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ESTIMATING ANIMAL ABUNDANCE USING NONINVASIVE DNA
SAMPLING: PROMISE AND PITFALLS

L. SCOTT MILLS,1,3 JOHN J. CITTA,1 KEVIN P. LAIR,1 MICHAEL K. SCHWARTZ,1 AND DAVID A. TALLMON2

1Wildlife Biology Program, School of Forestry, University of Montana, Missoula, Montana 59812 USA
2Division of Biological Sciences, University of Montana, Missoula, Montana 59812 USA

Abstract. Advances in molecular biology offer promise to the study of demographic
characteristics of rare or hard-to-capture species, because individuals can now be identified
through noninvasive sampling such as fecal collection or hair snags. However, individual
genotyping using such methods currently leads to a novel problem that we call a ‘‘shadow
effect,’’ because some animals not captured previously are believed to be recaptures due
to their DNA profile being an indistinguishable shadow of previously captured animals.
We evaluate the impact of the shadow effect on the two methods most commonly used in
applied population ecology to estimate the size of closed populations: Lincoln-Petersen
and multiple-recapture estimators in program CAPTURE. We find that the shadow effect
can cause a negative bias in the estimates of both the number of different animals and the
number of different genotypes. Furthermore, with Lincoln-Petersen estimators, the shadow
effect can cause estimated confidence intervals to decrease even as bias increases. Because
the bias arises from heterogeneity in apparent ‘‘capture’’ probabilities for animals with
genetic shadows vs. those without, a model in program CAPTURE that is robust to capture
heterogeneity (Mh-jackknife) does not underestimate the number of genotypes in the population
and only slightly underestimates the total number of individuals. As the shadow effect
increases, CAPTURE is better able to correctly identify heterogeneity in capture probability
and to pick Mh-jackknife, so that the higher levels of shadow effect have less bias than medium
levels. The shadow effect will occur in all estimates of demographic rates (including sur-
vival) that use DNA sampling to determine individual identity, but it can be minimized by
increasing the number of individual loci sampled.

Key words: demography; DNA; genetic marker; Lincoln-Petersen estimator; mark–recapture;
microsatellite; minimum number alive; monitoring; population estimation; probability of identity; rare
species; trend analysis.

INTRODUCTION

Evaluation of population dynamics of rare or elusive
species has long been plagued by small sample size.
Even important parameters such as population size or
survival rates have been virtually impossible to esti-
mate using mark–recapture or transect methods, due to
the high capture probabilities and/or large numbers of
animals required for reasonable estimates. The limi-
tations have been especially acute for carnivores and
endangered species, whose low densities have left ecol-
ogists relying on raw counts or indices with unknown
relationships to true population size. The lack of reli-
able estimates for these species has forced ecologists
to consider how indirect measures, such as photograph-
ic ‘‘capture’’ (Mace et al. 1994, Karanth and Nichols
1998) or ingestion of biomarkers (Garshelis and Visser
1997), could be used to obtain reliable estimates of
detection probabilities and, thus, of population size and
associated confidence intervals.

Recently, a technical and conceptual revolution has

Manuscript received 17 August 1998; revised 2 April 1999;
accepted 2 April 1999.

3 E-mail: smills@forestry.umt.edu

occurred in ecological research with the availability
and ease of use of molecular techniques (Haig 1998,
Parker et al. 1998). Now, tiny samples of DNA can be
obtained from individuals in noninvasive ways to pro-
vide a potentially unique genetic profile. The possi-
bilities seem endless, including the acquisition of sam-
ples via hair snags, feces, regurgitated pellets, or other
creatively collected bits of tissue (reviews by Morin
and Woodruff 1996, Kohn and Wayne 1997). On the
heels of these molecular discoveries, a growing wave
of enthusiasm seems about to break, advocating the use
of these noninvasive molecular techniques in mark–
recapture models (see Kohn and Wayne 1997, Levy
1999). For example, noninvasive sampling of DNA to
estimate population size has been proposed or carried
out for bears (Ursus arctos and U. americanus; Woods
et al. 1996), humpback whales (Megaptera novaean-
gliae; Palsboll et al. 1997), coyotes (Canis latrans;
Kohn et al. 1999), and a suite of mid-level carnivores
in North America (Lynx canadensis, Gulo gulo, Martes
pennanti, and M. americana; Foran et al. 1997).

Indeed, the use of these unobtrusive or noninvasive
approaches may offer advantages over conventional
mark–recapture techniques, including increased cap-



284 L. SCOTT MILLS ET AL. Ecological Applications
Vol. 10, No. 1

ture probability, decreased tag loss, and the potential
to minimize the effects of capture and marking. Before
ecologists embrace this new technology and its appli-
cations, however, it seems wise to carefully consider
potential limitations (Snow and Parker 1998, Taberlet
and Waits 1998).

The premise of using molecular approaches to es-
timate demographic rates rests on the same fundamen-
tal assumptions that apply to mark–recapture meth-
odology, including unique marking of animals. In this
case, the sample of hair or tissue is assumed to yield
a unique DNA profile that ‘‘marks’’ an individual; sub-
sequent samplings (the ‘‘recapture’’ sessions) either
match samples from the first session, implying a ‘‘re-
captured’’ animal, or do not match, implying a newly
captured animal. However, the uniqueness of these pro-
files is probabilistic, meaning that different animals can
sometimes share the same profile.

This potential to share genetic profiles among dif-
ferent individuals creates a potential bias that does not
typically occur in traditional mark–recapture studies:
the possibility that a sample will identify as a ‘‘recap-
ture’’ an animal that has not, in fact, been previously
captured. By convention (see Paetkau and Strobeck
1994, Palsboll et al. 1997), the proportion of the pop-
ulation having genotypes that cannot be distinguished
from at least one other individual is defined as the
probability of identity (PI). For example, in a popu-
lation with a PI of 0.10, 10% of the individuals have
genetic matches in the population. A nonzero PI, cou-
pled with the number of individuals (two or more) that
share each genotype, thus introduces what we call a
‘‘shadow effect’’ into mark–recapture estimates: ani-
mals that have not been captured before are believed
to be recaptures because their DNA profile is an in-
distinguishable shadow of those of previously captured
animals. Although the probability of identity can be
made almost infinitesimally small in human forensics
and crime applications (see National Research Council
1996), the same may not be true for ecological studies,
in which populations are often small and geographi-
cally structured, and in which logistics and finances
limit the ability to minimize PI. Note that PI is based
on the same principle as the probability of detection
calculated in behavioral studies, in which the goal is
to maximize the probability of excluding a putative
father when he is not the actual father (Westneat et al.
1987). It is unknown how the shadow effect that arises
from a nonzero PI could affect demographic estimates
of vertebrate populations.

We will not consider technical aspects of choosing
a molecular technique or obtaining a genetic profile
(see Parker et al. 1998, Taberlet et al. 1999). Rather,
we first review how noninvasive DNA sampling is, or
would be, used to estimate population size in a mark–
recapture framework, and then we evaluate the poten-
tial of the shadow effect to influence estimates of pop-
ulation size in actual field studies. We conclude that,

although the approach has limitations, there are
straightforward ways to address the limitations, so that
noninvasive DNA techniques will continue to be a use-
ful tool to address population-level questions.

BACKGROUND: ESTIMATING POPULATION SIZE VIA

NONINVASIVE DNA SAMPLING

Probability of identity: quantifying the match
between genotype and individual

The most well-known use of DNA to assay individ-
ual profiles is in the area of human and wildlife foren-
sics, in which the absence of a genetic match positively
excludes the compared samples as coming from the
same individual, whereas the presence of a genetic
match suggests, but does not prove, that samples come
from the same individual (reviews by Avise et al. 1995,
National Research Council 1996). The consequences
of a false inclusion, that is, claiming a match or identity
between samples when they really come from different
individuals, can be severe in forensics cases. Therefore,
great attention and money are spent on the theory and
practice of minimizing the probability of identity (PI)
of genetic profiles between different individuals, so that
a match can imply ‘‘beyond a reasonable doubt’’ that
different samples come from the same individual (Av-
ise 1994, Roeder 1994). A flurry of debate has centered
on how factors such as sampling, inbreeding, and pop-
ulation structure could increase the PI in any given
case, potentially by many orders of magnitude (Cohen
1990, Lewontin and Hartl 1991, Nichols and Balding
1991, Donnelly 1995). Nevertheless, the consensus
seems to be that, in forensic applications, a battery of
analytical solutions, coupled with a willingness to con-
duct extensive sampling both within and outside the
population from which forensic samples are collected,
will result in PI values that are close enough to zero
that a genetic profile can be considered unique to one
individual (see Roeder 1994, National Research Coun-
cil 1996).

The same cannot necessarily be said for the case of
noninvasive sampling of ecological populations, in
which samples are typically in poor condition and the
ability to build reference databases to account for pop-
ulation structure is limited. One of the molecular mark-
ers of choice for individual identification in ecological
studies is microsatellites; these codominant markers
rely on the polymerase chain reaction to amplify DNA
in small or degraded samples, are highly variable, and
are easily interpreted in terms of allele frequencies
(Bruford et al. 1996, Jarne and Lagoda 1996, Parker
et al. 1998).

The genotype identity derived from a microsatellite
profile equals the individual identity only if the prob-
ability of identity is zero. The traditional calculation
of probability of identity using microsatellite data is
based on a simple formula that assumes Hardy-Wein-
berg equilibrium. For a single locus with multiple al-
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leles, the PI can be calculated as the sum of squares
of expected frequencies of all possible genotypes (Paet-
kau and Strobeck 1994, Paetkau et al. 1995, 1998):

4 2PI 5 x 1 (2x x ) (1)O O Osinglelocus i i j
i i j.i

where xi and xj are the frequencies of the ith and jth
alleles, respectively. The smallest PI values will occur
when there are many alleles of approximately equal
frequency, and the largest PI values will occur when
genetic variation is low, as may be expected for species
that have undergone recent bottlenecks. As an example,
using Eq. 1 for three alleles of equal frequency (0.333),
PI would be (0.0369 1 0.148 5 0.184); by comparison,
for a locus with three alleles of unequal frequency (0.9,
0.05, 0.05) PI would be (0.656 1 0.0162 5 0.672).
The PI calculated with this formula will be biased low
for many wild populations, because it does not account
for subdivision within populations or philopatry of rel-
atives (Avise et al. 1995; Taberlet and Luikart 1999).
Paetkau et al. (1998) present a modified formula that
accounts for small sample sizes, although L. P. Waits,
G. Luikart, J.-M. Cornuet, and P. Taberlet (unpublished
data) find that the calculated values differ very little
using the corrected vs. uncorrected formula.

The estimated overall PI for a given population is
calculated as the product of the PI values for all loci
(Paetkau et al. 1995, Parker et al. 1998):

PI 5 (PI ). (2)Poverall single locus

This formula assumes that loci are independent; if they
are not, the overall PI will again be biased low (Don-
nelly 1995).

Levels of PI in wild populations

Given that a shadow effect arising from a nonzero
PI could be introduced into demographic estimators,
what levels of PI are likely in wild populations? The
PI, or proportion of the population whose genetic pro-
file will be indistinguishable from at least one different
individual, could, in theory, range from 0 to 1.0. It is
not known what values of PI are most likely in field
studies, because only a handful of ecological studies
have calculated PI (see Appendix). To obtain reason-
able PI values for our analysis, we reviewed micro-
satellite studies of wild birds and mammals, reasoning
that these taxa are currently the primary targets of DNA
sampling to estimate population size. We determined
the average PI per locus for each of two populations
in 10 published studies (Appendix) that either provided
a PI or that provided sufficient information on micro-
satellite allele frequencies so that we could calculate
it using Eq. 1. We only included studies that examined
more than one population, so that we could bracket
‘‘high’’ and ‘‘low’’ PI values within studies.

For these populations, the highest average estimate
of PI per locus was 0.51 and the lowest was 0.061
(Appendix). The number of polymorphic loci in these

studies ranged from two to 15. The overall PI expected
for a population having a given number of loci and PI
per locus can be calculated from Eq. 2. For example,
if the PI per locus were 0.51 for each of three loci,
overall PI would be 0.13; if PI were 0.061 for three
loci, the overall PI would equal 0.00023. As previously
stated, the probability of identity in real populations is
probably underestimated by using the traditional ap-
proach based on Eqs. 1 and 2 (see Donnelly 1995,
Taberlet and Luikart 1999). Given the range of PI and
number of loci typically used (Appendix), and given
that the calculated PI values are probably biased small
both for single loci and for overall PI, we will consider
overall PI values ranging from 0 to 0.2.

Having established reasonable levels of PI, next we
must identify how PI is manifest in capture–recapture
studies. The genetic matches described by a nonzero
PI are genetically indistinguishable shadows that will
result in the capture sample appearing to consist of
fewer individuals than it actually does. This discrep-
ancy between the true sample size and apparent sample
size, based on the number of genetically unique indi-
viduals, will depend on both the proportion of shadows
(PI) and how those shadows are distributed in the pop-
ulation. For a given PI, there are a number of ways in
which the shadow individuals can be distributed with
respect to which individuals are genetically indistin-
guishable from one another. Consider two extremes in
how a PI of 0.10 could be distributed among individuals
in a sample of 100 different animals. First, shadows
could be distributed pairwise, so that there are five pairs
of indistinguishable individuals. Within a pair, the two
individuals are genetically identical, but each pair is
genetically distinguishable from other pairs. An enu-
meration of the 100 animals would indicate 95 unique
genotypes. There would be very different distribution
if all 10 shadows shared a common genotype and were
therefore genetically indistinguishable from one an-
other. In this case, enumeration of the 100 animals
would indicate 91 different genotypes, because genetic
analysis would reveal only one animal for the 10 shad-
ows. It is not known how genotypic shadows are ac-
tually distributed in real populations, but the number
of animals sharing a genotype presumably would in-
crease as genetic drift, inbreeding, or philopatry in-
creased.

Estimating population size in the presence of a
shadow effect

Once individual genetic profiles are secured, stan-
dard mark–recapture estimators can be applied to the
‘‘individual’’ genotype data. Comprehensive reviews
of closed-population estimators are provided elsewhere
(e.g., Otis et al. 1978, Nichols 1992, Yoccoz et al.
1993). We consider the impact of the shadow effect
arising from a nonzero PI, using the two most common
techniques of population size estimation for closed
populations: the Lincoln-Petersen estimator and mul-



286 L. SCOTT MILLS ET AL. Ecological Applications
Vol. 10, No. 1

tiple-recapture models in program CAPTURE. Next,
we briefly describe these techniques as they would be
used to estimate population size using ‘‘capture’’ and
‘‘recapture’’ of DNA samples, not animals.

Lincoln-Petersen.—For two-sample Lincoln-Peter-
sen (LP) sampling, the maximum likelihood estimates
for population size, N̂ and its variance [Var(N̂)] (Bailey
1951, Seber 1982) are:

(n )(n )1 2N̂ 5 (4)
(m )2

2n n (n 2 m )1 2 2 2ˆVar( N ) 5 (5)
3m2

where n1 is the number of different genotypes in the
first sample, n2 the number in the second sample, and
m2 the number of genotypes in the second sample that
are recaptures from the first sample. Although the LP
estimator uses only two-capture samples, multiple sam-
ples can be collapsed into single-capture and recapture
sessions. Note that field studies should use the LP equa-
tions corrected for small sample size (Chapman 1951,
Pollock et al. 1990); in our evaluation, however, we
will rely on large sample size approximations of E(N̂)
and E(Var(N̂)), based on Eqs. 4 and 5.

In the case of no shadow effect (PI 5 0), for any
capture probability ( p) in session one ( p1) or two ( p2)
for all u animals present in the population, the expected
values of each of the three LP sufficient statistics are:

E(n ) 5 up1 1

E(m ) 5 up p2 1 2

E(n ) 5 up 5 E(m ) 1 p [u(1 2 p )]. (6)2 2 2 2 1

To incorporate the shadow effect arising from a non-
zero PI, consider that a population of true size N con-
tains u animals with unique genotypes and (PI 3 N )
animals with shadows (i.e., that share their genotype
with at least one other animal). The number of different
genotypes that are shared among the (PI 3 N ) animals
depends on the number of animals that share each ge-
notype (g), such that

s 5 number of shared genotypes

5 (number animals with shadows)/g 5 (PI 3 N )/g.

A population of N individuals, therefore, has u 1 s
different genotypes and u 1 (g 3 s) different animals.
As an example, consider the case in which shadows
are distributed pairwise (g 5 2), total population size
(N) is 100, and PI 5 0.10. There would be 90 animals
with unique genotypes (u 5 90) and five shared ge-
notypes (s 5 5) common among 10 animals, leading
to 95 different genotypes (u 1 s) in the population of
100 different animals (u 1 (g 3 s)).

For the case in which genotypic shadows occur
among pairs of animals (g 5 2), a particular sample
session could ‘‘capture’’ either, both, or neither indi-

vidual making up each pair of shadows. Thus, the LP-
sufficient statistics must include both the expected
number of unique genotypes (Eq. 6) and the expected
number of animals that have shadows. The expected
values of the LP statistics would then be:

2 2E(n ) 5 up 1 s[2p (1 2 p ) 1 p ] 5 up 1 s(2p 2 p )1 1 1 1 1 1 1 1

2 2E(m ) 5 up p 1 s(2p 2 p )(2p 2 p )2 1 2 1 1 2 2

2 2E(n ) 5 E(m ) 1 p [u(1 2 p )] 1 s(2p 2 p )(1 2 p ).2 2 2 1 2 2 1

(7)

As the number of individuals sharing each shadow in-
creases (g . 2), the binomial probability terms asso-
ciated with capture of shadows expand.

From the expected LP statistics, we calculated ex-
pected N̂ (Eq. 4), Var(N̂ ) (Eq. 5), and standard error
of the estimate (SE(N̂ ) 5 [Var(N̂ )]1/2; see Pollock et al.
1990) for shadow effects created by PI values ranging
from 0 to 0.2 and for shadows distributed as pairs and
as fours (g 5 2, g 5 4). In addition to evaluating
population estimates (N̂ ) under the shadow effect with
different true population sizes (N 5 50 and N 5 100)
and capture probabilities ( p 5 0.25 and p 5 0.5), we
also considered the relative bias of the estimate [(N̂ 2
N )/SE(N̂ )].

Multiple mark–recapture models in program CAP-
TURE.—If multiple mark–recapture samples are avail-
able, population size can be estimated with a number
of models contained within program CAPTURE (Table
1; Otis et al. 1978, White et al. 1982, Rexstad and
Burnham 1991). Capture data are a series of 1’s and
0’s; for DNA analysis, each genotype would have 0’s
for sample sessions in which it was not detected, and
1’s for samples in which it was detected. Although
population closure must still hold, the benefit of CAP-
TURE is its ability to estimate population size in the
face of combinations of unequal trappability arising
from trap response, individual capture heterogeneity,
and changes in capture probability with time (Table 1).
To select the proper estimator, CAPTURE contains a
model selection procedure that performs chi-square
tests to determine the forms of unequal trappability that
probably exist in the data (behavior, heterogeneity, and
time, plus multiple combinations of these), and com-
putes normalized discriminant function scores such that
the most likely model has a selection criterion of 1.00
(see Otis et al. 1978:56–60). Although the user can
choose any model for estimation, in practice, the rec-
ommended models are those with a model selection
criteria of 1.00.

We used CAPTURE’s simulation routine to examine
the effects of nonzero PI on: (1) mean model selection
criterion; (2) the model chosen for estimation of pop-
ulation size; and (3) the mean relative bias of selected
models. Random capture histories (0’s and 1’s) were
created for 100 animals, replicated 20 times under M0

(null model: no variation in capture probability) with
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TABLE 1. Population size estimators contained within program CAPTURE (Otis et al. 1978, White et al. 1982, Rexstad and
Burnham 1991) and used in analysis of shadow effects.

Model Type of variation Estimator

M0 No variation in capture probabilities; assumes all animals are
equally likely to be captured.

null

Mh Each animal has a different, but constant, capture probability. jackknife

Mb Recapture of all individuals is affected by first capture; this is
the ‘‘trap happy’’ or ‘‘trap shy’’ response.

Zippin

Mbh Each animal has a different probability of capture, whereas all
animals alter capture probability after first capture.

generalized removal

Mt Capture probability varies over time; this variation is assumed to
be the same for all animals.

Darroch

Mth Each animal has a different capture probability and capture prob-
abilities vary with time.

Mth-Chao

Mtb Capture probabilities vary over time and after the first capture. Mtb-Burnham

Mtbh Each animal has a different probability of capture, whereas cap-
ture probability changes over time and after first capture.

no estimator available

six capture sessions, and a daily capture probability of
0.5. Capture histories of all 0’s or all 1’s were possible.
Although actual field studies will often have fewer in-
dividuals, fewer capture sessions, and/or a lower cap-
ture probability, we wanted to limit the effects of in-
adequate sampling in our analysis of nonzero PI. It is
well known that the model selection procedure within
CAPTURE performs poorly when the daily capture
probability, the total population size, or the number of
trap sessions is low (Otis et al. 1978, White et al. 1982,
Menkins and Anderson 1988). Because all of these
variables are interrelated and dependent upon sources
of capture variation, there are no clear rules of thumb.
However, White et al. (1982) show that, with popula-
tion sizes of 50 and fewer than 10 capture sessions, a
capture probability of ;0.5 is necessary for CAP-
TURE’s estimation and testing methods to perform
well. Hence, our simulation parameters should be suf-
ficient for CAPTURE to select a reasonable model, in
the absence of the shadow effect.

We simulated the shadow effect with two levels of
PI (0.08 and 0.20) and two levels of the number of
individuals sharing a shadow genotype (g 5 2, g 5 4)
by systematically combining the randomly generated
capture histories. For example, for a PI of 0.20 and
four individuals per genotype (g 5 4), 20 animals in
total have shadows (PI 3 N 5 0.2 3 100 5 20), so
we combined the first four capture histories to create
the first shadow genotype, then the second four, and
so on, until the five shared genotypes were created [s
5 (PI 3 N)/g 5 20/4 5 5]. In this way, the 20 capture
histories were combined for the five scenarios: PI 5
0.0 (capture histories not combined; no shadows); PI
5 0.08, g 5 2; PI 5 0.08, g 5 4; PI 5 0.20, g 5 2;
and PI 5 0.20, g 5 4.

To examine the effects of nonzero PI on the model
selection criterion, we ran CAPTURE with each of the
five levels of shadow effects and recorded the mean
model selection criterion for each model. Although the

model selection criteria may change little, the actual
model selected (the model whose selection criterion is
1.00) may vary greatly, thereby affecting which model
the biologist actually uses to estimate population size.
To determine the effects of shadow effects on the model
selected, we recorded the number of times each model
was chosen in each of the scenarios across the 20 rep-
licates. Because competing models sometimes have
equal selection criteria, we sometimes have .20 ‘‘most
likely’’ models within 20 simulations of each scenario.

Finally, we evaluated the relative bias of each se-
lected model. Even if program CAPTURE selects a
different model when PI is nonzero, this does not nec-
essarily indicate that the model selection procedure is
failing. Biologists are more interested in whether or not
the model selected can correctly estimate the popula-
tion size. To address this, we estimated the population
size using the preferred model in CAPTURE for each
scenario, and calculated the mean and standard error
of the relative bias in the estimator over the 20 sim-
ulations. When CAPTURE selected the heterogeneity
model (Mh), we used the default heterogeneity esti-
mator (Mh-jackknife). If capture probabilities were very
low (approximately ,0.2), Chao’s (1988) alternative
estimator for Mh or the approach of Rosenberg et al.
(1995) might be more appropriate.

RESULTS: HOW GENETIC ‘‘SHADOWS’’ MIGHT

AFFECT POPULATION ESTIMATES

Lincoln-Petersen (LP)

The shadow effect causes the Lincoln-Petersen es-
timator to be negatively biased. The bias arises because
the shadow effect creates heterogeneity in apparent
capture probability between animals with and without
shadows, and heterogeneity leads to negative bias in
LP (see Seber 1982, Pollock et al. 1990). If each in-
dividual animal has the same capture probability (as
we assume here), then animals with unambiguous ge-
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FIG. 1. Lincoln-Petersen estimate of population size (N̂) and associated standard error for varying levels of probability
of identity (PI) for two true population sizes (N 5 50 and N 5 100). Two levels of capture probability (p 5 0.25, p 5 0.5)
and two levels of shadow effect, number of individuals per shared genotype (g 5 2, g 5 4) are considered in each panel.
The dotted lines represent the true population sizes of 100 and 50.

notypes (u) will have a lower capture probability than
the animals with shadows (gs), whose capture proba-
bility includes the probability of catching only one in-
dividual, or an indistinguishable shadow, or both the
individual and its shadow, or more than one shadow if
g . 2. This heterogeneity in capture between the (u)
animals and the (gs) shadow animals increases when
g increases, because the probability of at least one shad-
ow being captured increases. With heterogeneity in-
duced by the shadow effect, the LP ratio (m2/n2) over-
estimates the true proportion marked in the population,
making the estimate of both population size and num-
ber of distinct genotypes too small. Unfortunately, one
will almost never know what g is, so the amount of
true bias will be hard to determine. Nevertheless, these
results indicate that, with a shadow effect (i.e., s . 0),
the LP estimator can be expected to underestimate the
number of distinct genotypes in the population (u 1
s), as well as the number of animals (u 1 gs 5 N),
such that

N̂ , u 1 s , u 1 gs 5 N.

One way to evaluate the importance of the shadow

effect for ecological applications is to observe the
change in N̂ and relative bias across varying degrees
of shadow effect (nonzero PI and g) for population sizes
of 50 and 100 and capture probabilities of 0.25 and
0.5. When shadows are distributed pairwise (g 5 2),
N̂ becomes negatively biased as PI increases (Fig. 1a,
b). The estimated standard error, and therefore the es-
timated 95% confidence interval, also becomes smaller
as PI increases (Fig. 1a, b). An increase in the number
of animals sharing a genotype (g 5 4) exacerbates both
the absolute bias and the change in SE, with greater
negative absolute bias and smaller standard errors when
g 5 4 (Fig. 1c, d) than when g 5 2 (Fig. 1a, b).

Relative bias of the LP estimator is also affected by
the shadow effect (Fig. 2). For either true population
size (N 5 50 or N 5 100), a larger capture probability
leads to a greater relative bias. Likewise, at a given
capture probability (0.25 or 0.5), relative bias is greater
when population size is larger (100 vs. 50). Thus, we
have the unexpected finding that relative bias of LP
under the shadow effect increases with increasing cap-
ture probability and true population size. Relative bias
is worse with g 5 4 (Fig. 2b) than with g 5 2 (Fig.
2a).
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FIG. 2. Relative bias [(N̂ 2 N)/SEN̂] of Lincoln-Petersen
estimates with varying levels of probability of identity (PI)
and for different combinations of true population size (N )
and capture probability, p. In panel (a), the number of animals
per shared genotype is g 5 2; in panel (b), g 5 4.

FIG. 3. Number of times a particular model in CAPTURE
was chosen when the program was presented with 20 repli-
cates of 100 randomly generated individual capture histories
that were combined according to the magnitude of the shadow
effect. The shadow effect is a function of PI (probability of
identity) and g (number of individuals per shared genotype).
Connecting lines are used to make it easier to follow changes
in the number of times selected.

TABLE 2. Average values of model selection criteria for 20 sets of simulated individual capture histories in CAPTURE,
under five scenarios of varying degree of shadow effects.

Scenario

PI g

Model and selection criteria

M0 Mh Mb Mbh Mt Mth Mtb Mtbh

0.00
0.08
0.08
0.20
0.20

···
2
4
2
4

0.95
0.92
0.92
0.89
0.85

0.87
0.91
0.91
0.95
0.97

0.35
0.32
0.34
0.34
0.34

0.61
0.58
0.58
0.56
0.54

0.05
0.02
0.01
0.00
0.00

0.49
0.47
0.46
0.46
0.43

0.37
0.35
0.35
0.34
0.33

0.72
0.67
0.66
0.66
0.64

Note: PI refers to the probability of identity, g is the number of individuals that share a shadow genotype, and the models
are as described in Table 1.

Multiple-recapture models (program CAPTURE)

The null model (M0) has a high average model se-
lection criteria across all levels of shadow effect, an
expected result because M0 was used to generate the
simulations of capture data. Nevertheless, at higher lev-
els of the shadow effect (PI 5 0.20, g 5 2 or 4), model
Mh-jackknife has the highest overall mean selection crite-
rion across the 20 replicates (Table 2). The model with
the highest mean selection criterion may not be the
most appropriate model in any given replicate. In this
case, however, Mh-jackknife does become the most likely

model (selection criterion 5 1.00) for the majority of
replicates as the shadow effect increases (Fig. 3). Nei-
ther the increase in the mean selection criteria for
Mh-jackknife nor the fact that Mh-jackknife is chosen more as
the shadow effect increases is particularly surprising,
given the fact that the shadow effect creates hetero-
geneity in the apparent ‘‘capture’’ probabilities for an-
imals with distinct vs. shared genotypes. In other
words, when the PI or number of individuals sharing
a genotype is large, CAPTURE correctly identifies the
shadow effect as a form of heterogeneity.

The key practical question is whether the identifi-
cation of heterogeneity by CAPTURE, and use of a
model robust to heterogeneity (Mh-jackknife), leads to un-
biased estimates of population size, or at least the num-
ber of genotypes, in the face of shadow effects. As the
shadow effect increases, the mean relative bias of pop-
ulation size estimate tends to increase, regardless of
which model is chosen (Fig. 4). However, model
Mh-jackknife performed better than M0 with respect to es-
timating true population size, with 95% confidence in-
tervals (CI) for model Mh-jackknife including the true pop-
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FIG. 4. Mean (11 SE) relative bias [(N̂ 2 N)/SEN̂] of the
chosen estimator in CAPTURE for 20 replicates of 100 ran-
domly generated individual capture histories that were com-
bined according to the magnitude of the shadow effect. The
shadow effect is as in Fig. 3.

ulation size for all of our simulations. In contrast, the
95% CI for M0 never contained the true population size
at the highest levels of shadow effect. Thus, the het-
erogeneity model gives an estimate of population size
that is less negatively biased than model M0. The het-
erogeneity model slightly overestimated the number of
genotypes (u 1 s) for conditions that we considered,
whereas M0 tended to underestimate it.

Interestingly, at the highest shadow effect that we
considered (PI 5 0.2, g 5 4), the relative bias of pop-
ulation size across the 20 replicates was actually less
than it was at a slightly lower shadow effect (PI 5 0.2,
g 5 2; Fig. 4). Relative bias is decreased because CAP-
TURE was better able to detect heterogeneity at higher
levels of the shadow effect (Fig. 3). Because the less
biased estimator (Mh-jackknife) was chosen more often at
these high levels of the shadow effect, population es-
timates had lower relative bias.

DISCUSSION

Problems associated with estimating demographic
rates in general, and population size in particular, have
attracted sustained attention in the ecological literature
(e.g., Marten 1970, Menkens and Anderson 1988, Min-
ta and Mangel 1989, Lebreton et al. 1992, Wileyto et
al. 1994, Rosenberg et al. 1995, Karanth and Nichols
1998). The difficulties are especially acute for taxa that
are difficult to monitor, yet are under intense manage-
ment scrutiny (i.e., Kendall et al. 1992, Zielinski and
Stauffer 1996). Recently, emerging molecular tech-
niques have been shown to effectively identify indi-
viduals in the field (Haig 1998), an advance that leads
logically to application in estimating demographic vari-
ables. Although accounts advocating noninvasive sam-
pling to estimate population size are only now begin-
ning to be published in journals (Palsboll et al. 1997,
Foran et al. 1997), it is difficult to find an applied
ecology program or government agency that is not ac-
tively interested in these approaches (see, for example,

British Columbia Resources Inventory Committee
1997).

Genetic shadows are different individual organisms
that are indistinguishable using noninvasive genetic
analysis. Our results indicate that shadows can lead to
error in population estimates beyond that arising from
traditional mark–recapture studies. Therefore, studies
using noninvasive sampling of organisms (via hair
snags, feces, etc.) still must account for traditional con-
cerns such as heterogeneity of capture probability, trap
response, and change in capture probability with time
(Pollock et al. 1990), as well as this novel ‘‘shadow
effect,’’ which manifests as a type of capture hetero-
geneity. The shadow effect can affect the population
size estimate, the variance around the estimate, and the
relative bias.

The effect of shadows on population size estimates
will tend to be a negative bias. In the case of two-
sample Lincoln-Petersen (LP) estimates, even the es-
timate of the number of different genotypes will tend
to be biased low. The negative bias arises from the
creation of an apparent heterogeneity of capture of an-
imals of different genotypes. Therefore, the size of the
bias depends on the size of the shadow effect, which,
in turn, depends on both the PI and the number of
indistinguishable genotypes for that PI. In some cases
that are likely to be encountered in field studies, the
negative bias is substantial. However, the bias is small
in other cases; in fact, a strong argument might be made
that the estimates are impressively accurate, given the
logistical hurdles required to estimate population sizes
for rare organisms such as carnivores!

The estimate of variance under the LP method is also
affected by genetic shadows. An increased shadow ef-
fect arising from either increasing PI or increasing the
number of animals sharing a shadow genotype (Fig. 1)
improves the apparent precision by decreasing the es-
timated standard errors around the estimate, leading to
the uncomfortable situation whereby our ‘‘certainty’’
in the estimate increases (smaller estimated 95% CI),
even as our estimate gets progressively worse (more
bias) at higher levels of the shadow effect. Therefore,
the shadow effect results in the largest population with
the largest capture probability actually having the larg-
est estimated relative bias, and the smallest population
with the lowest capture probability having the smallest
estimated relative bias (Fig 2). The fact that the in-
creased relative bias and increased apparent precision
are exacerbated by increasing sample size through in-
creased relative capture probability or true population
size does not argue for decreasing the capture proba-
bility or sample size. Rather, our results should be taken
as a warning that the shadow effect may not be min-
imized by the traditional solutions of increased sample
size or capture probability.

Program CAPTURE, which uses multiple mark–re-
capture data to identify and use population estimation
models robust to violations of the equal catchability
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FIG. 5. Overall probability of identity (PI) of individuals
in a population as the number of loci changes. The top and
bottom lines are based, respectively, on the average PI across
populations having the highest or lowest PI in each of the 10
studies surveyed in the Appendix (mean PI per locus is 0.31
for the upper line and 0.14 for the lower line). Loci are as-
sumed to be independent in their impact on PI, as per Eq. 2.

assumptions, is also affected by the presence of shad-
ows. In our simulations using CAPTURE, the number
of different genotypes was estimated well, but the pa-
rameter of greatest interest in ecological studies, pop-
ulation size, was estimated with a negative bias under
the shadow effect. As with LP, the negative bias tended
to increase as the shadow effect increased (Fig. 4).
Interestingly, at our highest level of the shadow effect,
the relative bias dropped because CAPTURE was better
able to identify the heterogeneity created by the shadow
effect and to appropriately recommend the less biased
Mh-jackknife model (Fig. 3). This result implies that mod-
erate levels of shadow effect may be more damaging
to population estimates in CAPTURE than high levels;
at high levels of the shadow effect, CAPTURE more
successfully identifies the heterogeneity and recom-
mends the estimator with less negative bias.

It is not clear how a user of CAPTURE would dis-
tinguish between true capture heterogeneity, which
arises from different animals being more or less likely
to be noninvasively sampled, vs. the heterogeneity de-
tected as a result of shadows being functionally more
likely to be ‘‘captured’’ than individuals without ge-
netic shadows. Note that the shadow effect does not
manifest as a positive (trap happy) trap response be-
cause the probability of capture increases for all trap
events, not just after the first capture. Of course, the
putative ‘‘capture heterogeneity’’ resulting from the
shadow effect will interact with other sources of vari-
ation expected in any mark–recapture study.

We did not consider all available closed-population
estimators. For example, ‘‘mark–resight’’ approaches
(Arnason et al. 1991, Gardner and Mangel 1996, White
1996) might be based on captures of animals (physi-
cally marking and obtaining a DNA sample) followed
by ‘‘resighting’’ (noninvasive DNA collection). Such
approaches have the advantage of minimizing bias by
making sources of capture heterogeneity independent
(Seber 1982), but the shadow effect will continue to
affect the second capture session and, therefore, the
estimate. Similarly, although we did not examine more
complex estimators of demographic rates, such as
open-population models or estimates of survival or re-
cruitment, it is probably true that these will also be
impacted by the shadow effect if noninvasive genetic
sampling is used. For example, shadow effects are like-
ly to positively bias survival estimates, because mor-
tality of an individual could be disguised by its sur-
viving shadow(s).

We emphasize that, in any given case, the actual
effect of genetic shadows on N̂ could be far greater or
less than the limited sets of conditions that we consid-
ered. For example, both PI and the number of shadows
sharing a genotype (g) might be greater than the ranges
that we considered if siblings tend to be caught, or if
inbreeding has occurred due to assortative mating or
small population size. Shadow effects may be most
problematic in taxa such as carnivores, where the very

attributes that force us to consider noninvasive sam-
pling (e.g., low population density) also lead to de-
creased heterozygosity, increased PI, and increased
number of individuals per shared genotype. In an anal-
ysis using actual wolf and bear data sets, L. P. Waits,
G. Luikart, J.-M. Cornuet, and P. Taberlet (unpublished
data) found that social structure can lead to an actual
PI up to three orders of magnitude larger than that
calculated using the traditional formulas of Eqs. 1 and
2 (see also Taberlet and Luikart 1999).

On the other hand, PI could certainly be reduced,
most readily if more loci are used. The assumption of
independence among loci leads to exponential decrease
in PI with more loci (Eq. 2). Fig. 5 shows the change
in PI using varying number of loci, based on the mean
PI per locus calculated from the ‘‘high PI’’ and ‘‘low
PI’’ populations in the Appendix. With seven indepen-
dent loci or more, the PI becomes very small, and the
problems that we discuss here are likely to be mini-
mized.

Finally, the problems that the shadow effect could
create for population estimates are not escaped by the
use of an index such as ‘‘enumeration’’ or ‘‘Minimum
Number Alive,’’ MNA (see Krebs 1966, Krebs et al.
1969). Although the MNA index is simple and widely
used, it is biased under virtually all field conditions
(see Hilborn et al. 1976, Nichols and Pollock 1983).
The shadow effect will further bias the MNA index by
an amount equal to the number of shared genotypes (s
5 (PI 3 N)/g). Population measures using noninvasive
DNA sampling should therefore be based on estimators
(such as mark–recapture models) and not on biased
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indices with unknown detectability that are further bi-
ased by the shadow effect.

In summary, all demographic estimates using non-
invasive DNA sampling could be affected by a shadow
effect. The bias in population size estimates typically
will be negative, but the nearly infinite array of possible
magnitudes and manifestations of the probability of
identity prevent quantitative generalizations about the
specific effects of shadows. Our results do not diminish
the value of noninvasive genetic techniques for uses
such as estimating the identity of species, sex ratio, or
presence/absence metrics. Understanding the potential
effects of DNA shadows on estimating demographic
parameters moves applied ecologists one step closer to
confidently embracing the promise of molecular tools
for gaining insights into the demography of seldom-
seen animals.
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APPENDIX

Studies of non-captive birds and mammals that used microsatellite DNA and provided sufficient information to determine
the average probability of identity (PI) per amplified locus.

Taxa (citation) and location
No. polymorphic

loci
Mean PI

per locus† Heterozygosity‡

Loggerhead Shrike, Lanius ludovicianus (Mundy et al. 1997)
San Clemente Island, L. l. mearnsi
Perris mainland, L. l. gambeli

6
7

0.45
0.28

0.39
0.56

Polar bear, Ursus maritimus (Paetkau et al. 1995)
South Beaufort Sea
Davis Strait

8
8

0.15§
0.18§

0.64
0.61

Black bear, Ursus americanus (Paetkau and Strobeck 1994)
Terra Nova
Banff

4
4

0.51§
0.068§

0.36
0.80

Grey seal, Holichoerus grypus (Allen et al. 1995)
North Rona
Isle of May

8
8

0.11
0.11

0.74
0.73

Hairy-nosed wombat, Laxiorhinus spp. (Taylor et al. 1994)
NHN, L. krefftii
SHN combined, L. latifrons

9
15

0.38
0.17

0.47
0.68

Bighorn sheep, Ovis canadensis (Boyce et al. 1997)
San Andres
Eagle

2
3

0.35
0.11

0.49
0.75

Bilby, Macrotis lagotis (Moritz et al. 1997)
Queensland
Northern Territories

9
9

0.11
0.078

0.73
0.79

Koala, Phascolarctos cinereus (Houlden et al. 1996)
Kangaroo Island
Nowendoc

4
6

0.39
0.061

0.48
0.82

Yellow-footed rock wallaby, Petrogale xanthopus (Pope et al. 1996)
Lisburne
Hill of Knowledge

4
4

0.18
0.12

0.66
0.72

Red fox, Vulpes vulpes (Lade et al. 1996)
Philip Island
Mornington

7
7

0.45
0.26

0.39
0.58

Notes: PI represents the proportion of animals in the population that would be expected to share a genotype with at least
one other animal. We only included studies with at least two populations to bracket ‘‘high’’ and ‘‘low’’ PI values for each
study.

† Mean PI is the geometric mean of the overall PI across all polymorphic loci for a particular population (see Eq. 2).
‡ Heterozygosity is the arithmetic mean heterozygosity across loci, and is inversely correlated with PI (Eq. 1).
§ Provided by the authors (who used Eq. 1). For all other studies, we calculated PI from allele frequencies of each locus

using Eq. 1 (text).
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