
various values for the shape parameter β = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.
One can see the two upper panels of Figure 2 that as the the value of β decreases
the tail of Weibull distribution gets longer. Then we fix the shape parameter at
θ = 1.5 and use different values of the scale parameter θ = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.
The density curves are shown in the bottom left panel of Figure 2.

For the lognormal family, we only choose different values of geometric stan-
dard deviation σ = 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 and fix the location parameter µ = 0
since the location parameter does not affect the shape of the distribution. The
corresponding density curves are given in the bottom right panel of Figure 2.

The sample sizes that we used in this simulation are n = 50, 100, 150, 200,
250, 300, 350, 400, 500, 600, 700, 800, 900, and 1000. For each combination of
population parameters, (θ, β) for the Weibull and (µ, σ) for the lognormal, and
the sample size, we generate 1000 samples from the corresponding distribution.
We then use each of these 1000 simulated samples to evaluate parametric (MLE)
and nonparametric PCIs proposed in (2.3) and (3.2) in Sections 2 and 3 and
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Figure 2: The density curves from lognormal and Weibull families with different
values of shape related population parameters.

obtain two sets of 1000 estimated PCIs. Finally we conduct Shiparo’s nor-
mality test on the two sets of estimated PCIs. The p-values obtained from the
simulation indicate that (the detailed numerical results of the simulation is avail-
able at http://www.usm.maine.edu/∼cpeng/jds582sim.pdf ):

1. for both parametric and nonparametric PCIs, the sample size required for
asymptotic normal approximation gets larger (in order to achieve an ap-
propriate significant level or p-value) as the shape parameter gets smaller
(or equivalently the tail of the distribution gets longer, see also the upper
two panels of Figure 2); parametric PCI requires a relatively larger sample
size (with the sample cut-off p-value).

2. for the fixed shape parameter β = 1.5, different values of the scale parameter
do not affect the sample very much.

3. as the value of geometric standard deviation increases (the tail of the distri-
bution becomes longer, see the bottom right panel of Figure 2), the sample
size required for asymptotic normal approximation increases. Similar to the
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Weibull case, the nonparametric PCI requires a relatively smaller sample
size than its parametric counterpart.

Finally, in order to see the pattern of how the length of tail affects the sam-
ple size required for asymptotic approximation, we choose three lognormal dis-
tributions with geometric standard deviations σ = 0.5, 1.0, 1.5 (based on the
fixed geometric mean 0) and three Weibull distributions with shape parameter
β = 0.4, 1.0, 1.6 (based on the fixed scale parameter 2.2). These density curves
are given in Figure 3. Simulation results show that the length of the distribution
tail affects the sample size required for asymptotic normality: the longer the tail
is, the larger the sample size required.
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Figure 3: The density curves from both lognormal and Weibull families with
different values of shape parameter for Weibull and different geometric standard
deviations for lognormal distributions.

7. Summary and Concluding Remarks

We have systematically developed both parametric and nonparametric meth-
ods of applying the family of PCIs proposed by Vännman and Albing (2007).
The major contributions are

1. We introduce a kernel density estimator for estimating the density of the
underlying skewed process and obtain a consistent estimator of the variance
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of the proposed qPCI which has NOT been discussed by Vännman and
Albing (2007). Therefore, our work makes the proposed qPCI available for
practical implementation under a purely nonparametric setting.

2. We also develop a general asymptotic parametric procedure for the proposed
qPCI. The general recommendation for using this parametric procedure is
to use parametric method if the underling distribution is given or can be
easily identified by performing a goodness-of-fit test for the fitted model.

The procedures discussed in this article are based on large sample theory. In
practice, the sample size required for both methods depends on the length of
the tail of the distribution for the process. The longer the tails, the larger the
sample size is reqiured. A general practical recommendation is to use different
ways, for example resampling methods, to get the sampling distribution of the
estimated PCI and make sure that the sample size is sufficiently large for using
the asymptotic results. Similar to Chao and Lin’s (2005) Cy using two extreme
tail probabilities of the underlying process, the quantile based PCIs discussed
in this paper are dependent on the extreme process quantiles. Therefore, Chao
and Lin’s (2005) recommendation of giving the first priority to the parametric
approach whenever possible also applies to our case.

Acknowledgment

The author thanks an anonymous referee for his comments and pointing out
two important references which enhance the presentation of the this paper.

References

Casella, G. and Berger, R. L. (2002). Statistical Inference, 2nd ed. Duxbury Press.

Chang, P. L. and Lu, K. H. (1994). PCI calculations for any shape of distribution with
percentile, Quality World, Technical Section. September, 110-114.

Chang, Y. S. and Bai, D. S. (2001). Control charts for positively-skewed populations
with weighted standard deviations, Quality and Reliability Engineering Interna-
tional 17, 397-406.

Chang, Y. S., Choi, I. S. and Bai, D. S. (2002). Process capability indices for skewed
populations, Quality and Reliability Engineering International 18, 383-393.

Chao, M.-T. and Lin, D. K. J. (2005). Another look at the process capability index,
Quality and Reliability Engineering International 22, 153-163.

Chen, K. S. and Pearn, W. L. (1997). An application of non-normal process capability
indices, Quality and Reliability Engineering International 13, 355-360.



268 Cheng Peng

Chen, S. M. and Hsu, Y. S. (2003). Asymptotic analysis of estimators for CNp based
on quantile estimators, Journal of Nonparametric Statistics 15, 137-150.

Clements, J. A. (1989). Process capability calculations for non-normal distributions.
Quality Progress 22, 95 - 100.

Hyndman, R. J. and Fan Y. (1996). Sample quantiles in statistical packages American
Statistician 50, 361 - 365.

Juran, J.M., Gryna, F. M. and Binghan, R. S. (1974). Quality Control Handbook,
McGraw-Hill, New York.

Kotz, S. and Lovelace, C. R. (1998). Process Capability Indices in Theory and Practice.
Arnold.

Lin, H. C. (2004). The measurement of a process capability for folded normal process
data. Journal of Advanced Manufacturing Technology 24, 223-228.

Lin, P. C. (2005). Application of the generalized folded-normal distribution to the
process capability measures. Journal of Advanced Manufacturing Technology 26,
825-830.

Lovelace, C. R., Swan, J. and Messimer, S. (1997). A modification of Cpk for non-
normal, zero-bound process data using lognormal quality control techniques, Manuscript,
University of Alabama in Huntsville, Huntsville, AL.

Pearn, W. L. and Chen, K. S. (1997). Capability indices for non-normal distributions
with an application in electrolytic capacitor manufacturing. Microelectronics and
Reliability 37, 1853 -1858.

Serfling, R. J. (1980) Approximation Theorems of Mathematical Statistics. John Wiley.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chap-
man and Hall.

Spiring, F., Leung, B., Cheng, S., and Yeung, A. (2003). A bibliography of process
capability papers. Quality and Reliability Engineering International 19, 445-460.

Vännman, K. (1995). A unified approach to process capability indices. Statistica Sinica
5, 805-820.

Vännman, K. and Albing, M. (2007). Process capability indices for one-sided spec-
ification itervals and skewed distributions. Quality and Reliability Engineering
International 23, 755-765.

Received June 1, 2008; accepted September 5, 2008.

Cheng Peng
Department of Mathematics and Statistics
University of Southern Maine
96 Falmouth Street
Portland, Maine 04104, USA
cpeng@usm.maine.edu


